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Cancer genomics tailors diagnosis and treatment based on an individual’s genetic information and 
is the crux of precision medicine. However, analysis and maintenance of high volume of genetic 
mutation data to build a machine learning (ML) model to predict the cancer type is a computationally 
expensive task and is often outsourced to powerful cloud servers, raising critical privacy concerns 
for patients’ data. Homomorphic encryption (HE) enables computation on encrypted data, thus, 
providing cryptographic guarantees to protect privacy. But restrictive overheads of encrypted 
computation deter its usage. In this work, we explore the challenges of privacy preserving cancer type 
prediction using a dataset consisting of more than 2 million genetic mutations from 2713 patients 
for several cancer types by building a highly accurate ML model and then implementing its privacy 
preserving version in HE. Our solution for cancer type inference encodes somatic mutations based on 
their impact on the cancer genomes into the feature space and then uses statistical tests for feature 
selection. We propose a fast matrix multiplication algorithm for HE‑based model. Our final model 
achieves 0.98 micro‑average area under curve improving accuracy from 70.08 to 83.61% , being 550 
times faster than the standard matrix multiplication‑based privacy‑preserving models. Our tool can be 
found at https:// github. com/ momal ab/ octal‑ candet.

Precision medicine, the process of tailoring diagnosis and treatment for an individual patient, has far-reaching 
results when analyzing complex  diseases1. One of the biggest components of precision medicine is to incorporate 
patients’ genetic information to the diagnosis, treatment, and decision  making2. This is further bolstered with the 
availability of genetic data with the decreasing sequencing costs. In the context of precision medicine for cancer, 
distinguishability between genetic mutations of normal and malignant tissues is the crux of cancer genomics. 
These somatic genetic changes accumulated during a person’s life are heavily correlated to the progression of 
several cancer  cases3. Somatic single-nucleotide variation (SNV) and copy-number variation (CNV) on protein-
coding genes, especially on oncogenes, tumor suppressors and cell cycle regulators are known to cause tumor 
formation and progress. However, the heterogeneity in various levels makes it difficult to understand precisely 
which gene is involved in which cancer type. From a data analysis perspective, a statistical inference of cancer type 
requires analyzing huge volume of genomic data to find correlations between somatic mutations and cancer type.

Machine learning (ML), has had an unprecedented success in correlating complex data patterns to an infer-
ence in several critical infrastructures, including  healthcare4. An ML model is a function (combination of linear 
and non-linear functions) with trainable parameters which learns about the data by decreasing the loss between 
prediction and true values. This computationally expensive task of training is often beyond the capabilities of 
personal machines and is outsourced to powerful servers. After a model is trained, it is hosted in the cloud where 
different parties can use it as a service to predict cancer type of new patients.

There are privacy concerns in using genetic information for this type of inference. Genetic information, 
especially in the clinical settings, are subject to privacy protections and may not be used in public server and 
cloud computing setting due to the restriction. A genomic data leakage may also be permanent, unlike other 
private data like passwords, credit cards, etc., which can be changed. A partial leak of genomic data may reveal 
important information about the individual and may also be used to reconstruct their  genome5. If the sensitive 
data is always encrypted, then it can be protected during computation as well as in transit. In other words, if an 
entity (like the cloud) is not trusted, data should not appear in plaintext form.
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Homomorphic encryption (HE) is a cryptographic technique that allows for computation on encrypted 
data. In this setting, researchers can use their homomorphically encrypted ML models in public servers without 
revealing the input, interactions with the input and output, as well as the outputs of the models. The first Fully 
HE (FHE) scheme for arbitrary computation proposed by Gentry et al.6 had prohibitive computational overheads 
for real-world applications like ML-based inference. During inference an ML model performs linear operations, 
typically matrix multiplications and additions between the data matrix, the weight matrix, the bias matrix, and 
non-linear operation on the resultant output. Linear operations in HE become more and more expensive as the 
number of features increase, i.e. as the amount of information in a dataset increases, the number of operations 
in HE increases, making encrypted computation impractical. Genomic datasets are inherently high-dimensional 
and the current privacy-preserving computation literature is limited in exploring these  datasets7,8. Hence, to 
effectively compute on genomic data in the encrypted domain, we explore feature engineering methodologies 
to reduce overhead and improve the inference methodology to increase scalability in the encrypted domain. 
Our data consists of more than 2 million CNV and SNV information of 11 different cancer  types9. Using an ML 
model on the raw cancer dataset would require multiplication of matrices with millions of features (columns), 
which is extremely expensive in HE.

The intuitive solution towards faster private inference is to reduce the number of computations. This trans-
lates to reducing the number of features using feature selection, as can be seen in other HE applications in 
 genomics10,11. For dimensionality reduction, we develop a somatic mutation encoding-based feature engineering 
methodology involving feature (gene) selection and genetic (mutation) information encoding, leveraging both 
biological intuition and statistical tests. Trivially using just statistical scores may result in overfitting especially 
for genomic datasets with the number of predictors (f) several times larger than the number of samples (|X|) 
i.e. f >> |X| , a problem extensively discussed by  scientists12. Using our methodology of somatic mutation 
encoding, we reduce the dimensionality of the task (from over 2 million mutations to 43K features), but still the 
genomic data remains high-dimensional as compared to benchmark ML datasets used for evaluating homomor-
phic encryption-based privacy-preserving studies. Since our application needs several thousands of features for 
accurate predictions, not only our time budget is completely exhausted by the linear operation, but also standard 
matrix multiplication does not offer the performance needed.

