
Received February 8, 2020, accepted February 25, 2020, date of publication March 3, 2020, date of current version March 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978082

Privacy-Preserving Asynchronous Federated
Learning Mechanism for Edge
Network Computing

XIAOFENG LU 1, YUYING LIAO 1, PIETRO LIO 2, AND PAN HUI 3, (Fellow, IEEE)
1School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Computer Laboratory, University of Cambridge, Cambridge CB2 1TN, U.K.
3Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong

Corresponding author: Xiaofeng Lu (luxf@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472046, in part by the Ant Financial

through the Ant Financial Science Funds for Security Research, and in part by the Beijing Association for Science and Technology Seed Fund.

ABSTRACT In the traditional cloud architecture, data needs to be uploaded to the cloud for processing,

bringing delays in transmission and response. Edge network emerges as the times require. Data processing

on the edge nodes can reduce the delay of data transmission and improve the response speed. In recent

years, the need for artificial intelligence of edge network has been proposed. However, the data of a

single, individual edge node is limited and does not satisfy the conditions of machine learning. Therefore,

performing edge network machine learning under the premise of data confidentiality became a research

hotspot. This paper proposes a Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge

Network Computing (PAFLM), which can allow multiple edge nodes to achieve more efficient federated

learning without sharing their private data. Compared with the traditional distributed learning, the proposed

method compresses the communications between nodes and parameter server during the training process

without affecting the accuracy. Moreover, it allows the node to join or quit in any process of learning, which

can be suitable to the scene with highly mobile edge devices.

INDEX TERMS Federated learning, edge computing, privacy preservation, asynchronous distributed

network, gradient compression.

I. INTRODUCTION

Since its introduction, deep learning has gradually changed

the way we live, learn, and work. It has made great break-

throughs in speech, image, as well as text recognition [1],

language translation, and other area. Traditional deep learn-

ing requires a large amount of data to be collected for

learning. Although the ascendancy of deep learning is unde-

niable, the involved training data may have serious privacy

issues. First, millions of photos and videos are collected cen-

trally, and this data is kept by large companies forever. Users

can neither delete the data nor control how it is used.

Second, images and videos are likely to contain a lot of sen-

sitive information [2], such as faces, license plates, computer

screens, and people’s conversations. In addition, the internet

giants monopolize this ‘‘big data’’ and enjoy huge economic

benefits behind it.

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

It is known that with an increase in the number of training

data sets and the data diversification, the neural network

models behave better. Data held by one single organization

(such as a specific medical clinic) may be similar and not

diversified enough, so that models based on such data sets

may eventually result in over-fitting or less scalability. In this

case, the limitations of privacy and confidentiality signifi-

cantly affect performance of the neural network model.

On the other hand, the current global Internet of Things

has entered the third era of development. In 2018, the number

of global IoT connections was about eight billion [3]. These

IoT devices generate a large amount of data every day. If the

data generated by the Internet of Things is transmitted to the

cloud-computing center for processing, it will cause transmis-

sion congestion and data processing delays. It is necessary

to shift computing tasks from cloud center to the network

edge. Based on this, fog computing and edge computing have

been proposed to compensate for some of the shortcomings

of cloud computing.

48970 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0003-1033-164X
https://orcid.org/0000-0002-0466-3544
https://orcid.org/0000-0002-0540-5053
https://orcid.org/0000-0002-0848-2599

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

Fog computing [4], [5] is an architecture that distributes

computation, communication, control, and storage closer to

the user side. Fog servers can be connected to the cloud so

as to leverage the rich functions and application tools of the

cloud, which is conducive to data protection [6]. Therefore,

‘‘the fog is a cloud close to the ground’’. Fog computing is

not meant to substitute cloud computing, but to complement

it in order to ease bandwidth burden and reduce transmission

latency [7].

Edge computing refers to a close-to-data-source platform

that integrates network, computing, storage, and other core

capabilities, providing near-end services [8]. Compared with

the data-centralized cloud computing method, edge comput-

ing processes data at the edge of the network. Because of its

near-end characteristics, edge computing can reduce network

bandwidth load, shorten response time, and improve battery

life while ensuring data security and privacy.

Fog computing and edge computing both process data

close to the data collectors, moving computing load from

servers to decentralized computing nodes to achieve work-

load balance [9], [10]. In many ways, they are very simi-

lar, but there are still slight differences between them. Fog

computing introduces a ‘‘fog layer’’ between the cloud and

the clients. The fog layer is composed of many fog servers,

which are located close to the edge of the network. Each

fog server is a highly virtualized computing system, similar

to a lightweight cloud server. On the other hand, edge com-

puting executes computing tasks at the edge of the network.

Computing nodes are usually IoT devices with certain com-

puting and storage capabilities. Except for the difference

between fog computing and edge computing, they both are

complementary to cloud computing. The effective combi-

nation of the three can bring forward solutions for various

complex needs in reality.

With the advent of 5G, edge computing and federated

learning have attracted widespread attention. McMahan and

Ramage et al. [11] gave a general description of Federated

Learning. Bonawitz et al. [12] continued their research and

explored more possibilities. Federated learning means ‘‘joint

learning’’, where multiple devices work together to train

learning models collaboratively. Traditional federated learn-

ing is a decentralized learning framework, in which most of

the computation (like model training) is performed on the

node side. Nodes learn locally on each device and gradually

optimize the learning models through interaction with the

central server. Fig. 1 shows the simplified federated learning

framework. Throughout the federated learning process, pri-

vacy data does not leave the data owner, and it does not need

to be shared with other nodes, solving data security and other

issues.

Because of the decentralized nature of federated learn-

ing, it can make better use of the computing power of

IoT devices. Fig. 2 presents a sample application scenario,

in which data is stored locally on the cameras so that the

cameras themselves can learn from the data. After learning,

the cameras have the ability to make simple decisions, such

FIGURE 1. Federated learning system architecture.

