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Abstract—Neural Networks have been an active research area
for decades. However, privacy bothers many when the training
dataset for the neural networks is distributed between two
parties, which is quite common nowadays. Existing cryptographic
approaches such as secure scalar product protocol provide a
secure way for neural network learning when the training dataset
is vertically partitioned. In this paper we present a privacy
preserving algorithm for the neural network learning when the
dataset is arbitrarily partitioned between the two parties. We
show that our algorithm is very secure and leaks no knowledge
(except the final weights learned by both parties) about other
party’s data. We demonstrate the efficiency of our algorithmby
experiments on real world data.

Index Terms—Privacy, Arbitrary Partitioned Data, Neural
Network

I. I NTRODUCTION

Neural Networks have been an active research area for
decades. Trained neural networks can predict efficient outputs
which might be difficult to obtain in the real world. The
expansion of internet and world wide web has made it easier
to gather data from many sources [5], [10]. Training neural
network from the distributed data is common: for example,
making use of data from many hospitals to train the neural
network to predict a certain disease, collecting datasets of pur-
chased items from different grocery stores and training neural
network from those to predict a certain pattern of purchased
items. When training neural network from distributed data,
privacy is a major concern.

With the invention of new technologies, whether it is data
mining, in databases or in any networks, resolving privacy
problems has become very important. Because all sorts of data
is collected from many sources, the field of machine learningis
equally growing and so are the concerns regarding the privacy.
Data providers for machine learning are not willing to train
the neural network with their data at the expense of privacy
and even if they do participate in the training they might
either remove some information from their data or can provide
false information. Recent surveys [5] from web users conclude
that huge percentage of people are concerned about releasing
their private data in any form to the outside world. HIPAA,
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Health Insurance Portability and Accountability Act rule [13]
prohibits to use individuals’ medical records and other per-
sonal health related information for personal or distribution
uses. Even the insurance companies have to take permission to
disclose anyone’s health related data [11]. So whenever there
is distributed data for machine learning, privacy measuresare
must.

The datasets used for neural network training can be col-
lectively seen as a virtual database. In the distributed data
scenario this database can be partitioned in many ways. When
some rows of the database are with one party and the other
party holds the rest of the rows of the database, this is called
horizontal partitioned database. In such a case for neural
network training this does not pose a significant privacy threat
since each data holder can train the network in turns. When
some columns of the database are with one party and other
party holds the rest of the columns, this is called vertical
partitioning of the datasets for training. Chen and Zhong [6]
propose privacy preserving algorithm in the neural networks
when the training data is vertically partitioned. Their algorithm
is efficient and provides strong privacy guarantees. There is yet
another category for partitioned data (arbitrary partitioning)
which is studied in this paper. To the best of our knowledge
the problem of privacy preserving neural network learning over
arbitrarily partitioned data has not been solved.

In arbitrary partitioning of data between two parties, there
is no specific order of how the data is divided between two
parties. Combined data of two parties can be collectively seen
as a database. Specifically if we have database D, consisting
of n rows{DB1, DB2, · · · , DBn}, and each rowDBi (i goes
from 1 to n) contains m attributes, then in each row, A holds
a subsetDBA

i of j attributes and B holds a subsetDBB
i of k

attributes (where k=m-j) such thatDBi = DBA
i ∪ DBB

i and
DBA

i ∩ DBB
i = ∅. In each row, the number of attributes in

two subsets can be equal (j=k) but does not have to be equal
that is,(j 6= k). It might happen that j=m which means that A
completely holds that row, in rows where j=0, B completely
holds that row.

In this paper we propose a privacy preserving algorithm
for back-propagation neural network learning when the data
is arbitrarily partitioned. Our contributions can be summarized
as follows. (1) To the best of our knowledge we are the first to
propose privacy preserving algorithm for the neural networks
when the data is arbitrarily partitioned. (2) Our algorithmis
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quite efficient in terms of computational and communication
overheads. (3) In terms of privacy, our algorithm leaks no
knowledge about other’s party data except the final weights
learned by the network at the end of training.

