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Abstract

The growth of the Internet opens up tremendous oppor-
tunities for cooperative computation, where the answer de-
pends on the private inputs of separate entities. Sometimes
these computations may occur between mutually untrusting
entities. The problem is trivial if the context allows the con-
duct of these computations by a trusted entity that would
know the inputs from all the participants; however if the
context disallows this then the techniques of secure multi-
party computation become very relevant and can provide
useful solutions.

Statistic analysis is a widely used computation in real
life, but the known methods usually require one to know the
whole data set; little work has been conducted to investigate
how statistical analysis could be performed in a cooperative
environment, where the participants want to conduct sta-
tistical analysis on the joint data set, but each participant
is concerned about the confidentiality of its own data. In
this paper we have developed protocols for conducting the
statistic analysis in such kind of cooperative environment
based on a data perturbation technique and cryptography
primitives,
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National Science Foundation, and by sponsors of the Center for Education
and Research in Information Assurance and Security.

1 Introduction

The growth of the Internet opens up tremendous oppor-
tunities for cooperative computation, where the answer de-
pends on the private inputs of separate entities. Sometimes
these computations may occur between mutually untrusting
entities. The problem is trivial if the context allows the con-
duct of these computations by a trusted entity that would
know the inputs from all the participants; however if the
context disallows this then the techniques of secure multi-
party computation become very relevant and can provide
useful solutions.

In this paper we investigate how various statistical analy-
sis problems could be solved in a cooperative environment,
where two parties need to conduct statistical analysis on the
joint data set. We call the new problems secure two-party
statistical analysis problems.

Basic statistic analysis operations consist of computing
the mean value of a data set, the standard deviation, the cor-
relation coefficient between two different features, the re-
gression line and so on. If one knows the full data set, one
can use the standard equations described in most of the fun-
damental statistics books to conduct the analysis. However,
in the cooperative environment, one might need to conduct
statistical analysis without being able to know the full data
set because of the privacy constraints. The following exam-
ples illustrate this kind of situation:

� A school wants to investigate the relationship between
people’s intelligence quotient (IQ) scores and their an-
nual salaries. The school has its students’ IQ scores,
but does not have students’ salary information; there-



fore the school needs to cooperate with companies that
hire the students, but those companies are not willing
to disclose the salary information. On the other hand,
the school cannot give students’ IQ scores to their em-
ployers either.

� Two retail companies A and B each have a data set
about their own customers’ buying behaviors. Both
companies want to conduct statistical analysis on their
joint data set for mutual benefit. Since these two com-
panies are competitors in the market, they do not want
to disclose the detailed customers’ information to the
other company, but they feel comfortable disclosing
only the aggregate information.

The standard statistical analysis methods cannot easily
extend to solve the above problems; we need methods that
support statistical analysis in a privacy-preserving manner.
The goal of this paper is to develop protocols for this type
of cooperative statistical analysis.

There are two common ways of cooperation in practice.
For example, suppose X and Y are two different features
of a sample, and they are both used for a statistical analysis.
In a cooperative environment, sometimes both cooperating
parties can observe both X and Y features of the sample,
while at some other time, one party can only observe X

feature of the sample, and the other party can only observe
Y feature of the same sample. The difficulties of coop-
eration in these situations are different. Therefore, based
on whether the two cooperating parties could observe the
same features of a sample or not, we formalized two differ-
ent models for the secure two-party statistical analysis: the
heterogeneous model and the homogeneous model. As we
will show later, the solutions to these two different models
are very different.

To conduct the statistical analysis in a cooperative envi-
ronment, data exchange between the two parties is needed.
However, to preserve the privacy of the data, no party
should send its data to the other party in plain. In our solu-
tion, we use a data perturbation technique, namely we add
random numbers to the original data to disguise the original
data. Conducting statistical analysis based on the perturbed
data surely produces a perturbed and therefore wrong result.
In this paper we have demonstrated various ways to remove,
without compromising the privacy, the perturbation from
the result to produce a correct result. Our techniques are
based on several cryptography primitives, such as 1-out-of-
n Oblivious Transfer protocol and homomorphic encryption
schemes.