Another drawback of current HE-based implementations of private inference is that they are designed to 
maximize throughput, computing on thousands of inputs together to improve efficiency in a cumulative way. 
However, they suffer in latency, i.e. the algorithms would take the same time to compute on just one input as it 
would take for thousands of inputs. Therefore, for algorithms that do not optimize for latency would generally 
wait for thousands of test data points to send a single query to the cloud for the inference on those data points. 
But the real-world application we consider in this work benefits from improved latency, i.e. it is important for the 
private inference algorithm to infer on a single data point instead of waiting for a batch of thousands of patients 
to utilize the query limit. In summary, to enable practical real-world private inference, we need the ability to 
compute on high-dimensional data in the encrypted domain with low latency and high throughput.

Threat model. In this work we focus on privacy-preserving inference following the honest but curious/semi-
honest threat model explored in the cryptography  literature13. In this work we focus on privacy-preserving infer-
ence following the honest but curious/semi-honest threat model. The goal of such an adversary is to gain (sensi-
tive) information while not hindering the computation at the cloud. In our application, we represent the training 
data accessible to the cloud as ( Dtrain , ytrain ) as training genomic data and labels, respectively. We represent the 
new patient data as ( Dpatient , ypatient ) as the patient’s genomic data and predicted tumor type respectively. In our 
threat model, an adversary honestly computes ypatient but is curious about highly sensitive Dpatient and ypatient . 
Hence, we resort to homomorphic encryption to keep Dpatient and ypatient encrypted. The following points out 
the objectives/characteristics of the Cloud server and the Client: 

(1) Cloud server The cloud is honest but curious i.e. it infers cancer type correctly but is curious of the highly 
identifying patient (genomic) data motivating encrypted computation at the cloud. The cloud, however, 
has access to public training data collected from several research entities (like in the case of TCGA which 
catalogues genomic information, prognosis, diagnosis, on top of personal information like age, gender, race, 
and ethnicity of the individuals who are identified as case numbers). The resource heavy data collection 
and maintenance and model training and maintenance are outsourced to the cloud.

(2) Client The client (may be a hospital or an individual patient) owns sensitive data and wants to perform 
cancer prediction on the data without revealing the data to the cloud. This data, in our study, is represented 
by test data.

In a nutshell, for a private cancer detection solution to be practicable, it must have three properties: (1) com-
prehensive high-dimensional genomic analysis for high detection accuracy with a focus on explainability, (2) 
cryptographically secure privacy guarantees, (3) practical inference time and high throughput. In developing 
the privacy-preserving tumor prediction model, we list our contributions as follows: 

1. We develop a three-step feature engineering methodology targeted towards practicable encrypted cancer 
prediction and demonstrate the importance of feature selection and encoding based on biological significance 
of genetic alterations and statistical tests. We discuss the predictive genes from our findings and compare it 
to Gene Ontology enrichment analysis to understand the significance of certain genes in predicting a cancer 
type.
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2. We build high-performing ML model (for all labels), and binary models using the same encoding for each 
cancer type. We compare our methodology with the reported baseline and we achieve a 13% increase in 
 accuracy14,15.

3. We propose a fast matrix multiplication algorithm for high-dimensional matrices, specifically designed to 
implement HE-based privacy-preserving logistic regression model to ensure high performance.

4. We optimize our private cancer prediction methodology for low latency as well as high throughput.
5. We implement our privacy-preserving cancer-prediction model using  BFV16, an FHE scheme, and demon-

strate that we can perform privacy-preserving cancer prediction for ≈ 500 individuals under 1 min and a 
single prediction in approximately 1 second. We compare the performance of our privacy-preserving model 
with an ML model implemented using standard matrix multiplication.

6. We open-source our methodology and implementation.

Paper roadmap: We first discuss data encoding schemes and feature selection using biological intuition and sta-
tistical tests in “Somatic mutation encoding” section. Using the selected features, we perform a grid search over 
several ML models for the best performing model in ”Model selection for cancer prediction” section. We propose 
our matrix multiplication algorithm for the HE-based implementation of ML model in “Matrix multiplication 
algorithm” section. We evaluate our final model using accuracy, auc score, f1-score, precision, recall metrics for 
cancer prediction performance, and computational cost, latency, and throughput for encrypted cancer predic-
tion performance in “Results” section.

Methods
Since computations in the encrypted domain are expensive, private inference on any type of should prioritize 
towards less number of computations. This translates to a low number of features and smaller ML models (for 
example, SVM or logistic regression instead of deep networks). Our methodology can be divided into two parts. 
In the first part of our methodology (“Somatic mutation encoding” section), we focus on making our dataset 
compact encoding mutations and reducing the number of features with biological intuitions and statistical 
tests. This reduces the number of features from over 2 million to 43 K. In the second part of our methodology 
(“Privacy-preserving cancer inference” section), we propose a matrix multiplication algorithm, particularly 
catered towards implementing a faster version of privacy-preserving logistic regression-based cancer inference.

Somatic mutation encoding. For the cancer prediction to be correlated to both CNV and SNV informa-
tion, the CNV and SNV features can be concatenated together, which can be used to train an ML model. CNV 
subset has 25 K features. But the SNV subset corresponds to over 2 million mutation rows, which may equate to 
over 2 million features if each of these mutations is analyzed separately. The concatenated dataset, thus, consists 
of more than 2 million features. Therefore, instead of representing a mutation as a feature, we represent a gene as 
a feature with encoded mutation as the value of that feature. However, this approach faces the challenge of com-
pacting mutation information of over 2 million data-points to 25 K data-points (corresponding to 25 K genes).