FIGURE 2. One of the possible application scenario of federated learning.

as adjusting real-time traffic by controlling signal lights.

Compared to uploading the data to a central server for pro-

cessing, this method can respond faster and is suitable for

real-time scenarios.

In this paper, we propose a Privacy-Preserving Asyn-

chronous Federated Learning Mechanism for Edge Network

Computing (PAFLM) that can satisfy the reality of learn-

ing from multi-party data without sharing their own private

information. Compared with traditional distributed learning,

PAFLM ensures learners’ freedom and preservation of pri-

vacy without affecting accuracy. Each node independently

trains on its own using a local dataset. Our method helps

to improve the accuracy of the participants’ local models

because the limited data owned by either party can easily

result in a trapping into the local optimum. Using models

learned by other participants to optimize parameters of local

model can effectively help each participant escape local pref-

erences and enable them to explore other values, resulting in

more accurate models.

Our contributions are as follows:

(1) We designed a federated learning system that is more

suitable for collaborative learning of discrete nodes in edge

networks and is different from the existing distributed learn-

ing system, so that nodes can learn from the data without

sharing private information.

VOLUME 8, 2020 48971

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

(2) We improve and design a gradient compression

algorithm based on previous work. When the gradient com-

munications are compressed to 8.77% of the original commu-

nication times, the accuracy of the test set is only reduced by

0.03%. The gradient data indirectly reflects the information

of training samples, and the attacker can deduct the sample

data from the massive effective gradient. Therefore, reducing

gradient communications can effectively lower the likelihood

of privacy breaches.

(3) We further explored the possibility of asynchronous

federated learning in order to better adapt to the unrestricted

characteristics of edge nodes, and as a result, designed,

proposed, and tested a dual-weights correction method to

solve the performance degradation caused by asynchronous

learning.

The rest of this paper is organized as follows. Section I

is the brief introduction of our work. The state-of-art solu-

tions of federated learning are introduced in section II.

In section III, we demonstrate the basic structure of PAFLM,

which consists of two parts: self-adaptive threshold gradient

compression and asynchronous federated learning with dual-

weights correction. In section IV, we further illustrate the self-

adaptive threshold gradient compression method, and discuss

its examination-free mechanism. In section V, we propose

a dual-weights correction to solve asynchronous federated

learning problems. The experiment of our proposed meth-

ods is shown in section VI, and section VII presents the

conclusion.

II. RELATED WORK

A. FEDERATED LEARNING

Traditional federated learning is a decentralized learning

method. It allows learners to store the training data privately

on their mobile devices and learn a shared model by aggre-

gating locally-computed updates. In the federated learning

framework, sensitive sample data does not need to transfer

to a cloud center. Edge nodes execute computing tasks sep-

arately and independently, guaranteeing data integrity. With

the development of technology, federated learning has grad-

ually evolved into different forms. A combination of feder-

ated learning and blockchain is an interesting exploration.

Blockchain has emerged as a chronological, decentralized,

provenance-preserving, and immutable ledger technology.

It is an effective solution to replace a vulnerable central

server in an unsecure environment. Blockchain integrated

with federated learning can effectively solve the security

issues involving the central server [13]–[17].

However, we are more concerned with the traditional fed-

erated learning framework rather than the development of its

other forms. Most of the studies about federated learning are

focused on synchronous training algorithms, such as the fed-

erated average algorithm proposed by McMahan et al. [11].

Privacy protection in federated learning, such as security

aggregation [18], requires synchronization operations at the

device level, so it essentially belongs to the category of

synchronous training. In addition, researchers began to imple-

ment the federated learning system on vehicle-to-vehicle

communications [19], medical applications [20], and in other

areas.

B. GRADIENT COMMUNICATION WORKLOAD

Because federated learning requires a large number of learn-

ing nodes, the huge network communication bandwidth

required by these nodes cannot be ignored. Researchers have

proposed many ways to overcome communication bottle-

necks, where gradient quantization and sparseization are two

popular areas of research.

Gradient quantization converts gradients to a low-precision

value to reduce the communication bandwidth. 1-bit Stochas-

tic Gradient Descent (SGD) [21] reduces the size of gradient

transmission data and achieves 10x acceleration in traditional

speech applications. TernGrad uses ternary gradients to accel-

erate distributed deep learning in data parallelism [22]. Both

of these tasks demonstrate the convergence of quantitative

training. However, TernGrad has only been tested on CNN,

and QSGD has only calculated the accuracy of RNN loss.

Gradient sparseness compresses gradient communication

times to mitigate network pressure. The first thing that comes

to mind is regularly skipping some of the gradient inter-

actions [23]. Dryden et al. [24] selected a fixed ratio of

positive and negative gradients. Chen et al. [25] proposed and

proved mathematically a method that automatically adjusts

the compression ratio according to the local gradient activity.

This method achieves 200 times compression for the fully-

connected layer, 40 times compression of the convolution

layer, and the reduced top-1 accuracy that is negligible in

the ImageNet data set. However, ignoring the information

of real-time gradients and compressing communication only

according to the fixed interval or ratio can adversely affect

the training process. At the same time, Strom et al. [26] used

thresholds to achieve gradient sparseness—only sending gra-

dients that are greater than a predefined constant threshold.

Gradient Dropping [27] uses a single absolute threshold to

sparse the gradient matrix. Gradient Dropping saves 99%

of gradient swaps while causing a 0.3% loss of BLEU in

machine translation tasks.

However, the performance of the above work greatly relies

on choosing the correct threshold, which is not an easy task.

A ‘‘perfectly’’ fixed threshold can solve the problem of one

specific scenario, but for another problem scenario it may be

a disaster. Moreover, the threshold selection requires a lot

of time to debug, which is unrealistic for scenarios requir-

ing high-speed response. At this time, the Lazily Aggre-

gated Gradient (LAG) [28] appears to be more fascinating.

