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ABSTRACT Deep Learning achieves state-of-the-art results in many domains, yet its black-box nature limits
its application to real-world contexts. An intuitive way to improve the interpretability of Deep Learning
models is by explaining their decisions with similar cases. However, case-based explanations cannot be used
in contexts where the data exposes personal identity, as they may compromise the privacy of individuals.
In this work, we identify themain limitations and challenges in the anonymization of case-based explanations
of image data through a survey on case-based interpretability and image anonymization methods. We empir-
ically analyze the anonymization methods in regards to their capacity to remove personally identifiable
information while preserving relevant semantic properties of the data. Through this analysis, we conclude
that most privacy-preserving methods are not sufficiently good to be applied to case-based explanations.
To promote research on this topic, we formalize the privacy protection of visual case-based explanations as
a multi-objective problem to preserve privacy, intelligibility, and relevant explanatory evidence regarding a
predictive task. We empirically verify the potential of interpretability saliency maps as qualitative evaluation
tools for anonymization. Finally, we identify and propose new lines of research to guide future work in the
generation of privacy-preserving case-based explanations.

INDEX TERMS Case-based interpretability, privacy-preserving machine learning, deep learning, computer
vision.

I. INTRODUCTION
Deep Learning has led to significant advances in image anal-
ysis and has become state-of-the-art in most computer vision
tasks. Some works even claim that the developed models can
outperform human experts [1]. However, the lack of inter-
pretability in Deep Learning makes it difficult to trust and use
deep networks in several real-world applications, especially
when wrong decisions have significant consequences [2]
(e.g., in medicine and forensics).
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In recent years, the research community has begun to
recognize the importance of explainability for ‘‘black-box’’
machine learning models. When it comes to computer vision
tasks, methods capable of generating visual explanations are
of particular interest. We highlight two types of visual expla-
nations: saliency maps and case-based explanations. Saliency
maps show the regions of the images that are relevant to a
model’s decisions. Case-based explanations, or explanations-
by-example, are data samples with similar task-related fea-
tures as the observation under analysis.

Although commonly applied in domains with sensi-
tive visual data, such as medical diagnosis, case-based
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explanation methods may compromise the privacy of indi-
viduals, with this privacy leakage being of particular concern
when data is shared with potentially unauthorized personnel
(e.g., medical students, interns, patients, and family mem-
bers). Privacy is less of an issue in saliency map methods,
where, by design, the only sensitive information they reveal
is the input image under consideration.

In image retrieval, case-based explainability is commonly
used in scenarios such as medical image diagnosis to obtain
examples of similar disease-matching images that can be
compared to a case under analysis and provide additional
insights to explain and support a diagnosis [3]–[5]. The
retrieval process begins with a user entering an image into
the retrieval system. Then, the retrieval system ranks the
examples in its database according to a semantic similarity
measure and presents the most similar examples to the user.
Retrieving an image with sensitive identity information from
a private dataset may violate the privacy of the individual
present in the image. To address this issue, the case-based
explanation must go through an anonymization process to
wash the identity out of the image before presenting it to
the consumer of the explanation, as illustrated in Figure 1.
The greatest challenge in creating the washer model is to
ensure that no identity is leaked in the privatized version of the
explanation while preserving the explanatory evidence and
realism.

The application of privacy-preserving methods to
case-based explanations has rarely been addressed in the sci-
entific literature. Only one privacy-preserving work [6] con-
siders the characteristics of visual case-based explanations.
As a guide for future research, we survey and analyze case-
based interpretability methods, reflecting on their privacy
needs, and privacy-preserving methods, highlighting their
limitations when applied to case-based explanations. Further-
more, we formalize the generation of Privacy-Preserving
Case-Based Explanations as a multi-objective problem to
minimize identity information, while preserving realism and
explanatory evidence in the images. Finally, we propose
future research directions to guide future work in this under-
explored field of research.

II. BACKGROUND ON DEEP GENERATIVE MODELS
In this section, we provide background on deep generative
models, as they are used in several case-based interpretability
and privacy-preserving methods.

Generative Models learn the probability distribution of a
training dataset and can use it to generate new data samples.
In the context of privacy-preserving methods, these models
are applied to generate privatized images. Some case-based
interpretability methods also incorporate generative models
in the generation of the explanations. The most relevant
generative models for this survey are Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs).

GANs [7] consist of two adversarial networks, a gen-
erator, and a discriminator, which compete against each
other in a minimax game. The generator is responsible for

generating new data samples, while the discriminator distin-
guishes between real and generated instances. The adversarial
training promotes the generation of realistic images, as the
generator tries to trick the discriminator into misclassifying
the synthetic samples as real. The objective in Equation 1
describes the minimax game. The generator Gminimizes the
objective, while the discriminator D maximizes it, x repre-
sents real samples, and z represents the input to the GAN,
often random noise. GANs are challenging to train, and the
generator often undergoes mode collapse, a phenomenon
describing an overall lack of diversity in the output.

min
G

max
D

Ex∼p(x)
[
logD(x)

]
+ Ez∼p(z)

[
log(1− D(G(z)))

]
(1)

Privacy-preserving methods use conditional GANs
(cGANs), a variation on the GAN restricted by predefined
conditions. In specific, privacy-preserving GANs are con-
ditioned by the input image, as they must preserve certain
features during the anonymization.

VAEs [8] learn an approximation of the data distribution
using two networks: an encoder and a decoder. The encoder
maps samples x ∼ pdata(x) in the original data space into
a latent space with a simpler data distribution (usually a
Gaussian distribution). The decoder maps samples z ∼ p(z)
from the latent space into the original data space. This net-
work allows the generation of new images by sampling from
p(z) and converting the samples to the original data space
through the decoder. The loss function used to train a VAE,
represented in Equation 2, contains two terms: a reconstruc-
tion term and a regularization term. The reconstruction loss
term approximates a reconstructed image obtained through
the VAE to its original version and can be represented by loss
functions like cross-entropy or mean squared error. The regu-
larization loss term uses Kullback-Leibler (KL) Divergence
to reduce the distance between the encoder’s distribution
qθ (z | x) and the original data distribution p(z | x).

L = −Ex,z[log p(x | z)+ DKL(qθ (z | x)||p(z | x))] (2)

In addition to the two Deep Generative Models presented,
there are other models in the literature that have the potential
to generate high-quality images, as is the case of Autore-
gressive Models and Normalizing Flows [9]. Research on
these two models has been growing in recent years due to
their ability to explicitly model the data distribution as a
tractable distribution without the need for approximations.
These models may also be relevant in the future development
of privacy-preserving models. Nonetheless, they are not used
in any of the works analyzed in this survey.