Step 1: gene/feature selection using SNV frequency. Previous studies  14,15 on cancer detection using somatic 
mutations observed that the frequency of mutation of a gene correlates to higher prediction accuracy. We first 
choose the genes with the highest number of mutations as we hypothesize that there might be an additive effect 
of the mutations and more somatic mutations will have higher impact on the function of the  gene17. We then 
focus on the mutations with high frequency as recurrent somatic mutations have more statistical power to pre-
dict a cancer type due to more patients having them. It is also suggested that recurrent mutations are more 
informative of the mutational processes in cancer, which might help with the prediction of the cancer  types18 
if different types are governed by different mutational processes. Therefore, as the first step of feature selection, 
we choose genes with higher number of mutations. But each cancer type corresponds to a higher mutation in a 
different gene. We first rank the genes based on their SNV frequency in the patient cohort for each cancer type 
by also taking into consideration genes with more than one SNVs on them. We then combine the ranked genes 
from different cancer types and finally select the top 10,000 genes with highest SNV frequency for each cancer 
type as our features. This step also ensures removal of genes with low SNV frequency and reduce the dimension-
ality of our feature space. With all cancer types combined, we have a total of 18,606 genes.

Step 2: encoding scheme. Encoding techniques, both for the feature vectors and the target variables, ease in 
training towards better accuracy. Efficient encoding techniques have been proven to result in better performance 
in genomic classification tasks as  well19. As mentioned in the dataset section, each SNV on a gene is represented 
by multiple characteristics. This information need to be meaningfully merged with the CNV information of each 
gene. We explore the following encoding schemes based on a biological intuition as explained below: 

1. Using presence of an SNV on a gene The genes selected using frequency are merged for all cancer types. In 
this encoding we aim to study if a particular gene (mutation) is highly correlated to a cancer type. We assign 
a binary value [0, 1] to each of genes of a patient to denote the presence or absence of one or more SNVs. 
This allows us to encode SNV information in a categorical manner. This binary value per gene is used as a 
feature.

2. Using the type and impact of an SNV The impact of mutation of a gene is calculated using Ensembl Variant 
Effect Predictor (VEP) (see Supplemantary Information)20.
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  For each SNV in the dataset, we have two types of measure: 1—a qualitative measure indicating whether 
an SNV has a tolerated or deleterious effect; 2—a quantitative real-value measure ( si,j ) representing the 
strength of the impact and the qualitative confidence with which the mutation can be attributed to the diag-
nosis. si,j is the strength of the ith SNV in patient j. Each of the encoding scheme are given equidistant real 
values between 0 to 1. We also experimented with different ranges but did not find any improvement in test 
accuracy. We think that both of these measures are useful in classifying the tumor type. We first encode the 
first measure by assigning values for [deleterious, deleterious (low confidence), tolerated (low confidence), 
tolerated] as [1.0, 0.75, 0.5, 0.25] for each mi,j . The reason for this encoding is that a detrimental effect is 
given the highest value in cancer prediction and similarly a tolerated effect is given the lowest feature value. 
Either of the effects, when estimated with lower confidence are given lower effect. m is the effect of the ith 
SNV in patient j. We then combine this encoding with the second measure as mi,j × si,j . The final effect values 
of SNV impact of a gene is the summation of the impacts of all the SNVs on that gene, if there is more than 
one SNVs. The resulting value per gene is used as a feature.

  In addition to the strength (s) of an SNV, the qualitative confidence of the effect of an SNV on a gene is 
also as a categorical variable with values as [high, moderate, modifier, low]. We encode them as [1, 0.4, 0.7, 
0.1] since intuitively we want to assign a higher importance to a high mutation effect. A gene with no muta-
tion is assigned 0 effect. Similar to the previous feature, for a gene with multiple SNVs at different locations, 
the values are added to finally represent the effective value of all the SNVs in a gene. The resulting value per 
gene is used as a feature (Fig. 1).

3. Using CNV of a gene CNV of a gene is represented as integers between − 2 and 2, indicating if both, one, or 
no copy of the gene is deleted or duplicated. We scale these values to integers between 0 and 4 as statistical 
feature selection methods (for example χ2 test) often require positive values. Similarly, the resulting value 
per gene is used as a feature.

For each patient, 18,606 genes with their associated SNV encoding are concatenated with 25,128 genes with their 
CNV information. In total, we have 43,734 features which undergo the following statistical tests.

Step 3: feature selection using χ2 test. The previous steps of feature selection incorporate biological intuition. In 
this step, we explore statistical tests for evaluating feature importance. Statistical methods like χ2 test do not only 
inform the feature importance but also help reduce dimensionality of the feature space enabling faster computa-
tion (both during training and inference). It has previously been used in genetic information based disease pre-
diction  studies21. We performed three statistical tests for feature selection after step 2: (1) mutual information, 
which measures the gain in information or reduction in entropy if a feature is selected, (2) chi-square test, which 
measures the difference between the actual and the expected output if a feature is selected, and (3) f-score, which 
measures the Analysis of Variance (ANOVA). We choose chi-square test as a feature selection metric since we 
achieve the best possible accuracy when compared to feature selection with mutual information or f-score statis-
tics. We choose χ2 test as a feature selection metric since we achieve the best possible accuracy when compared 
to feature selection with mutual information or f-score statistics (as reported in “Results” section). To decide 
if a feature is independent of the target label (i.e type of cancer), we perform the χ2 test where we calculate χ2 
value of each feature with respect to the target variable. The χ2 value of a feature is given as 

∑ (Oi−Ei)
2

Ei
 where E 

represents the expected value, O represents the actual output and i represents each instance of a χ2 test between 
a feature and a target. Note here that, the expected values of a variable is calculated using the distribution of 
feature values.

