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Abstract

Background: The importance of privacy protection in analyses of personal data, such

as genome-wide association studies (GWAS), has grown in recent years. GWAS focuses

on identifying single-nucleotide polymorphisms (SNPs) associated with certain

diseases such as cancer and diabetes, and the chi-squared (χ2) hypothesis test of

independence can be utilized for this identification. However, recent studies have

shown that publishing the results of χ2 tests of SNPs or personal data could lead to

privacy violations. Several studies have proposed anonymization methods for χ2

testing with ǫ-differential privacy, which is the cryptographic community’s de facto

privacy metric. However, existing methods can only be applied to 2 × 2 or 2 × 3

contingency tables, otherwise their accuracy is low for small numbers of samples. It is

difficult to collect numerous high-sensitive samples in many cases such as COVID-19

analysis in its early propagation stage.

Results: We propose a novel anonymization method (RandChiDist), which

anonymizes χ2 testing for small samples. We prove that RandChiDist satisfies

differential privacy. We also experimentally evaluate its analysis using synthetic datasets

and real two genomic datasets. RandChiDist achieved the least number of Type II errors

among existing and baseline methods that can control the ratio of Type I errors.

Conclusions: We propose a new differentially private method, named RandChiDist,

for anonymizing χ2 values for an I × J contingency table with a small number of

samples. The experimental results show that RandChiDist outperforms existing

methods for small numbers of samples.
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Introduction

Examining genes involves comparing several groups of genes [1, 2], with three or more

groups possibly involved in several instances. Generally, statistical analyses such as the

chi-squared (χ2) test of independence are used to determine whether single-nucleotide

polymorphisms (SNPs) can be considered significantly different. The findings from such

analyses are frequently shared between researchers and government agencies to facilitate

new discoveries.
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A genome can contain sensitive information about an individual such as genetic disease

factors and disease risk. Each person’s genome is 99.9% identical, with the remaining 0.1%

difference producing peoples’ various characteristics. The variation among individuals

at a single position in a genome is known as a SNP. A genome-wide association study

(GWAS) is a method of analyzing the statistical relationship between SNPs and diseases

by finding SNPs that are related to a specific disease. To accomplish this, χ2 testing has

been used. Homer et al. [3] reported that an attacker may be able to statistically determine

whether someone is a member of a group with a specific disease if the attacker is familiar

with the potential victim’s SNPs and the aggregate allele frequencies within that specific

disease group.

The underlying assumption that the attacker is familiar with the potential victim’s SNPs,

which can be obtained from a very small blood sample, is realistic because of the increas-

ing availability in cost-effective genotyping services [4, 5]. Furthermore, Wang et al. [6]

suggested that the allele frequency of the group SNP values can be determined from

standard statistical data such as p-values or χ2 values. Consequently, an anonymization

procedure should always be applied to χ2 values when publishing SNP datasets [6–8].

Data sharing in genemic research is very important [9]. To avoid such leakage of pri-

vate information, we should execute a privacy protection mechanism on GWAS results.

Existing studies add a relatively large amount of noise to GWAS results to protect privacy.

However, our aim is to reduce the amount of noise while maintaining the same level of

privacy protection. In other words, we can achieve the same level of privacy protection as

existing studies with privacy-preserving χ2 testing and increase the usefulness of GWAS

results.

The recent GWAS analysis methods are not limited to only the chi-squared test. For

example, mixed linear model based methods have been used. However, the chi-squared

test is still an important analysis method.

Although other methods for GWAS exist, a lot of recent research papers employ the

chi-squared test for GWAS, such as [10–13], which were published in 2019 or 2020.

Furthermore, the chi-squared test is used in numerous papers on GWAS to analyze

COVID-19 [14–18]. Thus, because the chi-squared test has been adopted in many cases,

it is worth studying.

Other tests, such as Kruskal-Wallis test andWilcoxon test, are also employed for GWAS

[19, 20]. Couch et al. [21] proposed differentially private methods for these tests. Dealing

with other tests in our research remains an issue to be addressed in future work.

The most influential privacy metric within the privacy community is ǫ-differential pri-

vacy [22], which has been intensively investigated [23–26]. Several researchers, such as

Fienberg et al. [27], Uhlerop et al. [28], and Yu et al. [7], have suggested approaches to

facilitate sharing of χ2 values while conforming with ǫ-differential privacy parameters.

However, these proposed methods are currently only applicable to 2 × 2 or 2 × 3 con-

tingency tables. In other words, it is currently not possible to analyze contingency tables

larger than 2×3. However, the requirement to analyze SNPs based on an I×J contingency

table is crucial. For example, previous studies have evaluated higher degrees of freedom

within a contingency table [8, 29]. However, these methods have relatively poor accuracy,

particularly in cases with small sample populations. This condition applies to many situa-

tions where the sample sizes being considered can range from dozens to several hundred

samples [30–32].
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Although we live in an era of big data where datasets with a large number of samples

are becoming available in many domains, obtaining sensitive information is still difficult

due to privacy regulations such as General Data Protection Regulations (GDPR). Sensitive

patient biomedical data cannot be shared without permission [33]. Moreover, there are a

lot of rare diseases, and obtaining such information of the patients is very difficult [34, 35].

Further, it is difficult to collect a large number of samples when there is a need for rapid

analysis for a new disease such as COVID-19. Someone might provide his or her sensi-

tive information without any privatization schemes; however, more people would provide

their sensitive information by conducting privatization schemes [36, 37]. Moreover, many

studies [38–40] have considered contingency tables larger than 2×3. Therefore, private

χ2 testing for large contingency tables with small samples is an important problem.

In this paper, we propose a new method, named RandChiDist, for anonymizing χ2 val-

ues for an I × J contingency table with a small number of samples, and we experimentally

evaluate this method using real datasets. RandChiDist adds the minimized Laplace noise

to the true χ2 value based on the contingency table and controls the ratio of Type I errors

(i.e., false positives). The evaluation uses the synthetic and real datasets, including two

genomic datasets. The evaluation shows that RandChiDist can control the ratio of Type

I errors strictly and can reduce Type II errors (i.e., false negatives) more than existing

methods that can control the ratio of Type I errors. Several methods reduce Type II errors

more than RandChiDist; however, the methods cannot control the ratio of Type I errors.

Several approaches exist for non-private χ2 testing, and RandChiDist can be used to

calculate the global sensitivity of the χ2 value of the simplest χ2 testing and to add noise to

the χ2 value based on the global sensitivity. Thus, the added noise is minimized according

to the Laplace mechanism theorem [22].

The motivation of this paper is summarized as follows. Chi-squared test can be

employed for various data analyses, such as the identification of SNPs associated with

certain diseases; however, publishing the chi-squared value can lead to privacy leakage.