The rest of the paper is organized as follows. Section II
describes the related work. In Section III, we introduce the
technical preliminaries including definitions, notationsand
problem statement. In Section IV, we present the privacy
preserving algorithm for the back propagation neural network
learning when the data is arbitrarily partitioned. We show
computation and communication overhead analysis of our
algorithm in Section V. In Section VI, we verify the accuracy
and efficiency of our algorithm by experiments on real world
data. In the end we conclude our paper.

II. RELATED WORK

Privacy preserving neural network learning has been studied
in [6], [3], [26]. Barni et al. [3] proposed security algorithms
for three scenarios in neural networks. (a) When the data is
being held by one party and network parameters (weights)
are being held by the other (b) When in addition to the
weights, the other party wants to preserve activation function
also (c) When the other party wants to preserve the network
topology. Their work is limited to the extent that only one
party holds the data and the other holds the parameters of the
network. Distributed data scenario is not discussed in their
paper. Chen and Zhong [6] propose privacy preserving back-
propagation neural network learning algorithm when training
data is vertically partitioned. Their algorithm provides strong
privacy guaranty to the participants. The solution when the
training data is horizontally partitioned data is much easier
since all the data holders can train the neural network in
turns. In this paper we address the problem when the training
data for the neural network is arbitrarily partitioned (defined
below) between two parties. We will use secure scalar product
algorithm [27] and algorithm 3 of [6] in our algorithm so
that both parties just have random shares after each round of
training without each party knowing the other’s party data.

Privacy preserving algorithms have also been investigated
in data mining when the data to be mined is distributed
among different parties. For data mining, Agrawal et al.
[1] proposed randomization to preserve sensitive data at the
cost of accuracy. In order to preserve data accuracy, Lindell
and Pinkas [19] introduced cryptographic tools for privacy
preservation but the computation complexity increases with
huge data. Clifton et al. used commutative encryption property
to preserve privacy for the associative rule mining when
the data is either horizontally [23] or vertically partitioned
[17]. Jagannathan and Wright introduced privacy preserving
k-means clustering algorithm to cluster datasets when the data
is arbitrarily partitioned[14]. There are many more privacy
preserving data mining algorithms. However, none of these
algorithms can be used directly in the problem of privacy
preserving neural network learning when the training data is
arbitrarily partitioned between two parties. In this paperwe
present privacy preserving back-propagation neural network
learning algorithms when the data is arbitrarily partitioned

between two parties so that no party is able to learn anything
about other’s party data except the final weights learned by
the network.

There is also a general-purpose technique in cryptography,
called secure multi-party computation that can be applied
to privacy preserving neural network learning problems. In
particular, the protocol proposed by Yao in [28] can privately
compute any probabilistic polynomial function. Secure multi-
party computation can theoretically solve all problems of
privacy-preserving computation. However, it is very costly
to be applied when it comes to practical problems [12].
Furthermore, in scenarios in which nerual networks is applied,
usually parties hold huge amounts of data. Therefore, this
general solution is especially infeasible to our problem.

III. T ECHNICAL PRELIMINARIES

In this section we present the problem definition, notations
used, and an overview of the algorithm we propose to preserve
privacy in neural network training from arbitrarily partitioned
data between two parties.

A. Definitions

In this section we briefly describe the concept of arbitrarily
partitioned data and an overview of problem statement.

• Arbitrary Partitioned Data : We consider arbitrary par-
titioning of data between two parties in this paper. In
arbitrary partitioning of data between two parties, there
is no specific order of how the data is divided between
two parties. Combined data of two parties can be seen as a
database. Specifically if we have a database D, consisting
of n rows {DB1, DB2, · · · , DBn}, and each rowDBi

(i goes from 1 to n) contains m attributes, then in each
row, DBA

i is the subset of attributes held by A ( say
j is the number of attributes in the subsetDBA

i ) and
DBB

i is the subset of attributes held by B (say k is the
number of attributes in the subsetDBB

i ) such thatDBi

= DBA
i ∪ DBB

i andDBA
i ∩DBB

i = ∅. In each row the
number of attributes in two subsets can be equal (j=k)
but does not have to be equal that is, (j6= k). It might
happen that j=m which means that A completely holds
that row or j=0 which means B completely holds that row.
In general, arbitrary partitioning is a more general case of
combinations of many horizontal and vertical partitions
of a database.

