
Privacy-Preserving Classifier Learning

Justin Brickell and Vitaly Shmatikov

The University of Texas at Austin, Austin TX 78712, USA

Abstract. We present an efficient protocol for the privacy-preserving,
distributed learning of decision-tree classifiers. Our protocol allows a user
to construct a classifier on a database held by a remote server with-
out learning any additional information about the records held in the
database. The server does not learn anything about the constructed clas-
sifier, not even the user’s choice of feature and class attributes.
Our protocol uses several novel techniques to enable oblivious classifier
construction. We evaluate a prototype implementation, and demonstrate
that its performance is efficient for practical scenarios.

Keywords: Privacy, Secure Multiparty Computation, Data Mining

1 Introduction

Privacy-preserving data analysis is one of the most important applica-
tions of secure multi-party computation. In this paper, we develop a
privacy-preserving version of a fundamental data-analysis primitive: an
algorithm for constructing or learning a classifier. Classifiers, such as
decision trees, are a mainstay of data mining and decision support [24].
Given a database with multiple attributes (an attribute can be thought of
as a column in a database schema), a classifier predicts the value of a “tar-
get” or “class” attribute from the values of “feature” attributes. One can
also think of a classifier as assigning records to certain classes (defined by
the value of the class attribute) on the basis of their feature attributes. A
popular machine-learning task is to automatically learn a classifier given
a training set of records labelled with class attributes. Classifiers built in
this way are used for marketing and customer relationship management,
development of better recommendation algorithms and services, clinical
studies, and many other applications.
We focus on the problem of securely constructing a classifier in a
two-party setting where one party provides a database, while the other
party provides the parameters of the classifier that it wants to con-
struct from the records in the database. This is a common situation in
law-enforcement, regulatory, and national-security settings, where the
entity performing the analysis (for example, an agency investigating
irregular financial transactions) does not want to reveal which patterns
it is mining the database for (for example, to prevent the target of in-
vestigation from structuring their transactions so as to avoid scrutiny).
Confidentiality of the resulting classifier is also important in scenarios
where both the data-analysis techniques and the output of the analysis

process constitute potentially valuable intellectual property, e.g., when
mining patient databases in clinical studies, constructing expert systems
and diagnostic frameworks, and so on.

The key privacy properties that the protocol for privacy-preserving
classifier learning must guarantee are, informally, as follows. First, the
records from which the classifier is constructed should remain confiden-
tial from the party who obtains the classifier (except for the information
which is inevitably revealed by the classifier tree itself). Second, the
data owner should not learn anything about the classifier which has
been constructed. While the algorithm for constructing the classifier is
standard (e.g., ID3), its parameters—(i) which attributes are used as
features?, (ii) which attributes are used as class attributes?, (iii) if the
classifier is being constructed only on a subset of database records, what
is the record selection criterion?—should remain hidden from the data
owner. Note that the latter requirement precludes the data owner from
simply computing the classifier on his own.

Previous work on privacy-preserving classifier learning [16,28,29] focused
on a very different problem in which the resulting classifier is revealed
to both parties. This greatly simplifies the protocol because the classifier
can be constructed using the standard recursive algorithm—since both
parties learn the resulting classification tree, revealing each node of the
tree to both parties as it is being constructed does not violate the privacy
property. This is no longer true in our setting, which presents a non-
trivial technical challenge.

Existing protocols cannot be used in practical scenarios where confi-
dentiality of the classifier is essential. For example, a national-security
agency may want to mine records of financial transactions without re-
vealing the classified patterns that it is looking for (defined by its choice
of feature and class attributes and of a certain subset of individuals in
the database). Other scenarios include construction of a recommendation
algorithm from transactional data without revealing it prematurely (e.g.,
the Netflix Prize competition [22]); clinical studies involving competing
medical institutions, each of which is fiercely protective both of their
patient data and their analysis techniques (which subset of patients to
look at, which symptoms to focus on, and so on), because the latter can
lead to patentable and potentially lucrative diagnostic methods; expert
systems, where the classifier constitutes valuable intellectual property;
remote software fault diagnostics [6]; and many others.

In this paper, we use the same basic framework of secure multi-party
computation (SMC) as the original paper on privacy-preserving data
mining by Lindell and Pinkas [16] and aim to provide the same level of
cryptographic security guarantees. We emphasize, however, that (i) our
desired privacy properties (in particular, confidentiality of the resulting
classifier) are very different and more challenging because the techniques
of [16] no longer work; (ii) we allow, but do not assume or require that
the data are partitioned between the two parties; and (iii) unlike [16], we
provide a prototype implementation and performance measurements in
order to evaluate the scalability of the SMC-based approach to privacy-
preserving data classification.

Our contributions. We present a cryptographically secure protocol for
privacy-preserving construction of classification trees. The protocol takes
place between a user and a server. The user’s input consists of the param-
eters of the classifier that he wishes to construct: which data attributes
(columns) to use as feature attributes, which as the class attribute, and,
optionally, which predicate on records (rows) to use in order to select
only a subset of the database records for the classifier construction. The
server’s input is a relational database. We assume that the schema of
the database (i.e., names of attributes and the values they can take) is
public, but that the actual records are private.
The user’s protocol output is a classification tree constructed from the
server’s data. The server learns nothing from the protocol; in particular,
he does not learn the parameters of the classification algorithm, not even
which attributes have been used when constructing the classifier. We re-
iterate that the latter requirement precludes the server from computing
the classifier on his own, and also makes existing protocols inapplicable.
Our protocol exploits the structure of the classifier-construction algo-
rithm in a fundamental way. In each node of the classification tree, the
records are “split” based on the value of some attribute. In order to pick
the best attribute for this purpose, the tree-construction algorithm must,
in each node of the tree, count the number of records that fall into sev-
eral categories. In contrast to [16], the database owner should not learn
how many of his own records fall into each category, so we must perform
this computation in a privacy-preserving manner. If done näıvely, us-
ing generic techniques, the computational cost of the resulting protocol
would be prohibitive.
Our key technical innovation is to build the tree “one tier at a time”
by simultaneously counting the categories for an entire tier of nodes
rather than for a single node. By partitioning the categories into mutually
exclusive groups, we are able to compute the counts for a whole tier of
nodes using the same number of secure circuit evaluations as we would
have needed for a single node. This enables a substantial performance
gain which bridges the gap between theoretical and practical efficiency.
Our final contribution is to measure the scalability of our prototype im-
plementation and evaluate its performance on realistic datasets. While
theoretical protocol designs in the SMC framework abound, actual im-
plementations have been very rare. This makes it difficult to determine
whether these (theoretically sound) techniques can actually be applied,
even given modern computing power, to anything other than toy ex-
amples. Our performance measurements show the limits of SMC-based
privacy-preserving data analysis.