Thus, we propose a privacy-preserving chi-squared testing algorithm for a small number

of samples due to the difficulty in collecting a large number of samples of a rare disease

or new disease.

In our research, samples of less than about 1,000 in number are considered as a small

sample size.

The rest of this paper is organized as follows: “Preliminaries” section introduces χ2

hypothesis test and differential privacy. “Related work” section discusses related work.

“Proposed method” section presents our proposed method and “Evaluation” section

presents the results of our simulations. “Discussion” Section discusses the evaluation

results, and the need for adaptation to a large contingency table and a small sample.

“Conclusion” section concludes the paper.

Preliminaries

χ
2 hypothesis test of Independence

We consider a contingency table with I rows and J columns. Let [ i, j] denote the ith row

and jth column’s cell of the table. Oi,j represents the value of cell [ i, j], and Ei,j represents

the expected value of cell [ i, j].

Let mi =
∑

j Oi,j, sj =
∑

iOi,j, and n =
∑

imi =
∑

j sj. Table 1 provides an example of a

contingency table.
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Table 1 An example of case-control analysis

(Combination of allele types of SNP1 and SNP2)

(major,major) (major,minor) (minor,major) (minor,minor) Total

Case O1,1 O1,2 O1,3 O1,4 m1

Control O2,1 O2,2 O2,3 O2,4 m2

Total s1 s2 s3 s4 n

The χ2 value is calculated as

χ2=

I
∑

i=1

J
∑

j=1

Vi,j,

where Vi,j =
(Ei,j−Oi,j)

2

Ei,j
, Ei,j = sj ·

mi

n
.

(1)

We determine the significance level α (i.e., the probability of a Type I error occur-

ring) and the null hypothesis H0 in advance. We then calculate χ2 based on Eq. (1) and

determine whether to reject H0 using the χ2 distribution table. Thus, χ2
v represents the

probability density function of the χ2 distribution with v degrees of freedom. The χ2 dis-

tribution table presents the percentage point P(χ2
v > x) = α for several combinations of

v and α.

Privacy model

In recent years, ǫ-differential privacy [22] has been considered the de facto standard for

privacy metrics [33, 41–43].

The privacy parameter ǫ reflects the privacy level, with a large ǫ value indicating a

low privacy. We consider neighboring databases to represent two databases differing by a

maximum of one record. The ǫ-differential privacy is defined as follows:

Definition 1 (ǫ-differential privacy) Let D and D′ be neighboring databases. A random-

ized mechanism M satisfies the ǫ-differential privacy if, for any D and D′ and any subset

of outputs Y ⊂ Range(M), it holds that

P(M(D) ∈ Y ) ≤ eǫP(M(D′) ∈ Y ). (2)

The Laplace mechanism, which adds noise generated using a Laplace distribution, can

satisfy Theorem 1 [22]. To explain this mechanism, we first outline the concept of global

sensitivity.

Definition 2 (Global sensitivity) Let f be a function f : D → R
d , whereD is a collection

of databases. When f satisfies for any neighoring databases D and D′

�f = max
D,D′

||f (D) − f (D′)||1, (3)

the global sensitivity of f is �f .

Theorem 1 (Laplace Mechanism [22]) A randomized mechanism M realizes ǫ-

differential privacy if M outputs f (D) + Lap(�f /ǫ), where Lap(v) returns independent

Laplace random variables with scale parameter v.
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Table 2 A contingency table

Condition 1 Condition 2

Group 1 25 30

Group 2 20 25

Related work

In χ2 testing, a contingency table such as Table 2 is used. This contingency table can

be represented as Table 3, and Tables 2 and 3 are equivalent. In research on privacy-

preserving χ2 testing, databases such as those shown in Table 3 are considered. For

example, Tables 3 and 4 are neighboring databases because the tables contain the same

data with exception of one record

Yu et al. [7] demonstrated that the global sensitivity of the χ2 value of 2×3 contingency

tables can be calculated as

�Y =
n2

m1m2

(

1 −
1

max {m1,m2} + 1

)

, (4)

ifm1 andm2 are known (i.e., published).

Fienberg et al. [27] and Uhlerop et al. [28] demonstrated that if m1 = m2, the global

sensitivity of the χ2 value can be calculated as

�F =
4n

n + 2
. (5)

The global sensitivities, �F and �Y , have been shown to be optimal values. However,

they can only be applied to 2 × 2 or 2 × 3 contingency tables.

Kakizaki et al. [44, 45] proposed a unit circle mechanism that can achieve a high degree

of accuracy. However, they assumed only 2 × 2 contingency tables. Additionally, they did

not publish the differentially private χ2 value used in their method; however, they did

publish the differentially private result of the χ2 testing based on the given significance

level, α. Therefore, if a data holder wants to publish the private χ2 testing results of sev-

eral α values (e.g., α = 0.05, 0.01, 0.005, and 0.001), the data holder must independently

execute the privacymechanismsmultiple times (e.g., three times). Following the composi-

tion theorem [46], if a privacymechanism outputsK times based on ǫ-differential privacy,

the resulting privacy level thus becomes Kǫ (i.e., the privacy level decreases). Moreover,

Banerjee et al. [47] state that publishing P-value could be important for data analysis.

The aforementioned studies all assumed that mi (i = 1, . . . , I) is not sensitive informa-

tion. We can share each value ofmi without privatization schemes.

Gaboardi et al. [8] proposed several methods for arbitrary contingency tables. First,

they show a straightforward method that does not add Laplace noise to the χ2 value,

but rather adds it to each cell of the contingency table with a global sensitivity of 2.

Table 3 A raw database

Pseudo ID Group number & Condition number

1 1&2

2 1&1

3 2&2

... ...

100 2&1
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Table 4 Database that contains the same data as Table 3 except with 3’s data

Pseudo ID Group number & Condition number

1 1&2

2 1&1

3’ 2&1

... ...

100 2&1

In this paper, we name this method as RandCell. RandCell is also known as SNPpval,

which was proposed by Jonson and Shmatikov [48]. The χ2 value of the contingency

table to which RandCell adds Laplace noise tends to be large, meaning that RandCell

yields many false positives. Therefore, Gaboardi et al. proposed several other methods

known as PrivIndep, MCIndep with Laplace mechanism, and MCIndep with Gaussian

mechanism. They showed that MCIndep with Laplace mechanism had the best perfor-

mance of their proposedmethods. Hence, we describeMCIndepwith Laplacemechanism

in detail in this paper and refer to MCIndep with Laplace mechanism as MCIndep for

simplicity.