We run the χ2 test on all genes (CNV and SNV concatenated together) and sort the features in decreasing 
order of χ2 values. The top n features are selected and are used to train a classification model. We also use this step 
to analyze the selected genes and their relative importance in cancer type prediction in “Predictive genes” section.

Figure 1.  Our threat model for private inference.
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Privacy‑preserving cancer inference. Model selection for cancer prediction. While our encoding 
scheme and feature selection methodologies are targeted towards reducing the number of computations in the 
encrypted domain, we follow a similar philosophy to select our ML model. We perform a grid search over sev-
eral small ML models like Support Vector Machine (SVM) (with radial basis function, polynomial and linear 
kernels), logistic regression, and Deep Neural Networks (DNNs with two fully connected hidden layers with 
relu activation) as possible classification models (see Supplemantary Information). To capture the non-linearity 
in the data, we train these models with their respective non-linear activation functions. However, after model 
selection, we implement the privacy preserving model using the approximation later discussed in “Approxima-
tion of non-linear function in private inference” section. We start with the top 1000 features selected by χ2 test 
and increase the number of features by 1000 in each iteration. In our search for best-performing model, we train 
models using different number of features, different statistical tests for feature selection, different kernels (if 
applicable), with several regularization techniques, and with different optimization techniques cross-validated 
over fivefolds. Although we train all the models referring to our grid search, we only evaluate and report the best 
performing models under each category of model and features in “Results” section.

Measures to reduce overfitting. We find that the logistic regression model performs best for several encoding 
schemes with the best test accuracy of 83.61%. To tackle overfitting, we take measures in two stages: (a) during 
training, (b) after training. We introduce a Lasso (l1)  penalty22 to the logistic loss function during training such 
that the features that are unlikely to contribute to the prediction are penalized and weighted zero. Therefore, if 
the logistic loss function is given by L(βj) where βj represents the coefficients of the features, the loss function 
after Lasso penalty in the Lagrangian form becomes L(βj)− �

∑n
j |βj| which is minimized during training. 

Further, we split the training process into k = 5 folds such that in every training iteration, the data is sampled 
differently, i.e. the model is iterated over a slightly different data when training for each split, thus using k-cross 
validation during training. We also aim for models with higher test accuracy to minimize the difference between 
training and test accuracy, which is an indicator of overfitting. In the post-training stage we analyze our predic-
tive genes using gene ontology study to interpret cancer prediction with our model and to detect overfitting (if 
any) of some labels to some genes.

Metrics to detect problems of unbalanced data. High test accuracy on unbalanced datasets (with a higher per-
centage of samples from a particular label) can give a false sense of performance as a random guess (of the label 
with the highest number of samples) may also result in a high accuracy. For a holistic performance evaluation 
of our classifiers, we plot Receiver Operating Characteristics (ROC) Curve and report the individual area under 
curve for each class and the Micro-average Area Under Curve (MAUC) for the classifier. Since ROC curves 
reflects the entire range of probability threshold, it is a more robust metric and is used in genetic analysis.

Binary models. We also build models to predict each cancer type separately (like specific models in Ref.15). 
Note that training of individual classifiers is to show the effectiveness of the gene selection and encoding 
schemes. Since the sample sizes for training individual classifiers are relatively low, the performance may not 
translate to larger, more diverse datasets. These models are supplementary to our main prediction model and 
focus on one type of cancer. These binary models can also serve as independent models since genomic datasets 
are not balanced. The features for this single cancer type model are chosen following the steps described above 
and the classifier is trained using a binary label: 0 for the all of the other cancer types and 1 for the cancer type of 
interest. We create separate models for each of the 11 cancer types and call these models as binary models since 
the prediction is converted into a binary classification task.

It should be noted here that the binary classification ability represented by the ROC curves of individual 
diseases (in our main prediction model) and the binary models for individual diseases are different because of 
the feature selection steps. In our binary models, the genes important to a specific disease are selected. However, 
for our main prediction model, the genes which are cumulatively important for all the 11 labels, are selected. 
Hence, we report both the analyses in “Results” section.

From analyzing the nature of genomic mutation data and the trends in accuracy (details in “Results” section), 
we observe that regardless of the ML model selected, the matrix multiplication would involve high-dimensional 
matrices (Dot product between weights and several thousands of features is common for all the ML models 
explored in our work). Therefore, following standard matrix multiplications would require a large number of 
multiplications corresponding to this high-dimensional dataset. The private cancer prediction methodology is 
characterized by a private inference protocol proposed in “Private inference protocol” section and then the fast 
matrix multiplication methodology, crux of the private ML algorithm, is proposed in “Matrix multiplication 
algorithm” section.