2 Related Work

Classifier learning is one of the most fundamental tasks in data mining
and machine learning [20,24]. The privacy-preserving version of the prob-
lem was addressed by Lindell and Pinkas [16]. We use the same frame-
work of secure multi-party computation as [16] and provide the same
level of cryptographic security. Note, however, that [16] solves a different

problem, where the database is horizontally partitioned between the par-
ties, and both participants learn the resulting decision tree. By contrast,
we consider an (arguably, much more common) problem where one party
may hold all of the data, and a second party wishes to construct a classi-
fier which is not revealed to the first party. Our protocol allows the data
to be arbitrarily partitioned between the parties, while still maintaining
the property that only one party learns the resulting decision tree.

This distinction is not superficial and has important technical ramifica-
tions. The fact that both parties learn the classifier is used in an essential
way in [16] to implement recursive tree construction: because all nodes of
the tree are revealed to all parties as part of the final classifier, the algo-
rithm is allowed to reveal the nodes in intermediate steps. Our problem,
where the classifier is not revealed to the data owner, cannot be solved
using the techniques of [16] and requires more sophisticated algorithms.

Other techniques for privacy-preserving classifier construction [8, 9, 28,
30] also assume that both parties learn the classifier. Therefore, they
cannot be applied to our problem setting. Unlike [8, 28], our solution
is accompanied by a practical implementation and does not require a
third-party server.

In randomized databases, statistical noise is added to individual data
entries in order to hide their values. Agrawal and Srikant considered the
problem of privacy-preserving classifier construction in this setting [3],
but their privacy definition as well as several subsequent definitions were
very weak [2, 10]. The SuLQ (Sub-Linear Queries) framework enables
construction of ID3 classifiers from perturbed data with adequate pri-
vacy guarantees [4]. Our approach is different in that our trees are con-
structed on the original, unperturbed data, and are thus more precise.
It can also be applied even to relatively small databases where the sub-
linearity constraint would restrict the approach of [4] to a very small
number of queries. Furthermore, queries are made in the clear in the
SuLQ framework, so only the privacy of the server is guaranteed. In
contrast, our approach guarantees the privacy of the user’s input.

Another class of techniques for privacy-preserving data publishing is
based on k-anonymity [7,26,27]. In this approach, some of the attributes
(so-called “quasi-identifiers”) are transformed so that each attribute
tuple occurs at least k times in the anonymized database, while other at-
tributes are released untouched. k-anonymous databases can be used for
classifier construction [14]. Limitations of k-anonymity include the fact
that it cannot be applied to high-dimensional data [1], k-anonymous
databases can reveal individuals’ sensitive attributes [15, 18] and/or
whether a given individual has an entry in the database [21, 25], and
anonymity is not guaranteed against adversaries with background knowl-
edge [18, 19] or even adversaries who simply know the k-anonymization
algorithm [32]. This paper provides an alternative way of constructing
classifiers that does not involve releasing the data to untrusted users.

An orthogonal problem to learning decision trees is that of evaluating
decision trees so that the data owner does not learn the tree which is
being evaluated (i.e., evaluation is oblivious). Recent solutions include [6,
11]. We use a (substantially modified) oblivious tree evaluation protocol

Children?

No

Unlikely
customer

Likely
customer

Unlikely
customer

Likely
customer

Married?

College?

Yes

No Yes No Yes

Fig. 1. Example decision tree.

of [6] as a building block. It provides better efficiency in our setting
than [11], where each decision node can only examine a single bit.

3 Cryptographic Tools

Our construction employs several standard cryptographic tools, includ-
ing secure circuit evaluation (SCE) and homomorphic encryption. We
only utilize them for the lowest-level computations in our protocol, and,
furthermore, we use SCE in a non-black-box fashion. For the standard
secure circuit evaluation, we use a compiler [13] which, given a circuit
description, generates a corresponding “garbled circuit” following Yao’s
method [17,31]. Where an additively homomorphic encryption scheme is
needed, we use the Paillier cryptosystem [23].
Our protocol also requires a subprotocol for privacy-preserving evalu-
ation of decision trees, described in Appendix A. To achieve practical
efficiency, we carefully design circuit logic to allow the same set of inputs
to be used across multiple garbled-circuit evaluations, which reduces the
number of costly oblivious transfers.