III. CASE-BASED INTERPRETABILITY
Case-based interpretability stands out among the various
explainability strategies for its ability to generate intuitive
and easy-to-understand explanations based on similar exam-
ples [10]–[12]. Case-based explanations are examples that
resemble the image under analysis. The consumer of the
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FIGURE 1. Diagram exemplifying the explanatory retrieval process. Consumers illustrated in red represent individuals who do not
possess authorized access to the raw data (identity information) in the database. Consumers illustrated in green can access the
raw data.

explanation can gain a deeper understanding of a model’s
decisions by comparing the explanation and the original
image in the context of the model’s prediction.

Explanations can be retrieved from the database used
by the machine learning model or generated based on the
data. Case-based interpretability methods can produce vari-
ous types of explanations by example:
• Similar examples: the explanation is the most similar
case from the training data whose prediction matches
the case under analysis. Methods that retrieve this type
of explanation define the similarity measure used to
compare the data samples.

• Typical examples: the explanation is the case that best
represents the prediction made for the case under anal-
ysis. These examples are often found in models that
implement prototype learning.

• Counterfactual examples: the explanation is the most
similar casewhose prediction differs from the case under
analysis. This type of example can also be generated
based on the case under analysis, providing the alter-
ations that the sample must suffer so that its prediction
changes.

• Semi-factual examples: the explanation is a case that
shares the same prediction as the case under analysis
but closer to a decision boundary. These examples help
convince the explanation consumer by showing that even
if the data sample had changes commonly associated
with another prediction, it would still be classified as is.
These types of explanations can either be retrieved from
the data or generated based on the original image.

The retrieval of case-based explanations in image data
remains a challenge, due to the difficulty in defining a reliable
metric for evaluating the similarity between two images with
respect to a given task. This section introduces the current
state-of-the-art case-based interpretability methods in tradi-
tional machine learning and deep learning. We differentiate
the existing techniques in intrinsic and post hoc approaches.
Intrinsic approaches involve the development of inherently
interpretable models with case-based reasoning where the
decisions are based on examples from the training data. Post

hoc methods require the development of explanatory models
to retrieve explanations for the base models’ decisions.

A. TRADITIONAL MACHINE LEARNING METHODS
In traditional machine learning methods for case-based inter-
pretability, the feature extraction process is separated from
the decision process. To apply these methods to image data,
we need to extract a vector of features, which will be used as
the input to these models.

1) INTRINSIC METHODS
Intrinsically interpretable methods capable of retrieving
case-based explanations typically fall under two types:
distance-based methods or prototype-based methods.
In distance-based methods, the data samples are compared
according to a distance measure, and the closest ones can be
retrieved as similar explanations. In prototype-based meth-
ods, the data is organized into clusters, and the explanations
are prototypes from the cluster that best represents the orig-
inal instance. In prototype-based reasoning, each prototype
represents a cluster of data with certain characteristics, and
the set of all prototypes should be representative of the whole
training set.

The most well-known case-based method is the K-Nearest
Neighbors (KNN) algorithm. It is a distance-based method
that classifies an observation according to the K nearest train-
ing samples. The algorithm calculates the distance between
the observation and the training samples according to a dis-
tance metric. Then, it classifies the observation with the
majority of its neighbors’ labels. This method can produce
two types of explanations: similar examples corresponding to
the neighbors that share the same label as the predicted one
and counterfactual examples corresponding to the neighbors
whose labels do not match the final prediction.

One example of a prototype-based method is the Bayesian
Case Model (BCM) [13], which organizes the data in clusters
represented by a prototype and a subspace of the features
characteristic of each cluster. For classification, a new obser-
vation is mapped into a cluster and classified according to
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its prototype, which is then used to explain the model’s
decision. As such, this model can produce typical examples
as explanations.

2) POST HOC METHODS
Regarding post hoc interpretability techniques, traditional
machine learning models without case-based reasoning can
be used as a distance metric to retrieve similar examples [14].
For example, we can use a decision tree model, a rule-based
model, to evaluate the similarity between two data samples.
A decision tree takes the form of a tree where each node rep-
resents a feature in the data, and the edges are rules that apply
to the features. To obtain a similar example, we can retrieve
a training sample sorted into the same decision node as the
observation in the tree. The explanation, in this case, would
be an observation from the training data that conforms to the
same rules as the observation under analysis and that shares
the same class as the decision node. Furthermore, instances
sorted into the same decision node but with a different class
can be retrieved as counterfactual examples.
Post hoc methods can also be built upon interpretable

models with case-based reasoning to improve the quality
of the explanations. Nugent et al. [15] proposed a frame-
work built upon the KNN algorithm called Explanation
Oriented Retrieval (EOR). EOR aims to retrieve more con-
vincing explanations by applying an explanation utility mea-
sure to re-order the nearest neighbors obtained using KNN.
The neighbor with the highest explanatory value is the one
retrieved as an explanation. In this case, the explanations are
considered semi-factual examples, as they share the same
classification as the original data instance but are closer to
the classification task’s decision boundary than the nearest
neighbor.

B. DEEP LEARNING METHODS
Deep Learning methods can learn to extract features from the
data, optimizing the feature extraction process according to a
predictive task.

1) INTRINSIC METHODS
As in traditional machine learning, intrinsic methods can be
prototype-based or distance-based. Existing prototype-based
methods differ in the types of prototypes that are created in
the model. In Deep Learning, prototypes can be training data
instances, synthetic data generated based on the training data,
and even parts of images.

The ExplainableDeepNeural Network (xDNN)model [16]
and its successor, Deep Machine Reasoning (DMR) [17],
are examples of prototype-based methods. These methods
define prototypes as local peaks in the data density and
classify an observation according to the prototype that best
represents it. The xDNN model extracts features from data
into a latent space where it calculates each instance’s proba-
bility distribution. The prototypes for each class are selected
from the data instances with higher density. On inference,
an instance is classified according to the prototype that best

represents it. DMR proposes improvements to the xDNN
network to deal with data imbalance. After the prototype
selection process, DMR augments the data through linear
interpolations between perturbed data points around a pro-
totype. The inference process in the DMR network is also
slightly different, as it includes a decision tree to compare
the two most representative prototypes regarding minimum
error during training. The instance is classified according to
the prototype with the lowest minimum error, which can be
used as an explanation by typical example.

