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Abstract. Despite its benefit in a wide range of applications, data mining techniques also have raised a number of
ethical issues. Some such issues include those of privacy, data security, intellectual property rights, and many others. In

this paper, we address the privacy problem against unauthorized secondary use of information. To do so, we introduce
a family of geometric data transformation methods (GDTMs) which ensure that the mining process will not violate

privacy up to a certain degree of security. We focus primarily on privacy preserving data clustering, notably on partition-

based and hierarchical methods. Our proposed methods distort only confidential numerical attributes to meet privacy
requirements, while preserving general features for clustering analysis. Our experiments demonstrate that our methods

are effective and provide acceptable values in practice for balancing privacy and accuracy. We report the main results

of our performance evaluation and discuss some open research issues.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: Hybrid Data Perturbation Method, PPC solutions taxonomy, Privacy-preserving clustering, Random pro-

jection.

1. INTRODUCTION

Huge volumes of detailed personal data are regularly collected and analyzed by applications using
data mining. Such data include shopping habits, criminal records, medical history, credit records,
among others [Brankovic and Estivill-Castro 1999]. On the one hand, such data is an important asset
to business organizations and governments both to decision making processes and to provide social
benefits, such as medical research, crime reduction, national security, etc. [Jefferies 2000]. On the
other hand, analyzing such data opens new threats to privacy and autonomy of the individual if not
done properly.

The threat to privacy becomes real since data mining techniques are able to derive highly sensitive
knowledge from unclassified data that is not even known to database holders. Worse is the privacy
invasion occasioned by secondary usage of data when individuals are unaware of “behind the scenes”
use of data mining techniques [John 1999]. As an example in point, Culnan [Culnan 1993] made a
particular study of secondary information use which she defined as “the use of personal information
for other purposes subsequent to the original transaction between an individual and an organization
when the information was collected.” The key finding of this study was that concern over secondary
use was correlated with the level of control the individual has over the secondary use. As a result,
individuals are increasingly feeling that they are losing control over their own personal information
that may reside on thousands of file servers largely beyond the control of existing privacy laws. This
scenario has led to privacy invasion on a scale never before possible.

The challenging problem that we address in this paper is: how can we protect against the abuse
of the knowledge discovered from secondary usage of data and meet the needs of organizations and
governments to support decision making or even to promote social benefits? We claim that a solution
for such a problem requires two vital techniques: anonymity [Klösgen 1995; Reiter and Rubin 1998] to
remove identifiers (e.g. names, social insurance numbers, addresses, etc.) in the first phase of privacy
protection, and data transformation to protect some sensitive attributes (e.g. salary, age, etc.) since
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the released data, after removing identifiers, may contain other information that can be linked with
other datasets to re-identify individuals or entities [Samarati 2001]. In this paper, we focus on the
latter technique. Specifically, we consider the case in which confidential numerical attributes are
distorted in order to meet privacy protection in clustering analysis, notably on partition-based and
hierarchical methods.

The intuition behind such methods is to partition a dataset into new classes (clusters) of similar
objects. The goal is to group objects to achieve high similarity between objects within individual
clusters (interclass similarity) and low similarity between objects that belong to different clusters
(intraclass similarity) [Han and Kamber 2001]. Clustering is widely used in many applications such
as customer behaviour analysis, targeted marketing, and many others.

A motivating example for the privacy problem in data clustering could be found in business col-
laboration. Two or more companies have a very large dataset of records of their customers’ buying
activities. These companies decide to cooperatively conduct data clustering on their datasets for their
mutual benefit since this collaboration brings them an advantage over other competitors. The goal is
to subdivide a market into distinct subsets of customers where any subset may be selected as a mar-
ket to be reached with a distinct marketing mix. However, these companies would like to transform
their data in such a way that the privacy of their customers cannot be violated. Is it possible for
these companies to benefit from such collaboration by sharing their data while preserving the private
information of their customers?

To address privacy concerns in clustering analysis, we need to design specific data transformation
methods that enforce privacy without loosing the benefit of mining. The proposed data perturbation
methods in the literature pertain to the context of statistical databases [Adam and Worthmann 1989;
Denning and Schlörer 1983; Castano et al. 1995; Muralidhar et al. 1999]. They do not apply to data
clustering as they have limitations when the perturbed attributes are considered as a vector in the
Euclidean space. For instance, let us suppose that some confidential attributes (e.g. salary and age)
are represented by points in a 2D discrete space for clustering analysis. If we distort these attributes
using any perturbed methods proposed in the literature, the clusters obtained after perturbing the
data would be very different from those mined from the original database. The main problem is that
many points would move from one cluster to another jeopardizing the notion of similarity between data
points in the global space. Consequently, this introduces the problem of misclassification. Therefore,
the perturbation has to be uniformly applied to all attributes to guarantee safeguarding the global
distances between data points, or even to slightly modify the distance between some points.