4 Problem Formulation

4.1 Decision-tree learning

A classifier takes as input a record (or transaction) consisting of several
attribute values, and outputs a classification label which categorizes the
record. Decision trees are a common type of classifier. Each internal node
in a decision tree examines a single attribute and redirects evaluation to
one of several child nodes based on the value of that attribute. Once
a leaf node is reached, the classification label contained therein is out-
putted as the result of classification. Fig. 1 shows an example decision
tree that could be used by a marketing department to determine whether
a consumer is likely to buy a company’s product.
Decision-tree classifiers can be constructed manually by a human expert
with domain knowledge, but algorithms for decision-tree learning are
increasingly popular (e.g., see Algorithm 1). Given a database of records
tagged with classification labels, the algorithm constructs the decision
tree recursively from the top down. At the root node, the algorithm

Input:
R, the set of feature attributes.
C, the class attribute.
T , the set of records.
d, the current depth.
D, the desired maximum depth.
DecisionTree(R, C, T, d,D)

1: if d = D or R is empty then
2: return a leaf node with the most frequent class label among the records in T .
3: else
4: Determine the attribute that best classifies the records in T , let it be A.
5: Let a1, ..., am be the values of attribute A and let T (a1), ..., T (am) be a partition

of T such that every record in T (ai) has the attribute value ai.
6: Return a tree whose root is labeled A (this is the splitting attribute) and which

has edges labeled a1, ..., am such that for every i, the edge ai goes to the tree
DecisionTree(R− {A}, C, T (ai), d+ 1, D).

7: end if

Algorithm 1: The (non-private) recursive decision-tree learning algorithm.

considers every attribute and measures the quality of the split that this
attribute will provide (see below). The algorithm chooses the “best”
attribute and partitions all records by the value of this attribute, creating
a child node for each partition. The algorithm is then executed recursively
on each partition.

Two popular measures of the “quality” of a split are information gain
and the Gini index. Information gain is used in the ID3 and C4.5 al-
gorithms [24], while the Gini index is used in the CART algorithm [5].
Information gain can be computed privately using the x log x protocol
from [16]. Our privacy-preserving protocol for decision-tree learning can
use either, but the private computation of the Gini index is more efficient,
so we will focus on it.

In the following, suppose that the class attribute (i.e., the target of clas-
sification) can assume k different values c1, ..., ck and that the candidate
splitting attribute A can assume m different values a1, ..., am. Denote by
p(ci) the portion of the records whose attribute C = ci, by p(ai) the por-
tion of the records whose attribute A = ai, and by p(ci|aj) the portion
of the records that have both attribute C = ci and attribute A = ai.

The Gini index Gini(A) is computed as:

1−
kX
i=1

(p(ci))
2 −

mX
j=1

p(aj)

kX
i=1

p(ci|aj) (1− p(ci|aj)) (1)

If we use the notation n(ci) for the number of records with attribute
C = ci, then we can rewrite (1) as:

1−
kX
i=1

„
n(ci)

|T |

«2

−
mX
j=1

n(aj)

|T |

kX
i=1

n(ci|aj)
|T |

„
1− n(ci|aj)

|T |

«
(2)

Multiplying this equation by |T |3 gives:

|T |3 −
kX
i=1

(n(ci))
2 |T | −

mX
j=1

n(aj)

kX
i=1

n(ci|aj) (|T | − (ci|aj)) (3)

Since the number of records |T | is fixed, we can compare the Gini in-
dex of different attributes using only multiplication and addition. These
operations can be easily computed in a privacy-preserving manner using
Yao’s garbled-circuits method.

4.2 Distributed decision-tree learning

Conventional decision-tree learning is performed by a single user. The
user has access to some database T and chooses the set of feature at-
tributes R, the class attribute C, and the number of tiers D. In this
paper, we focus on a distributed setting, where the database T resides on
a server and a remote user chooses R, C, and D. We emphasize that for
real-world databases, where the total number of attributes is fairly large,
R may be only a small subset of attributes. For example, attributes of
T may include hundreds of demographic features, and the user may be
interested only in a handful of them for classification purposes.

In the distributed setting, both parties may have privacy concerns. The
server wishes to reveal no more about T than is necessarily revealed by
a decision tree based on T . The user, on the other hand, may not wish
to reveal which feature attributes R and class attribute C he selected
for the purposes of constructing a classifier.

We assume that several parameters are known to both parties: |T |, the
number of records in the database; A, the set of all attributes in the
database; the set a1, ..., am of possible values for each attribute A ∈ A;
|R|, the number of feature attributes selected by the user; and D, the
depth of the decision tree to be constructed.

Branching factor. In the general case, the record database T may con-
tain nominal attributes whose domains have different sizes. For instance,
a consumer database may have 2 possible values for the “sex” attribute,
and 50 possible values for the “state of residence” attribute. We refer
to the number of different values that an attribute can assume as its
branching factor, because it determines the number of children for each
internal node corresponding to that attribute.

When the decision tree is computed in a privacy-preserving manner,
all internal nodes must have the same number of children in order to
prevent the server from learning any information about which attribute
is considered in a given node. Therefore, all attributes must have the
same branching factor m. As a pre-processing step, attributes can be
padded with unused values so that all attributes have the same branching
factor. For simplicity, we assume that each attribute value is encoded as
an integer between 0 and m−1, and can thus be represented using log2m
bits.

5 Privacy-Preserving Decision-Tree Learning

Our protocol takes place between a server in possession of a database T
and a user who wishes to build a classifier for class attribute C based on
a set R of feature attributes. The tree is constructed from the root down,
as in the conventional algorithm shown in Fig. 1. Unlike the conventional
algorithm, ours is non-recursive. Instead, the tree is constructed one tier
at a time. When processing tier i, mi pending nodes are considered. In
the final tier, the pending nodes are transformed into leaf nodes with
classification labels in them; in all intermediate tiers, they become inter-
nal decision nodes, where the attribute for making the decision is chosen
based on the data in T . We now describe the protocol, which is divided
into four phases.

5.1 Phase 1: Sharing the attribute values

The set of attributes A found in the database T may be far larger than
the set R∪ {C} of attributes that are relevant to tree construction. For
an attribute Ri ∈ R∪{C} and a record t ∈ T , t[Ri] refers to the attribute
value for attribute Ri in record t. For each record t ∈ T and for each rel-
evant attribute Ri ∈ R∪{C}, Phase 1 enables the user and the server to
learn shares t[Ri]U and t[Ri]S such that t[Ri]U+t[Ri]S (mod m) = t[Ri].
This is done using the oblivious attribute selection technique from [6],
which is outlined below:

1. For all Ai ∈ A, the server encrypts t[Ai] using an additively homo-
morphic encryption scheme, and sends E[t[Ai]] to the user.