Private inference protocol. Figure 1 describes our threat model where the the patient data, during inference, is 
encrypted to protect the privacy of a patient, i.e. encrypted genomic data is sent to the cloud, cloud computes 
on encrypted genomic data homomorphically, and sends back encrypted results. (details in Supplementary). 
Figure 2 shows the overview of our inference protocol. It consists of input encoding and encryption, weight and 
bias encoding, computation, decryption, and decoding. The client starts with a |X| × f  matrix X containing the 
input values represented with double-precision floating-point numbers, where |X| is the number of inputs and 
f is the number of features. The values of matrix X are multiplied by a scaling factor 2sx in order to be converted 
into integers, a requirement of the BFV encryption  scheme16 (details on homomorphic encryption in Supple-
mentary). This effectively converts our HE operations into fixed-point arithmetic. The scaled matrix of inputs 
Xs is then encoded into a matrix of polynomial plaintexts X̄ , where each polynomial contains n coefficients. We 



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1661  | https://doi.org/10.1038/s41598-023-28481-8

www.nature.com/scientificreports/

pack n features of each row into a polynomial. This leads to an encoded matrix of dimensions |X| × ⌈f /n⌉ . It is 
worth noting that our model requires more precision than what can be represented in the plaintext modulus t. 
From experimental results, we determined that our inputs and weights require 14 bits of precision. Since our 
inputs are in the interval 0 ≤ x < 28 , we set sx = 6 to represent the inputs in 14 bits. Meanwhile, weights are in 
the interval 0 ≤ w < 1 , which leads to sw = 14 . Due to the fixed-point arithmetic, the biases must be scaled by 
2sx+sw . After the computation, the client will receive outputs that are scaled by a factor of 2sx+sw , like the biases, 
but that require 8+ sx + sw + ⌈log2(f )⌉ bits of precision for representation. For f = 40, 960 , that translates to 44 
bits. This is above of what a secure BFV ciphertext with enough noise budget for our computation can support. 
To cope with that without hindering the accuracy of our model, we used the Chinese Remainder Theorem (CRT) 
to break our plaintext into a pair of smaller plaintexts, each one under its own modulus. We define our plaintext 
moduli T = {t0, t1} as t0 = 1, 073, 872, 897 , which provides 30 bits of precision, and t1 = 114, 689 , offering 16 
bits. This means that for every n features encoded into a polynomial, we are actually encoding into a pair of 
polynomials, one with coefficient modulus t0 , and another with coefficient modulus t1 . For simplicity, we refer to 
this pair as plaintext polynomial.

The encoded matrix of inputs X̄ is then encrypted with the client’s public key pk. The encrypted matrix X̂ is 
sent to the server together with public values {n,T , sx} . Afterwards, the server scales and encodes the transpose of 
the matrix of weights W, which has dimensions f × |Y | , where |Y| is the number of outputs. The transposition is 
a requirement of our computation. It packs several feature weights of an output in a plaintext polynomial, leading 
to an encoded matrix of weights W̄ of dimensions |Y | × ⌈f /n⌉ . Biases are encoded differently, each bias is encoded 
into a plaintext polynomial, filling all slots with its value. Finally, the server performs the matrix multiplication 
of encrypted inputs by encoded weights followed by addition of encoded biases Ŷ = X̂ × W̄ + B̄ . The resulting 
matrix Ŷ  is returned to the client together with public value sw . The client simply decrypts, decodes, and descale 
Ŷ  with its secret key sk and obtains the result of the inference in plaintext.

Matrix multiplication algorithm. Our privacy-preserving matrix multiplication algorithm, optimized for 
implementation in HE, is displayed in Algorithm 1. It receives three arguments: The encrypted matrix of inputs 
X̂ , encoded matrix of weights W̄ , and polynomial degree n. Each row of X̂ represents an input, while each row 
of W̄ represents one output. The computation of the dot product for each input is independent, making this 
algorithm highly parallelizable. We start the dot product by performing the column-wise multiplication of each 
row of X̂ with the each row of W̄ and append the result for each row-row pair into a vector (lines 5–11). Next, we 
add together all elements of the resulting vector (line 13) and execute log2 n ciphertext rotations and additions to 
finalize the dot product (lines 14–17). This results in a ciphertext where all its slots contain the result of the dot 
product of the row–row pair. In order to save memory and reduce communication time, we aim at packing sev-
eral dot product results into a single ciphertext. For this, first we need to clear the ciphertext slots in all but one 
carefully chosen position. We do it by multiplying the resulting ciphertext ̂c by a plaintext polynomial p̄ with one 
at that specific position and zero in the remaining slots (lines 18–22). Finally, we can compress the dot product 
results R̂0 by adding them together (lines 25–42). If there are more dot product results than slots in a ciphertext, 
i.e., |X̂| · |W̄ | > n , then ciphertexts are appended to the output vector Ŷ  . Lastly, we return the result Ŷ  (line 43). 
We provide the mathematical representation of the algorithm in the Supplementary.

Approximation of non-linear function in private inference. Tumor prediction is a classification problem which 
we address using multinomial Logistic Regression (LR). An LR model is trained by reducing the logistic loss 
function. During inference, the probability that an input (x ∈ R

1×d) , with d features, belongs to a class (k) is 
given by P(y = k|x) =

ezk∑K
l=1 e

z
l

 where z = Wx + b , W ∈ R
K×d is the weight matrix, and b ∈ R

d is the bias. The 
predicted class (kp) is the class with the highest probability, i.e. kp = argmax(P(y = ki|x)) where ki ∈ K . This 
non-linear logistic function is computationally expensive in HE; thus, we perform the following approximation 
for building an ML model that can be used for encrypted inference. Since the logistic function is a monotonically 
increasing function, we can say that P(y = k|x) for a class is higher if zk is higher, and since the predicted label 

Figure 2.  Overview of proposed inference protocol. ·̄ represents encoded data, while ·̂  denotes encrypted data.
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depends on the relative probability values, the predicted label can also be calculated using argmax(zki ) . There-
fore, during inference, a test input (xtest) needs to be multiplied with the weight matrix to get the final prediction, 
i.e. the predicted class kp = argmax(W × xtest + b) . Effectively, for efficient inference, the matrix multiplication 
between the test inputs and the weight matrix must be fast.