MCIndep generates many contingency tables randomly based on mi and sj of the con-

tingency table with added Laplace noise and compares their χ2 values. The original

contingency table can be considered to rejectH0 if the χ2 value of the contingency table to

which RandCell adds Laplace noise is greater than the top α ×100% of the generated con-

tingency tables’ χ2 value. Other methods for (ǫ, δ)-differential privacy are proposed [49],

which relaxes the ǫ-differential privacy as their privacy metric. We focus on ǫ-differential

privacy in this paper, and applying our method to (ǫ, δ)-differential privacy is an issue to

be addressed in future work.

Sei et al. [50] proposed several theorems for differentially private χ2 testing, but there

were no detailed proofs for the theorems and the equations provided in their study.

Moreover, there were no experiments that evaluated the performance of χ2 testing.

More recently, Gaboardi et al. [29] proposed χ2 test algorithms (LocalNoiseIND, Local-

ExpIND, and LocalBitFlipIND) for privacy-preserving χ2 testing of independence based

on local differential privacy. LocalNoiseIND is also known as zCDP general chi-squared

test, which was proposed by Kifer and Rogers [51]. In their paper, they showed that Local-

ExpIND had the best performance of the three methods for most parameter settings.

These methods can be applied to arbitrary contingency tables, and address a local model

of privacy and assume there is no trusted entity. In this paper, we assume that a trusted

entity has all the raw data.

Canonne et al. [52] calculated the sample complexity bounds of an ǫ-differentially pri-

vate test for distinguishing between two distributions. They also applied differentially

private change-point detection. Their method is for a parametric setting that requires

that the two distributions are perfectly known. In contrast, our method can be used for a

nonparametric setting.

Csail et al. [53] proposed an algorithm for testing the closeness of two distributions in a

private manner. Their algorithm can also test the independence of two random variables.

However, execution for privacy-preserving χ2 testing was not described.

Liu et al. [54] showed how ǫ influences the accuracy of differentially private hypothesis

testing. They proposed a method to determine an appropriate value for ǫ that can be
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useful for determining the ǫ value for our proposed algorithm; however, determining ǫ is

outside the scope of our paper.

Couch et al. [21] proposed a differentially private hypothesis testing method for the

Kruskal-Wallis test, Mann-Whitney test, Wilcoxon test, and one-sample t-test. This

hypothesis testing method is not for nominal scale data, which are suitable for χ2 testing,

but rather for ordinal or interval scale data.

The methods for arbitrary I× J contingency tables have relatively poor accuracy, partic-

ularly in cases with small-sample populations. We show the comparison between existing

methods and the proposed method in “Evaluation” section.

Adversarial model

The adversarial model is described as follows. The server has a database, and it wants to

share the result of the chi-squared test with data analysts who are potential attackers. The

attacker is considered to be a semi-honest entity, that is, the attacker follows the protocol

between the server. However, the attackermight attempt to extract individual information

from the result of the chi-squared test.

Proposedmethod

Overview

We propose RandChiDist, which adds Laplace noise to the χ2 value obtained from a

target contingency table. Calculating the Laplace noise to be added requires the global

sensitivity of the I × J contingency table’s χ2 value. The method for calculating global

sensitivity is described in 1.

Typically, the χ2 distribution table is used to determine whether to reject H0. However,

RandChiDist adds noise to the χ2 value, thus we need a modified χ2 distribution table.

The method for calculating this is described in 1. RandChiDist uses this table to deter-

mine whether to reject H0. We consider bounding the Type I error to be at most α to be a

hard constraint.

Our main symbols are summarized in Table 5.

Global sensitivity of χ2 value

Aswas assumed in other studies, we assume thatmi (i = 1, . . . , I) is also provided to a data

analyzer. We consider contingency tablesD1 andD2, which are generated from neighbor-

ing databases. Because the neighboring databases differ by one record, their contingency

tables differ by a maximum of two cells. The value of cell [ a, k] in table D2 is greater than

that of cell [ a, k] in D1 by 1, and the value of cell [ a, l] in table D2 is less than that of cell

[ a, l] (s.t. l �= k) in table D1 by 1.

Table 5 Symbols

n Number of samples

I Number of rows of a table

J Number of columns of a table

mi Total value of ith row

sj Total value of jth column

Oi,j(D) Observed value of cell [ i, j] in database D

Ei,j(D) Expected value of cell [ i, j] in database D
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Because the values of mi(i = 1, . . . , I) are released to the public, the collection of

databases in Definition 2.2 only include databases that satisfy the released values of mi,

and the neighboring databases are elements of the collection. Therefore, the global sensi-

tivity is calculated based on the neighboring databases that satisfy the released values of

mi.

Thus, we calculate the possible maximum value of the difference of χ2 values between

tables D1 and D2.

RandChiDist satisfies differential privacy by adding Laplace noise with global sensitivity

because of Theorem 1. We thus propose RandChiDist, which adds Laplace noise with

global sensitivity,

�R =

{

(mα+mβ )n
mα(1+mβ )

J ≥ 3

n2

mα(n−mα+1) J = 2,
(6)

where

α = arg min
i

mi and

β = arg min
i�=α

mi,
(7)

to the calculated χ2 value from (1). Here, we have the following theorem:

Theorem 2 RandChiDist satisfies ǫ-differential privacy.

Proof We prove that �R is the global sensitivity of χ2 of the I × J contingency table. We

can then uphold Theorem 2 because RandChiDist adds Lap(�R/ǫ) to the original value

based on the Laplace mechanism theorem (Theorem 1).

LetOi,j(D) denote the observed value of cell [ i, j] in databaseD and let χ2(D) denote the

χ2 value of database D. Without a loss of generality, we consider neighboring databases

D1 and D2, which satisfy the following equations:
{

Oa,k(D2) = Oa,k(D1) + 1

Oa,l(D2) = Oa,l(D1) − 1,
(8)

where k and l are arbitrary natural numbers satisfying k, l ∈ {1, . . . , J} and k �= l.

From Proposition 2, when J is greater than or equal to 3 and we are given the value

a, neighboring databases that satisfy the following constraints maximize the difference

between the χ2 values of tables D1 and D2 (see Fig. 1a).

Oa,k(D1) + 1 = Oa,k(D2) = ma

Oa,l(D1) − 1 = Oa,l(D2) = 0

Ob,l(D1) = Ob,l(D2) = mb where b �= a

Oi,k(D1) = 0 where i �= a

Oi,l(D1) = 0 where i �= a, b

Oi,j(D1) = Oi,j(D2) = arbitrary values that

satisfy the constraint
∑

j

Oi,j = mi

where [ i, j] �=[ a, k] , [ a, l] , and [ b, l] .