Most of the statistical analysis computation investigated
in this paper involve scalar product of two private vectors,
each of which comes from a different party; therefore, we
have studied the private scalar product problem indepen-
dently, and use the solution to build the protocols for the

statistical analysis problem. In addition to being used in
this paper, the private scalar product protocol could also be
used to solve many other secure two-party problems, such
as secure two-party computational geometry problems dis-
cussed in [9]. We will discuss the private scalar product
problem independently in the paper.

In this preliminary study, we assume that all parties are
semi-honest; informally speaking, a semi-honest party is
one who follows the protocol properly with the exception
that it keeps a record of all its intermediate computations
and might try to derive other parties’ private inputs from
the record. This semi-honest model is one of the widely
adopted models in the studies of general secure multi-party
computation problem.

Section 2 describes related work and some cryptography
primitives will be used in this paper. Section 3 presents an
important building block, the scalar product protocol, which
will be used later to solve secure two-party statistical anal-
ysis problems. Section 4 presents the definitions of secure
two-party statistical analysis problems and their solutions.
Finally section 5 concludes this paper and proposes several
future research directions.

2 Related Work

Secure Multi-Party Computation

The secure two-party statistical analysis problems de-
scribed in the previous section are actually special cases
of the general Secure Multi-party Computation problem
[13, 6, 3]. Generally speaking, a secure multi-party com-
putation problem deals with computing a function on any
input, in a distributed network where each participant holds
one of the inputs, ensuring that no more information is re-
vealed to a participant in the computation than can be com-
puted from that participant’s input and output. The history
of the multi-party computation problem is extensive since
it was introduced by Yao [13] and extended by Goldreich,
Micali, and Wigderson [6], and by many others.

In theory, the general secure multi-party computation
problem is solvable using circuit evaluation protocol [13, 6,
3]. In the circuit evaluation protocol, each functionality F
is represented as a Boolean circuit, and then the parties run
a protocol for every gate in the circuit. While this approach
is appealing in its generality, the communication complex-
ity of the protocol it generates depends on the size of the
circuit that expresses the functionality F to be computed,
and in addition, involves large constant factors in their com-
plexity. Therefore, as Goldreich points out in [3], using the
solutions derived by these general results for special cases
of multi-party computation can be impractical; special so-
lutions should be developed for special cases for efficiency
reasons. This is our motivation of seeking special solutions



to statistical analysis problems, solutions that are more effi-
cient than the general theoretical solutions.

1-out-of-N Oblivious Transfer

Goldreich’s circuit evaluation protocol uses the 1-out-of-
N Oblivious Transfer, and our protocols in this paper also
heavily depends on this protocol. An 1-out-of-N Oblivi-
ous Transfer protocol [4, 2] refers to a protocol where at
the beginning of the protocol one party, Bob has N inputs
X1; : : : ; XN and at the end of the protocol the other party,
Alice, learns one of the inputs Xi for some 1 � i � N of
her choice, without learning anything about the other inputs
and without allowing Bob to learn anything about i. An
efficient 1-out-of-N Oblivious Transfer protocol was pro-
posed in [10] by Naor and Pinkas. By combining this pro-
tocol with the scheme by Cachin, Micali and Stadler [5], the
1-out-of-N Oblivious Transfer protocol could be achieved
with polylogarithmic (in n) communication complexity.

Homomorphic Encryption Schemes

We need a public-key cryptosystems with a homomor-
phic property for some of our protocols: Ek(x) � Ek(y) =
Ek(x + y). Many such systems exist, and examples in-
clude the systems by Benaloh [1], Naccache and Stern
[7], Okamoto and Uchiyama [11], Paillier [12], to men-
tion a few. A useful property of homomorphic encryption
schemes is that an “addition” operation can be conducted
based on the encrypted data without decrypting them.

3 New Building Blocks

In this section, we introduce a secure two-party proto-
cols: the scalar product protocol. This protocol serves as
an important building block in solving the secure two-party
statistical analysis problems considered later in the paper.
This protocol is first presented in [9].