The evaluation of private cancer prediction methodology is dependent on the precision of the plaintext 
model and performance of the private inference protocol. We report the evaluation of somatic mutation encod-
ing towards accurate cancer prediction in plaintext in “Evaluation of plaintext cancer prediction” section and 
the performance of the ML model (based on our matrix multiplication methodology) in “Privacy-preserving 
model evaluation” section.

Results
Comparison to the state-of-the-art: To the best of our knowledge cancer prediction performance using the exact 
same dataset has not been published. Therefore, we compare the performance of our plaintext model (accuracy) 
with the 2019 study on prediction of cancer types since the authors use the same TCGA  database15. A simi-
lar study from  201614 also developed cancer prediction models based on TCGA database but the 2019 study 
supersedes the former in performance. For privacy preserving implementation of cancer prediction, although 
the plaintext matrices have thousands of features, they get packed in just a handful of ciphertext (e.g. 40,960 
features are encrypted with 5 ciphertexts since each ciphertext can pack n plaintexts, where n is the polynomial 
degree). Thus, the matrix multiplication algorithm multiplies small matrices. While there are matrix multipli-
cation algorithms with lower complexity than the standard, their benefit is only for large matrices. For smaller 
matrices they are worse than the naive matrix multiplication due to costs to prepare the matrices. Furthermore, 
techniques that improve cache utilization in matrix multiplication do not work for HE because ciphertexts are 
very large, which precludes keeping many ciphertexts in the cache memory. Other encrypted matrix protocols 
require back-and-forth communication between the client and the server, which is a different approach from 
ours (send once/receive once) and therefore, not consistent with our usage model, since communication costs 
are the bottleneck in these  protocols23. Thus, we implement the standard LR in HE and compare our optimized 
ML model with it in the encrypted domain.

Evaluation of plaintext cancer prediction. Using only presence of an SNV on a gene. We report dif-
ferent performance metrics and the information on the features used for different models tested in Table 1. We 
observe that our model achieves a test accuracy of 66.85% and a micro-average area under curve of 0.928 with 
top 15,000 features. We also plot an Receiver Operating Characteristics (ROC) curve (Fig. 3) for each class and 
observe that skin cancer (class 9) detection has the highest area under the curve of 0.994 while stomach cancer 
(class 10) prediction has the lowest area under the curve of 0.754. Although on a slightly different dataset, other 
ML-based cancer prediction achieved a similar test accuracy of 65.5%14 and of 70.08%15. These methods also 
used the SNV frequency to prune the number of features.

Using only CNV of the genes. We also experiment with just the copy number information for all the 25,128 
genes and run a χ2 test to select the top genes. We achieve a slightly higher test accuracy of 71.27% with 17,000 
features. From Fig. 3, we observe that the micro average area also improves to 0.94 with the lowest area under 
curve for detection of breast cancer (class 1) at 0.87 (from 0.754). Higher test accuracy and MAUC show that 
CNVs have more distinguishing power on the type of cancers than SNVs, when considered individually.

Final model: using both SNV and CNV information. We select top f features using both SNV and CNV infor-
mation as described above and train several models (best performing models shown in Table 1) to evaluate 
different machine learning algorithms for the tumor classification task. SVM with linear, rbf, and polynomial 
kernels achieve the best test accuracy of 68.13%, 64.82%, and 69.98% with 13,000, 37,000, and 34,000 features 
respectively. Therefore, SVM does not show much improvement from our baseline that used only the presence 
of SNVs as features. Comparing our model with the state-of-the-art, we observe a ≈ 13% improvement over 
the state-of-the-art (from 70.08 to 83.61%)15. We achieve a test accuracy of 83.61% with 34,000 features thereby 
also reducing the number of features. We also observe an improvement in the micro average area to 0.976 when 
compared with models using just CNV or just presence of SNV. ROC for individual classes also have higher 
scores with the lowest area under curve of 0.94 for cervical cancer (class 3). All the classes achieve an ROC area 
under curve of more than 0.9. This experiment also shows that although CNVs are more informative, using both 
CNV and SNVs result in the highest prediction accuracy. We also test our logistic regression model using mutual 
information and f-score as feature selection methods but we achieve lower test accuracy of 81.95% with 32,000 
features, and 82.68% with 40,000 features, respectively (Table 1). We believe that the performance of our model 
is higher than that of the state-of-the-art15 due to many factors contributed by our approach including the feature 
engineering, variant effect encoding, as well as addition of CNV information to the feature set.

Binary models. To compare with the specific models depicted in the state-of-the-art15, we built 11 specific 
models for each cancer type. Although the minimum accuracy for a binary model is lower than the minimum 
accuracy reported by the authors, we report a higher value in terms of minimum auc achieved by all binary 
models. We use both CNV and SNV information to select the top 34,000 features. In these experiments, we 
train 11 different models, where each one detects a particular tumor. We report the performance (test accuracy 
and micro-average score) in Table 2. We can see that all of the individual models have a test accuracy of more 
than 90% and a micro-average area under curve of more than 0.97. The best performing classifier is for kidney 
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with a test accuracy of 97.97% and a micro-average score of 0.996. Even the worst performing binary model (for 
bronchus and lung) has a test accuracy of 91.34% and micro-average score of 0.974.