LAG adaptively calculates gradient and skips partial gradient

communications to reduce communication bandwidth and

mitigate server pressure. The basic principle is to detect

slowly-changing gradient and compress it. LAG is very valu-

able, but it requires the optimization problem to be convex

and Lipschitz smooth.

48972 VOLUME 8, 2020

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

Gradient compression in PAFLM belongs to the cate-

gory of gradient communication sparseization. But unlike

the scheme mentioned above, there is no need to explore

an optimal gradient threshold in PAFLM because the opti-

mal thresholds vary from problem to problem. In addition,

defining gradient thresholds reduces the scalability of the

asynchronous federated learning framework.

If the learning object is spread to edge nodes, synchronous

training becomes difficult to implement and does not meet the

needs of reality. Although a few researchers have adopted the

asynchronous learning method, they all use it as a regulariza-

tion method [29], lacking detailed systematic research. And

in most studies, during the federated learning, training status

of participating nodes is almost the same. There is a lack

of attention to the fact that the learning progress is quite

different, even when the learning process is completely stag-

gered. In this paper, we study this type of asynchronous

learning problem and mitigate the loss of precision caused

by asynchronization.

III. PRIVACY-PRESERVING ASYNCHRONOUS FEDERATED

LEARNING MECHANISM FOR EDGE

NETWORK COMPUTING

Federated Learning is an emerging artificial intelligence tech-

nology. It is designed to carry out efficient machine learning

amongmultiple participants or computing nodes while ensur-

ing the security of private personal data. The machine learn-

ing algorithms used in federated learning are not limited to

neural network algorithms, but also include other algorithms,

such as random forests.

The traditional federated learning mechanism consists of

a parameter server and multiple edge nodes. The parameter

server is responsible for collecting gradients uploaded by

each participating node, updating the parameters of the model

according to the optimization algorithm and maintaining the

global parameters. The participating nodes learn from their

sensitive data independently and locally. After each epoch,

nodes upload gradients to the parameter server, and the server

summarizes and updates the global parameters. Then nodes

download the updated parameters from the parameter server,

overwriting their local model parameters and proceeding to

the next iteration. During the whole learning process, nodes

only communicate with the parameter server. Learning nodes

cannot obtain any information about the remaining nodes,

except the global parameters that are jointly maintained,

which guarantees the confidentiality of the private data.

Fig. 3 shows the Privacy-Preserving Asynchronous Fed-

erated Learning Mechanism for Edge Network Computing,

which is based on the traditional federated learning frame-

work. Our work contains two layers: parameter server layer

and edge node layer. The self-adaptive threshold gradient

compression module is at the edge node layer, and the asyn-

chronous federated learning module spans both layers.

Self-Adaptive Threshold Gradient Compression Fed-

erated learning oriented for edge network requires interac-

tion with multiple edge nodes for real time training data,

FIGURE 3. Privacy-preserving asynchronous federated learning
mechanism for edge network computing.

resulting in high communication costs, which greatly limit

the scalability of the federated learning system. In this case,

communication latency is the bottleneck of the performance

of the whole learning framework. It has been found that

99.9% of the gradient exchanges in distributed SGD are

redundant. In this paper, we present a gradient sparseization

method that compresses the interaction between nodes and

parameter server, effectively reducing communication band-

width in the learning process. In the experiment, when the

gradient communications are compressed to 8.77%, the accu-

racy of the test set is only reduced by 0.03%.

Asynchronous Federated Learning with Dual-Weights

Correction Because edge nodes are highly unrestrained, it is

impractical to force all nodes to train at the same time.

We explore the different situations of asynchronous learning

and propose the dual-weights correction for asynchronous

learning with edge nodes. Asynchronous federated learning

aims to provide a freer learning environment for edge nodes

and to reduce the loss of precision caused by extremely

unrestrained learning.

Self-adaptive threshold gradient compression module is

divided into two sub-modules: self-adaptive threshold com-

putation and gradient communication compression, which are

respectively responsible for calculating the threshold accord-

ing to the latest parameter change and using the thresh-

old to compress the redundant gradient communications.

Asynchronous federated learning is divided into four

sub-modules: parameter update, gradient adjustment, dual-

weights calculation, and learning status monitor. The monitor

sub-module is responsible for monitoring the learning state

of the node, such as current learning round and the num-

ber of samples. The dual-weights computation sub-module

calculates the corresponding sample weights and parameter

weights according to its learning information. The gradient

adjustment sub-module corrects the gradient uploaded by the

node according to the dual-weights. Moreover, the corrected

gradient is used for the global parameter update in the param-

eter update sub-module.

The self-adaptive threshold gradient compression module

and the asynchronous federated learning module are not inde-

pendent of each other. The self-adaptive threshold calculation

needs to obtain the updated parameters and compare them

with the historical parameters. The compressed gradient com-

munications affect the learning status of the node, which in

turn affects the dual-weights calculation.

VOLUME 8, 2020 48973

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

IV. SELF-ADAPTIVE THRESHOLD

GRADIENT COMPRESSION

Gradient compression is used to compress the gradient com-

munications between nodes and parameter server. In other

words, it compresses the number of calls that one single node

communicates to the parameter server. As described above,

the information contained in the gradient is largely redun-

dant. When the number of edge nodes increases, the commu-

nication cost required for these redundant communications

becomes enormous. Moreover, the parameter server is under

a large communication pressure, and skipping part of the

information interaction can reduce the communication load.

In addition, the gradient data indirectly reflects the sample

information secretly owned by nodes. Attackers can deduce

sample data of target nodes by combining the trained global

model with the collected effective gradient information.

Gradient compression reduces gradient communications,

which not only improves the efficiency of federated learning,

lightens network load, but also reduces the chance of sample

privacy leakage.

Previous work [23]–[27], whether simply introducing the

communication compression ratio or compressing gradient

communications based on the fixed threshold, contains many

shortcomings. Because gradient change is varied for different

learning processes, simply selecting nodes for compression

according to the compression ratio tends to ignore the gra-

dient with a large amount of information, which affects the

global model training. At the same time, using fixed thresh-

olds can easily result in over-compression, causing model

convergence difficulties in the latter part of the training.