In this paper, we introduce a family of geometric data transformation methods (GDTMs) that
distort confidential numerical attributes in order to meet privacy protection in clustering analysis.
We benefit from the work on image processing [Gonzalez and Woods 1992]. Of particular interest is
work on geometric transformation of digital images, notably the idea behind translation, scaling, and
rotation. We also benefit from the work on statistical databases, particularly the intuition behind
data distortion. We show that our transformation data methods are simple, independent of clustering
algorithms, preserve the general features of the clusters, and have a sound mathematical foundation.
Although our approach does not provide a comprehensive solution to the problem of privacy preserva-
tion in data mining, we argue that our approach is a simple building block toward privacy preserving
data clustering. To date, such schemata have not been explored in detail.

This paper is organized as follows. Related work is reviewed in Section 2. In Section 3, we provide
the basic concepts that are necessary to understand the scope and the issues addressed in this paper.
We introduce our family of geometric data transformation methods in Section 4. In Section 5, we
present the experimental results and discussion. Finally, Section 6 presents our conclusions and a
discussion of future work.
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2. RELATED WORK

Some effort has been made to address the problem of privacy preservation in data mining. This effort
has been restricted basically to classification and association rules. The class of solutions for this
problem rely on data partition, data sanitization, randomization and data distortion. In this work,
we focus on the last two categories.

Estivill-Castro and Brankovic [Estivill-Castro and Brankovic 1999] introduced a method for ensuring
partial disclosure while allowing a miner to explore detailed data. In this approach, one first builds a
local decision tree over true data, and then swaps values amongst records in a leaf node of the tree to
generate randomized training data. The swapping is performed over the confidential attribute only,
where the confidential attribute is the class label. This approach deals with a trade-off: statistical
precision against security level, i.e., the closer to the root, the higher the security but lower the
precision.

Agrawal and Srikant [Agrawal and Srikant 2000] considered the case of building a decision-tree
classifier from training data in which the values of individual records have been perturbed, by adding
random values from a probability distribution. The resulting data records look very different from the
original records and the distribution of data values is also very different from the original distribution.
While it is not possible to accurately estimate original values in individual data records, they proposed
a novel reconstruction procedure to accurately estimate the distribution of original data values. The
distribution reconstruction process naturally leads to some loss of information, but the authors argue
that this is acceptable in many practical situations.

In [Agrawal and Aggarwal 2001], the authors proposed a new algorithm for distribution reconstruc-
tion which is more effective than that proposed in [Agrawal and Srikant 2000], in terms of the level of
information loss. This algorithm, based on Expectation Maximization (EM) algorithm, converges to
the maximum likelihood estimate of the original distribution based on the perturbed data, even when
a large amount of data is available. They also pointed out that the EM algorithm was in fact identical
to the Bayesian reconstruction proposed in [Agrawal and Srikant 2000], except for the approximation
partitioning values into intervals.

Evfimievski et al. [Evfimievski et al. 2002] proposed a framework for mining association rules from
transactions consisting of categorical items in which the data has been randomized to preserve privacy
of individual transactions. The idea behind this approach is that some items in each transaction are
replaced by new items not originally present in this transaction. In doing so, some true information
is taken away and some false information is introduced, which seems to have obtained a reasonable
privacy protection. In general, this strategy is feasible to recover association rules, less frequent than
originally, and preserve privacy using a straightforward uniform randomization. Although privacy is
preserved on average, confidential information leaks through uniform randomization for some fraction
of transactions.

More recently, the data distortion approach has been applied to boolean association rules [Rizvi
and Haritsa 2002]. Again, the idea is to modify data values such that reconstruction of the values
for any individual transaction is difficult, but the rules learned on the distorted data are still valid.
One interesting feature of this work is a flexibility definition of privacy. For instance, the ability to
correctly guess a value of ‘1’ from the distorted data can be considered a greater threat to privacy
than correctly learning a ‘0’. This scheme is based on probabilistic distortion of user data, which is
composed of a privacy metric and an analytical formula. Although this framework provides a high
degree of privacy to the user and retains a high level of accuracy in the mining results, mining the
distorted database can be, apart from being error-prone, significantly more expensive in terms of both
time and space as compared to mining the original database.

The work presented here differs from the related work in some aspects, as follows: First, we aim
to address the problem of privacy preservation in clustering analysis. To our best knowledge, this
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problem has not been considered so far. Our proposed solution and those ones in the related work
are complementary. Second, we study the impact of our data transformation schemes in the original
database by quantifying how much information is preserved after transforming a database. So, our
focus is not only on protecting individual data records, but also on providing accurate data for
clustering analysis.

3. BASIC CONCEPTS

In this section, we briefly review the basic concepts that are necessary to understand the issues
addressed in this paper. We start by giving the main idea behind data perturbation, followed by the
basics of geometric transformation of digital images.