3.1 Scalar Product Protocol

We use X � Y to denote the scalar product of two vec-
tors X = (x1; : : : ; xn) and Y = (y1; : : : ; yn), X � Y =Pn

k=1 xkyk. Our definition of the problem is slightly differ-
ent and more general: We assume that Alice has the vector
X and Bob has the vector Y , and the goal of the protocol
is for Alice (but not Bob) to get X � Y + v where v is ran-
dom and known to Bob only (of course without either side
revealing to the other the private data they start with). Our
protocols can easily be modified to work for the version of
the problem where the random v is given ahead of time as
part of Bob’s data (the special case v = 0 puts us back in
the usual scalar product definition). The purpose of Bob’s

random v is as follows: If X �Y is a partial result that Alice
is not supposed to know, then giving her X � Y + v pre-
vents Alice from knowing the partial result (even though the
scalar product has in fact been performed); later, at the end
of the multiple-step protocol, the effect of v can be effec-
tively “subtracted out” by Bob without revealing v to Alice
(this should become clearer with example protocols that we
later give).

Problem 1. (Scalar Product Problem) Alice has a vector
X = (x1; : : : ; xn) and Bob has a vector Y = (y1; : : : ; yn).
Alice (but not Bob) is to get the result of u = X � Y + v

where v is a random scalar known to Bob only.

We have developed two protocols, and we will present
both of them here.

3.1.1 Scalar Product Protocol 1

Consider the following naive solution: Alice sends p vectors
to Bob, only one of which is X (the others are arbitrary).
Then Bob computes the scalar products between Y and each
of these p vectors. At the end Alice uses the 1-out-of-p
oblivious transfer protocol to get back from Bob the product
of X and Y . Because of the way oblivious transfer protocol
works, Alice can decide which scalar product to get, but
Bob could not learn which one Alice has chosen. There
are many drawbacks to this approach: If the value of X
has certain public-known properties, Bob might be able to
differentiateX from the other p�1 vectors, but even if Bob
is unable to recognize X his chances of guessing it is 1 out
of p, unacceptable in many situations.

The above drawbacks can be fixed by dividing vector X
into m random vectors V1; : : : ; Vm of which it is the sum,
i.e., X =

Pm

i=1 Vi. Alice and Bob can use the above naive
method to compute Vi �Y +ri, where ri is a random number
and
Pn

i=1 ri = v (see Figure 1). As a result of the protocol,
Alice gets Vi � Y + ri for i = 1; : : : ;m. Because of the
randomness of Vi and its position, Bob could not find out
which one is Vi. Certainly, there is 1 out p possibility that
Bob can guess the correct Vi, but since X is the sum of
m such random vectors, the chance that Bob guesses the
correct X is 1 out pm, which could be very small if we
chose pm large enough.

After Alice gets Vi � Y + ri for i = 1; : : : ; n, she can
compute

Pm

i=1(Vi � Y + ri) = X � Y + v. The detailed
protocol is described in the following:

Protocol 1. (Two-Party Scalar Product Protocol 1)
Inputs: Alice has a vector X = (x1; : : : ; xn), and Bob has
a vector Y = (y1; : : : ; yn).
Outputs: Alice (but not Bob) gets X � Y + v where v is a
random scalar known to Bob only.

1. Alice and Bob agree on two numbers p and m, such
that pm is large enough.



private vector:  yprivate vector: x
random number: v = r1 + r2 + r3 + r4

x = v1+v2+v3+v4

v3v2 v4v1

v1 y+r1, v2 y+r2, 

v3 y+r3,

v4

v1

v2

v3

v4 y+r4

Alice gets: x y + r1) + (v2 y + r2) + (v3 y + r3) + (v4 y + r4)y + v  = (v1

Alice Bob

hiding v1,v2,v3,v4
among random vectors

1-out-of-n
Oblivious Transfer

Figure 1. Scalar Product Protocol 1

2. Alice generates m random vectors, V1; : : : ; Vm, such
that X =

Pm

j=1 Vi.

3. Bob generates m random numbers r1; : : : ; rm such
that v =

Pm

j=1 rj .

4. For each j = 1; : : : ;m, Alice and Bob conduct the
following sub-steps:

(a) Alice generates a secret random number k, 1 �
k � p.