(9)
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a

b

Fig. 1 Neighboring databases. a Tables for J ≥ 3. b Tables for J = 2

From constraint (9), we understand that the sum of the kth column of D2 (i.e., sk of D2)

is equal toma.

Let Vi,j(D) denote Vi,j in Eq. (1) for database D.

The symbol b is an arbitrary integer from 1 to I but not a. The symbol l is an arbitrary

integer from 1 to J but not k.

The difference between the χ2 values of tables D1 and D2 that satisfies the constraint

(9) is thus calculated by
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∑

i

(Vi,k(D2) + Vi,l(D2) − Vi,k(D1) − Vi,l(D1)) = Va,k(D2) +
∑

i�=a

Vi,k(D2) + Vb,l(D2)

+
∑

i�=b

Vi,l(D2) − Va,k(D1) −
∑

i�=a

Vi,k(D1) − Va,l(D1) − Vb,l(D1)

−
∑

i�=a,b

Vi,l(D1) =
(ma

ma
n − ma)

2

ma
ma
n

+
∑

i�=a

(ma
mi
n )2

ma
mi
n

+
(mb

mb
n − mb)

2

mb
mb
n

+
∑

i�=b

(mb
mi
n )2

mb
mi
n

−
((ma − 1)ma

n − (ma − 1))2

(ma − 1)ma
n

−
∑

i�=a

((ma − 1)mi
n )2

(ma − 1)mi
n

−
((mb + 1)ma

n − 1)2

(mb + 1)ma
n

−
((mb + 1)mb

n − mb)
2

(mb + 1)mb
n

−
∑

i�=a,b

((mb + 1)mi
n )2

(mb + 1)mi
n

=
(ma + mb)n

ma(1 + mb)

(10)

Therefore, given a, when the value of J is greater than or equal to 3, global sensitivity

is represented by Eq. (10). Moreover, from Proposition 1, global sensitivity is represented

by Eq. (6) when the value of J is greater than or equal to 3 and a is not given.

When J = 2 and a is given, neighboring databases that satisfy the following constraints

will maximize the difference between the χ2 values of contingency tablesD1 andD2 from

Proposition 3 (see Fig. 1b).

Oa,k(D1) + 1 = Oa,k(D2) = ma

Oa,l(D1) − 1 = Oa,l(D2) = 0

Oi,k(D1) = Oi,k(D2) = 0 for all i except for i = a

Oi,l(D1) = Oi,l(D2) = mi for all i except for i = a

(11)

The difference between the χ2 values of tablesD1 andD2 that satisfy the constraint (11)

can be calculated as

∑

i

(Vi,k(D2) + Vi,l(D2) − Vi,k(D1) − Vi,l(D1)) = Va,k(D2) +
∑

i�=a

Vi,k(D2) + Va,l(D2)

+
∑

i�=a

Vi,l(D2) − Va,k(D1) −
∑

i�=a

Vi,k(D1) − Va,l(D1) −
∑

i�=a

Vi,l(D1) =
(ma

ma
n − ma)

2

ma
ma
n

+
∑

i�=a

(ma
mi
n )2

ma
mi
n

+
((n − ma)

ma
n )2

(n − ma)
ma
n

+
∑

i�=a

((n − ma)
mi
n − mi)

2

(n − ma)
mi
n

−
((ma − 1)ma

n − (ma − 1))2

(ma − 1)ma
n

−
∑

i�=a

((ma − 1)mi
n )2

(ma − 1)mi
n

−
((n − ma + 1)ma

n − 1)2

(n − ma + 1)ma
n

−
∑

i�=a

((n − ma + 1)mi
n − mi)

2

(n − ma + 1)mi
n

=
n2

ma(n − ma + 1)
.

(12)

Because n2/(ma(n−ma + 1)) decreases whenma decreases, the global sensitivity can be

represented by Eq. (6) when J is equal to 2 and a is not given.

When we use a 2× 3 contingency table, �R is identical to �Y , and when we use a 2× 3

contingency table withm1 = m2, �R is identical �F .

Propositions 1 and 2 used in the proof of Theorem 2 are described below.
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Proposition 1 �R in Eq. (6) is maximized when the minima (7) are satisfied.

Proof By differentiating Eq. (6) with respect toma, we obtain

−
mbn

m2
a(1 + mb)

. (13)

By differentiating Eq. (6) with respect tomb, we obtain

−
(ma − 1)n

ma(1 + mb)
2
. (14)

From Expressions (13) and (14), ma and mb should thus be minimized to maximize

Eq. (6).

Letmin denote theminimum value inmi (i = 1, . . . , I) and letmin+x denote the second

most minimum value in mi (i = 1, . . . , I), where x ≥ 0. If ma is min and mb is min + x,

Eq. (6) can then be expressed as

n(2min + x)

min(1 + min + x)
. (15)

Ifma ismin + x andmb ismin, Eq. (6) can then be expressed as

n(2min + x)

(1 + min)(min + x)
. (16)

Because Expression (15) is always greater than or equal to Expression (16), we find that

the value of �R in Eq. (6) is maximized when (7) is satisfied.

Proposition 2 When J is greater than or equal to 3 and a is given, neighboring databases

that satisfy the constraints (9) maximize the difference between the χ2 values of tables D1

and D2.

Proof There are many neighboring databases that satisfy Eq. (8); however, we prove

that neighboring databases that satisfy the constraints (9) have the greatest difference,

δ(D1,D2), between χ2(D1) and χ2(D2) when J ≥ 3. We assume that mi is a fixed value

for all values of i.

Thus, we write Oi,j(D1) as Oi,j for any i and j in the following manner.

Following Lemma 1, Oa,k should be maximized to maximize δ(D1,D2). As a result, the

value of Oa,k becomesma − 1 because of the constraints (17).

From Eq. (8) we have the following constraints:

Oa,k(D1) ≤ ma − 1 and 1 ≤ Oa,l. (17)

Following Lemma 2, Oi,k should be zero to maximize δ(D1,D2) for all values of i except

i = a.

Following Lemma 3, Oa,l should be minimized to maximize δ(D1,D2). As a result, the

value of Oa,l becomes 1 because of the constraints (17).

Following Lemma 4, Oμ,l μ �= a should be mμ and Oi,l for all i, except for i = a, and

i = μ should be zero to maximize δ(D1,D2).

As a result, we can maximize δ(D1,D2) when tables D1 and D2 satisfy the constraints

(9) by replacing μ in Lemma 4 with b.