3.1 The Basics of Data Perturbation

The methods based on the data perturbation approach fall into two main categories known as
probability-distribution category and fixed-data perturbation category [Adam and Worthmann 1989;
Castano et al. 1995]. In the probability-distribution category, the security-control method replaces
the original database by another sample from the same distribution or by the distribution itself. On
the other hand, the fixed-data perturbation methods discussed in the literature have been developed
exclusively for either numerical data or categorical data. These methods usually require that a dedi-
cated transformed database is created for secondary use, and they have evolved from a simple method
for a single attribute to multi-attribute methods. In all cases, such methods involve the addition of
noise term with the mean 0, and hence result in no bias in estimating the mean. In this paper, we
focus on fixed-data perturbation methods.

In its simplest form, fixed-data perturbation methods involve perturbing a confidential attribute X
by adding some noise term e to result in the perturbed attribute Y . When this method is used for
multi-attribute databases, each attribute in the database is perturbed independently of the others. In
general, this method is described as Y = X + e, where e is drawn from some probability distribution
(e.g. Uniform, Normal) with mean 0 and a known variance to the data [Adam and Worthmann 1989].
These methods are referred to as Additive Data Perturbation (ADP). Apart from ADP methods,
Multiplicative Data Perturbation (MDP) can also be used to provide aggregate statistics, while pro-
tecting the privacy of individuals represented in a database. In such a method, for a single confidential
attribute X, the perturbed attribute Y is described as Y = Xe, where e has a mean of 1.0 and a
specified variance [Muralidhar et al. 1999]. Since the mean of e = 1.0, there is no bias in estimating
the mean. When the MDP method is used to distort multiple confidential attributes, each attribute
must be perturbed independently of other attributes.

Fixing the perturbation of an attribute, using either ADP or MDP methods, prevents users from
improving the estimates of the value of a field in a record by repeating queries. For this reason these
methods are suitable for released databases [Castano et al. 1995; Muralidhar et al. 1999].

3.2 The Basics of Imaging Geometry

For the sake of simplicity, we provide the basics of imaging geometry in a 2D discrete space. However,
the foundations are scalable to other dimensions. A digital image a[m,n] described in a 2D discrete
space is derived from an analog image a(x, y) in a 2D continuous space through a sampling process
that is frequently referred to as digitization. The 2D continuous image a(x, y) is divided into N rows
and M columns. The intersection of a row and a column is termed a pixel. The value assigned to
the integer coordinates [m,n] with m = 0, 1, 2, ...,M − 1 and n = 0, 1, 2, ..., N − 1 is a[m,n] [Gonzalez
and Woods 1992].
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There are some transformations that can be applied to digital images to transform an input im-
age a[m,n] into an output image b[m,n]. In this work, we consider the transformations translation,
scaling, and rotation. We are expressing such transformations in a two-dimensional Cartesian coor-
dinate system, in which a point has coordinates denoted (X,Y ). The same transformations can be
extrapolated to high dimensional data spaces.

Translation is the task to move a point with coordinates (X,Y ) to a new location by using dis-
placements (X0, Y0). The translation is easily accomplished by using a matrix representation v′ = Tv,
where T is a 2 × 3 transformation matrix depicted in Figure 1A, v is the vector column containing
the original coordinates, and v′ is a column vector whose coordinates are the transformed coordinates.
This matrix form is also applied to Scaling and Rotation.

Scaling by factors Sx and Sy along the X and Y axes is given by the transformation matrix seen
in Figure 1B.

Rotation is a more challenging transformation. In its simplest form, this transformation is for the
rotation of a point about the coordinate axes. Rotation of a point in a 2D discrete space by an
angle θ is achieved by using the transformation matrix depicted in Figure 1C. The rotation angle θ is
measured clockwise and this transformation affects the values of X and Y coordinates.

[
1 0 X0

0 1 Y0

] [
Sx 0

0 Sy

] [
cos θ sin θ

−sin θ cos θ

]
(A) (B) (C)

Fig. 1. (A) Transformation matrix for Translation; (B) Transformation matrix for Scaling; (C) Transformation matrix
for Rotation.

4. THE FAMILY OF GEOMETRIC DATA TRANSFORMATION METHODS

In this section, we introduce the family of geometric data transformation methods (GDTM) that we
propose to meet privacy preservation in clustering analysis.

4.1 Basic Definitions

For this paper, the data is assumed to be a matrix Dmn, where each of the m rows is an observation,
Oi, and each observation contains values for each of the n attributes, Ai. The matrix Dmn may
contain categorical and numerical attributes. However, our GDTMs rely on d numerical attributes,
such that d ≤ n. Thus, the m× d matrix, which is subject to transformation, can be thought of as a
vector subspace V in the Euclidean space such that each vector vi ∈ V is the form vi = (a1, ..., ad),
1 ≤ i ≤ d, where ∀i ai is one instance of Ai, ai ∈ <, and < is the set of real numbers.