(b) Alice sends (H1; : : : ; Hp) to Alice, where Hk =
Vj , and the rest of Hi’s are random vectors. Be-
cause k is a secret number known only to Alice,
Bob does not know the position of Vj .

(c) Bob computesZj;i = Hi�Y +rj for i = 1; : : : ; p.

(d) Using the 1-out-of-p Oblivious Transfer proto-
col, Alice gets Zj= Zj;k= Vj � Y + rj , while
Bob learns nothing about k.

5. Alice computes u =
Pm

j=1 Zj = X � Y + v.

How is privacy achieved:

� If Bob chooses to guess, his chance of guessing the
correct X is 1 out of pm.

� The purpose of rj is to add randomness to Vj � Y , thus
preventing Alice from deriving information about Y .

The communication complexity of the above protocols
is O(mp). We can improve it to O(m + p) by using the
following scheme: Alice sends V1; : : : ; Vm andH1; : : : ; Hp

altogether to Bob then doing m-out-of-(m + p) oblivious
transfer. The probability of Bob guessing correct X is now
1 out C(m;m + p), which could be small enough if we
choose an appropriate value for p.

3.1.2 Scalar Product Protocol 2

Our next solution does not rely on 1-out-of-n Oblivious
Transfer cryptography primitive as the previous one does,
but is instead based on a homomorphic public key system.
In the following discussion, we define �(X) as another vec-
tor whose elements are random permutation of those of vec-
tor X .

We begin with two observations. First, a property of the
scalar productX �Y is that �(X) ��(Y ) = X �Y , regardless
of what � is. Secondly, if Bob sends a vector �(V ) to Alice,
where � and V are known only to Bob, Alice’s chance of
guessing the position of any single element of the vector V
is 1 out of n (n is the size of the vector); Alice’s chance of
guessing the positions of all of the elements of the vector V
is 1 out of n!.

A naive solution would be to let Alice get both �(X)
and �(Y ) but not �. Let us ignore for the time being the
drawback that Alice gets the items of Y in permuted order,
and let us worry about not revealing � to Alice: Letting
Alice know �(X) allows her to easily figure out the per-
mutation function � from knowing both X and �(X). In
order to avoid this problem, we want to let Alice know only
�(X + Rb) instead of �(X), where Rb is a random vector
known only to Bob. Because of the randomness of X +R b,
to guess the correct �, Alice’s chance is only 1 out of n!.
Therefore to get the final scalar product, Bob only needs
to send �(Y ) and the result of Rb � Y to Alice, who can
compute the result of the scalar product by using

X � Y = �(X +Rb) � �(Y )� Rb � Y

Now we turn our attention to the drawback that giving
Alice �(Y ) reveals too much about Y (for example, if Alice
is only interested in a single element of the vector Y , her



chance of guessing the right one is an unacceptably low 1
out of n). One way to fix this is to divide Y to m random
pieces, V1; : : : ; Vm, with Y = V1 + : : : + Vm; then Bob
generates � random permutations �1; : : : ; �m (one for each
“piece” Vi of Y ) and lets Alice know �i(Vi) and �i(X +
Rb) for i = 1; : : : ;m. Now in order to guess the correct
value of a single element of Y , Alice has to guess the correct
position of Vi in each one of the m rounds; the possibility
of a successful guessing becomes 1 out of nm.

Now, let us consider the unanswered question: how
could Alice get �(X + Rb) without learning � or Rb? We
do this with a technique based on a homomorphic pub-
lic key system, that was used in [8] in a different con-
text (to compute the minimum value in a vector that is the
difference of Alice’s private vector and Bob’s private vec-
tor). Recall that an encryption scheme is homomorphic if
Ek(x) � Ek(y) = Ek(x + y). A good property of ho-
momorphic encryption schemes is that “addition” opera-
tion can be conducted based on the encrypted data with-
out decrypting them. Based on the homomorphic public
key system, we have the following Permutation Protocol
(where, for a vector Z = (z1; : : : ; zn), we define E(Z) =
(E(z1); : : : ; E(zn)), D(Z) = (D(z1); : : : ; D(zn))):

Protocol 2. (Permutation Protocol)
Inputs: Alice has a vector X . Bob has a permutation �

and a vector R.
Output: Alice gets �(X +R).