• Problem Definition: When the training data for the
neural networks is arbitrarily partitioned between two
parties, both parties want to train the network but at the
same time they do not want that the other party should
learn anything about its data except the final weights
learned by the network.NOTE:(We will not talk about
the rows whose all attributes are completely owned by
one party. This is trivial, since the party who holds this
row can independently train the network with its data
without revealing others anything about the data). So
we propose a privacy preserving back-propagation neural
network learning algorithm for the arbitrarily partitioned
data between two parties.
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B. Notations

We consider a 3-layer (a-b-c configuration) neural network
in the paper but our work can easily be extended to any N-
layer neural network.

• The input vector is denoted as{x1, x2, · · · , xn} where
anyxi (i goes from 1 to n) is an input to the input node
of the neural network. In the paper we consider that two
parties (A and B) hold arbitrary partitioned data. This can
be extended to n-party partitioning but we leave this for
our future work. As discussed, the two parties share the
arbitrarily partitioned data such that for every object1, if
an object vector of n-dimensions (n attributes) is denoted
asx1, x2, · · · , xn Party A holdsx1A

, x2A
, · · · , xnA

and
Party Bx1B

, x2B
, · · · , xnB

such thatfor every object of
a virtual database

x1A
+ x1B

= x1

x2A
+ x2B

= x2

and so on ..
We require that for every attribute in{x1, x2, · · · , xn}
for every object, either xiA

or xiB
(i goes from 1 to n)

is 0. This means that, that attribute is being completely
held by the other party.

• We assume the values of hidden nodes to be
h1, h2, · · · , hnand the values of output nodes to be
o1, o2, · · · , on.

• Network Parameters: wh
jk denotes the weight connect-

ing the input layer node k and the hidden layer node j.
wo

ij denotes the weight connecting j and the output layer
node i, where 1≤k≤a; 1≤j≤b; 1≤i≤c. Here a denotes the
number of input nodes, b the hidden nodes and c denotes
the output nodes.

C. Algorithm Overview

It is highly important that not only the data but the in-
termediate weights also should not be revealed to the other
party because intermediate weights contain partial knowledge
about the data. We propose an algorithm in which both parties
modify the weights and hold random shares of the weights
during the training. Both the parties use the secure 2-party
computation [27] and algorithm 3 of [6] to calculate the
random shares of the weights between the training rounds.
Specifically, if x1A

, x2A
, · · · , xnA

is an object held by A
wherexiA

(i varies from 1 to n) is an attribute in the row held
by A and x1B

, x2B
, · · · , xnB

is an object held by B where
xiB

(i varies from 1 to n) is an attribute in the row held
by B, the algorithm starts modifying weights till they reach
a target value t(x), wherex =

∑n

i=1
xiA

+ xiB
and t(x) is

any function. Both the parties calculate the activation function
using [6] and they use secure 2-party computation algorithm
[27] and algorithm 3 of [6] to calculate random shares of the
weights in the proposed algorithm.

1object corresponds to a row in database in this paper

D. Security Model

In this paper, we assume semi-honest model which is a
standard security model in many privacy preserving papers
[19], [30]. Semi-honest model requires that all parties follow
the protocol but any party might try to learn some information
from the intermediate results. So our aim is that no knowledge
about each party’s data (except the final weights learned by
the network) is leaked in this model.

E. ElGamal scheme and Homomorphic Encryption

ElGamal Encryption scheme [8] and homomorphic property
of the scheme is used in our algorithm. Homomorpic property
is a property of certain encryption algorithms where specific
algebraic operations (multiplication) can be performed on
plaintext by performing the operations on encryption messages
without actually decrypting them. For example say we have
two messagesm1 and m2, the encryption of message is
denoted byE(m1) andE(m2) then operationm1m2 can be
performed usingE(m1) andE(m2) only without actually de-
crypting the two messages. Specifically, for ElGamal scheme,
we have

E(m1 ·m2) = E(m1) ·E(m2). (1)

This property of encryption is being used in secure scalar
product algorithm [27].

IV. PRIVACY PRESERVINGNEURAL NETWORK LEARNING

In this section we present the privacy preserving back-
propagation neural network learning algorithm over arbitrary
partitioned data between two parties.