The vector subspace V must be transformed before releasing the data for clustering analysis in
order to preserve privacy of individual data records. To transform V into a distorted vector subspace
V ′, we need to add or even multiply a constant noise term e to each element vi of V . To do so, we
define a uniform noise vector as follows:

Definition 1 Uniform Noise Vector. Let N = (〈o1 : OP1, e1 : NT1〉, ..., 〈od : OPd, ed : NTd〉)
be a uniform noise vector, and for 1 ≤ i ≤ d, let Di(OP ) be the set of operations associated with
the domain of OPi, and let Di(E) be the set of noisy term associated with the domain of NTi. An
instance of N that satisfies the domain constraints is a vector of the form: {[〈o1 : op1, e1 : nt1〉, ..., 〈od :
opd, ed : ntd〉] | ∀i opi ∈ Di(OP ), nti ∈ Di(E)}.
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The set of operations Di(OP ) takes the values {Mult, Add, Rotate}, where Mult and Add correspond
to a multiplicative and additive noise applied to one confidential attribute respectively. Rotate, denoted
by Ai � Aj , implies that all instances of the attributes Ai and Aj are rotated by a common angle. In
the next sections, we exemplify the use of the uniform noise vector N .

Given the uniform noise vector N , we can transform the vector subspace V into the vector subspace
V ′ by using a geometric transformation function.

Definition 2 Geometric Transformation Function. Let V be a d-dimensional vector sub-
space, where each element vi, 1 ≤ i ≤ d, is the form vi = (a1, ..., ad), and each ai in vi is one
observation of a confidential numerical attribute, and let N = (〈op1, e1〉, ..., 〈opd, ed〉) be a uniform
noise vector. We define a geometric transformation function f as a bijection of d-dimensional space
into itself which transforms V into V ′ by distorting all attributes of vi in V according to its corre-
sponding i-th element in N. Each vector v′ of V ′ is the form v′ = (〈a1 [op1] e1〉, ..., 〈ad [opd] ed〉), and
∀i, 〈ai [opi] ei〉 ∈ <.

In this paper, we consider the following geometric transformation functions: Translation, Scaling,
and Rotation whose corresponding operations are Add, Mult, and Rotate. Based on the previous
definitions, we can define a geometric transformation method (GDTM) as follows:

Definition 3 Geometric Data Transformation Method. A geometric data transformation
method of dimension d is a ordered pair, defined as GDTM = (V, f) where:

—V ⊆ <d is a representative vector subspace of data points to be transformed;
—f is a geometric transformation function, f : <d → <d.

For our GDTMs, the inputs are the vectors of V , composed of confidential numerical attributes
only, and the uniform noise vector N , while the output is the transformed vector subspace V ′. Our
GDTM algorithms require only one scan, in most cases. All transformation data algorithms have
essentially two major steps: (1) Identify the noise term and the operation that must be applied to
each confidential attribute. This step refers to the instantiation of the uniform noise vector N ; (2)
Based on the uniform noise vector N , defined in the previous step, transform V into V ′ using a
geometric transformation function.

4.2 The Translation Data Perturbation Method

In the Translation Data Perturbation Method, denoted by TDP, the observations of confidential
attributes in each vi ∈ V are perturbed using an additive noise perturbation. The noise term applied
to each confidential attribute is constant and can be either positive or negative. The set of operations
Di(OP ) takes only the value {Add} corresponding to a additive noise applied to each confidential
attribute. The sketch of the TDP algorithm is given as follows:
TDP Algorithm
Input: V , N
Output: V ′

Step 1. For each confidential attribute Aj in V , where 1 ≤ j ≤ d do
1. Select the noise term ej in N for the confidential attribute Aj

2. The j-th operation opj ← {Add}
Step 2. For each vi ∈ V do

For each aj in vi = (a1, ..., ad), where aj is the observation of the j-th attribute do
1. a′

j ← Transform(aj , opj , ej)
End

To illustrate how the TDP method works, let us consider the sample relational database in Figure
2A. In this example, the column O# represents observations. Note that we have removed the identi-
fiers. Suppose we are interested in grouping individuals based on the attributes Age and Salary, but
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the attributes are confidential. To do so, we apply our TDP method. The uniform noise vector for
this example is N = (〈Add,−3〉, 〈Add, 5000〉). Figure 2B shows the distorted database, and the points
before and after distortion can be seen in Figure 2C.

(A) (B)

(C)

Fig. 2. (A): A sample relational database; (B): A translation data perturbation corresponding to the original sample;

(C): The representation of the points before “+” and after “o” the perturbation.