2. User creates a blinding value bi for each relevant attribute Ri, and
uses the homomorphic property to add bi and t[Ri] under encryption.
User sends E[bi+t[Ri]] to the server. User’s random share is t[Ri]U =
−bi mod m.

3. Server decrypts to obtain bi + t[Ri] and stores t[Ri]S = bi + t[Ri]
mod m.

We use a blinding value bi at least 80 bits longer than the (log2m)-
bit value t[Ri] so that it statistically hides t[Ri]. The shares t[Ri]U and
t[Ri]S will be used in later phases as inputs to small Yao circuits that are
generated by the user and evaluated by the server. Therefore, the server
needs to learn the random wire keys representing his input shares t[Ri]S
in the circuit. As usual, this is done via a 1-out-of-2 oblivious transfer
for each of the log2m bits in the t[Ri]S values, where the server’s input
is the jth bit of t[Ri]S , and the user’s input is the pair of wire keys
representing, respectively, 0 and 1 on the input wire corresponding to
this bit.
Unlike the standard Yao protocol, the same input-wire keys are used for
multiple circuits. The oblivious transfers can thus be done only once per
protocol execution instead of once per circuit evaluation. This results in
a substantial performance improvement, since the bulk of computation
in secure circuit evaluation is spent on the oblivious transfers.
After performing these preliminary steps, the user participates in the
PrivateDecisionTree(R, C,D, T) protocol with the server, which
starts Phase 2.

R1

R2 R3

? ? ? ?

0 1

0 01 1

[R3,R4] [R3,R4] [R2,R4] [R2,R4]

1 2 3 4

(a) Incomplete Tree

R1

R2 R3

0 1

0 01 1

R3

C C

0
R3 R2 R2

5 6 7 8

1

5:[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]
6:[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
7:[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]
8:[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]

1 2 3 4

(b) Augmented Tree

Fig. 2. An incomplete decision tree with 4 pending nodes, and the same tree augmented
with a feature attribute and class attribute

We also observe that our protocol can be applied not only in the case
where the server holds the entire database, but also for any vertical or
horizontal partitioning of the database between the user and the server.
If the database is partitioned, the steps described above are carried out
only for the attribute values held by the server. For each value held by
the user, the user simply splits it into two random shares and sends one of
them to the server. Regardless of the database partitioning, after Phase
1 every attribute value of every record is shared between the user and
the server.

5.2 Phase 2: Computing category counts

Phase 2 is shown in Algorithm 2 as lines 3–6.
Let d be the depth of the current tier. Within this tier there are md

pending nodes, and of the original |R| feature attributes, only |R| − d
remain as candidates to be chosen as the splitting attribute for each
pending node because d attributes have already been used. The set of
candidate attributes for splitting at a pending node n depends on which
attributes were already encountered on the path from the root node to n,
and may thus be different for each pending node. For example, Fig. 2(a)
shows a tree entering Phase 2 on tier 2. The path to the 3rd pending
node consists of the edges R1 = 1 and R3 = 0, so attributes R1 and
R3 are no longer available as candidates for this node. The candidates
for the 3rd pending node are [R2, R4], while the candidates for the 2nd
pending node are [R3, R4],
Let T (n) be the set of records that satisfy the preconditions of node n
(for the 3rd pending node in Fig. 2(a), these are records with R1 = 1
and R3 = 0). Let {Rn1 , ..., Rn|R|−d

} be the set of candidate attributes
for node n. Finally, let Tk(n : i, j) be the set of records in T (n) that have
Rnk = i and C = j. To determine the quality of the split that would
be provided by choosing Rnk as the splitting attribute for this node, it
is necessary to compute |Tk(n : i, j)| for all possible values of i and j
(0 ≤ i, j ≤ m).

For any choice of n, i, and j, the user can build a decision tree to
determine whether a given record is in Tk(n : i, j). Using oblivious
decision-tree evaluation, the user and the server can then learn shares
of |Tk(n : i, j)| without either revealing his private inputs. The problem
with this näıve approach is that determining the quality of splitting on a
single attribute Rnk requires md ·m2 oblivious decision-tree evaluations
on each record in T (one for each choice of n, i, and j).
Our construction is significantly more efficient because it iterates over
the database only once by counting md ·m2 different mutually exclusive
categories simultaneously. The key observation is that for each record
t ∈ T , there is a unique pending node n such that t ∈ T (n). Furthermore,
for each t ∈ T (n) and 0 ≤ k ≤ |R|−d, there are unique i, j such that t ∈
Tk(n : i, j). Therefore, our construction builds a classifier to determine
for which values of n, i, and j the record t belongs to Tk(n : i, j).
To do this, we augment the partially constructed tree P by replacing
each pending node with a depth-two subtree that considers attributes C
and Rnk . Fig. 2(b) shows the result of augmenting the tree from Fig. 2(a)
when k = 1. (To avoid clutter, the augmented portion is only shown for
the 2nd pending node.) The md ·m2 leaves of the tree contain vectors
of length md · m2 as their labels. Each leaf is reachable by records in
Tk(n : i, j) for a unique choice of n, i, and j, and the vector used as its
label has a single “1” in the position corresponding to Tk(n : i, j) and
“0” elsewhere.
Once the augmented tree P ′ = P.AugmentWithAttAndClass(k, C)
has been constructed, the user and server engage in a privacy-preserving
decision-tree evaluation protocol for each record t ∈ T . To support obliv-
ious evaluation, the tree must be transformed as follows (see [6] and Ap-
pendix A for details). Each node other than the root is encrypted with
a random key. Each internal node is replaced by a small Yao circuit that
takes as its input the user’s and server’s shares t[Ri]U and t[Ri]S of the
relevant attribute values t[Ri] for each R ∈ R, and outputs the index and
decryption key for the appropriate child node. Each leaf node has as its
label a vector of md ·m2 values, encrypted using a user-created instance
of an additively homomorphic encryption scheme. As described above,
the vector has “1” in the position corresponding to its category, and “0”
in all other positions. Note that although the same tree is applied to
every record, it must be freshly transformed into a secure tree for each
oblivious evaluation.
As the result of oblivious evaluation of augmented trees, the server learns
a vector of md · m2 ciphertexts. All but one are encryptions of “0.”
The sole ciphertext encrypting “1” occurs in the position corresponding
to the category of the record (of course, the server cannot tell which
ciphertext this is). By summing up these vectors under encryption, the
server obtains ciphertexts encrypting the counts |Tk(n : i, j)|. The server
must then transform these encrypted counts into additive random shares
(mod |T |), using the same technique as in Sect. 5.1.
The following subroutines are used during Phase 2:
– P.AugmentWithAttAndClass. This method is executed by the