In PAFLM, the nodes automatically adapt to the changes

of each round of the model training process, and calculate

the appropriate threshold to compress the gradient commu-

nications. Only the qualified nodes can communicate with

the parameter server in the corresponding round. Otherwise,

the gradient is accumulated locally until the next round.

The final gradient will accumulate enough information to

upload to the parameter server. Regardless of whether the

node is qualified for communication in a certain round,

gradient checks are performed at the end of each learn-

ing iteration; that is, the gradient checks participate in the

entire learning process. We propose the self-test expression

in gradient compression and prove it with a mathematical

method.

A. MATHEMATICAL DERIVATION

Table 1 explains the symbolic representations involved in the

formulas below.

In the gradient descent algorithm (GD), there is a parameter

server that needs to communicate with M learning nodes

to complete the update of the model parameters. In the kth
iteration, the parameter server broadcasts the current model

θk−1 to all learners; each learning node m ∈ M computes

∇m−1(θ
k) and uploads it to the parameter server; then param-

eter server receives the gradients from all learning nodes.

Parameter server updates the model parameters by iterating

TABLE 1. The meaning of symbol in the following formulas.

the gradient descent algorithm.

θk = θk−1 − α∇
k−1
M . (1)

where α is the learning rate, and ∇
k−1
M is the aggregation

gradient, which represents a round of variation of the model.

We refers to the work of Chen et al. [28] about compressing

the gradient interaction to reduce the bandwidth burden of

communications. The main idea of the algorithm is to, in a

certain round, ignore the ‘‘Lazy’’ nodes and only commu-

nicate with the ‘‘Hard work’’ nodes. These ignored nodes

are represented as ML , and the nodes communicating with

the server are MH , that is, M = ML + MH . Nodes that are

ignored still need to accumulate the gradient locally, and then

finally, gradient will increase large enough to participate in

the communications. Therefore ∇
k−1
M can be updated to:

∇
k−1
M = ∇

k−1
ML

+ ∇
k−1
MH

. (2)

Let the setML satisfy the following formula, where mL , m

respectively are the total number of all elements in the setML

and M :
∥

∥

∥
∇
k−1
ML

∥

∥

∥

2

mL
≤

∥

∥

∥
∇
k−1
M

∥

∥

∥

2

m
. (3)

Substituting formula (1) into the above formula we can

obtain:
∥

∥

∥
∇
k−1
ML

∥

∥

∥

2
≤

mL

α2m

∥

∥

∥
θk − θk−1

∥

∥

∥

2
. (4)

where

∥

∥

∥
∇
k−1
ML

∥

∥

∥

2
=

∥

∥

∑

m∈ML
∇m(θ

k)
∥

∥

2
. According to the

Inequality of Arithmetic and Geometric Means,

∥

∥

∥
∇
k−1
ML

∥

∥

∥

2

satisfies the following formula:
∥

∥

∥
∇
k−1
ML

∥

∥

∥

2
≤ mL

∑

m∈ML

∥

∥

∥
∇m(θ

k)

∥

∥

∥

2
. (5)

The formula (3) must satisfy if the node m ∈ ML meets the

following conditions :
∥

∥

∥
∇m(θ

k)

∥

∥

∥

2
≤

1

α2mLm

∥

∥

∥
θk − θk−1

∥

∥

∥

2
. (6)

Since the total number of set ML cannot be obtained in

advance, in order to simplify the problem, we introduce a

48974 VOLUME 8, 2020

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

proportional coefficient β to express the total number of

nodes of the set ML , that is, mL = βm. From formula (6)

we can obtain:

∥

∥

∥
∇m(θ

k)

∥

∥

∥

2
≤

1

α2βm2

∥

∥

∥
θk − θk−1

∥

∥

∥

2
. (7)

However, the acquisition of θk −θk−1 is difficult, but since

the parameter changes tend to be smooth during the learning

process, θk − θk−1 is approximated as:

θk − θk−1 ≈

D
∑

d=1

ξd (θ
k−d − θk−1−d). (8)

where ξd and D are constant coefficients, simply we choose

ξd = 1/D.

Substituting equation (8) into equation (7) gives us:

∥

∥

∥
∇m(θ

k)

∥

∥

∥

2
≤

1

α2βm2

∥

∥

∥

∥

∥

D
∑

d=1

ξd (θ
k−d − θk−1−d)

∥

∥

∥

∥

∥

2

. (9)

Formula (9) is the self-testing expression for the gradient

check of federated learning, that is, the node conducts the

self-test operation after the end of every round of learn-

ing. It should be noted that if the gradient does not sat-

isfy formula (9), the corresponding node will communicate

with the parameter server. Otherwise, the current round com-

munication will be skipped, and learning nodes cumulative

gradient locally, continuing to execute the next round of

learning.

B. GRADIENT COMPRESSION WITH

EXAMINATION-FREE MECHANISM

As described above, gradient compression compresses redun-

dant gradient communications in federated learning. The

edge learning nodes calculate the current gradient after one

epoch of training and then decide whether to upload param-

eters to server according to the self-test expression. Nodes

that satisfy the condition communicate with the server, upload

the gradient, and receive the updated parameter. Otherwise,

nodes accumulate the gradient locally and begin the next

epoch. This is a typical example of sacrificing the local

computation time of nodes to reduce global communication

time. Inmany neural network learnings, the number of epochs

is large. Therefore, the calculation time brought by the self-

testing is undoubtedly not negligible.

In order to alleviate the amount of local computation,

we add an ‘‘examination-free’’ mechanism based on the

gradient compression described above. Let the set be γ =
{

γ1, γ2, . . . , γTotalEpochs
}

, where the random variable γk ∈ γ

indicates the possibility of nodes that can skip the gradient

check and directly communicate with the parameter server

after the kth epoch. Only when γk ≥ γT , the node is eligible

to skip the self-testing process, where γT is a predefined

probability threshold.