4.3 The Scaling Data Perturbation Method

In the Scaling Data Perturbation Method, denoted by SDP, the observations of confidential attributes
in each vi ∈ V are perturbed using a multiplicative noise perturbation. The noise term applied to
each confidential attribute is constant and can be either positive or negative. The set of operations
Di(OP ) takes only the value {Mult} corresponding to a multiplicative noise applied to each confiden-
tial attribute. The sketch of the SDP algorithm is given as follows:
SDP Algorithm
Input: V , N
Output: V ′

Step 1. For each confidential attribute Aj in V , where 1 ≤ j ≤ d do
1. Select the noise term ej in N for the confidential attribute Aj

2. The j-th operation opj ← {Mult}
Step 2. For each vi ∈ V do

For each aj in vi = (a1, ..., ad), where aj is the observation of the j-th attribute do
1. a′

j ← Transform(aj , opj , ej)
End

To illustrate how the SDP method works, let us consider the sample relational database in Figure
3A. Note that this sample database is identical to the one presented in Figure 2A, but it is repeated
for clarity. In this example, we are interested in grouping individuals based on the attributes Age
and Salary. The uniform noise vector for this example is N = (〈Mult, 0.94〉, 〈Mult, 1.035〉). Figure
3B shows the distorted database, and the points before and after distortion can be seen in Figure
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3C. Note that the values of the attribute age are rounded to be consistent with the values in the real
world.

(A) (B)

(C)

Fig. 3. (A): A sample relational database; (B): A scaling data perturbation corresponding to the original sample; (C):

The representation of the points before “+” and after “o” the perturbation.

4.4 The Rotation Data Perturbation Method

The Rotation Data Perturbation Method, denoted by RDP, works differently from our previous meth-
ods. In this case, the noise term is an angle θ. The rotation angle θ, measured clockwise, is the trans-
formation applied to the observations of the confidential attributes. The set of operations Di(OP )
takes only the value {Rotate} that identifies a common rotation angle between the attributes Ai and
Aj . Unlike the previous methods, RDP may be applied more than once to some confidential attributes.
For instance, when a rotation transformation is applied this affects the values of two coordinates. In
a 2D discrete space, the X and Y coordinates are affected. In a 3D discrete space or higher, two
variables are affected and the others remain without any alteration. This requires that one or more
rotation transformations are applied to guarantee that all the confidential attributes are distorted in
order to preserve privacy. The sketch of the RDP algorithm is given as follows:
RDP Algorithm
Input: V , N
Output: V ′

Step 1. For every two attributes Aj , Ak in V , where 1 ≤ j ≤ d and 1 ≤ k ≤ d do
1. Select an angle θ for the confidential attributes Aj , Ak

2. The j-th operation opj ← {Rotate}
3. The k-th operation opk ← {Rotate}

Step 2. For each vi ∈ V do
For each al in vi = (a1, ..., ad), where al is the observation of the l-th attribute do

1. a′
l ← Transform(al, opl, el)

End

For the sake of simplicity, we illustrate how the RDP method works in a 2D discrete space. Let
us consider the sample relational database in Figure 4A Iidem to Figure 2A and Figure 3A). In this
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(A) (B)

(C)

Fig. 4. (A): A sample relational database; (B): A rotation data perturbation corresponding to the original sample; (C):
The representation of the points before “+” and after “o” the perturbation.

example, we are interested in grouping individuals based on the attributes Age and Salary. The
uniform noise vector for this example is N = (〈Age � Sal, 13.7〉). Figure 4B shows the distorted
database, and the points before and after distortion can be seen in Figure 4C. Note that the values
of the attribute age are rounded to be consistent with the values in the real world.

4.5 The Hybrid Data Perturbation Method

The Hybrid Data Perturbation Method, denoted by HDP, combines the strength of our previous
methods: TDP, SDP and RDP. In this scheme, we select randomly one operation for each confidential
attribute that can take the values {Add, Mult, Rotate} in the set of operations Di(OP ). Thus, each
confidential attribute is perturbed using either an additive, a multiplicative noise term, or a rotation.
The sketch of the HDP algorithm is given as follows:
HDP Algorithm
Input: V , N
Output: V ′

Step 1. For each confidential attribute Aj in V , where 1 ≤ j ≤ d do
1. Select the noise term ej in N for the confidential attribute Aj

2. The j-th operation opj ← {Add,Mult,Rotation}
Step 2. For each vi ∈ V do

For each aj in vi = (a1, ..., ad), where aj is the observation of the j-th attribute do
1. a′

j ← Transform(aj , opj , ej)
End

Let us consider the sample relational database in Figure 5A to illustrate how the HDP method
works. In this example, we are interested in grouping individuals based on the attributes Age and
Salary. The uniform noise vector for this example is N = (〈Add, 2〉, 〈Mult, 0.93〉). Rotation is not used
in this example. Figure 5B shows the distorted database, and the points before and after distortion
can be seen in Figure 5C.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



46 · S. R. M. Oliveira and O. R. Zäıane

(A) (B)

(C)

Fig. 5. (A): A sample relational database; (B): A hybrid data perturbation corresponding to the original sample; (C):
The representation of the points before “+” and after “o” the perturbation.

5. EXPERIMENTAL RESULTS

In this section, we present the results of our performance evaluation. We start by describing the
methodology that we used. Then we study the effectiveness of our GDTMs under partition-based and
hierarchical methods followed by an analysis of the privacy level.