user, and adds two tiers to the tree P : one for the attribute Rnk

(different for each pending node) and one for the class attribute C.

User’s Input:
R, the set of feature attributes (|R > D)
C, the class attribute
D, the desired maximum depth
Server’s Input: T , the set of records converted into random wire values.
User’s Output: P , a decision tree to classify C from R
Prot:PrivateDecisionTree(user: R, C,D server: T)

1: P = new tree
2: for d=0 to D − 1 do
3: for k=1 to |R| − d do
4: P ′=P.AugmentWithAttAndClass(k, C)
5: (|Tk(...)|U , |Tk(...)|S) = Prot:EncryptedCounts(user: P ′ server: T)
6: end for
7: for n=1 to md do
8: for k=1 to |R| − d do
9: (QkU , Q

k
S) = Prot:ComputeQuality(|Tk(n : ...)|U , |Tk(n : ...)|S)

10: end for
11: bestatt = Prot:ArgMax (user: Q1

U , ..., Q
|R|−d
U server: Q1

S , ..., Q
|R|−d
S)

12: In P , make node n an internal node splitting on attribute Rnbestatt

13: end for
14: end for
15: P ′ = P.AugmentWithClass(C)
16: (|T (...)|U , |T (...)|S) = Prot:EncryptedCounts(user: P ′ server: T)
17: for n=1 to mD do
18: bestclass = Prot:ArgMax(user: |T (n : ∗, 1)|U , ..., |T (n : ∗,m)|U

server: |T (n : ∗, 1)|S , ..., |T (n : ∗,m)|S)
19: In P , make node n a leaf node with label bestclass
20: end for
21: return p

Algorithm 2: The private “one-tier-at-a-time” decision-tree learning protocol

– Prot:EncryptedCounts. This protocol between the user and the
server results in the user and server holding shares for the counts
|Tk(n : i, j)| for n=1 to md, i=1 to m, and j=1 to m. Pseudocode is
given in Algorithm 3.

5.3 Phase 3: Selecting the highest-quality split

Phase 3 is shown in Algorithm 2 as lines 7–13.
After Phase 2, the user and the server share counts |Tk(n : i, j)| for all
pending nodes n in the tier, and for all values of k, i, and j. This enables
them to compute Gini(Rnk) for each node n using (3), but over T (n)
rather then the entire record set T . The user and server must compute

|T (n)|3 −
mX
j=1

|T (n)| |Tk(n : ∗, j)|2 −

mX
i=1

|Tk(n : i, ∗)|
mX
j=1

|Tk(n : i, j)| (|T (n)| − |Tk(n : i, j)|) .

User’s Input: A decision tree P with k leaf-nodes. The label of leaf i is a k-length
vector with E[1] in position i and E[0] in all other positions.
Server’s Input: A record set T for which each bit of each attribute value has been
converted into a random wire value.
Output: Let K =

P
t∈T P (t) be the k-length vector whose ith entry is the number of

records in T landing in leaf node i. The user’s and server’s outputs are shares KU and
KS of K.
EncryptedCounts(P, T)

1: K ← length k vector with each entry set to E[0]
2: for each t ∈ T do
3: J ← PrivateTreeEval(P, t)
4: K ← K + J under encryption
5: end for
6: Split each component of K into shares (mod |T |); user decrypts his share

Algorithm 3: Protocol to determine how many records fall into each of k cat-
egories

Where |T (n : ∗, j)| is the number of nodes in T (n) with class attribute
C = j, and |Tk(n : i, ∗)| is the number of nodes in T (n) with attribute
Rnk = i. These values, along with |T (n)|, can be computed from the
shares |Tk(n : i, ∗)|{U,S} which the user and server hold.
Given the shares (mod |T |) of all inputs, a simple circuit produces shares
(mod |T |3) of Gini(Rnk) for each node n and for each k, using only addi-
tion and multiplication. For each pending node n, these shares are then
fed into another garbled circuit. This circuit determines which attribute
Rnk provides the best split quality. The user updates the tree P with
this information, by replacing the pending node n with an internal node
that splits on the attribute Rnk .
The following subroutines are used during Phase 3:
– Prot:ComputeQuality. This protocol uses a garbled circuit to

compute the Gini index for node n and attribute Rnk . This protocol
takes as input shares (mod |T |) of the m2 counts |Tk(n : i, j)|, and
returns shares (mod |T |3) of the Gini index.

– Prot:ArgMax. This protocol takes as input shares of values
v1, ..., vn and provides the user with an index m such that vm is
greater than or equal to all other values. The server learns nothing.