Lemma 1 To maximize δ(D1,D2), Oa,k should be maximized (and correspondingly, Oa,r

for all r, except for r = k, l, should be adjusted to satisfy ma).
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Proof We have

δ(D1,D2) = χ2(D2) − χ2(D1)

= Va,k(D2) − Va,k(D1) +
∑

i�=a

(Vi,k(D2) − Vi,k(D1))

+ Va,l(D2) − Va,l(D1) +
∑

i�=a

(Vi,l(D2) − Vi,l(D1))

= −2 +
ma

n
+

n(−O2
a,k + sk + 2skOa,k)

mask(1 + sk)

+
∑

i�=a

m2
i sk(1 + sk) − n2O2

i,k

minsk(1 + sk)

+ 2 −
ma

n
+

n(O2
a,l + sl − 2slOa,l)

ma(sl − 1)sl

+
∑

i�=a

n2O2
i,l − m2

i (sl − 1)sl

min(sl − 1)sl
.

(18)

By differentiating Eq. (18) with respect to Oa,k , we obtain

n(Oa,k − sk)
2(1 + 2sk)

mas
2
k(1 + sk)2

+
∑

i�=a

nO2
i,k(1 + 2sk)

mis
2
k(1 + sk)2

, (19)

because we have

∂sk

∂Oa,k
= 1. (20)

Because Expression (19) is always ≥ 0, Eq. (18) increases as Oa,k increases.

Thus, we can say that Oa,k should be increased to maximize δ(D1,D2). As a result, we

have Oa,k = ma − 1.

Lemma 2 To maximize δ(D1,D2), Oi,k should be minimized (and correspondingly Oi,r

for all r, except for r = k, l, should be adjusted to satisfy mi) for all values of i except for

i = a.

Proof We focus on μ ∈ {1, . . . , I} such that μ �= a. By differentiating Eq. (18) with

respect to Oμ,k , we obtain

n(Oa,k − sk)(Oa,k + sk + 2skOa,k)

mas
2
k(1 + sk)2

+
nOμ,k(Oμ,k + 2skOμ,k − 2sk(1 + sk)

mμs
2
k(1 + sk)2

+
∑

i�=a,μ

nO2
i,k(1 + 2sk)

mis
2
k(1 + sk)2

,

(21)

because we have

∂sk

∂Oμ,k
= 1. (22)
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Let 	 =
∑

i�=a,μ O2
i,k/mi. By solving equation (21)= 0 for 	, we obtain

(mμ(sk − Oa,k)(Oa,k + sk + 2skOa,k)

+ maOu,k(2sk − Ou,k + 2sk(sk − Ou,k))

/(mamμ(1 + 2sk)).

(23)

Expression (23) is always greater than zero. When 	 = 0 in Expression (21), the value of

Expression (21) is less than 0.

Thus, when 	 is less than Expression (23), Expression (21) is less than zero. Similarly,

when 	 is greater than Expression (23), Expression (21) is greater than zero. That is, to

maximize Eq. (18), the value ofOμ,k should be either minimized or maximized. From this

observation, to maximize Eq. (18), we can say that Oi,k should be either minimized (i.e.,

zero) or maximized (i.e.,mi) for all i except for i = a,.

From Lemma 1, we have Oa,k = ma − 1. Therefore, when Oi,k = 0 for all i except i = a,

we have sk = ma − 1. In this case, δ(D1,D2) is

− 2 +
ma

n
+

n

ma
+

1

n

∑

i�=a

mi

+ Va,l(D2) − Va,l(D1) +
∑

i�=a

(Vi,l(D2) − Vi,l(D1)).
(24)

In contrast, when Oi,k = mi for all i except i = a, sk =
∑

imi − 1 = n − 1. In this case,

δ(D1,D2) is

− 2 +
ma

n
+

n

ma
+

∑

i�=a

mi

n
−

(n − ma)
2

ma(n − 1)n
+

∑

i�=a

mi

n − n2
. (25)

By subtracting Expression (25) from Expression (24), we obtain

(n − ma)
2

ma(n − 1)
+

∑

i�=a

mi

n − 1
. (26)

Because Expression (26) is always greater than zero, Oi,k for all i except i = a should be

zero.

Lemma 3 To maximize δ(D1,D2), Oa,l should be minimized (and correspondingly Oa,r

for all r except r = k, l should be adjusted to satisfy ma).

Proof By differentiating Eq. (18) with respect to Oa,l, we obtain

n(Oa,l − sl)
2(1 − 2sl)

ma(sl − 1)2s2l
+

∑

i�=a

nO2
i,l(1 − 2sl)

mi(sl − 1)2s2l
, (27)

because we have

∂sl

∂Oa,l
= 1. (28)

Because (27) is always less than zero, Eq. (18) increases as Oa,l decreases.

Lemma 4 To maximize δ(D1,D2), Oμ,l (μ �= a) should be maximized (and correspond-

ingly, Oμ,r for all r except r = k, l should be adjusted to satisfy mμ). Additionally, Oi,l

should be minimized (and correspondingly, Oi,r for all r except r = k, l should be adjusted

to satisfy mi) for all i except i = a and i = μ.
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Proof By differentiating Eq. (18) with respect to Oμ,l (μ �= a), we obtain

n(sl − Oa,l)(2slOa,l − Oa,l − sl)

ma(sl − 1)2s2l

+
nOμ,l(Oμ,l − 2sl − 2slOμ,l + 2s2l )

mμ(sl − 1)2s2l

+
∑

i�=a,μ

nO2
i,l(1 − 2sl)

mi(sl − 1)2s2l
,

(29)

because we have

∂sl

∂Oμ,l
= 1. (30)

Let	 =
∑

i�=a,μ O2
i,l/mi. We haveOa,l = 1 from Lemma 3. By solving Expression (29)=0

for 	, we obtain

mμ(sl − 1)2 + maOu,l(2sl(sl − Oμ,l − 1) + Oμ,l)

mamμ(2sl − 1)
. (31)

Expression (31) is always greater than zero. When 	 = 0 and Oa,l = 1 in Expression (29),

(29) can be expressed as

n(mμ(sl − 1)2 + maOμ,l(2sl(sl − Oμ,l − 1) + Oμ,l))

mamμ(sl − 1)2s2l
≥ 0. (32)

Therefore, when 	 is less than or equal to Expression (31), Expression (29) is greater

than zero, and when 	 is greater than Expression (31), Expression (29) is less than zero.

Thus, to maximize Eq. (18), the value of Oμ,l should be either minimized (i.e., zero) or

maximized (i.e.,mμ).

Thus, to maximize δ(D1,D2), the value of Oμ,l should be either minimized or maxi-

mized. Let us have x =
∑

i�=μ Oi,l. WhenOμ,l is maximized (i.e.,Oμ,l = mμ), we δ(D1,D2)

is

2 −
ma + mμ

n
+

mμn

mμ + x − 1
−

n + mamμn

ma(mμ + x)

+
∑

i�=a,μ

(

O2
i,ln

mi(mμ + x − 1)(mμ + x)
−

mi

n

)

.