The Prototype Classifier developed by Li et al. [18] is
a prototype-based method where prototypes are generated
instances that are similar or even identical to training samples.
The model learns prototypes that best represent the training
data and uses them to perform the classification task. It pos-
sesses an autoencoder, whose encoder extracts features from
the data into a latent space, and whose decoder learns to map
features from the latent space into the original data space.
Following the autoencoder, the model possesses a prototype
classifier, with a prototype layer that learns prototypes based
on the training data’s latent representations, and a decision
layer that classifies a sample based on the prototypes. The
prototypes learned by the network can be visualized as expla-
nations through the decoder. Additionally, we can use the
autoencoder’s latent space to calculate the distance between
a sample’s representation and the prototypes to obtain the
most similar prototype and use it as an explanation by typical
example for the model’s decision.

One prototype-based method where the prototypes are
parts of images is the Prototypical Part Network (ProtoP-
Net) [19]. During training, the network creates a latent space
where image patches relevant to an image’s classification
are represented in clusters. The clusters contain semantically
similar patches whose images belong to the same class.
On inference, the network finds prototypes similar to parts
of an image and combines the respective similarity scores
to make a prediction. The prototypes are provided as typical
examples.

One example of a distance-based method is the Deep
k-Nearest Neighbors (DkNN) [20]. This method computes an
instance’s neighbors at each layer in the model. The labels of
the neighbors are then used to make a prediction. By using the
neighbors at each layer, the model guarantees that the predic-
tion is consistent across the whole model, enhancing robust-
ness. In this method, it is possible to retrieve an instance’s
neighbors as similar examples to explain the prediction.

2) POST HOC METHODS
Regarding post hoc interpretability approaches, the methods
can use an interpretable surrogate model to retrieve expla-
nations from the base model or use the ‘‘black box’’ model
to measure similarity between data instances and retrieve
the most similar ones. One example of a method that can
easily be used as a similaritymeasure for explanation retrieval
is Concept Whitening [21]. Concept Whitening organizes a
classification network’s latent space according to pre-defined

28336 VOLUME 10, 2022



H. Montenegro et al.: Privacy-Preserving Case-Based Explanations: Enabling Visual Interpretability

high-level concepts. The network is trained with two sets of
labels, one for the instances’ classification task and the other
with the concepts associated with the data. We can use this
network’s latent space to measure the distance between the
new data instance and the training data and obtain similar
examples to offer as explanations to an explanation consumer.
Additionally, the distance between the data can be measured
according to a specific concept or set of relevant concepts for
the classification task.

Regarding post hoc methods specifically developed
for image retrieval, one method is Interpretability-guided
Content-Based Image Retrieval (IG-CBIR) [4]. In this work,
the authors propose a new approach to improve the explana-
tory retrieval process by enhancing the semantic similarity
measure between images using interpretability saliency maps
as an attention mechanism to focus on image regions related
to the classification task.

One type of interpretable surrogate model that can be
used to retrieve explanations is unsupervised clustering [22].
This method retrieves layer activations at each layer in the
base model and encodes them into a latent space where it
is possible to measure the distance between the activations.
In this latent space, the data is organized into clusters using
Euclidean distance. During inference, at each layer from the
base model, the observation is mapped into a cluster and
associated with the respective centroid. Finally, the model
assigns to the observation the weighted average of its cen-
troids’ labels. The centroids can be used as explanations by
typical examples.

Another interpretable surrogate model that can be used in
the explanation retrieval process is KNN, as suggested in the
Twin Systems framework [23]. This framework consists of
extracting features from the data using the base classification
model and applying the KNN algorithm over these features
to retrieve similar examples as explanations. The framework
explores several ways to extract features from visual data,
including perturbation-based methods, sensitivity analysis
methods, and interpretability saliency maps.

Finally, counterfactual explanations are usually generated
based on the original observation. The generation process
implies making the least possible changes to an image to
change its classification. Additionally, for the explanation
to be plausible, a human must be able to detect the dif-
ferences between the original observation and the counter-
factual, as argued by Kenny and Keane [24]. The authors
proposed a method to generate counterfactual explanations,
called PlausIble Exceptionality-based Contrastive Explana-
tions (PIECE) [24]. This method first identifies the target
counterfactual class. To generate counterfactuals, the method
finds features in the original image whose probability of
occurring in the target counterfactual class is low. Then,
using a Generative Adversarial Network (GAN), the method
modifies these features into their expected values in the target
class. This method can also be used to generate semi-factual
explanations by stopping the generative model’s training

before the class of the synthetic images changes to the coun-
terfactual class.

C. DISCUSSION
Deep Learning, in comparison with traditional Machine
Learning, holds the advantage for image analysis tasks, as it
learns to automatically extract features from the data accord-
ing to the target task.

In intrinsic methods, the retrieved explanations are directly
incorporated into the decision-making process and thus con-
stitute an accurate representation of the model’s reasoning.
On the other hand, explanations obtained through post hoc
methods are often criticized for not representing the model’s
real reasoning [18]. Nonetheless, without the restriction of
interpretability, models may achieve better results, highlight-
ing the usefulness of post hoc techniques. As such, when
considering which method to implement, it is important to
decide whether the priority is the model’s interpretability or
its performance. The ideal model is an intrinsically inter-
pretable model capable of achieving high-quality results.

As for the types of explanations produced by the models,
a factual explanation by a similar or typical example, by itself,
is not sufficient to understand a model’s predictions, as it
only allows to introspect the characteristics associated with
one class. Counterfactual explanations aid interpretability by
highlighting features that are usually seen in the remaining
classes, clarifying the decision boundary between two dif-
ferent classes. When providing explanations, it is relevant to
consider mechanisms to obtain both factual and counterfac-
tual examples in the proposed interpretability methods.

When case-based explanations expose the identity of an
individual whose images are not accessible by the consumer
of the explanation, the explanations pose a significant privacy
threat. This issue is relevant in explanations retrieved from a
database, exposing the identity of a data subject. In counter-
factual and semi-factual explanations generated by making
alterations to the original image, privacy is of no concern as
the explanation consumers already have access to the original
image.

The most critical aspects of case-based explanations,
which need to be considered during anonymization, are intel-
ligibility, explanatory evidence, and privacy. The explana-
tions must be intelligible so that a human can understand
them. They must not leak the identity of a subject to be
applied in real-world scenarios, guaranteeing the fundamen-
tal human right to privacy. Finally, the explanations must
contain relevant characteristics that allow an explanation con-
sumer to compare them to the case being analyzed and obtain
a deeper understanding of a model’s decisions.