5.4 Phase 4: Constructing the bottom tier

Phase 4 is shown in Algorithm 2 as lines 17–20.
Phase 4 completes the decision tree P by adding the correct labels to its
leaf nodes. Each leaf node n should have as its label the most common
classification value among the records in T (n). Similar to Phase 2, we can
find the most popular classification value for all leaf nodes at once. The
incomplete tree P is augmented with a single extra tier which examines
the classification node C. Then EncryptedCounts provides the user
and server with the shares of the the counts |T (n : ∗, j)| for n=1 to
mD and j=1 to m. Next, a garbled circuit finds the value c such that
|T (n : ∗, c)| is maximal, and makes it the label for node n.
The following subroutines are used during Phase 4:

– P.AugmentWithClass. This is executed by the user and adds one
additional tier to the tree P for the class attribute C.

– Prot:EncryptedCounts. Same as in Phase 2, and provides the
user and server with shares (mod |T |) of |T (n : ∗, j)|.

– Prot:ArgMax. Same as in Phase 3.

5.5 Security properties

Due to space constraints, we omit the detailed security argument. We use
the same secure multi-party computation framework as the original pro-
tocol by Lindell and Pinkas [16] (which applied to a different decision-tree
learning problem, as explained above). Just like [16], our basic protocol
is secure against a passive attacker. Note that the decision tree resulting
from protocol execution has a rich structure and may reveal a substantial
amount of information about the database to the user. As is standard in
the SMC framework, we do not prevent privacy violations that occur as
a result of the protocol output; instead, we guarantee that no additional
information is revealed.
If the underlying oblivious transfer protocol (used by the data owner
to obtain wire-key representations of the records in his database) is se-
cure against an actively malicious chooser, and the server’s homomorphic
encryption scheme (an instance of which is used during the the oblivi-
ous attribute selection protocol) can be verified as well-formed by the
user, then our protocol is also secure against an actively malicious data
owner. Recall that the data owner plays the role of an (oblivious) circuit
evaluator in our protocol.
To obtain security against an actively malicious user, it is necessary
to ensure that (a) the oblivious transfer protocol is secure against an
actively malicious sender, (b) the user’s instance of the homomorphic
encryption scheme (used when obliviously counting the sizes of record
categories) can be verified as well-formed by the server, and (c) the server
can verify that the garbled circuits created by the user are well-formed.
Note that the latter can be achieved at a constant additional cost under
certain number-theoretic assumptions (e.g., see [12]).

6 Performance

Recall that there are |A| attributes, each of which has a branching factor
of m; |R| feature attributes; |T | transactions, and depth D. In evaluat-
ing the performance of our protocol, we distinguish between online and
offline computations. Offline computations include generating md+2 ho-
momorphic encryptions of “0” for each of the |T |(|R| − d) augmented
decision trees used at tier d (user); generating homomorphic encryptions
of |T ||A| attributes for oblivious attribute selection (server); garbling of
circuits to compute the Gini index and ArgMax (server), and garbling
of circuits to compute attribute selection (user). Note that the num-
ber of gates in these circuits depends on |A| and |T | (Gini), |T | and m
(ArgMax), and |A| and m (attribute selection).

sym. enc sym. dec homo. dec homo. add OTs eval

user 114s 0s 7.1s 0.07s
185.2s

4.2s
server 0s 171s 8.0s 41.9s 12.7s

Table 1. Runtime for the “cars” dataset from the UC Irvine repository.

The following cryptographic operations must be performed online once
per protocol execution: |T ||R| homomorphic additions for oblivious at-
tribute selection (user); |T ||R| homomorphic decryptions (server); and
|T |(|R| + 1) logm 1-out-of-2 oblivious transfers so that the server can
learn wire values for his attribute shares. In addition, the following are
performed online to construct tier d (with md nodes): symmetric encryp-
tion of (

Pd+2
h=1m

h) garbled nodes for each of |T |(|R|−d) augmented deci-
sion trees (user); d+2 symmetric decryptions and evaluations of garbled
attribute selection circuits for each of |T |(|R| − d) augmented decision
trees (server); |T |(md+2) homomorphic additions (server); md+2 homo-
morphic decryptions (user); evaluation of md(|R| − d) garbled circuits
to compute the Gini index at tier d (user); and evaluation of md garbled
circuits for ArgMax at tier d (user).

Because performance is often a concern when using secure multi-party
computation techniques, we evaluated a prototype Java implementation
of our protocol. Fig. 3 shows how the online time required by our protocol
depends on several parameters of the decision-tree learning problem: the
branching factor, the number of feature attributes, the number of tiers,
and the number of records. Online time is independent of the number
of attributes. This makes our protocol especially well-suited to scenarios
where the set of feature attributes is a relatively small subset drawn from
a very large set of total attributes. Note that this is the common case
for databases with demographic information.

To evaluate performance on real-world data, we applied our protocol to
the “cars” dataset from the UC Irvine machine-learning repository. This
dataset has 1728 records and 7 attributes with a branching factor of 4.
We chose to build a tree with 5 feature attributes and 2 tiers. Table 1
shows the time consumed by different online components of our protocol.

This experiment demonstrates that, unlike generic techniques, our pro-
tocol can be successfully applied to problem instances of realistic size.

7 Conclusions

The field of privacy-preserving data mining has two approaches to the
problem of executing machine-learning algorithms on private data. One
approach sanitizes the data through suppression and generalization of
identifying attributes and/or addition of noise to individual data entries.
The sanitized version is then published so that interested parties can run
any data-mining algorithm on it.