FIGURE 4. Asynchronous federated learning (bright part means the
finished learning tasks, while the dark part means tasks that need to be
carried on).

V. ASYNCHRONOUS FEDERATED LEARNING

FOR EDGE NETWORK

As mentioned above, PAFLM is oriented toward the unre-

stricted edge nodes. There are many factors that can cause

asynchronous problems, such as different time to join fed-

erated learning and different computing power (varied com-

puting time required for the same training task), gradient

compression, learning interruption caused by various external

factors, and so on. We propose dual-weights correction to

solve asynchronous federated learning problems.

A. PROBLEMS IN ASYNCHRONOUS

FEDERATED LEARNING

In asynchronous federated learning, nodes have uneven learn-

ing samples and different learning status. As shown in Fig. 4,

the straight line in the figure represents the current time. The

total number of learning rounds of all nodes is the same.

The part that intersects with timeline indicates the current

epoch. Each node is at different stages of learning, such as

node A is at the 50% of the learning process. If the total

number of epochs is 1000, nodeA is at its 501th round. It obvi-

ously is unreasonable for the nodes with large differences to

update the global parameters equally. Therefore, we introduce

dual-weights correction to solve the problem of unbalanced

learning status in asynchronous learning.

B. ASYNCHRONOUS FEDERATED LEARNING WITH

DUAL-WEIGHTS CORRECTION

The dual-weights of PAFLM are divided into two parts:

sample weights and parameter weights. The sample weight

is determined by the proportion of the node samples to

the total samples of all learning nodes, and the parameter

weight is affected by the time difference between one node

downloading parameters and it uploading corresponding

gradients.

VOLUME 8, 2020 48975

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

FIGURE 5. Asynchronous federated learning and parameters staleness.

Definition 1: The sample weight represents the proportion

of the sample owned by one node to the total number of all

learning nodes.

Let n learning nodes be N = {N1,N2, . . . ,Nn}, and the

number of samples owned by node Ni be represented by Si.

The sample weight of one particular node can be computed

from its sample number and the total sample number. The

calculation is as follow:

β iS =
Si

S
. (10)

where β iS represents the sample weight of node i,and S =
∑n

j=0 Sj is the total sample number of n nodes.

Definition 2: The parameter weight indicates the time

difference between one node downloading parameters and

uploading corresponding gradients.

From the perspective of the parameter server, the entire

federated learning is the iteration of the parameter optimiza-

tion update. Nodes continually send requests to the parameter

server for downloading the latest parameters, and upload

the latest gradient to update the parameters. The simplified

process is shown in Fig. 5. Each node has upload operations

of other nodes interspersed between the time when its latest

parameter is downloaded and the corresponding gradient is

uploaded. In the parameter optimization described in Fig. 5,

the gradients have certain ‘‘staleness’’, and the definition of

‘‘staleness’’ is as follows:

µstaleness = Iupload − Idownload . (11)

As the example in Fig. 5 shows, the staleness isµstaleness =

t+τ − t = τ . The parameter staleness reflects the computing

power of the node in some ways. In order to guarantee that

nodes with larger staleness have smaller parameter weights

and that their weight attenuation process is relatively flat,

we select the exponential function with the base number less

than 1 as the attenuation function of the parameter weights:

β iP = α(1nµistaleness)−1. (12)

where µi
staleness represents the staleness of node i, and α

is the base of the exponential function that determines the

speed of attenuation. When the exponential part is greater

than zero, we want the parameter weight to decrease as the

exponential value increases, so the selection interval of α is

FIGURE 6. Detail of asynchronous federated learning in PAFLM.

reduced to [0, 1]. As we all known, in the interval [0, 1],

the larger the α, the gentler is the decline of the calculation

result. So, in this paper, we simply choose α = 0.9.

The dual-weights correction formula is as follows, where θ

is the original model parameter and θ ′ is the modified model

parameter:

θ ′ = θ ∗ β iS ∗ β iP. (13)

As shown in Fig. 6, in the asynchronous federated learning,

the gradient submitted by the edge nodes is subject to dual-

weights correction on the parameter server before optimizing

the global model. The corrected gradients update the global

parameters according to a specific optimization algorithm.

After one round of optimization is finished, nodes download

the latest parameters and overwrite their local parameters to

prepare the next learning iteration.

VI. EXPERIMENT

A. EXPERIMENTAL CONFIGURATION

In order to simulate the actual scene, we set up the follow-

ing experimental environment: a GPU server with a strong

calculation capacity played the role of a parameter server,

being responsible for most of the calculation work. Many

other computers simulated the individual learning nodes in

the edge network, and each of them independently conducted

federated learning. The communications between the param-

eter server and the nodes were based on the Thrift frame-

work. In it, each computer stores its data locally (in our

experiment, the data of each node took 0.2% of the total

data), and trains the neural network model based on their

own private data. Our research objects were multiple edge

nodes with different computing powers, resulting in different

data processing times. Therefore, we tried to simulate these

devices by adding pause intervals between every adjacent

epoch. In order to better simulate the real-world scenarios,

the federated learning systems built on these computers were

controlled by an independent management computer.

The experimental environment is shown in Fig. 7, where

Order represents the start order of N nodes, and Interval

represents the interval time between two epochs. In the ini-

tialization phase, the management node generated a shuffled

48976 VOLUME 8, 2020

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

FIGURE 7. Experimental configuration example.

sequenceOrder according to the total number of nodes (such

as 4,1,6, 9,. . . ,5 in Fig. 7), and correspondingly generated a

random sequence Interval (as 16.20, 46.46, 62.96, 325.62,

. . . , 24.048(s) in the Fig. 7). After the initialization, the man-

agement node started the designated node according to the

Order: Interval sequence pair.

B. EXPERIMENTAL INDEX

The experimental indexes used for evaluation were Accuracy

(Acc), Compression Ratio (CR), and Compression Balance

Index (CBI).