IV. PRIVACY-PRESERVING METHODS FOR VISUAL DATA
Privacy-preserving approaches are essential in case-based
interpretability to apply the respective visual explanations in
the real world. Given an image showing a subject’s identity,
the privatization goal is to prevent the subject’s recognition
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by a human or an identity recognition network while pre-
serving semantically relevant features that allow the use of
the resulting image as a meaningful explanation. In visual
data, semantically significant features are often tangled with
features that portray identity. The greatest hurdle in the gener-
ation of privacy-preserving images is to manage the trade-off
between privacy, explanatory evidence, and intelligibility.

In this section, we discuss privacy-preserving methods
considering their application to case-based explanations. The
methods are analyzed in regards to their capacity to preserve
intelligibility, privacy, and explanatory evidence. Methods
such as encryption, whose results are unintelligible, will be
ignored.

We discriminate the current privacy-preserving methods
into two groups: traditional and deep learning methods. Tra-
ditional methods are applied over the whole input, requiring
an additional step to identify the parts of the images to be
privatized. In contrast, deep learning methods are capable
of identifying the parts that leak identity and anonymizing
them. Furthermore, deep learning methods can also identify
relevant explanatory features in images.

A. TRADITIONAL METHODS
Traditional methods privatize the whole input image. They do
not have the capacity to evaluate which parts of the images
transmit identity or even explanatory evidence. As such, they
may lead to the unnecessary loss of semantically significant
features that do not expose identity.

1) FILTER-BASED METHODS
Filter-based methods apply filters such as pixelation or blur
to the data. Pixelation consists of dividing an image into a
grid and assigning to each grid cell the average value of the
pixels inside it. With blurring, the image’s pixels are altered
according to a kernel applied over the region surrounding
each pixel. These methods suffer the most from a trade-off
between privacy and explanatory evidence since both identity
features and explanatory features get equally distorted [25].
Blurring images can preserve privacy, but it leads to a signifi-
cant loss of intelligibility. Montenegro et al. [25] support this
claim using eye images from the Warsaw-BioBase-Disease-
Iris v2.1 [26], [27], which were classified according to the
presence or absence of glaucoma. We present an example in
Figure 2 from a blurred dataset where a multi-class identity
recognition network was capable of recognizing the original
identity with the relatively high accuracy of 23.24%, in a
dataset with images from 115 different subjects, where ran-
dom guessing would lead to an accuracy of≈0.88%. Blurring
did not preserve privacy to a satisfying degree, and the image
quality was significantly damaged. Detailed results regarding
blurring (and other privacy-preserving methods) are available
in Table 1.

2) K-SAME-BASED METHODS
K-Same [28] is an algorithm for privatization originally pro-
posed to de-identify face images. The algorithm finds clusters

FIGURE 2. Example of results of blurring images to privatize them. The
images represent the original image and its privatized version (taken
from the work of Montenegro et al. [25]), respectively.

of K most similar images. The images are then replaced
by the pixel-wise cluster mean. In the original paper, image
similarity is measured by the pixel-wise distance between
the images. As this method does not consider the preser-
vation of semantic features that are relevant for a certain
task, Gross et al. [29] proposed K-Same-Select. This method
separates the data into subsets according to a utility function
and then applies K-Same to each subset. When there is only
one instance per person in the dataset, these methods ensure
K-anonymity, i.e., an identity is recognized with probability
at most 1

K .When the same person appears inmultiple samples
in the dataset, the respective imagesmay be organized into the
same cluster, thus violatingK-anonymity. Averaging different
images sacrifices higher detail features from the original
image that are relevant for the explanation [25]. Figure 3
shows an example image obtained with K-Same-Select. This
method can generate intelligible images for low values of K.
Although there is also a visible privacy-intelligibility trade-
off using this method, it is not as significant as in the filter-
based methods, since the images look more intelligible and
guarantee a higher degree of privacy, with the lower identity
recognition accuracy values of 2.94% and 1.47% for K = 6
and K = 9, respectively. Furthermore, the accuracy of the
identity recognition network at identifying any identity used
in the privatized images is 14.41% for both values of K ,
which is better than the accuracy obtained using blurring
(23.24%) [25]. Further results are available in Table 1.

FIGURE 3. Example of results of using the K-Same-Select method. The
images represent the original image and its privatized versions with K = 6
and K = 9 (taken from the work of Montenegro et al. [25]).

3) MODEL-BASED METHODS
Model-based methods replace image parts that transmit iden-
tity by a model. One example is the face-swapping method
developed by Bitouk et al. [30]. This method estimates the
pose of a face in an image and replaces it with a similar model
face from a public library. In this method, the task used to
obtain explanations could be used to evaluate the semantic
similarity between the replacement models and the original
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image, ensuring the preservation of semantic features. The
biggest drawback in this method is the need to have public
models of the image parts we want to privatize. Furthermore,
the explanatory features tangled with the identity-related
features may be lost, as they are located in image regions
replaced by the model.

B. DEEP LEARNING METHODS
Deep learning privatization approaches generally use a deep
generative network to produce the privatized images. The
privatization process is guided by an identity recognition
network whose loss is backpropagated into the generative
network to remove the identity from the generated image.
Regarding the preservation of explanatory evidence, some
models preserve semantic features relevant to a task. These
task-dependent models use the task-related model to guide
the generative process by backpropagating its loss. Task-
independent models focus on preserving general image fea-
tures to preserve the image’s utility.

One of the task-dependent methods proposed in the litera-
ture is the Privacy-Preserving Representation Learning Varia-
tional Generative Adversarial Network (PPRL-VGAN) [31].
This model performs privatization through identity replace-
ment. It comprises a GAN with a conditional VAE as the
generator and a multi-task discriminator. The VAE receives
as a condition the target identity, which will be used to replace
the identity in the input image. The multi-task discriminator
possesses a real/fake classifier to guarantee realism in the
privatized images, a multi-class identity recognition network
to aid the identity replacement process, and a task-related
classifier to preserve the utility of the privatized images.
As highlighted in the work of Montenegro et al. [25], this
method threatens the privacy of the subject used as a replace-
ment, as revealed by the high identity recognition accuracy
obtained when trying to recognize the identity used as a
replacement in the privatized images (Table 1). This network
could only be applied to replace the identity in the images if
there was a predefined model that does not expose anyone’s
identity.