NOTE: In this algorithm after each round of training both
the parties just hold the random shares of weights and not
the exact weights, this guarantees more security and privacy
against the intrusion by the other party. It is only at the end
of the training that both the parties know the actual weights
in the neural networks.

The error function which is used to calculate whether the
output is desired or not is given by:

e =
1

2

∑

i

(ti − oi)
2

where i varies from 1 to n (number of outputs) .
If the value of this error function does not satisfy the output

requirements we have some more rounds of training , repeating
the algorithm again. This error is propagated backwards and
require change in weights according to the equations:

∂e

∂wo
ij

= −(ti − oi)hj (2)

∂e

∂wh
jk

= −hj(1− hj)xk

N
∑

i=1

[(ti − oi)w
o
ij ] (3)

The owner of the network assigns random weights to the
neural networks in the beginning of training. We will just
explain for one object, for rest of the objects it is same and self
explanatory. Let us assume party A holdsx1A

, x2A
, · · · , xnA
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where anyxiA
is an attribute in the row held by A and party

B holdsx1B
, x2B

, · · · , xnB
where anyxiB

is an attribute in
the row held by B. For each input node i (i varies from 1 to
n) of the neural network, party A holdsxiA

and party B holds
xiB

such that
xiA

+ xiB
= xi

in which either xiA
or xiB

is 0 because only one of the two
parties can contain an input corresponding to that input node
of the input layer in the neural network.

The target value t(x) is known to both the parties. The aim
of the algorithm is to train the network, so as to modify the
weights wh

jk and wo
ij (wh

jk denotes the weight connecting
the input layer node k and the hidden layer node j and wo

ij

denotes the weight connecting j and the output layer node i)
so that, given the above input distributed dataset between A
and B, the output corresponds to nearly the target value.

During training, for each training sample, party A and party
B randomly share weightswh

jk and wo
ij after each training

round wherewh
jk = whA

jk + whB

jk ( whA

jk is the share of party
A and whB

jk is the share of party B) andwo
ij = woA

ij + woB

ij

(woA

ij is the share of party A andwoB

ij is the share of party B).
At the end of each round of training, each party holds only a
random share of each weight. Algorithm 1 describes the feed
forward stage.

Algorithm 1 Privacy preserving back-propagation learning
algorithm – feed forward stage

→ Party A holds(x1A
, · · · , xnA

), whA

jk andwoA

ij .
→ Party B holds(x1B

, · · · , xnB
), whB

jk and woB

ij . weight,
wh

jk = whA

jk + whB

jk , wo
ij = woA

ij + woB

ij .
For each hidden layer nodehj ,

1) Using Algorithm 3, party A and B respec-
tively obtain random sharesϕA and ϕB for
∑a

k=1
(whA

jk + whB

jk )(xkA
+ xkB

).
2) Party A and B jointly compute the sigmoid function

for each hidden layer nodehj , obtaining the random
shareshjA

and hjB
respectively s.t.hjA

+ hjB
=

f(ϕA + ϕB) using [6].

For each output layer nodeoi,

1) Using Algorithm 3, party A and B respec-
tively obtain random sharesoiA

and oiB
for

∑b

j=1
(woA

ij + woB

ij )(hjA
+ hjB

).

In Algorithm 1party A and party B compute their random
sharesϕA and ϕB from

∑a

k=1
(whA

jk + whB

jk )(xkA
+ xkB

)
using secure scalar product algorithm [27] and algorithm 3
of [6]. With the help of [6], they calculate the approximation
of sigmoid function for each hidden layer nodehj , obtaining
hjA andhjB as their random shares (wherehjA is the share
held by A andhjB is the share held by B). Then with the help
of secure scalar product algorithm again party A and party B
calculate

∑b

j=1
(woA

ij + woB

ij )(hjA
+ hjB

) and obtainoiA
and

oiB
as their random shares where i depends on the number of

output nodes in the neural network. After obtaining the random
sharesoiA

andoiB
, they follow Algorithm 2 which is the back-

error propagation stage.NOTE:We do not calculate the error

function after every round where both the parties might have
to exchange the random sharesoiA

and oiB
to calculate the

error function. Rather we could fix a certain number of rounds
after which they can exchange the output shares to calculate
the error function.