(33)

In contrast, when Oμ,l is minimized (i.e., Oμ,l = 0), δ(D1,D2) is

2 −
ma + mμ

n
−

n

max

+
∑

i�=a,μ

O2
i,ln

2 − m2
i (x − 1)x

min(x − 1)x
.

(34)

By subtracting Expression (34) from Expression (33), we obtain

mμn(−1 + mμ + x + max)

max(−1 + mμ + x)(mμ + x)

−
∑

i�=a,μ

nmμO
2
i,l(−1 + mμ + 2x)

mi(x − 1)x(mμ + x − 1)(mμ + x)
.

(35)

When I = 2, the second term of Expression (35) is zero. Therefore, Expression (35) is

always greater than zero and Lemma 4 holds when I = 2.
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We then consider the situation where I ≥ 3. We assume that Oi,l is zero for all values

of i except i = a and i = μ. In this case the second term of Expression (35) is zero and

the first term of Expression (35) is greater than zero; therefore, we can say that Expression

(35) is always greater than zero. Thus, Oμ,l should be maximized to mμ when Oi,l is zero

for all values of i except i = a and i = μ.

Next, we focus on v such that v ∈ {1, . . . , I} and v �= a,μ. We demonstrate that Expres-

sion (35) is always ≤ 0 when Ov,l is maximized to mv. Additionally, the second term of

Expression (35) is minimized when I = 3. In this case, we obtain

(35) ≤ −
(ma − 1)mμn

ma(1 + mv)(1 + mv + mμ)
< 0, (36)

because x = mv + 1.

Therefore, each Oi,l for all i except i �= a,μ should be minimized to zero.

From this observation, Lemma 4 also holds when I ≥ 3.

Proposition 3 When J equals 2 and a is given, neighboring databases that satisfy the

constraints (11) maximize the difference between the χ2 values of tables D1 and D2.

The proof can be conducted in a similar manner as Lemma 2.

Differentially private hypothesis testing

We can now calculate the anonymized χ2 value from an original table,

χ2∗
= χ2 + Lap(�R/ǫ), (37)

where χ2∗
is the anonymized χ2 value.

From the definitions of the Laplace distribution and χ2 distribution, the probability

density function of a χ2 value possessing v degrees of freedom with the addition of

Laplace noise and global sensitivity � can be expressed as

gv,�,ǫ(x) =

∫ ∞

μ=−∞

Lμ,β(x)Zv(μ)dμ, (38)

where

β = �/ǫ, (39)

Lμ,β(x) =

⎧

⎪

⎨

⎪

⎩

exp
(

−
x−μ
β

)

2β x ≥ μ

exp
(

−
μ−x
β

)

2β otherwise,

(40)

and

Zv(u) =

{

2−v/2 exp (−u/2)u−1+v/2

Ŵ(v/2) x > 0

0 otherwise,
(41)

where Ŵ(v/2) represents the v/2 gamma function, that is,

Ŵ(v/2) =

∫ ∞

0
xv/2−1e−xdx. (42)

When we set the significance level to α, our proposed RandChiDist rejects H0 if the

χ2 value calculated using Eq. (1), with the addition of Laplace noise and the scale �R/ǫ,
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is greater than or equal to α, as calculated by solving the following equation with regard

to α;
∫ ∞

x=t
gv,�,ǫ(x) = α. (43)

Lastly, we compare the χ2∗
value calculated using Eq. (37) to the t value calculated using

Eq. (43). When χ2∗
is greater than or equal to t, RandChiDist outputs “reject the null

hypothesis H0,” and otherwise outputs “fail to reject the null hypothesis H0.”

Algorithm 1 shows the overall RandChiDist algorithm.

Algorithm 1 Algorithm of RandChiDist

Input: Significance level α, Privacy parameter ǫ, Original cross table T

Output: Result of the null hypothesis test

1: Calculate original χ2 value from (1)

2: Calculate global sensitivity �R from (6)

3: χ2∗
⇐ χ2 + Lap(�R/ǫ)

4: Calculate value of t from (43)

5: if χ2∗
≥ t then

6: Return “reject the null hypothesis H0”

7: else

8: Return “fail to reject the null hypothesis H0”

9: end if

If we want an anonymized version of the p value, RandChiDist calculates and outputs
∫ ∞

x=χ2∗
gv,�,ǫ(x). (44)

The data analysis can thus conduct a χ2 hypothesis test using an arbitrary α by comparing

Expression (44) and α.

Complexity analysis

Calculating original χ2 yields a computational complexity of O(I × J). Calculating global

sensitivity �R requires finding the largest value and the second largest value of mi

(i = 1, . . . , I); therefore, the computational complexity is O(I). Calculating (43) and (44)

requires the calculation of an integration. For example, Monte Carlo integration can be

adopted to calculate an integration. The computational complexity of Monte Carlo inte-

gration is not influenced by the cross table. There are numerous Monte Carlo integration

methods that can be calculated extremely fast [55].

Therefore, the computational complexity of the proposed algorithm is O(I × J + M),

whereM denotes the computational complexity of calculating an integration.

Evaluation

We compared RandChiDist, RandCell, MCIndep, and LocalExpIND as described in

“Related work” section.

LocalExpIND was proposed especially for local privacy; therefore, LocalExpIND can be

used for more scenarios than RandChiDist. Thus, the local model of privacy is another

avenue for future exploration.
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Moreover, to clarify the contribution of calculating the private χ2 distribution table’s

value (proposed in “Differentially private hypothesis testing” section), we also compared

a method that uses the global sensitivity �R calculated using Eq. (6) that does not use the

private χ2 distribution table’s value calculated using Eq. (24). We refer to this method as

RandChi, which is also proposed in this paper.

The source code for the RandChi and RandChiDist methods can be obtained from

https://uecdisk.cc.uec.ac.jp/index.php/s/pic3T9GEp03qy6y.

We should use Bonferroni’s corrected threshold when conducting multiple χ2 testing

[56]. In this paper, we conducted many χ2 tests; however, we consider each to be

independent. Thus, Bonferroni’s corrected threshold was not used in this paper to com-

pare the performance among our proposed methods and methods from existing studies

for independent χ2 testing. This paper shows the average results of each indepen-

dent χ2 test. Additionally, previous studies of privacy-preserving χ2 testing, such as

[7, 8, 27–29, 44, 45], did not use the Bonferroni’s corrected threshold.

We varied the values of n from 100 to 900, α from 0.005 to 0.05, and ǫ from 0.01 to 10.

We set the parameters of MCIndep the same as in [8].