Regarding the preservation of explanatory evidence, this
method only guarantees the preservation of the class of the
original image and not of its exact task-related semantic
features. To show an example evidencing this claim, we apply
the PPRL-VGAN model to privatize an image using its own
identity as the replacement identity. We conduct this exper-
iment with a facial expression recognition dataset used in
the original work: FERG dataset [32], composed of images
from 6 different identities and seven different facial expres-
sions. The example shown in Figure 4 expresses the facial
expression: joy. To guarantee the preservation of semantic
features, we expected to obtain an image very similar to the
original one, presenting the exact same expression-related
features, with an open mouth showing teeth and slightly
closed eyes. Instead, we obtain a privatized image repre-
senting the same facial expression as the original one but

containing different semantic features: closed mouth and
more open eyes.

FIGURE 4. Example of results obtained from applying the PPRL-VGAN
network to replace the identity in the original image by itself. The first
image represents the original image and the second one represents its
synthetic version.

Furthermore, the PPRL-VGAN model was only validated
with datasets for facial expression recognition (its target
task), where each subject contains images for all the dif-
ferent classes. However, when it comes to contexts where
each subject only possesses images from one task-related
class, the model fails to perform the feature disentangle-
ment process. This claim was empirically demonstrated by
Montenegro et al. [25], who applied the model to medical
and biometric data for glaucoma detection and verified that
the glaucoma recognition accuracy significantly drops when
using replacement identities whose pathology differs from the
original image (accuracy of 65.06%) as opposed to replace-
ment identities that share the same pathology as the original
image (accuracy of 85.56%). The range of application of
the model is further diminished by the use of a multi-class
identity recognition model, which is unfeasible to train for
datasets with a reduced number of images per subject, often
seen in real contexts like in the medical scene.

One privacy-preserving approach which addresses the
weaknesses of the PPRL-VGAN network is introduced in
the work of Montenegro et al. [6], where the authors pro-
pose two privacy-preserving models, one using a multi-class
identity recognition network, which we will call PP-MIR in
this review, and the other using a Siamese identity recog-
nition network, which will be called PP-SIR. As shown in
Figure 5, both models contain a generative module, com-
posed of a WGAN-GP network [33], responsible for the
generation of intelligible images. Both models also explic-
itly preserve explanatory evidence by using interpretability
saliency maps to reconstruct the relevant explanatory features
in the privatized images. The two networks differ in regards
to the privacy mechanism. PP-MIR promotes privacy for
the entire dataset by approximating the multi-class identity
recognition to randomguessing, promoting a uniform identity
distribution as the privatized image’s prediction. The PP-SIR
model was proposed to widen the range of application of
the privacy-preserving model in the medical scene through
a Siamese identity recognition network, which computes
the distance between two images in regards to identity fea-
tures. The PP-SIR network privatizes an image by increas-
ing its identity-related distance to its privatized version.
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TABLE 1. Results of some traditional and deep learning privacy-preserving methods taken from the work of Montenegro et al. [25]. The table highlights
in bold the best results obtained for each metric in each method.

Furthermore, the network guarantees privacy for the whole
dataset by increasing the identity-related distance between
a privatized image and an image from each subject in the
dataset.

The most significant weakness in these models when con-
sidering their application to the anonymization of case-based
explanations obtained from intrinsic interpretability methods
is that they use a post hoc interpretability method to preserve
explanatory evidence. The use of post hoc methods, which
are criticized for not reflecting a model’s real reasoning,
clashes with the intrinsicmethods’ goal of producing accurate
explanations of a model’s predictions, as noted by the original
authors [6]. One more weakness is that, although PP-SIR
was proposed to apply to data with very few images per
identity, it has not yet been validated in that same scenario,
as the dataset in which the authors validate their approach
contains enough data to train a multi-class identity recog-
nition network. Finally, despite privatized images obtained
through these methods being intelligible, their quality should
be improved, especially in the PP-MIR model. An example
of images from these methods is shown in Figure 6.
Other types of privacy-preserving methods in the literature

are independent of a classification task, aiming to preserve
general features to guarantee an image’s utility. Since these
methods do not explicitly preserve task-related features, they
may fail to guarantee that the privatized image contains the
relevant explanatory evidence needed for an explanation con-
sumer to understand the explanation. Some task-independent
methods disentangle identity features from the remaining
image features. These methods can obtain a vector of identity
features that can be modified to privatize the image.

One example of such a method is CLEANIR [34].
CLEANIR is a Variational Autoencoder (VAE) applied to
de-identify face images. The encoder is trained to explicitly
disentangle identity features from the image’s utility features,
producing two vectors in its latent space. The decoder maps
these vectors into an image in the original data space. During
training, the network is trained with a reconstruction loss,
forcing the decoder to learn how to obtain the original image
based on its latent vectors. The encoder learns to disentangle

identity features from the remaining ones through an embed-
ding loss which approximates the latent vector of identity
features to identity embeddings obtained from applying a
pre-trained facial embedding extractor to the original image.
On inference, the network alters the latent vector of identity
features, resulting in a privatized image. One strength of this
method is that its privatization process is independent of the
dataset, guaranteeing privacy for the subjects in the training
set. However, this method does not guarantee that the latent
vector of remaining features does not contain information that
leaks identity. For instance, if the facial embeddings capture
most or all the information needed to reconstruct the image,
then this utility-related latent vector could be correlated or
even equal to the identity-related latent vector.

Replacing and restoring variational autoencoders
(R2VAE) [35] is another method that disentangles identity
features from the remaining ones. The network comprises a
GAN with a VAE as the generator. The VAE contains two
encoders, where one extracts identity-related features, and
the other one extracts features independent from identity. The
decoder maps the latent representations obtained with the
encoders into an image in the original data space. The net-
work also possesses a discriminator to aid the generation
of realistic images and an identity recognition network to
aid feature disentanglement. During training, the generator
receives a pair of images (A,B) and outputs an image with
identity-related features from the input image A and identity-
independent features from B. The network is trained to output
a realistic image through a discriminator, to preserve the
identity features of the input image A through the identity
recognition network, and to preserve features unrelated to
identity through a reconstruction loss between B and the
output image. Furthermore, to aid feature disentanglement,
the output image is then given to the generator along with
the image B, obtaining the original image B, which con-
tains identity features from B and general features from the
output image. On inference, the network uses the encoder
that extracts identity-independent features from the original
image, to preserve general features, and uses an identity
vector obtained from averaging several identity vectors from
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FIGURE 5. Architecture of the PP-SIR and PP-MIR models [6], highlighting the loss terms used during the models’ training.
The two models differ in the architecture of the identity classifier used.