Acc reflects the performance of the model classification,

which is defined as follows:

Acc =
The number of correctly classified samples

The number of total samples
× 100%.

(14)

CR reflects the degree of the gradient compression. The

smaller is the CR value, the higher is the degree of compres-

sion. The definition of CR is as follows:

CR =
Communication times after compression

Communication times before compression
× 100%.

(15)

As CR gradually decreases, the Acc is also goes down.

Weighing the two indicators and making the best decisions

becomes a problem. Therefore, we introduce the Compres-

sion Balance Index (CBI) to represent the comprehensive

performance of gradient compression, which is defined as

follows:

CBI = a1 ∗ ACC + a2 ∗ (1 − CR). (16)

a1, a2 are two adjustable parameters for balancing the

priority of Acc and CR, a1 + a2 = 1, a1 > 0, a2 > 0. If in

the real situation, the priority of Acc is higher than CR, it can

be set that a1 > a2; otherwise, a1 < a2. If the priorities of

the two indexes are the same, then a1 = a2. The higher the

CBI value, the better is the comprehensive performance of

gradient compression.

TABLE 2. Degree of compression and accuracy under different β.

C. SELF-ADAPTIVE THRESHOLD GRADIENT

COMPRESSION EXPERIMENT

We evaluated the gradient compression performance of

PAFLM using the MNIST data set, which is a handwritten

data set with 60,000 train samples and 10,000 test samples.

We normalized sample images to a 32×32 format so that the

handwriting number was at the center of the image.

In this part of the experiment, three training nodes were

included. The model structure of the training refers to the

Tutorial in the Tensorflow official website, and we did not

adjust it. The model structure was a three-layer MLP model,

and the number of neurons in each layer was 256, 256, and

10, respectively. The data set was divided into three equal

parts, and the learning nodes randomly obtained one of them.

In each experiment, the nodes reacquired new data.We exper-

imented with different hyper-parameters β and averaged the

final results.

Supplementary Note: Our work focused on the federated

learning framework, and we did not make too many adjust-

ments to the model structure or the optimization algorithms.

Therefore, in comparing the results of the training set and

the test set, it can be seen that the model had a slight over-

fitting phenomenon. Similarly, experimental indices, such as

Acc were only used to compare the performance of each

method, and did not evaluate the pros and cons of the model.

PAFLM did not limit the type of the learning model. The

model structure could be adjusted to actual problems, and to

solve various learning problems such as over-fitting.

1) Gradient Compression Experiment Analysis – Acc and

CR: Table 2 shows the effect of different β values on the

compression ratio and accuracy. Obviously, in the interval of

β = [0.1, 0.2], the compression rate increases significantly,

While in the interval β = [0.2, 1], the compression rate raises

within a smaller range. So in Fig.8, we highlight the interval

β = [0.1, 0.2].

As mentioned above, β affects the compression ratio.

The smaller the β value, the smaller the compression ratio

value, that is, the higher is the level of gradient communica-

tions. Normally, as the gradient communications are gradu-

ally compressed, the accuracy is also reduced. Fig. 8 shows

the results of the comparison experiment with 10 different

VOLUME 8, 2020 48977

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

FIGURE 8. Self-adaptive threshold gradient compression.

FIGURE 9. Different β and communication times.

hyper-parameter sets (sample number and pause interval).

Light-color thin lines in Fig. 8 (a) and Fig. 8 (b) are respec-

tively the specific data fluctuations on the test set and the train

set in ten experiments. The dark bold lines in Fig. 8 (a) and

Fig. 8 (b) are the test set and train set averages in these ten

experiments.

In Fig. 8, although the 10 sets of experimental data fluc-

tuate because of individual differences, the overall accuracy

shows that as the compression ratio increases, the accuracy

of model also increases, which can also be seen from the

corresponding dark bold lines. Interestingly, as can be seen

in Fig. 8(a), in the interval β = [0.14, 1] (corresponding to

the interval β = [0.13, 1] in Fig. 8 (b)), gradient compression

has little effect on accuracy, and the results fluctuate. This

is because the selected learning model has reached maxi-

mum learning. Obviously, redundant gradient communica-

tions have a lower gain in amodel that has achieved saturation

learning, and gradient compression helps to improve the per-

formance of federated learning. In Fig. 9, as the β increases,

FIGURE 10. CBI of different β values in gradient compression.

the CR also increases, that is, the number of gradient commu-

nications increases.

2) Gradient Compression Experiment Analysis – CBI:

In order to select the optimal β value, we calculated CBI

in the interval β = [0.1, 0.2], and the results are shown in

Fig.10. It can be found that the optimum β in our experiment

is β = 0.1.

We compared the performance of gradient compression in

PAFLM with LAG algorithm [28]. Table 3 shows the per-

formance comparison between threshold adaptive gradient

compression algorithm in PAFLM and the LAG algorithm

int three different aspects (Acc, CR, and CBI, respectively).

It can be seen that CR of LAG is lower than that of PAFLM

with β = 0.1 and β = 0.11. But Acc of LAG is lower than

PAFLM in both the train set and the test set. Furthermore,

to compare the performance of the two methods, we took

three different combinations of a1, a2 to calculate CBI. It can

be seen from Table 3 that except for a1 = 0.4, a2 = 0.6,

48978 VOLUME 8, 2020

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

FIGURE 11. Asynchronous federated learning.

TABLE 3. Performance comparison between different β values of PAFLM
and LAG.

PAFLM performed better than LAG. What is more, CBI of

PAFLM with β = 0.1 is larger than LAG in three cases.

In PAFLM, the value of β can be adjusted according to the

actual needs.

D. ASYNCHRONOUS FEDERATED LEARNING

In order to highlight the experiment results, the experimental

data of the asynchronous learning part was replaced by the

Cifar10 data set. The Cifar10 data set consists of 60,000

32 × 32 color images of 10 classes, each of which con-

tains 6000 images. There are 50,000 training images and

10,000 test images. We divided the training set into 500 parts.