Algorithm 2 Privacy preserving back-propagation learning
algorithm – back-propagation stage

→ Party A holds(x1A
, · · · , xnA

), ti, hjA
, oiA

, whA

jk and
woA

ij ;
→ party B holds(x1B

, · · · , xnB
), ti, hjB

, oiB
, whB

jk and
woB

ij .
For each output layer weightwo

ij ,

1) Using Algorithm 3, Party A and B respectively obtain
random shares∆Awo

ij and ∆Bwo
ij for (oiA

+ oiB
−

ti)(hjA
+ hjB

).

For each hidden layer weightwh
jk,

1) Using Algorithm 3, party A and B respectively obtain
random sharesµA and µB for

∑c

i=1
[oiA

+ oiB
−

ti)(w
oA

ij + woB

ij )].
2) Party A and B respectively obtain random sharesκA

andκB, such thatκA +κB = (xkA
+xkB

)(µA +µB),
using Algorithm 3.

3) Party A and B securely compute(hjA
+hjB

)(1−hjA
−

hjB
) by applying Algorithm 3, respectively obtaining

random sharesϑA andϑB .
4) Using Algorithm 3, party A and B respectively ob-

tain random shares∆Awh
jk and ∆Bwh

jk , for (ϑA +
ϑB)(κA + κB).

A computeswoA

ij ← woA

ij − η(∆Awo
ij); whA

jk ← whA

jk −

η(∆Awh
jk).

B computeswoB

ij ← woB

ij − η(∆Bwo
ij); whB

jk ← whB

jk −

η(∆Bwh
jk).

Algorithm 2 is the back-error propagation stage. This stage
helps to modify the weights so as to achieve correct weights
in the neural network. Both A and B modify their weights
according to equation 1 and 2. After some rounds of training
both A and B share their outputs to calculate the error function
e = 1

2

∑

i(ti − oi)
2, if the error is more, then the two parties

A and B have more rounds of training to achieve the target
function. Error propagation means that we are trying to modify
the values of weights so as to achieve the correct values of
weights. In this algorithm, for each output layer weightwo

ij ,
both parties obtain the random shares of the changes in weights
∆Awo

ij and ∆Bwo
ij (where ∆Awo

ij is the share held by A
and ∆Bwo

ij is the share held by B) from equation 1 using
the secure scalar product protocol [27] and algorithm 3 of [6]
whereti is the target value of theith output node of the neural
network.

For hidden layer weights wh
jk, we break the

equation 2 above into three parts. First of all the
two parties calculate random sharesµA and µB from
∑c

i=1
[oiA

+ oiB
− ti)(w

oA

ij + woB

ij )] using [27] and algorithm
3 of [6] (where µA is the share held by A andµB is
the share held by B). With the help of these shares they
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calculate random sharesκA and κB using secure scalar
product algorithm [27] and algorithm 3 of [6], such that
κA + κB = (xkA

+ xkB
)(µA + µB) (whereκA is the share

held by A andκB is the share held by B). Then the two
parties calculate(hjA

+ hjB
)(1 − hjA

− hjB
) to obtain the

random sharesϑA and ϑB (where ϑA is the share held by
A and ϑB is the share held by B) . Finally they calculate
(ϑA + ϑB)(κA + κB) obtaining∆Awh

jk and ∆Bwh
jk as the

random shares.

After obtaining random shares

• A computeswoA

ij ← woA

ij − η(∆Awo
ij) and

whA

jk ← whA

jk − η(∆Awh
jk).

• B computeswoB

ij ← woB

ij − η(∆Bwo
ij) and

whB

jk ← whB

jk − η(∆Bwh
jk).

whereη is the network learning rate.

Algorithm 3 Securely computing(RA + RB)(SA + SB)

→ Party A holdsRA andSA → Party B holdsRB andSB.

1) Using secure scalar product algorithm [27] and al-
gorithm 3 of [6], party A and B respectively obtain
random sharesλA and λB for RASB, and random
sharesγA, γB for RBSA.

2) Party A computesRASA+λA+γA. Party B computes
RBSB−λB−γB, such that(RA +RB)(SA +SB) =
RASA + λA + γA + RBSB − λB − γB.