FIGURE 6. Example of results obtained from the PP-SIR and PP-MIR
models, taken from the work of Montenegro et al. [6]. The figures
represent the original image and its privatized versions with the PP-MIR
model and the PP-SIR model, respectively.

the dataset, to obtain a privatized image. One weakness of the
method is that it uses identities from the dataset to privatize
the images, threatening the privacy of the training data’s
subjects. However, this problem is easily fixed by applying
an operation over the identity features obtained with the VAE
to privatize them, like in CLEANIR.

Methods that do not explicitly perform feature disentan-
glement use a Siamese identity recognition network to ensure
that the privatized image does not look like the original one in
regards to identity. There are two examples of such networks
in the literature: Privacy-Protective GAN (PP-GAN) [36]
and Siamese Generative Adversarial Privatizer (SGAP) [37].
Both networks contain a GAN with a UNET generator and
a Siamese identity recognition network which outputs the
identity-related distance between two images. In the loss
function, these methods use the Structural Similarity Index
Measure (SSIM) to ensure the preservation of general fea-
tures and a contrastive loss to increase the identity-related dis-
tance between the original image and its privatized version.
Regarding the networks’ results, while PP-GAN results in
high-quality privatized images, SGAP severely lacks quality,
putting the utility of the resulting images at risk. One problem
common to both networks is that they only use the Siamese
network to guarantee that the resulting image does not expose
the identity from the original image. They do not make any
guarantees regarding the privacy of the subjects from the
training data. As a result, the GAN could learn to generate

images that are very similar to the training data, exposing the
identity of subjects from the data.

To exemplify the issues that disqualify the PP-GAN and
SGAP models as candidates to preserve privacy for case-
based explanations, we performed an experiment with a
privacy-preserving model that uses SSIM loss to guarantee
the preservation of utility features and a Siamese network
to preserve privacy by comparing the original and privatized
images in regards to identity. In specific, we altered the pre-
viously introduced PP-SIR model to only guarantee privacy
for the original subject and replaced the loss functions that
guarantee the preservation of task-related features by SSIM.
The privacy-preserving model that results from applying the
mentioned alterations to PP-SIR is a GAN that generates a
privatized image based on the input image I from the original
data space’s distribution pd . The GAN is composed of a
discriminator D which is trained using Wasserstein loss and
gradient penalty [33]. The generator G, whose loss function
is shown in Equation 3, is a VAE trained to maximize the
identity-related Euclidean distance ED between an original
image and its privatized version using a contrastive loss and
to preserve utility features by using SSIM to maximize the
similarity between the original and privatized images. In this
equation, λx represents the parameters used to assign a degree
of relevance to each loss term x.

LG=E(I )∼pd (I )[−λ1D(G(I ))+λ2[max(0,m−ED(I ,G(I )))]2

+λ3
1− LSSIM (I ,G(I ))

2
+λ4KL(q(f (I ) | I )||p(f (I )))] (3)

The similarity between two images x and y according to
SSIM takes into account the images’ structure, luminance,
and contrast [38]. It is calculated according to Equation 4,
where µ represents an image’s mean intensity, σ represents
the standard deviation used to estimate contrast, and C1 and
C2 are constants to avoid instability.

LSSIM (x, y) =
(2µxµy + C1)+ (2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(4)
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This experiment uses the previously introduced dataset
Warsaw-BioBase-Disease-Iris v2.1 [26], [27], which is also
used by the authors of the PP-SIR model. To confirm the
hypothesis that simply distancing the privatized image from
the original one in regards to identity is not enough to guaran-
tee privacy for the entire dataset, we verified that some images
generated by the privacy-preserving framework are similar
to images from different identities available in the database,
as exemplified in Figure 7. In the case of the PP-GANmodel,
while its results show that the network preserves the general
facial structure, it seems to alter features like the eyes, nose,
and mouth, for example. As some of these features, like
the eyes, can also portray identity, there is a need to verify
that these features do not resemble features from images
in the database. The solution to this problem introduced in
the PP-SIR model is to increase the identity-related distance
between the privatized images and images from each subject
in the dataset during training [6].

FIGURE 7. Example of results obtained from applying the PP-SIR network
to only increase the distance between the privatized image and its
original version. The first image represents the original image and the
second one represents its privatized version. The third image is a data
instance from the subject that was identified by a multi-class identity
recognition network when analyzing the privatized image.

Regarding the preservation of explanatory evidence,
we verified that images generated with the model using SSIM
as the loss function to preserve general utility features possess
a very low glaucoma recognition accuracy of 64.71% and
an F1-score of 28.57%. These results prove that SSIM does
not guarantee the preservation of the relevant features needed
for a specific task. Therefore, the task-independent methods
PP-GAN and SGAP do not fulfill two of the fundamen-
tal requirements of privacy-preserving case-based explana-
tions: privacy for all subjects and preservation of explanatory
evidence.

In general, the task-independent methods were validated
on datasets for face recognition and evaluated on their capac-
ity to preserve general features relative to age, ethnicity,
face pose, among others. The only method that was vali-
dated using a different biometric dataset (fingerprints) was
SGAP. Nonetheless, they do not guarantee the preservation
of explanatory features according to a specific task. As such,
these methods cannot be applied to privatize case-based
explanations.

C. DISCUSSION
Comparing traditional methods with Deep Learning meth-
ods, the latter holds the advantage of being able to find
identity-related features and even disentangle them from the

remaining features, allowing to preserve features that are
independent of identity.

Deep Learning methods are organized into task-dependent
and task-independent methods. The limitation of models
independent of a data mining task is that they might dis-
card semantic features that are tangled with identity features.
As they do not consider the preservation of relevant explana-
tory features needed to achieve a certain task, these meth-
ods are not appropriate to privatize case-based explanations.
Regarding task-dependent methods, only one method [6]
has been proposed specifically to privatize case-based expla-
nations, guaranteeing the preservation of explanatory evi-
dence. Nonetheless, the method uses post hoc interpretability
methods to preserve explanatory evidence, which may be
incompatible with explanations obtained through intrinsically
interpretable approaches. Furthermore, the obtained results
lack image quality.

We compare the existing privacy-preserving methods in
Table 2. This table considers that methods that directly use
data instances from the training data in the privatization
process do not guarantee privacy for all data subjects, even
if these methods guarantee K-Anonymity.