The other approach is to use cryptographically secure multi-party com-
putation techniques to construct protocols that compute the same answer
as would have been obtained in the non-private case. This approach has

 5

 10

 15

 20

 25

 30

 35

 2 2.5 3 3.5 4 4.5 5

O
nl

in
e

tim
e

(s
)

Branching factor

Online time vs. branching factor

client
server

 10

 15

 20

 25

 30

 35

 4 5 6 7 8 9 10

O
nl

in
e

tim
e

(s
)

Number of features

Online time vs. number of features

client
server

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 2 2.5 3 3.5 4

O
nl

in
e

tim
e

(s
)

Number of tiers

Online time vs. number of tiers

client
server

 20

 25

 30

 35

 40

 45

 50

 55

 60

 40 60 80 100 120 140 160 180 200

O
nl

in
e

tim
e

(s
)

Number of records

Online time vs. number of records

client
server

Fig. 3. Online performance of the prototype implementation

typically been applied when the relationship between the parties is sym-
metric: for example, the database is partitioned between them and the
result of the protocol execution is that both parties learn the same output
based on the joint database. By contrast, in the sanitization approach,
the parties executing the data-mining algorithms do not have any data
of their own, while the database owner obtains no output at all.

Even if the data-mining algorithms are the same (e.g., classifier learning),
the privacy-preserving versions for the two settings are substantially dif-
ferent. We argue that settings where data are asymmetrically distributed
and only one party learns the output are very natural in real-world sce-
narios. In this paper, we show that it is possible to apply secure multi-
party computation techniques to these scenarios. Our protocol requires
several technical innovations (such as the ability to obliviously compute
the sizes of several record categories in a single pass over the database).
Unlike most designs in the literature, our protocol has been implemented,
and we demonstrated that it can be efficiently applied even to problem
instances of realistic size.

Acknowledgements. This paper is based upon work supported by the
NSF grants IIS-0534198 and CNS-0615104, and the ARO grant W911NF-
06-1-0316.

References

1. C. Aggarwal. On k-anonymity and the curse of dimensionality. In
VLDB, 2005.

2. D. Agrawal and C. Aggarwal. On the design and quantification of
privacy-preserving data mining algorithms. In PODS, 2001.

3. R. Agrawal and R. Srikant. Privacy-preserving data mining. In
SIGMOD, 2000.

4. A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy:
the SuLQ framework. In PODS, 2005.

5. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi-
fication and Regression Trees. Wadsworth, Belmont, 1984.

6. J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-
preserving remote diagnostics. In CCS, 2007.

7. V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati.
k-anonymity. Secure Data Management in Decentralized Systems,
2007.

8. W. Du and Z. Zhan. Building decision tree classifier on private data.
In ICDM, 2002.

9. C. Dwork and K. Nissim. Privacy-preserving data mining on verti-
cally partitioned databases. In CRYPTO, 2004.

10. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches
in privacy-preserving data mining. In PODS, 2003.

11. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted
data. In TCC, 2007.

12. S. Jarecki and V. Shmatikov. Efficient two-party secure computation
on committed inputs. In EUROCRYPT, 2007.

13. L. Kruger. Sfe-tools. http://pages.cs.wisc.edu/~lpkruger/sfe/,
2008.

14. K. LeFevre, D. DeWitt, and R. Ramakrishnan. Workload-aware
anonymization. In KDD, 2006.

15. N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and `-diversity. In ICDE, 2007.

16. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryp-
tology, 15(3):177–206, 2002.

17. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-
party computation. http://eprint.iacr.org/2004/175, 2004.

18. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam. `-diversity: Privacy beyond k-anonymity. In ICDE, 2006.

19. D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Halpern.
Worst-case background knowledge for privacy-preserving data pub-
lishing. In ICDE, 2007.

20. T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
21. M. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of indi-

viduals from shared database. In SIGMOD, 2007.
22. Netflix. Netflix Prize. http://www.netflixprize.com/, 2006.
23. P. Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT, 1999.
24. J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–

106, 1986.
25. V. Rastogi, D. Suciu, and S. Hong. The boundary between privacy

and utility in data publishing. In VLDB, 2007.
26. P. Samarati. Protecting respondents’ identities in microdata release.

IEEE Trans. on Knowledge and Data Engineering, 13(6), 2001.

27. L. Sweeney. k-anonymity: A model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

28. J. Vaidya and C. Clifton. Privacy-preserving decision trees over
vertically partitioned data. In DBSec, 2005.

29. J. Vaidya, M. Kantarcioglu, and C. Clifton. Privacy-preserving Naive
Bayes classification. The VLDB Journal, 17(4), 2008.

30. Z. Yang, S. Zhong, and R. Wright. Privacy-preserving classification
of customer data without loss of accuracy. In SDM, 2005.

31. A. Yao. How to generate and exchange secrets. In FOCS, 1986.

32. L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure under
realistic assumptions: Privacy versus optimality. In CCS, 2007.

A Privacy-preserving evaluation of decision
trees

Our subprotocol for privacy-preserving evaluation of decision trees is
inspired by [6], with several substantial modifications. In [6], attributes
can take one of a large number of different values, and each internal
node selects one of two children based on a threshold comparison. In
this paper’s setting, each attribute takes one of m values (m is relatively
small), and internal nodes have m children—one for each attribute value.

The privacy requirement is that this evaluation should be oblivious: the
evaluator should not learn anything about the structure of the tree except
the total number of nodes and the length of the evaluation path, nor
which of his attributes were considered during evaluation. To achieve the
former, the tree is represented as a set of encrypted nodes; decrypting
each node reveals the index of the next node (which depends on the value
of the attribute considered in the parent node) and the corresponding
decryption key. To hide which attribute is considered in each node, the
“oblivious attribute selection” protocol [6] splits each of the attributes
that will be used during evaluation into two random shares. The circuit
creator receives one share and the evaluator receives the other, without
learning to which of his attributes this share corresponds.