5.1 Methodology

We compared our GDTMs against each other and with respect to the following benchmarks: (1) the
result of clustering analysis without transformation; (2) the results of Additive Data Perturbation
Method, ADP, that has been widely used for inference control in statistical databases [Denning and
Schlörer 1983; Castano et al. 1995; Muralidhar et al. 1999].

To measure the effectiveness of our methods, we performed two series of experiments. In the first
series, we compared the effectiveness of our methods with respect to partition-based clustering method.
To do so, we selected K-Means, the most well-known and commonly used partitioning method [Han
and Kamber 2001]. The second series of experiments focused on a hierarchical clustering method. For
this case, we used the Chameleon algorithm that explores dynamic modeling in hierarchical clustering
[Karypis et al. 1999].

All the experiments were conducted on a PC, AMD Athlon 1900/1600 (SPEC CFP2000 588), with
1.2 GB of RAM running a Linux operating system. We used five different synthetic datasets, each
with 6000 points in a 2D discrete space. For each dataset, we analyzed a specific number of clusters
ranging from 2 to 6 clusters. The effectiveness is measured in terms of the proportion of the points
that are grouped in the same clusters after we apply a transformation on the data. We refer to such
points as legitimate ones.

For the sake of simplicity, we considered the transformation of two confidential attributes: Age
and Salary. The noise term e for the ADP scheme has a Gaussian distribution with mean µ = 0
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and variance σ2 = 100. The uniform noisy vector for TDP, SDP, HDP, and RDP are N(TDP ) =
(〈Add,−3〉, 〈Add, 6, 235〉), N(SDP ) = (〈Mult, 0.93〉, 〈Mult, 0.89〉), N(RDP ) = (〈Age � Sal, 356.71〉)
and N(HDP ) combines the three previous ones.

5.2 Measuring Effectiveness

The effectiveness is measured in terms of the number of legitimate points grouped in the original and
the distorted databases. After transforming the data, the clusters in the original databases should be
equal to those ones in the distorted database. However, this is not always the case, and we have some
potential problems after data transformation: either a noise data point end-up clustered, a point from
a cluster becomes a noise point, or a point from a cluster migrates to a different cluster. Since the
clustering methods we used, K-Means and Chameleon, do not consider noise points, we concentrate
only on the third case. We call this problem Misclassification Error, and it is measured in terms of
the percentage of legitimate data points that are not well-classified in the distorted database. Ideally,
the misclassification error should be 0%. The misclassification error, denoted by ME , is measured as
follows:

ME =
1
N
×

k∑
i=1

(|Clusteri(D)| − |Clusteri(D′)|)

where N represents the number of points in the original dataset, k is the number of clusters under
analysis, and |Clusteri(X)| represents the number of legitimate data points of the ith cluster in the
database X.

We should point out that our formula for misclassification error does not simply consider the
number of data points in each cluster. Rather, we take into account the actual cluster of each point.
We compare the cluster label of each point before and after distortion.

Method K-Means
K = 2 K = 3 K = 4 K = 5 K = 6

TDP 0.00 0.00 0.07 0.07 0.07

SDP 0.00 0.03 0.06 0.08 0.08

RDP 0.02 0.15 0.15 0.17 0.13

HDP 0.02 0.08 0.10 0.08 0.08

ADP 12.02 27.09 31.45 34.18 39.75

Method Chameleon

K = 2 K = 3 K = 4 K = 5 K = 6

TDP 0.00 0.00 0.00 0.00 0.00

SDP 0.00 0.03 0.03 0.00 0.00

RDP 0.03 0.10 0.10 0.03 0.03

HDP 0.00 0.00 0.00 0.00 0.00

ADP 17.33 24.93 36.04 37.92 40.76

Table I. Results of misclassification for K-Means and Chameleon

In Table I, we have the results of misclassification for K-Means and Chameleon. We compared
our GDTMs with respect to the original dataset. We also compared our techniques against the ADP
method [Adam and Worthmann 1989]. To accomplish that, we ran K-means and Chameleon 20
times and collected the average. Our transformation methods resulted in between 0% and less than
0.2% while ADP reached between 12% and 40% of misclassification with K-Means and between 17%
and 41% with Chameleon. This clearly shows that ADP is inadequate for transforming data before
clustering since this method jeopardizes the notion of similarity between data points. As a result,
the data points are literally shuffled leading to significant misclassification. Thus, hereafter we will
present the results of our GDTMs only.
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As can be seen in Table I, our techniques TDP, SDP, RDP and HDP yielded very good results
when we compare the cluster analysis of the original and the distorted datasets. In the worst case,
only 0.17% of the points are misclassified. In general, TDP and SDP yielded the best values, in terms
of accuracy, in all different datasets when running K-Means. However, HDP and RDP presented
very good results as well. It is good to point out that these values represent the average of 20 trials.
If we considered the statistical mode (i.e. the value occurring most frequently in a series of the
20 observations), all our schemes would yield 0%. These small differences are due to the fact that
depending on the distribution of the points, K-means is not completely deterministic. On the other
hand, the results obtained from Chameleon in a series of 20 observations were basically the same.
Note that in the worst case, only 0.10% of the points are misclassified for RDP and 0.03% for SDP,
while TDP and HDP yielded the best values in all the cases. These results suggest that our techniques
perform well for comprising the infeasible goal of having both complete privacy and complete accuracy
for clustering analysis.