Algorithm 3 describes how party A and party B calculate
any equation of the form(RA+RB)(SA+SB). They both use
secure scalar party algorithm [27] and algorithm 3 of [6] to
calculateRASB andRBSA. The secure scalar party algorithm
is used to calculate the product of two vectors such that at the
end of the calculation each party holds a random share of the
result so that no party is able to predict the other party’s vector.

V. COMPUTATION COMPLEXITY AND COMMUNICATION

OVERHEAD ANALYSIS

In this section we present the computation and communi-
cation overhead analysis of our privacy preserving algorithm.

1) Computation Complexity Analysis:
• Securely computing the scalar product of two vec-

tors – Let us assume thatt1be the time taken by
A to generate public-private key pair and to send
public key to B. A does n encryptions where n
is the number of dimensions in the vector. B does
n+1 encryptions. Then B performs (2n+1) multipli-
cations. So the total time taken by the algorithm 4
is T1 = t1 + (2n + 1)E + (2n + 1)M where E is
the time taken to encrypt one message and M is the
time taken for 1 multiplication.

• Securely computing equation of the form(RA +
RB)(SA + SB) – Since A and B can run the
algorithm in parallel, so they obtain random shares
for RASB and RBSA in T1time. Party A does 1
multiplication and 2 additions and B does 1 mul-
tiplication and 2 subtractions. We assume the time

taken for addition and subtraction to be negligible
in comparison to multiplication and neglect them .
So the total time taken to compute equation of the
form RASB andRBSA is T2 = T1 + 2M .

• Privacy Preserving Back Propagation learning Al-
gorithm -Feed Forward Stage– Step 1 of the
algorithm 1 takesaT2 + bz time wherez = (2p +
1)C + 2D [6] where p is the system approximation
parameter, C is the cost of encryption and D is the
cost of partial decryption. Step 2 of the algorithm
takesbT2 time where N is the number of hidden and
output layers whose number is same in our case.
So the total time taken in feed forward stage is
aT2 + bz + bT2.

• Privacy Preserving Back propagation learning Al-
gorithm -back propagation stage– The equation
in step 1 of the Algorithm can be rewritten as
(oiA

+ oiB
− ti)(hjA

+ hjB
) = (oiA

+ oiB
)(hjA

+
hjB

) − tihjA
− tihjB

So Step 1 of the algorithm
for back propagation stage takesc(T2 +2M) where
M again is the time taken for 1 multiplication. Step
2.1 of the algorithm takesbc(T2 + 2M) time. Step
2.2 consumesbT2 time. Step 2.3 can be broken and
it takes 2 Multiplications anT1 time. So step 2.3
takes b(2M + T1) time. Step 4 takesbT2 time.
So total time taken in back propagation stage is
c(T2 + 2M) + bc(T2 + 2M) + 3bT2.

2) Communication Overhead Analysis:
• Communication overhead– We know, to calculate

securely the product of two integers it takes 2n+2
messages between Party A and Party B [6]. For
each message being s bits long, each communication
takes (2n+2)s bits. In the feed forward stage, for
each hidden layer node it needsb[a(t1) + t2] bits
and for each output layer node it takesc(bT1) bits
whereT1 = 2s(2n + 2) andT2 = s(2n + 2). In the
back propagation stage of the algorithm, for the first
part of the algorithm it needsc(bT1) bits and for the
second part of the algorithm it needsb[c(bT1)+3T1]
bits.

VI. EVALUATION

In this section we perform our experiments to compare our
results of privacy preserving version of the algorithm with
non-privacy version of the algorithm to calculate the accuracy
losses (defined below). The experiments are carried out on the
data from UCI dataset repository [2].

A. Set Up

We have used C++ to implement our algorithm with g++
version 2.8. The experiments are carried out on a Linux
operating system (Ubuntu) with 1.9 GHz Intel processors and
2 GB of memory.

The experiments are performed on the real world data
from UCI dataset repository [2]. Table 1 shows the training
parameters, number of epochs (Number of training rounds),
architecture (Number of input nodes, hidden nodes, output
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nodes) used in the neural network model. The weights are
initialized randomly in the range [-0.1,0.1]. We have trained
the neural network using Iris, Dermatalogy, Sonar and Landsat
datasets. The attributes from each row of the datasets are
randomly divided between two parties (A and B) so that the
datasets can be modeled as arbitrarily partitioned betweenA
and B. The network learning rate for each dataset is assumed
as 0.2. The number of input nodes for the neural network
depends on each dataset and the hidden nodes are chosen such
that there are atleast 3 hidden nodes for each output.