Predictive genes. We discuss our findings on the top genes selected. A total of 17,962 genes are selected for CNV 
data and 16,038 are selected for SNV data as the most informative features. However, more than 60% of these 
genes are common, i.e. 11,133 genes are selected based on both CNV and SNV information. Considering the χ2 
scores, we also observe that the top 1030 genes come from using SNV information. We plot histograms of χ2 sta-
tistic scores in Fig. 4b and observe that the genes selected based on SNVs are more flat i.e. there are more genes 
with higher scores. We also verified that the highest score of a gene selected based on SNVs is ≈ 10× higher than 
the highest value of a gene selected based on CNVs. Therefore, from feature selection perspective using χ2 test, 
SNV data on the selected genes are statistically more important than their CNV counterparts. But CNV informa-
tion improves the test accuracy by adding potentially more relevant biological information.

Figure 3.  We report the ROC curves and the micro-average scores for the best performing models using 
different genetic information: (a) Using the presence of mutation in a gene as a feature for top 15,000 genes, 
(b) using CNV information in a gene as a feature for top 17,000 genes, (c) using both encoded SNV and CNV 
features with top 34,000 features.
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When we investigated the top 10 most informative genes based on the SNV information, we found “PTEN” 
are “APC” genes, which are known tumor suppressors; “MUC16” gene, which is a biomarker for ovarian cancer; 
“ZFHX3” gene, which is implicated in prostate cancer; “CCDC168” gene, which is known to be associated with 
Prostate Carcinoma and Uterine Body Mixed Cancer. The other 5 genes in this list are also implicated in impor-
tant cellular activities that could potentially be related to cancer. The first gene in the top 10 most informative 
genes based on the CNV information is the first ever known tumor suppressor “RB1”. Similarly, “CDKN2A” and 

Table 1.  Performance of cancer prediction model for each for 11 classes. For each machine learning model 
and feature selection combination, we report the model with highest performance. The best performing 
model among them, according to test accuracy, is in boldface. Feature selection denotes the statistical feature 
selection. Accuracy denoted here is the test accuracy after the last fold and the error measure provides the delta 
change in test accuracy over k-folds. FS feature selection, LR logistic regression, SVM support vector machine, 
MI mutual information.

Feature type # features Model type FS Accuracy (%) Error ( �%) MAUC Precision Recall F-score

SNV presence 15K LR χ2 66.85 4.419 0.928 0.67 0.668 0.66

CNV only 17K LR χ2 71.27 2.026 0.940 0.718 0.712 0.711

CNV + encoded SNV 13K SVM (linear) χ2 68.14 0.92 0.942 0.685 0.681 0.68

CNV + encoded SNV 37K SVM (rbf) χ2 65.01 1.842 0.949 0.6870 0.650 0.637

CNV + encoded SNV 34K SVM (poly) χ2 69.24 1.11 0.946 0.701 0.692 0.691

CNV + encoded SNV 43K DNN χ2 61.32 11.602 0.928 0.657 0.613 0.612

CNV + encoded SNV 34K LR χ2 83.61 1.473 0.976 0.834 0.836 0.834

CNV + encoded SNV 32K LR MI 81.95 0.553 0.972 0.822 0.819 0.818

CNV + encoded SNV 40K LR f-score 82.68 0.736 0.974 0.827 0.826 0.824

Table 2.  Performance of individual (binary) models for each cancer type in terms of test accuracy and MAUC.

Accuracy MAUC Precision Recall F-score

Class 0 (Bladder) 95.58 0.982 0.952 0.955 0.952

Class 1 (Breast) 94.65 0.983 0.942 0.946 0.944

Class 2 (Bronchus and lung) 91.34 0.974 0.911 0.913 0.912

Class 3 (Cervix uteri) 97.42 0.989 0.972 0.974 0.973

Class 4 (Corpus uteri) 97.42 0.997 0.974 0.974 0.974

Class 5 (Colon) 96.86 0.991 0.967 0.968 0.968

Class 6 (Kidney) 97.97 0.996 0.979 0.979 0.979

Class 7 (Liver and intrahepatic bile duct) 95.39 0.992 0.952 0.953 0.953

Class 8 (Ovary) 97.60 0.993 0.974 0.976 0.975

Class 9 (Skin) 97.42 0.995 0.973 0.974 0.973

Class 10 (Stomach) 96.13 0.982 0.958 0.961 0.958

Figure 4.  (a) Variation of the achieved test accuracy of the trained models with different number of features 
selected using χ2 test. (b) The distribution of feature scores for genes contributing CNV and SNV data in the 
final model.
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“CDKN2B” genes are also known tumor suppressors. “RCBTB2” gene is known to be repressed in prostate cancer. 
The “CDKN2B-AS1” gene has the silencing power of many other genes in the genome and strongly implicated in 
various cancer types. The other 5 genes in this list are also implicated in important cellular activities that could 
potentially be related to cancer. These genes and their corresponding Gene Ontology (GO) term enrichment 
are depicted in Supplementary.

Insights. The first insight is that biological intuition combined with high-dimensional data analysis methods 
can together achieve high accuracy (MAUC) while reducing the effective number of features. We further vali-
date, using other studies, that our ML model indeed selects features that are biologically relevant. Using domain 
expertise, our ML model achieved a high performance of 0.98 MAUC with logistic regression ML model.

We further plot the variation of test accuracy (of a model trained using best hyper-parameters) with the 
number of features in Fig. 4a and observe that the test accuracy clearly rises when the number of features is lower 
than the number of samples and begins to saturate only after 30 features. From Fig. 4a we see that to achieve a test 
accuracy of more than 80%, we need at least 20 features, and to achieve the highest test accuracy, we need more 
than 30 features. Therefore, private genomic analysis is one such application where extremely high-dimensional 
must be processed. The second insight motivates the development of matrix multiplication algorithm, which 
when implemented using BFV, can result in fast yet private prediction.