Before each experiment, the nodes randomly selected one of

those as local learning data. In order to simulate asynchronous

federated learning, we increased the number of learning

nodes to 10. In addition, we added the pause intervals to the

learning process based on Fig. 7, that is, each node paused

for a period of time after the end of every epoch. The man-

agement node generated the entire stall time series. Similarly,

we used the convolutional neural network code of the Tutorial

on the Tensorflow official website, the model structure of

which is a five-layer convolutional network model. Since

asynchronous federated learning focuses on edge devices

with high mobility that cannot train network models with as

much stability as a server and cannot make them long-lasting,

to simulate this situation, we set the number of training rounds

to 500. The reduction of epochs has led to a decrease in accu-

racy. This problem can be solved by algorithm optimization,

model tuning or by using other methods that will not be

discussed too much here. The hyper-parameter values set in

this experiment is only for reference, and the actual settings

still need to be adjusted according to the specific problems.

We randomly selected ten different sets of hyper-

parameters (subset index, pause interval) for three comparison

experiments, namely no pause during training (corresponding

to ‘‘synchronous’’ in Fig. 11), pause in training (‘‘asyn-

chronous’’), and pause during training with dual-weights

correction (‘‘PAFLM (Dual-Weights)’’).Within the scope of

consulted literature, we had not found other researchers

that have improved the algorithm of asynchronous fed-

erated learning, so we could not conduct comparative

experiment with more methods.

Fig. 11 is a stacked bar graph of the average accuracy of ten

devices under five different hyper-parameter sets.Comparing

the two subgraphs, it can be seen that the accuracy of each

experiment is fluctuating. This is because the experimental

node has a small amount of data, and each subset is largely

different. However, the overall trend shows that asynchronous

learning has better performance than synchronous learning.

Asynchronous learning is similar to a regularization process

that can to a certain extent prevent the over-fitting of learn-

ing. Moreover, PAFLM shows better performance than both

asynchronous learning and synchronous learning.

VII. SUMMARY

In this paper, we propose a Privacy-Preserving Asynchronous

Federated Learning Mechanism (PAFLM) for Edge Net-

work Computing to satisfy the realistic needs of learning

multi-party data without sharing private information. PAFLM

gives learners more freedom and privacy protection without

compromising accuracy of training. Participants learn from

their own sensitive data sets locally. After a round of train-

ing, the participants check whether the current round meets

the conditions for communicating with the parameter server

according to the self-test condition. If it is satisfied, learning

nodes upload the gradient to the parameter server. All nodes

perform the above steps asynchronously without waiting for

VOLUME 8, 2020 48979

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

the remaining nodes or synchronizing the learning process.

Throughout the federated learning, the nodes only communi-

cate with the parameter server, not having obtained any infor-

mation about the other nodes except for the global parameters

that are jointly maintained.

We demonstrate two aspects of PAFLM: self-adaptive

threshold gradient compression and asynchronous federated

learning, and then conduct related experiments. In self-

adaptive threshold gradient compression, there are many

deficiencies due to simply introducing communication com-

pression ratio or compressing gradient communications

based on the fixed threshold. The self-adaptive threshold

gradient compression algorithm can automatically adapt to

the change of gradient in each model-training process and

calculate the appropriate threshold to compress the gradient

communications. Since the gradient data indirectly reflects

the information of the training samples, attackers can deduce

the sample data from the effective gradient information.

Therefore, reducing gradient communications can effectively

reduce the possibility of privacy leakage.

Multiple problems, such as uneven learning samples and

different learning progress, arise in asynchronous federated

learning due to high mobility of edge nodes. Obviously,

it is unreasonable to expect the nodes with large differ-

ences to update the global parameters equally. Therefore,

we introduce dual-weights correction to solve the problem

of unbalanced learning status in asynchronous federated

learning.

As a relatively new research content, asynchronous learn-

ing still has much room for discussion. As mentioned

above, asynchronization is caused by many factors, and

different causes require different solutions. In future work,

we will discuss different attenuation functions and look

for a better attenuation function to fit the attenuation

requirements.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers: Sur-

passing human-level performance on ImageNet classification,’’ presented

at the IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015.

[2] D. Shultz, ‘‘When your voice betrays you,’’ Science, vol. 347, no. 6221,

p. 494, Jan. 2015, doi: 10.1126/science.347.6221.494.

[3] T. Jian, ‘‘Analysis on the application of Internet of Things in Chengdu radio

and TV network,’’ Telecom World, vol. 26, no. 5, pp. 35–36, 2019.

[4] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research opportu-

nities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

[5] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and

P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-

art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,

pp. 416–464, 1st Quart., 2018.

[6] T. D. Dang and D. Hoang, ‘‘A data protection model for fog comput-

ing,’’ presented at the 2nd Int. Conf. Fog Mobile Edge Comput. (FMEC),

May 2017.

[7] S. Sarkar, S. Chatterjee, and S. Misra, ‘‘Assessment of the suitability of

fog computing in the context of Internet of Things,’’ IEEE Trans. Cloud

Comput., vol. 6, no. 1, pp. 46–59, Jan. 2018.

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and

challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[9] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal workload

allocation in fog-cloud computing towards balanced delay and power

consumption,’’ IEEE Internet Things J., to be published.

[10] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet

of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,

Aug. 2016.

[11] B. McMahan and D. Ramage, ‘‘Federated learning: Collaborative machine

learning without centralized training data,’’ Google Res. Blog, vol. 3,

Apr. 2017. [Online]. Available: https://www.googblogs.com/federated-

learning-collaborative-machine-learning-without-centralized-training-

data/

[12] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,

C. Kiddon, J. Konećný, S. Mazzocchi, H. B. McMahan, T. Van Overveldt,

D. Petrou, D. Ramage, and J. Roselander, ‘‘Towards federated learning

at scale: System design,’’ 2019, arXiv:1902.01046. [Online]. Available:

http://arxiv.org/abs/1902.01046

[13] Y. J. Kim andC. S. Hong, ‘‘Blockchain-based node-aware dynamicweight-

ing methods for improving federated learning performance,’’ presented at

the APNOMS 20th Asia–Pacific Netw. Oper. Manage. Symp., Sep. 2019.