Significance results

We first evaluated the significance to confirm that RandChiDist guarantees a significance

of at least 1 − α. We randomly generated 2 × 2 contingency tables based on a multino-

mial distribution with probabilities of (0.25, 0.25, 0.25, 0.25) 1,000 times. Each time, we

evaluated whether each method correctly output “fail to reject the null hypothesis H0.”

Figure 2 shows the results with an ǫ value of 0.1. The significance of each method should

be approximately 1 − α.

The significance levels of RandChiDist, MCIndep, and LocalExpIND were controlled

around 1−α for any n, ǫ, and α values. In contrast, RandCell and RandChi had significance

values much less than 1 − α when ǫ was less than 1.

We conducted the same experiments for randomly generated 4 × 4 contingency tables

based on a multinomial distribution with probabilities of 1/16,. . . , 1/16. Figure 3 shows

the results with ǫ = 0.1. As with the 2 × 2 contingency tables, the significance val-

ues of RandChiDist, MCIndep, and LocalExpIND were approximately 1 − α. In contrast,

RandCell and RandChi significance values were less than 1 − α, especially when ǫ was

small.

RandCell adds a Laplace noise to each cell. The probability that at least one Laplace

noise becomes very large increases when the number of cells is large. Therefore, RandCell

has many false positives (i.e., significance results are small) when contingency tables are

a b c

Fig. 2 Significance results based on 2 × 2 contingency tables. The dashed lines represent 1 − α. a Results

with ǫ = 0.1,α = 0.005. b Results with ǫ = 0.1,α = 0.01. c Results with ǫ = 0.1,α = 0.05

https://uecdisk.cc.uec.ac.jp/index.php/s/pic3T9GEp03qy6y
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a b c

Fig. 3 Significance results based on 4 × 4 contingency tables. The dashed lines represent 1 − α. a Results

with ǫ = 0.1,α = 0.005. b Results with ǫ = 0.1,α = 0.01. c Results with ǫ = 0.1,α = 0.05

large. On the other hand, if the Laplace noise is a large negative value, the cell value with

the noise could be less than five (or negative). In this case, RandCell fails to reject the null

hypothesis based on the rule of thumb. Therefore, RandCell’s results of 4 ×4 tables are

smaller than those of 2 ×2 tables only when n is large.

RandChi’s significance results do not vary greatly by the table size or n. This is because

the global sensitivity calculated from Eq. 7 also does not vary greatly by the table size or n.

Power results

We then evaluated eachmethod’s power. The values of parameters α, ǫ, and nwere identi-

cal to those in the significance experiments; however, we randomly generated 2×2 contin-

gency tables based on a multinomial distribution with probabilities of (0.25+0.01, 0.25−

0.01, 0.25 − 0.01, 0.25 + 0.01) and (0.25 + 0.15, 0.25 − 0.15, 0.25 − 0.15, 0.25 + 0.15). We

also used another probability set (0.3 + 0.15, 0.3 − 0.15, 0.2 − 0.15, 0.2 + 0.15) to deter-

mine whether RandChiDist can be applied to unbalanced tables. Moreover, we randomly

generated 3×4 contingency tables based on a multinomial distribution with probabilities

of (1/12 + 0.07, 1/12 − 0.07, 1/12, 1/12, 1/12 − 0.07, 1/12 + 0.07, 1/12, . . . , 1/12). Each

time, we evaluated whether each method correctly output “reject the null hypothesisH0.”

Figures 4, 5, 6, and 7 show the results for ǫ = 0.1.

In the experiment on amultinomial distribution with probabilities of (0.25+0.01, 0.25−

0.01, 0.25 − 0.01, 0.25 + 0.01), the empirical power of Non-private, which does not

consider privacy at all, is very low, which is approximately from 0 to 0.2. Hence, all

privacy-preserving algorithms that can control Type I errors do not realize high empirical

power, although RandChiDist, which we proposed, is just slightly better than the other

algorithms.

In the experiments on other multinomial distributions, MCIndep has relatively low

empirical power. MCIndep generated many contingency tables from its algorithm based

a b c

Fig. 4 Empirical power results with 2 × 2 Contingency tables generated with probabilities of

(0.25 + 0.01, 0.25 − 0.01, 0.25 − 0.01, 0.25 + 0.01). a Results with ǫ = 0.1, α = 0.005. b Results with ǫ = 0.1,

α = 0.01. c Results with ǫ = 0.1, α = 0.05
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a b c

Fig. 5 Empirical power results with 2 × 2 Contingency tables generated with probabilities of

(0.25 + 0.15, 0.25 − 0.15, 0.25 − 0.15, 0.25 + 0.15). a Results with ǫ = 0.1, α = 0.005. b Results with ǫ = 0.1,

α = 0.01. c Results with ǫ = 0.1, α = 0.05

on the original contingency table. MCIndep quickly outputs “fail to reject H0” when at

least one cell in the generated contingency tables has a value of less than five. Therefore,

even if all the target contingency table’s cells have values greater than five, MCIndep is

likely to output “fail to rejectH0” if several values are close to 5 (for example a value of 10).

In contrast, RandCell and RandChi both achieved high empirical power at the expense

of empirical significance. The empirical power of MCIndep is high when there are many

samples and the data are uniformly distributed. RandChiDist achieved higher empirical

power with fewer samples than MCIndep while also achieving empirical significance.

In hypothesis testing that includes χ2 testing, we should avoid Type I errors (i.e., false

positives). In general, we adjust the Type I error probability by the value of α (e.g., 0.05).

Even if the empirical power is high, the algorithm is of no use if the empirical signif-

icance is less than 1-α. The empirical power of RandCell and RandChi is greater than

that of RandChiDist; however, RandCell and RandChi have empirical significance val-

ues much than 1-α. That is, they cannot control Type I errors (false positives) in many

cases. Therefore, we can conclude that RandChiDist outperforms RandCell and Rand-

Chi. Among RandChiDist, MCIndep, and LocalExpIND, which can control Type I errors,

RandChiDist has the highest power.

Results of real datasets

We used two genomic datasets1. The first dataset is the Human GenomeDiversity Project

genotype dataset (HGDP) used by Conrad [57], which consists of 2,834 SNPs and has

1,244 records after the records in which unknown values are eliminated. The other is

the International Haplotype Map Project genotype dataset (HapMap) used by [58], which

consists of 1,853 SNPs and has 420 complete records.

We randomly generated contingency tables for linkage disequilibrium analysis for each

dataset and set the numbers of columns and rows to four. Following the “rule of thumb,” if

any values of the created contingency table are less than five, we re-created another con-

tingency table and then conducted normal χ2 testing on the original contingency tables.