Privacy‑preserving model evaluation. We evaluate our privacy-preserving cancer prediction model on 
an AMD Ryzen Threadripper 3960X 24-Core Processor with 128 GB RAM using 24 threads running Ubuntu 
20.04 LTS. Encryption and computation operations are threaded, while decryption runs on single core. We 
implement our model using the E3  framework24 with the underlying Microsoft SEAL  library25 and encryption 
parameters set as: polynomial degree n = 8192 , and plaintext moduli t0 = 1, 073, 872, 897 and t1 = 114, 689 , 
with a required security level of 128-bits. The cancer prediction model is hosted in the server and the client 
sends the encrypted genomic data to the server. As a use case, we privately compute cancer label for 543 patients, 
which constitutes 20% of the dataset. We compare our private logistic regression model with private logistic 
regression model implemented using standard matrix multiplication (dubbed as standard LR). To the best of 
our knowledge, there is no HE-based implementation of cancer prediction using CNV and SNV features. Hence, 
we consider the standard LR as our baseline. Please note all private models are implemented using BFV scheme 
with the E3 framework.

Latency. As mentioned in “Introduction” section private computations using HE are generally designed for 
high throughput, since popular FHE schemes support batching. For our application, we also prioritize latency, 
i.e. evaluation of a single sample. We report our findings in Fig. 5b. From the figure we observe that the total 
amount of time to privately compute cancer label for a sample is 1.08 s and there is a linear increase in time 
with the number of samples. When the number of samples is low, we notice a constant behavior which may be 
attributed to the constant costs (like encoding of weights and biases) that become prominent for lower number 
of samples.

Timing evaluation. We report the encryption, decryption, and computation time required for private cancer 
prediction in Fig. 5a. The time taken to calculate the final cancer label, which is effectively the result of matrix 
multiplication (xtestW + b) , is denoted by computation. Computation, understandably, is the most costly opera-
tion in private cancer prediction. We observe that even if the number of features increase from 16K to more 
than 40K ( 2.5× ), the computation time only increases from 33.44 to 35.52 s ( 1.06× ), which corresponds to ≈ 7% 
increase in test accuracy. Therefore, the matrix multiplication is not the bottleneck for private cancer prediction. 
The time needed for encryption of the test samples increases with the number of features, with 3.87 seconds 
for 16K features to 10.40 s for 40K features ( 2.68× ) which indicates a linear increase in the encryption time 
as a function of number of features. Decryption is the least expensive operation (less than 1 s) as compared to 
encryption and computation; the values for decryption time are labelled in Fig. 5a. The maximum total time for 
private inference of the entire test dataset is required when processing 40,960 features, and it is 46.77 seconds.

Figure 5.  Experimental analysis: (a) performance of our private LR-based cancer prediction model as a 
function of features. (b) Timing for different operations as a function of number of test samples. (c) Latency 
comparison of our matrix multiplication algorithm with standard privacy-preserving matrix multiplication.
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Comparison to standard LR. 

We compare the performance of our model (i.e., LR with the proposed matrix multiplication) with the LR with 
standard matrix multiplication while keeping the features, test dataset, and the plaintext methodology same. To 
study the scaling effect of computational costs with the increment of the number of individuals in the test data (i.e. 
the number of patients with sensitive data), we generate synthetic data for upto 8192 individuals to represent new 
individuals since our original test data consists of only 543 individuals.

We measure time for encryption, computation, decryption operations. We plot the timing results in a log-
log graph in Fig. 5c. We observe that the total time required for private inference implemented using standard 
matrix multiplication for similar number of individuals as the test set is approximately 10 min, approximately 
10× more than our methodology. Also, the total time required for private inference on 1 individual is 598.25 
seconds (similar time required for thousands of individuals), which is 550× more than the time required by our 
algorithm (our model requires 1.08 s for the same task). Therefore, as compared to standard matrix multiplica-
tion, commonly used for implementation of ML models, our algorithm has lower latency, and higher throughput. 
Please note here that we selected the polynomial degree to be 213 and thus, the graph corresponding to the naive 
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approach remains constant till 213 samples. For samples more than the polynomial degree, the execution time 
will double. Therefore, while our approach scales linearly, the naive approach grows in steps, never converging.

Generalizing high-dimensional private inference. Healthcare models are difficult to port trivially across datasets 
(as discussed in “Introduction” section). Cancer detection ML model is no exception. However, our matrix 
multiplication algorithm is not dependent on input data or weight values (like quantization-based DNN design 
 techniques26) and thus, can be reused for datasets requiring HE-based high-dimensional inference. The transfer-
ability of our private inference algorithm across applications is an added advantage.

Conclusion
Current solutions for HE-based privacy preserving inference suffer from impractical overheads; which are further 
aggravated when dealing with high-dimensional genomic data. In this work we develop a solution for privacy 
preserving cancer inference on genomic data. We first leverage biological intuition to structure the mutation 
data and reduce the dimensionality to a practicable limit. For our privacy preserving ML model, we propose a 
matrix multiplication algorithm to implement logistic regression model, optimized for high throughput and low 
latency. Our analysis on a real-world genomic dataset shows that our solution achieves cancer prediction MAUC 
of 0.98 on test dataset and can be computed on encrypted genomic data at ≈ 1 s/patient.

Data availability
The datasets analysed in the study are available in the octal-candet repository, https:// github. com/ momal ab/ 
octal- candet.
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