In the deep learning privacy-preserving approaches, two
types of identity recognition networks were used to guide
the privatization process: multi-class identity recognition and
Siamese identity recognition. The use of a multi-class iden-
tity recognition model limits the range of application of the
privacy-preserving model, as it is unfeasible to train this type
of network in domains where the data contains few images
per subject, frequently seen in the medical scene. A Siamese
identity recognition network is easier to train in this context.

The most significant challenge in the privatization of
case-based explanations is to manage the trade-off between
privacy, explanatory evidence, and intelligibility, as improv-
ing one of these dimensions usually leads to worsening the
others [6].

In this section, we conclude that research regarding
privacy-preserving models for case-based interpretability is
lacking, as only one approach considers the requirements of
case-based explanations in the anonymization process.

V. PRIVACY-PRESERVING CASE-BASED EXPLANATIONS
Having analyzed the existing literature on case-based inter-
pretability and privacy-preserving methodologies for visual
data, we can now introduce and reflect on the novel paradigm
of Privacy-Preserving Case-Based Explanations. In this
section, we formalize the objective of privacy-preserving
methods for case-based explanations and discuss its use in
the evaluation of privacy-preserving methodologies.

Given an input image to be explained, the multi-task objec-
tive of privacy-preserving case-based explanations considers
three dimensions: privacy, realism, and explanatory evidence.
The resulting explanation, a privatized image, should simul-
taneously conceal sensitive information, remain as realistic
as possible to enable intelligibility, and preserve information
relevant to the primary task. The privatized image explanation
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TABLE 2. Comparison between privacy-preserving methods.

encodes features relevant to each of the three dimensions,
and we suggest a saliency method to understand how the
explanation represents the three dimensions. For the realism
and explanatory evidence dimensions, feature saliency can
be measured via the respective classifiers that discriminate
between realism and the predictive tasks. We next consider
features of the privacy dimension.

The concept of privacy is intimately linked to the concept
of identity. All privacy-preserving networks in deep learning
literature use identity recognition networks to privatize the
input. Thus, we clarify the relationship between privacy and
identity features. Privacy is the non-disclosure of an identity
of a real person. Identity features are utilized by an iden-
tity recognition network to identify an image as belonging
to a particular class (e.g., a person). To maximize privacy
in an image, we need to guarantee that all its features do
not leak any identity information available in the training
data. Privacy-preserving features can be partitioned into two
subsets: identity-independent features and identity-related
features that do not leak a real person’s identity. Identity-
independent features are not used in the identity recognition
process and, therefore, do not leak identity. Promoting that
all image features become identity-independent is sufficient
to preserve privacy. However, ensuring that all features are
identity-independent becomes unfeasible when we consider
that the privatized image must look real. In a realistic-looking
image, there would inevitably be identity features that an
identity recognition network could extract to attempt to rec-
ognize a subject. In this case, the goal of privacy preservation
is to synthesize a set of identity-related features sufficiently
different from any identity available in the training data to
guarantee that no identity belonging to a real person is leaked.
In summary, the maximization of privacy should result in a
privatized image where the features would either be unrelated
to the identity recognition task or relevant for the task but
sufficiently different from existing identities as not to leak
any subject’s identity.

To formalize the objective of privacy-preserving case-
based explanations, we consider the existence of three loss
functions that evaluate privacy Lp, realism Lr and preser-
vation of explanatory evidence Ld in a privatized image.

The loss functions can be defined as functions of correspond-
ing oracle recognition networks (Did (x), Dr (x) and Dd (x))
applied to an image I with respect to the three tasks: identity,
realism, and detection. Considering a generative model G
that, from an image I , outputs its privatized version G(I ),
the objective comprises the optimization of the generative
model’s parameters in regards to theminimization of the three
losses, as specified in Equation 5. In this equation, λi is a
non-negative parameter that controls the relative degree of
importance assigned to each task i.

min
G

[λpLp(G(I ))+ λrLr (G(I ))+ λdLd (G(I ))] (5)

Each loss function will be application-dependent. For
example, in the work of Montenegro et al. [6], two different
privatization methods were considered, and consequently,
two different privatization loss functions were used. The
PP-SIRmodel defines the privacy loss as the maximization of
the identity-related Euclidean distance between a privatized
image and the source image and between the privatized image
and images from N identities in the training data, as shown in
Equation 6. The PP-MIR model promotes privacy by approx-
imating a uniform distribution U over the identities in the
training data, using a multi-class recognition network Did ,
as expressed in the privacy loss function in Equation 7.

Lp = E(I )∼pd (I )[λ1[max(0,m− ED(I ,G(I )))]2

+λ2

N∑
i=0

[max(0,m− ED(G(I ), IN ))]2]
N

]

(6)

Lp = E(I )∼pd (I )[−Did (G(I )) log(U )] (7)

A. QUALITATIVE EVALUATION OF PRIVACY-PRESERVING
CASE-BASED EXPLANATIONS USING SALIENCY MAPS
The evaluation of privacy-preserving case-based explanations
is a complex problem that requires examining and compar-
ing the original explanations and their anonymized versions.
In this section, we investigate the potential of using inter-
pretability saliencymaps as a qualitativemeasure to verify the
preservation of privacy, realism, and explanatory evidence in
the anonymized explanations.
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The multi-task nature of the objective in Equation 5
exposes the interplay between identity, realism and detection.
Privatizing images with the generative model G(I ) should
not remove discriminative information or make images seem
less realistic, nor should the generator introduce realistic or
identity-preserving features that contribute to the correct dis-
criminative prediction for the wrong reason.We analyze these
underlying phenomena through a qualitative visual analysis
of a set of saliency attribution maps. Our analysis below
shows how the generative model correctly hides identifying
features of an individual’s eye while preserving realism.

Saliency attribution maps of a predictive model’s input
image identify which pixels contribute most to a model’s
prediction. We visualize nine saliency maps in Figure 8,
where Figure 8a does not use the privatization generator
G(I ) and where Figures 8b and 8c do. Within each subfig-
ure, we compute three saliency maps, one for each of the
three discriminator tasks required in Equation 5: detection,
identity and realism. The top row is the saliency map, with
positive (yellow) and negative (blue) values. The bottom row
overlays the magnitude of the saliency on the input image.
We adopt the SmoothGrad saliency method [39]. We define
the saliency method below, where I is an input image, I ′ =
G(I ) is a privatized image output by the generative model,
N (0, σ ) is Gaussian noise,Dx : I → R is one of the three dis-
criminators in the PPCE objective Dx ∈ {Dd ,Dp,Did }, and
sx(I ) visualized saliency attribution maps corresponding to
x ∈ {d, p, id}. Note that the discriminator input may be either
an image I or a privatized image I ′. We use G and Dx from
the PP-SIR model and the PP-MIR model in Figure 8b and
Figure 8c, respectively. For our visuals, we choose N = 50
and, following the standard SmoothGrad procedure, we clip
extreme gradient values using percentile thresholds of 1% and
99%. Equations 8 and 9 describe the method applied to obtain
the saliency maps for the original images and the anonymized
images, respectively.