[14] D. Conway-Jones, T. Tuor, S. Wang, and K. K. Leung, ‘‘Demonstration

of federated learning in a resource-constrained networked environment,’’

presented at the SMARTCOMP IEEE Int. Conf. Smart Comput., Jun. 2019.

[15] U. Majeed and C. S. Hong, ‘‘FLchain: Federated learning via MEC-

enabled blockchain network,’’ presented at the APNOMS 20th

Asia–Pacific Netw. Oper. Manage. Symp., Sep. 2019.

[16] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, ‘‘Blockchain and

federated learning for privacy-preserved data sharing in industrial IoT,’’

IEEE Trans. Ind. Inform., vol. 16, pp. 4177–4186, Jun. 2020.

[17] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, ‘‘DeepChain:

Auditable and privacy-preserving deep learning with blockchain-based

incentive,’’ IEEE Trans. Dependable Secure Comput., to be published,

doi: 10.1109/TDSC.2019.2952332.

[18] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,

S. Patel, D. Ramage, A. Segal, and K. Seth, ‘‘Practical secure aggregation

for privacy-preserving machine learning,’’ presented at the ACM SIGSAC

Conf. Comput. Commun. Secur., 2017.

[19] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, ‘‘Federated learning

for ultra-reliable low-latency V2V communications,’’ presented at the

GLOBECOM IEEE Global Commun. Conf., Dec. 2018.

[20] T. S. Brisimi, R. Chen, T.Mela, A. Olshevsky, I. C. Paschalidis, andW. Shi,

‘‘Federated learning of predictive models from federated electronic health

records,’’ Int. J. Med. Informat., vol. 112, no. 1, pp. 59–67, Apr. 2018.

[21] F. Seideetal, ‘‘1-bit stochastic gradient descent and its application to data-

parallel distributed training of speech DNNs,’’ presented at the INTER-

SPEECH 15th Annu. Conf. Int. Speech Commun. Assoc., 2014.

[22] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, ‘‘Terngrad:

Ternary gradients to reduce communication in distributed deep learning,’’

presented at the NIPS Adv. Neural Inf. Process. Syst., 2017.

[23] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and

K. Chan, ‘‘Adaptive federated learning in resource constrained edge

computing systems,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 6,

pp. 1205–1221, Jun. 2019.

[24] N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen, ‘‘Communication

quantization for data-parallel training of deep neural networks,’’ presented

at the MLHPC 2nd Workshop Mach. Learn. HPC Environ., Nov. 2016.

[25] C. Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrish-

nan, ‘‘Adacomp: Adaptive residual gradient compression for data-parallel

distributed training,’’ presented at the 32ndAAAIConf. Artif. Intell., 2018.

[26] N. Strom, ‘‘Scalable distributed DNN training using commodity GPU

cloud computing,’’ presented at the INTERSPEECH 16th Annu. Conf. Int.

Speech Commun. Assoc., 2015.

[27] A. Fikri Aji and K. Heafield, ‘‘Sparse communication for dis-

tributed gradient descent,’’ 2017, arXiv:1704.05021. [Online]. Available:

http://arxiv.org/abs/1704.05021

[28] T. Chen, G. Giannakis, T. Sun, and W. Yin, ‘‘LAG: Lazily aggregated

gradient for communication-efficient distributed learning,’’ presented at

the NIPS Adv. Neural Inf. Process. Syst., 2018.

[29] R. Shokri and V. Shmatikov, ‘‘Privacy-preserving deep learning,’’ pre-

sented at the 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,

Sep. 2015.

48980 VOLUME 8, 2020

http://dx.doi.org/10.1126/science.347.6221.494
http://dx.doi.org/10.1109/TDSC.2019.2952332

X. Lu et al.: Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing

XIAOFENG LU received the Ph.D. degree from

the Beijing University of Aeronautics and Astro-

nautics, Beijing, China, in 2010. During his Ph.D.,

he held visiting scholar positions at the Computer

Laboratory, University of Cambridge, U.K. He is

currently an Associate Professor with the School

of Cyberspace Security, Beijing University of Post

and Telecommunications. His main research inter-

ests include cyberspace security, information secu-

rity, and artificial Intelligence.

YUYING LIAO received the B.S. degree in infor-

mation security from the Nanjing University of

Posts and Telecommunications, China, in 2017.

She is currently pursuing the M.S. degree with the

School of Cyberspace Security, Beijing Univer-

sity of Posts and Telecommunications, China. Her

current research interests include federated learn-

ing, edge computing, privacy preservation, and AI

security.

PIETRO LIO is currently a Professor with the

Computer Laboratory, University of Cambridge,

U.K., and also a Fellow and Director of Studies

at Fitzwilliam College, University of Cambridge.

He is currently modeling biological processes on

networks, modeling stem cells, as well as devel-

oping transcription and phylogenetic applications

on a grid environment. He is also interested in bio-

inspired design of wireless networks and epidemi-

ological networks.

PAN HUI (Fellow, IEEE) received the bachelor’s

and M.Phil. degrees from The University of

Hong Kong, and the Ph.D. degree from Com-

puter Laboratory, University of Cambridge.

During his Ph.D., he was also affiliated with Intel

Research Cambridge. He is currently a Professor

of computer science and engineering with The

Hong Kong University of Science and Technol-

ogy. He is also a Distinguished Scientist with

Deutsche Telekom Laboratories (TLabs), Berlin.

His research interests include delay tolerant networking, mobile networking

and systems, planet-scale mobility measurement, social networks, and the

application of complex network science in communication system design.

VOLUME 8, 2020 48981