5.3 Quantifying Privacy

While perturbation methods guarantee that complete disclosure will not occur, they may be suscep-
tible to partial disclosure [Adam and Worthmann 1989]. However, fixed-data perturbation methods
minimize this problem since such methods prevent users from improving estimates of a particular
attribute by repeating queries. It is therefore necessary to measure the level of security provided by
a specific perturbation technique when quantifying privacy by such a method.

Traditionally, the privacy provided by a perturbation technique has been measured as the variance
between the actual and the perturbed values [Adam and Worthmann 1989; Muralidhar et al. 1999].
This measure is given by V ar(X − Y ) where X represents a single original attribute and Y the
distorted attribute. This measure can be made scale invariant with respect to the variance of X by
expressing security as Sec = V ar(X − Y )/V ar(X).

Clearly, the above measure to quantify privacy is based on how closely the original values of a
modified attribute can be estimated. Table II shows the privacy provided by our GDTMs, where for
each ordered pair [α1, α2], α1 represents the privacy level for the attribute age, and α2 represents the
privacy level for the attribute salary. These values are expressed in percentage.

Method Privacy Level (%)
K = 2 K = 3 K = 4 K = 5 K = 6

TDP [0.00; 0.00] [0.00; 0.00] [0.00; 0.00] [0.00; 0.00] [0.00; 0.00]

SDP [0.49; 1.21] [0.49; 1.21] [0.49; 1.21] [0.49; 1.21] [0.49; 1.21]

RDP [0.84; 0.12] [0.69; 0.79] [0.83; 0.13] [0.78; 0.13] [0.51; 0.21]

HDP [0.00; 0.64] [0.00; 0.64] [0.00; 0.64] [0.00; 0.64] [0.00; 0.64]

Table II. Results of privacy provided by the GDTMs

Based on the results showed in Table II, one may claim that our GDTMs could be restrictive in
terms of privacy. Indeed, TDP may be sometimes restrictive since the variance of a single attribute
always yields 0% of privacy level, even though the individual data records look very different from the
original ones. In addition, the results provided by SDP, HDP, and RDP are slightly better than those
ones provided by TDP. Apart from the problem of low privacy, a geometric transformation function
is invertible so that one may estimate the real values of the data under clustering. To cope with these
limitations, we introduce one special procedure to improve the privacy level of our GDTMs in the
next section.
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5.4 Improving Privacy

The procedure to improve the privacy level of our GDTMs is applied to the transformed database
only. This procedure is composed of three steps as follows: Step 1: We select a probability distribution
(e.g. Normal, Uniform) for each confidential numerical attribute A′

i in V ′, where 1 ≤ i ≤ d. Step 2:
We randomly select ρ% of the vectors v′

i ∈ V ′ to reinforce privacy by adding some noise term to each
observation of v′

i according to the corresponding probability distribution selected in the previous step.
We refer to the parameter ρ as privacy enhance. Step 3: Based on the previous steps, we distort the
selected vectors v′

i by using the idea behind the Additive Data Perturbation Method (ADP).

To illustrate how the procedure to improve privacy works, we set the privacy enhance ρ = 5%. The
distribution selected for the attribute Age was Uniform with parameters [-12, 18] and the distribution
selected for the attribute Salary was Normal with mean µ = 15,000 and variance σ2 = 144,000. This
example yielded the results of misclassification showed in Table III.

Method K-Means

K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.05 1.18 1.67 1.65 2.13

SDP 1.28 1.18 1.87 1.45 2.42

RDP 1.12 1.23 1.65 1.43 2.08

HDP 1.17 1.17 1.52 1.48 2.25

Method Chameleon
K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.15 1.12 1.43 1.33 2.10

SDP 1.27 1.20 1.83 1.50 2.25

RDP 1.17 1.18 1.68 1.33 2.10

HDP 1.20 1.15 1.48 1.43 2.12

Table III. Results of misclassification for K-Means and Chameleon with privacy enhance ρ = 5%

As can be seen in Table III, the misclassification error was slightly affected when compared with
Table I. However the privacy level of our GDTMs, presented in Table IV, was improved as expected.
These figures clearly show that privacy preserving data mining deals with a trade-off: privacy and
accuracy, which are typically contradictory, and improving one usually incurs a cost in the other.