We then carried out the privacy-preserving methods. We generated contingency tables

and conducted χ2 testing 100 times, and then calculated the mean results of false positive

and false negative rates.

The results for the HGDP genotype and HapMap genotype datasets are shown in Figs. 8

and 9, respectively. RandChiDist outperformed MCIndep and LocalExpIND for most of

the parameter settings used in this paper.

1https://web.stanford.edu/group/rosenberglab/hgdpsnpDownload.html (accessed May 26, 2017)

https://web.stanford.edu/group/rosenberglab/hgdpsnpDownload.html
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a b c

Fig. 6 Empirical power results with 2 × 2 Contingency tables generated with probabilities of

(0.3 + 0.15, 0.3 − 0.15, 0.2 − 0.15, 0.2 + 0.15). a Results with ǫ = 0.1, α = 0.005. b Results with ǫ = 0.1,

α = 0.01. c Results with ǫ = 0.1, α = 0.05

Discussion

According to the evaluation results, RandCell and RandChi could not control the ratio of

Type I errors—that is, they caused a lot of false positives. On the contrary, RandChiDist,

MCIndep, and LocalExpIND could control the ratio of Type I errors. RandChiDist

achieved the least number of Type II errors among RandChiDist, MCIndep, and LocalEx-

pIND. When testing a hypothesis, data analyzers determine the significance level α (i.e.,

the ratio of Type I errors) ahead of time. That is, they reject a true null hypothesis with

a probability no greater than α. A high false positive rate means that a true null hypoth-

esis is rejected with a probability greater than α, which leads to the false interpretation

of datasets. Therefore, if we want to avoid such false interpretations, RandChiDist is the

preferred method.

There are several approaches for non-private χ2 testing. The simplest approach is

shown in “χ2 hypothesis test of Independence” section. RandChi and RandChiDist cal-

culate the global sensitivity of the χ2 value of the simplest chi-squared testing and adds

noise based on the global sensitivity to the χ2 value. Thus, the added noise is minimized

following the Laplace mechanism theorem (Theorem 1).

In contrast, RandCell calculates the global sensitivity of each value of each cell and adds

noise to each value. The summation of added noises thus become very large. MCIndep

takes another approach for calculating non-private χ2 testing, as shown in “Related work”

section. MCIndep first estimates the parameters of the underlying multinomial distri-

bution generating the samples. By the estimated the multinomial distribution, MCIndep

generates more than 1/α contingency tables. When the number of samples is small,

the estimated parameters of the underlying multinomial distribution have low accuracy.

Because of this low accuracy estimation, MCIndep could have low performance when the

number of samples is small. LocalExpIND assumes that each piece data is anonymized for

a b c

Fig. 7 Empirical power results with 3 × 4 Contingency tables generated with probabilities of

(1/12 + 0.07, 1/12 − 0.07, 1/12, 1/12, 1/12 − 0.07, 1/12 + 0.07, 1/12, . . . , 1/12). a Results with ǫ = 0.1,

α = 0.005. b Results with ǫ = 0.1, α = 0.01. c ǫ = 0.1, α = 0.05
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a b c

d e f

Fig. 8 Results of the HGDP genotype datasets. a Results with False Positive Rate (α = 0.005). b Results with

False Positive Rate (α = 0.01). c False Positive Rate (α = 0.05). d False Negative Rate (α = 0.005). e False

Negative Rate (α = 0.01). f False Negative Rate (α = 0.05)

each person and that there is no trusted entity. Because noise is added to each data point,

the amount of the total noise becomes large.

Sharpe claimed that if we can avoid χ2 hypothesis testing for contingency tables larger

than 2×2, doing so is desirable [59]. However, he showed an understanding that in some

cases we could not avoid this and also reported that approximately 30% of χ2 tests are

conducted for contingency tables larger than 2×2. This is based on his survey of jour-

nals published by the American Psychological Association for 2012, 2013, and early 2014.

χ2 hypothesis testing has been widely used for GWAS as well as many other personal

databases [38–40]. Moreover, some studies [38–40] have considered contingency tables

larger than 2×3. Therefore, we consider the application of ǫ-differential privacy to χ2

hypothesis testing for contingency tables larger than 2×3 to be an important issue.

Our proposed method can be used not only GWAS but also other private data analy-

sis for small samples. For example, the characteristics of COVID-19 patients (n=403) (the

number of died patients was 100 and the number of recovered patients was 303) were ana-

lyzed by χ2 test with α being 0.05 [60]. Poyiadi et al. analyzed the COVID-19 with acute

a b c

d e f

Fig. 9 Results of the HapMap genotype datasets. a Results with False Positive Rate (α = 0.005). b False

Positive Rate (α = 0.01). c False Positive Rate (α = 0.05). d False Negative Rate (α = 0.005). e False Negative

Rate (α = 0.01). f False Negative Rate (α = 0.05)
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pulmonary embolism and the COVID-19 without acute pulmonary embolism [61]. The

number of patients was n=328. They conducted χ2 test with α being 0.05. The influence

on sexual activity for COVID-19 was analyzed by Jacob et al. [62]. The number of samples

was 868. As these studies show, there is a high need for testing with a small sample size.

In particular, it is difficult to collect a large number of samples when there is a need for

rapid analysis for a new disease such as COVID-19.

We assume that the data holder publishes mi as well as the differentially private chi-

square value. In general, the information ofmi and a sample size is necessary to interpret

a chi-square value accurately [63]. For example, even if in the case of trivial differences

between two datasets, a very small chi-square value is obtained when every mi is very

large [64]. Therefore,mi is very useful information for data analysts.

Publishing mi also provides several other types of information. For example, we know

that Oi,j for all j are less than or equal tomi. However, we cannot know each value of Oi,j,

and we cannot know which value is greater (Oi,j or Oi,j′ ) for any j or j
′, even if we know

mi and the (differentially private) chi-square value. Our proposed algorithm can protect

chi-square values based on differential privacy, and we can ensure that it is impossible to

reconstruct the original cross table. To the best of our knowledge, no researchers have

claimed that publishingmi could cause privacy issues.

Conclusion

χ2 testing is widely used in GWAS and other types of data analysis. We proposed the

RandChiDist method, which anonymizes the χ2 value of contingency tables. If we have a

lot of samples for data analysis, it is easy to conduct statistical analysis precisely. However,

obtaining highly sensitive data is quite difficult due to privacy reasons.Existing methods

on privacy-preserving χ2 testing such as MCIndep are a better choice when the number

of samples n is large; however, we demonstrated that RandChiDist outperforms existing

methods when n is small.

Future work will include evaluating other relevant datasets. We also plan to apply our

method to other hypothesis testing methods such as Student’s t-test and Fisher’s exact

test.
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