2sx(I ) =
1
N

N∑
i=1

(IdDx(I +N (0, 1))I ) (8)

sx(I ) =
1
N

N∑
i=1

(IdDx(G(I ))I ) (9)

The visualized saliency attribution maps in Figure 8
qualitatively show how privatization works. Compare the
most salient identity features in the non-privatized model of
Figure 8a to the corresponding identity maps in the privatized
models of Figures 8b and 8c. We observe the privatized
models obscure the identity features, presenting a more dif-
fuse, randomized identity saliency map. In all three cases,
the realism saliency maps tend to emphasize areas unrelated
to glaucoma detection, and we observe a stronger emphasis
on the skin, eyebrow, and right edge of the image. Skin
features should be a salient component of a realistic image,
and our observations confirm this intuition. The detection
saliency maps vary between the three models, though they

emphasize the pixels corresponding to the cornea and tear
duct. We observe that the privatization models force the
glaucoma detection model to work harder.

The qualitative saliency-based analysis of the privatization
model provides a useful framework to validate and confirm
the effects of privatization. We observe that privatization
works. It obfuscates the identity features, preserves realism
features and finds detection features that fit the privacy-
preserving and realism constraints.

VI. DISCUSSION AND FUTURE WORK
Literature on privacy-preserving explanation methodologies
is lacking. Our survey of privacy-preserving methodologies
identified only one work [6] capable of privatizing images for
case-based explanations (utilizing the PP-SIR and PP-MIR
models). Nonetheless, there are still issues to address in the
design of an ID washer model that can be applied to a wider
range of image retrieval systems.

The literature lacks a case-based interpretability method
that considers the goals of privacy when retrieving expla-
nations from a database. For instance, consider two images
from a database (A, B) and a third image C under analysis,
where a case-based interpretability method considers A to
be the best explanation for C’s prediction. In this scenario,
the privatized version of B may be a better explanation
than the privatized version of A, depending on the privacy-
preservingmodel’s capacity to preserve explanatory evidence
while removing identity. It is relevant to consider privacy
during image retrieval rather than in the post hoc manner it
has been considered so far.

With this reflection, we can establish a taxonomy to cate-
gorize current and future privacy-preserving models for case-
based explanations: post hoc methods and intrinsic methods.
Post hoc privacy-preserving methods are applied to privatize
an explanation after it has been obtained, independently from
the image retrieval process. Intrinsic methods integrate pri-
vacy directly in the image retrieval process. Currently, there
are no intrinsic privacy-preserving methods for case-based
interpretability. By considering privacy during the image
retrieval, intrinsic approaches would increase the explanatory
value of the privatized explanation given to the explanation
consumers. On the other hand, post hoc approaches hold
the advantage when it comes to their range of application,
as these can be applied to existing case-based interpretability
methods as they are.

Moreover, it is relevant not only to consider privacy in
the image retrieval process but also to consider interpretabil-
ity in the privatization process. For instance, the privacy-
preserving methods can be used to generate explanations.
Montenegro et al. [6] apply their privacy-preserving models
to the generation of privacy-preserving counterfactual expla-
nations. The authors add a module to their network that gen-
erates a counterfactual explanation similar to the privatized
factual explanation. The privacy-preserving models could be
extended not only to produce counterfactual explanations but
also semi-factual explanations, highlighting the changes that
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FIGURE 8. Saliency-based validation of the PPCE Framework. Example saliency maps describing the image pixels relevant to identity preservation,
glaucoma detection and realism objectives. The top row shows the saliency maps with positive (yellow) and negative (blue) values, while the bottom row
shows the absolute value of the maps, where it is overlayed on the input image and also used as an alpha mask.

would approximate the relevant features in a factual explana-
tion to a particular decision boundary.

Another future line of research in Privacy-Preserving Case-
based Explanations is the integration of causality [40] into
the anonymization process. The preservation of explanatory
evidence is one of the greatest challenges during privatiza-
tion, as it is difficult to pinpoint which image features consti-
tute explanatory evidence. Establishing a causal relationship
between the features preserved from the original image and
the prediction made by the explanatory detection task could
enable a more faithful preservation of explanatory evidence
in the images. Additionally, the generation of counterfactual
or semi-factual explanations could also gain from ensuring
that modified features are causally related to the explanatory
detection task.

VII. CONCLUSION
Case-based explanations are intuitive, easy-to-understand,
and versatile tools to enable the visual interpretability of Deep
Learning models. Nonetheless, by design, the state-of-the-art
case-based interpretability methods do not preserve privacy
and are therefore not applicable to the case-based explanation
of sensitive data.

As an initial step towards enabling case-based expla-
nations in domains with sensitive data, we survey case-
based interpretability and privacy-preserving techniques.
We empirically evaluate the reviewed privacy-preserving
methods considering their application in the domain of
case-based explanations. The literature review on privacy-
preserving methods shows that most techniques do not guar-
antee the simultaneous preservation of privacy, intelligibility,
and explanatory evidence of the explanations, rendering their
anonymized versions useless. To address the lack of research
in Privacy-Preserving Case-Based Explanations, we formal-
ize this novel paradigm as a multi-objective problem to
preserve privacy, intelligibility, and explanatory evidence in
images. We propose interpretability saliency maps as a qual-
itative measure to evaluate the quality of the anonymiza-
tion. Our experiments show that a saliency-based analysis
offers valuable insights to assess the effects of anonymiza-
tion. Finally, we propose the development of intrinsically

privacy-preserving methods and the integration of causal-
ity into the privacy-preserving procedure as future research
directions in the novel field of Privacy-Preserving Case-
Based Explanations.

To conclude, this work contributes towards the devel-
opment of more rigorous privacy-preserving methodologies
capable of anonymizing case-based explanations without
compromising their explanatory value. The development of
adequate anonymization techniques is imperative to enable
the use of case-based explanations in real-world contexts that
deal with sensitive data, like in medicine.
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