Method Privacy Level (%)

K = 2 K = 3 K = 4 K = 5 K = 6

TDP [3.25; 6.80] [2.25; 4.71] [2.13; 4.38] [1.55; 3.40] [1.29; 4.43]

SDP [3.72; 8.04] [2.73; 5.95] [2.60; 5.60] [2.05; 4.59] [1.81; 5.64]

RDP [4.08; 6.93] [2.96; 5.54] [3.03; 4.52] [2.25; 3.53] [1.76; 4.64]

HDP [3.25; 7.46] [2.25; 5.37] [2.13; 5.03] [1.50; 4.03] [1.27; 5.07]

Table IV. Results of privacy provided by the GDTMs with privacy enhance ρ = 5%

The results of privacy and accuracy can vary depending on the parameter ρ. For example, setting
ρ to 10% and keeping the probability distribution of the attributes the same, we slightly decreased
the accuracy of our GDTMs as shown in Table V. On the other hand, we improved the privacy level
as can be seen in Table VI.

It seems that setting ρ = 10%, in our experiments, we could achieve a good compromise between
privacy and accuracy. However, the value of ρ depends on the application since the level of privacy
can be interpreted in different contexts.

In general, using our procedure to improve privacy, the results revealed that our GDTMs provide
practically acceptable values for privacy preserving data clustering. Most importantly, increasing the
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Method K-Means
K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.93 2.13 2.58 3.58 3.68

SDP 2.13 2.22 3.87 3.77 4.74

RDP 1.93 2.00 3.77 3.15 5.02

HDP 1.95 2.05 3.22 3.37 4.02

Method Chameleon
K = 2 K = 3 K = 4 K = 5 K = 6

TDP 1.25 1.53 3.67 3.07 3.82

SDP 1.98 1.97 3.82 3.35 4.40

RDP 1.42 1.68 3.70 3.08 5.15

HDP 1.62 1.63 3.77 3.15 3.90

Table V. Results of misclassification for K-Means and Chameleon with privacy enhance ρ = 10%

Method Privacy Level (%)

K = 2 K = 3 K = 4 K = 5 K = 6

TDP [7.19; 11.78] [4.97; 8.17] [4.71; 7.60] [3.37; 5.87] [2.86; 7.67]

SDP [7.71; 13.15] [4.47; 9.36] [5.24; 8.90] [3.92; 7.21] [3.40; 8.93]

RDP [8.14; 11.85] [5.64; 8.92] [5.52; 7.69] [4.15; 5.98] [3.32; 7.83]

HDP [7.19; 12.54] [4.97; 8.80] [4.71; 8.31] [3.29; 6.61] [2.80; 8.35]

Table VI. Results of privacy provided by the GDTMs with privacy enhance ρ = 10%

value of ρ, hardly can someone reverse the transformation applied to the data. In particular, SDP
achieved the best values for accuracy and privacy level in most of experiments. However, the other
methods also achieved reasonable results. It should be noticed that a security administrator is able to
improve the balance between clustering accuracy and privacy by tuning the parameters of the uniform
noise vector N and privacy enhance ρ properly.

6. CONCLUSIONS

In this paper, we have introduced a family of geometric data transformation methods (GDTMs) which
ensure that the mining process will not violate privacy up to a certain degree of security. Our methods
were designed to address the privacy preservation in clustering analysis, notably on partition-based
and hierarchical methods. Our proposed methods distort only confidential numerical attributes to
meet privacy requirements, while preserving general features for clustering analysis. To our best
knowledge this is the first effort toward a building block solution for the problem of privacy preserving
data clustering. The other approaches in the literature have been restricted basically to address the
privacy problem in the context of classification and association rules.

Our contributions in this paper can be summarized as follows: First, we introduced and validated
our GDTMs. Our experiments demonstrated that our methods are effective and provide practically
acceptable values for balancing privacy and accuracy. We also showed that the traditional ADP
method adopted to successfully provide security to databases against disclosure of confidential infor-
mation has limitations when the perturbed attributes are considered as a vector in the Euclidean
space. The main problem is that such a method strongly introduces changes in the distance of points
in the Euclidean space leading to the crucial problem of misclassification. Our second contribution
refers to the performance measure that quantifies the fraction of data points which are preserved in
the corresponding clusters in the distorted database. Misclassification Error measures the amount of
legitimate data points that are not well-classified in the distorted database. In addition, we intro-
duced a procedure to improve the privacy level of our GDTMs and validated such procedure in our
experiments.

The work presented herein puts forward the need for new concepts and methods to address privacy
protection against data mining techniques, notably in data clustering. We address a scenario in which
some numerical confidential attributes of a database are distorted and made available for clustering
analysis. In this context, users are free to use their own tools so that the restriction for privacy has
to be applied before the mining phase on the data itself by data transformation. The transformed
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database is available for secondary use and must hold the following restrictions: (1) the distorted
database must preserve the main features of the clusters mined from the original database; (2) an
appropriate balance between clustering accuracy and privacy must be guaranteed.

The results of our investigation clearly indicate that our methods achieved reasonable results and
are promising. Currently, we are extending our work in two directions: (a) we are investigating the
impact of our GDTMs on other clustering approaches, such as density-based; (b) we are also designing
new methods for privacy preserving clustering when considering the analysis of confidential categorical
attributes, which requires further exploration.
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