The test samples (for each dataset) for the experiments are
taken randomly from the datasets only. Specifically, 20 test
samples are taken randomly each for Iris and Sonar and 30
each for Dermatalogy and Landsat. The number of epochs
are kept small for large datasets like Landsat and large for
other datasets. After training (completion of epochs for the
respective dataset) each test sample is run against the network
to observe whether it is misclassified (belongs to different
class) or it belongs to the same class.

B. Experimental Results

The main objective of our experiment is to measure the
accuracy loss of our algorithm as a cost of protecting pri-
vacy. Accuracy loss is a loss which occurs while applying
cryptographic schemes [8] on the non-privacy version of the
algorithm to protect each party’s data and random shares of
the intermediate computations. As our algorithm uses two
approximations (describe below), so when we perform our
experiments on the non-privacy ( When both the parties are
not worried revealing their data to the outside world) versus
privacy version (When both the parties are worried revealing
their data to the outside world) of the algorithm (which uses
approximations) accuracy loss takes place. The accuracy loss
for each dataset is calculated using the equation

AccuracyLoss = T1 − T2

where T1 is the Test error rate for Privacy version of the
algorithm andT2 is the Test error rate for Non-Privacy version
of the algorithm. Test Error rates for privacy as well as
non-privacy version of the algorithm are calculated using the
equation given by

TestErrorRate =
No.ofT estSamplesMisclassified

TotalNo.ofT rainingSamples

Cryptographic operations are required whenever there are
privacy issues, so accuracy loss is inevitable.

The accuracy loss of a privacy-preserving learning algorithm
like ours comes from two approximations. One is the approxi-
mation of sigmoid function, and the other is the approximation
of real numbers. To calculate the sigmoid function we use [6],
but [6] uses piecewise linear approximation of the sigmoid

Table I
DATASETS AND PARAMETERS

Dataset Sample Class Architecture Epochs Learning Rate
Iris 150 3 4 − 5 − 3 80 0.2

Dermatalogy 366 6 34 − 3 − 6 80 0.2

Sonar 208 2 60 − 6 − 2 125 0.2

Landsat 6435 6 36 − 3 − 6 8 0.2

Table II
TESTERRORRATES COMPARISON

Non-privacy-preserving Privacy-preserving
Dataset Version Algorithm

Iris 20.00% 25.00%

Dermatalogy 36.66% 43.33%

Sonar 35.00% 40.00%

Landsat 23.33% 26.66%

function given by

y(x) =



































































1 x > 8

0.015625x + 0.875 4 < x ≤ 8

0.03125x + 0.8125 2 < x ≤ 4

0.125x + 0.625 1 < x ≤ 2

0.25x + 0.5 −1 < x ≤ 1

0.125x + 0.375 −2 < x ≤ −1

0.03125x + 0.1875 −4 < x ≤ −2

0.015625x + 0.125 −8 < x ≤ −4

0 x ≤ −8

(4)

We also map real numbers to the finite fields when applying
cryptographic algorithms for ElGamal scheme [8] because
cryptographic operations are on discrete finite fields. These are
the two approximations introduced in our privacy preserving
version of the algorithm.

Table 2 shows the results carried out on non-privacy versus
privacy version of the algorithm. Accuracy loss is unavoidable
since cryptographic operations are on discrete finite fields.
Because we have fixed the number of epochs in the beginning
of training, the minimum testing error might not be achieved.
But as can be seen, the accuracy loss varies between 3.33% for
Landsat to 6.67% for Dermatalogy. Since the accuracy loss is
within limits, our algorithm is quite effective in learningthese
real world datasets.

VII. C ONCLUSION

In this paper, we present a privacy preservation back prop-
agation neural network training algorithm when the training
data is arbitrarily partitioned between two parties. We assume
a semi-honest model and our algorithm is quite secured as
the intermediate results are randomly shared between the two
parties. The experiments we perform on the real world data
show that the amount of accuracy losses are within limits.
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