Each oblivious evaluation of an internal node results in moving control
to one of the m child nodes. Unlike in [6], where each node has only
two children, we are no longer able to encode the indices and decryption
keys for all possible child nodes in the garbled values corresonding to a
single output wire. Instead, we use log2 output wires for every internal
node. Each such node is implemented as a circuit which reassembles the
two shares of the attribute a considered in this node (aE + aC = a
mod m, where aE is the circuit evaluator’s share, and aC is the circuit
creator’s) and outputs the value of a using log2m output wires. As in the
standard Yao’s construction, each wire has two random keys associated
with it, representing, respectively, 0 and 1. These random keys are used
to encrypt a table with m randomly permuted rows (observe that there
is a 1:1 correspondence between the rows, all possible values of a, and all
possible combinations of bit values on the log2m output wires). For each
value of a, the encrypted row contains the index of and the decryption

key for the appropriate next node in the evaluation, encrypted under the
output-wire keys corresponding to the bit representation of a.
For instance, suppose that m = 4, so that each attribute takes values
from 0 to 3, and thus each internal node in the tree has 4 children. We
represent each node by a gate with two output wires, w0, w1. Let w0

i and
w1
i be the random keys representing, respectively, 0 and 1 values for wire

i. If the bit representation of a is αβ, then evaluating this gate reveals
to the evaluator wα0 and wβ1 . Note that the evaluator does not learn a.
Let ha be the string containing the index and the decryption key for
the child node corresponding to the attribute value a. The gate is ac-
companied by a random permutation of the following 4 ciphertexts:
{{h0}w0

0
}w1

0
, {{h1}w1

0
}w0

1
, {{h2}w0

1
}w0

1
, {{h3}w1

1
}w1

1
. Observe that the

keys wα0 and wβ1 decrypt exactly one row of this table, namely, the row
corresponding to a. By decrypting it, the evaluator can proceed to the
correct child node.
We need another technical trick so that the decision-tree evaluation pro-
tocol can be efficiently invoked multiple times on the same set of at-
tributes. Recall that as the result of oblivious attribute selection, the
evaluator has a random share for each of his attributes that will be used
in some internal decision node. For internal nodes, we have the evaluator
provide as input shares aE1 , ..., a

E
r of all attribute values, while the cre-

ator’s input is the index i of the attribute considered by the node, and
the creator’s share aCi of this attribute value. The output of the circuit
is aEi + aCi (mod m).
With this circuit logic, the evaluator’s input is the same for all nodes
of all trees created during our protocol. This enables a substantial effi-
ciency gain. Instead of generating random wire keys for each bit of the
evaluator’s input into each circuit (as in the standard Yao’s method), we
generate them once, and then re-use this representation for the evalua-
tor’s input wires in all circuits. This allows us to perform only a single
set of oblivious transfers to provide the evaluator with the the wire keys
corresponding to his input bits. These wire keys are then used in all of
the garbled circuits.

B Horizontal Selection

In many applications of decision-tree learning, the user wants to con-
struct a classifier using the records defined by a certain predicate, i.e.,
from a horizontal subset of the database. In other words, the user selects
not only a subset of columns to use as features, but also a subset of
records (rows), and the protocol should construct a classifier using the
data in the selected records only.
This is motivated by real-world scenarios. For example, a proprietary
database may contains records for diverse individuals living throughout a
nation, while the user is interested in building a marketing classifier only
for consumers from a particular region or those belonging to a particular
demographic. In this scenario, the user may wish to keep his record
selection criterion private so as to avoid revealing his marketing strategy
to competitors. Previous protocols for privacy-preserving decision-tree

learning cannot solve this problem because, by their design, they reveal
the resulting classifier to all protocol participants.
In this scenario, we assume that the user does not have a vertical parti-
tion of the database, and, since he does not have access to the database,
cannot explicitly specify the indices of the records which satisfy his se-
lection criterion. Instead, he must choose them implicitly by providing a
selection predicate to be evaluated on all records in the database. The
user wants to keep this predicate private from the server. Depending on
the scenario, the number of records which satisfy the predicate may need
to be revealed to the user, to the server, to both, or to neither.
We will outline an extension to our protocol for the variant in which the
number of satisfying records is revealed to the user but not to the server.
This variant has some useful properties: the user may not believe that
the classifier is of high quality if it is based on too few records (thus it is
helpful for the user to know how many records were used in constructing
the tree), while the server learns a significant amount of information
about the user’s predicate if he learns the number of records which satisfy
the predicate (thus the user may prefer to have this number hidden from
the server). This particular variant does present some privacy risks to
the server: if the predicate, which is hidden from the server, selects a
very small subset of records, then the resulting decision tree will leak a
lot of information about the records in the selected subset.
The extension involves two components: (1) an additional phase of
the protocol, in which the user learns the indices of all records in the
database that satisfy his selection predicate, and (2) a slight change
to the category-counting phase to ensure that the records not selected
by the user’s predicate are not counted as belonging to any category,
and thus do not participate in determining the best attributes for each
internal decision node of the classifier.
To determine the indices of the records that satisfy the predicate, the
user and the server engage in an instance of the oblivious decision-tree
evaluation protocol described in Appendix A. The user’s predicate is
represented as a decision tree which evaluates a record and labels it with
true if it satisfies the predicate and false otherwise. This decision tree
is then obliviously evaluated for each record in the database T . The
protocol of Appendix A guarantees that the results are revealed only to
the user, and not to the data owner.
The records not satisfying the predicate (i.e., those which the user’s
predicate evaluated to false) should not be used when constructing the
classifier. Recall from Sect. 5.2 that in order to determine the best split-
ting attribute for each internal node of the classifier, the user builds
decision trees whose labels are vectors of ciphertexts that all encrypt
“0,” except for a single ciphertext—in the position corresponding to the
record’s category—that encrypts “1.” For the records that he wants to
“turn off,” the user simply constructs the tree where the labels contain
encryptions of “0” only. This effectively means that the corresponding
record is not included in any of the Tk(n : i, j) categories, and thus has
no influence on the Gini index computation which is used to find the
best splitting attribute.