1. Alice generates a key pair for a homomorphic public
key system and sends the public key to Bob. The corre-
sponding encryption and decryption is denoted as E(�)
and D(�).

2. Alice encrypts X = (x1; : : : ; xn) using her public key
and sends E(X) = (E(x1); : : : ; E(xn)) to Alice.

3. Bob computes E(R), then computes E(X) �E(R) =
E(X + R); Bob then permutes E(X + R) using the
random permutation function �, thus getting �(E(X+
R)); Bob sends the result of �(E(X +R)) to Alice.

4. Alice computes D(�(E(X + R))) = �(D(E(X +
R))) = �(X +R).

Based on Secure Two-Party Permutation Protocol, we
have developed the following scalar product protocol:

Protocol 3. (Secure Two-Party Scalar Product Protocol 2)
Inputs: Alice has a secret vector X , Bob has a secret

vector Y .
Output: Alice getsX �Y +v where v is a random scalar

known to Bob only.

1. Bob’s set up:

(a) Bob divides Y to m random pieces, s.t. Y =
V1 + : : :+ Vm.

(b) Bob generates m random vectors R1; : : : ; Rm,
let v =

Pm

i=1 Vi �Ri.

(c) Bob generates m random permutations
�1; : : : ; �m.

2. For each i = 1; :::;m, Alice and Bob do the following:

(a) Using Secure Two-Party Permutation Protocol,
Alice gets �i(X +Ri) without learning either �i
or Ri.

(b) Bob sends �i(Vi) to Alice.

(c) Alice computes Zi = �i(Vi) � �i(X + Ri) =
Vi �X + Vi �Ri

3. Alice computes u =
Pm

i=1 Zi =
Pm

i=1 Vi � X +Pm

i=1 Vi �Ri = X � Y + v

How is privacy achieved:

� The purpose ofRi is to prevent Alice from learning �i.

� The purpose of �i is to prevent Alice from learning Vi.
Although Alice learns a random permutation of the V i,
she does not learn more because of the randomness of
Vi. Without �i, Alice could learn each single value of
Vi.

� If Alice chooses to guess, in order to successfully
guess all of the elements in Y , her chance is ( 1

n!
)m.

� Alice’s chance of successfully guessing just one ele-
ments of Y is 1 out of nm. For example, in order to
guess the kth element of Y , Alice has to guess the the
corresponding elements in �i(Vi) for all i = 1; : : : ;m.
Because for each single i, the possibility is 1 out of n,
the total possibility is 1 out of nm.

� A drawback of this protocol is that the information
about

Pn

i=1 yi is disclosed because the random per-
mutation does not help to hide this information.

3.1.3 Implementation Issues

During the implementation, we need to consider the
padding issues because most of the encryption scheme re-
quire padding if the size of a number is smaller than the
expected size. For the security reason, A fixed padding can-
not be used because it makes brute force attack possible.
However, if random padding is used, how could Alice in
Protocol 2 get the value of x+ y (x is Alice’s number and y
is Bob’s number) without knowing how Bob pads his num-
ber y? We describe a padding scheme in the following:

Let p be the required size of a block for the encryp-
tion, and jxj � 1

3
p and jyj � 1

3
p. When encrypting



x, the encrypter randomly chooses a number r1 such that
jr1j = 2

3
p � 3. The encryption is conducted on 0x00r1.

When encrypting y, we choose a number r2 such that
jr2j = 2

3
p � 3. The encryption is conducted on 0y00r2.

In this way the encryption is a randomized one which can
resist brute force searching. On the other hand the homo-
morphic property is conditionally guaranteed, because we
have E(0x00r1)E(0y00r2)= E((x + y)0(r1 + r2)) and
x + y can be easily obtained from the decryption without
knowing either r1 or r2. Although this scheme does not
have the property of E(x1) : : : E(xn)= E(x1 + : : :+ xn),
it does not affect our protocols.

3.1.4 Complexity Analysis

In the following discussion, we assume that d is the number
of bits needed to represent any number in the inputs,

The communication cost of Protocol 3 is 4m � n � d,
where m is a security parameter (so that �0 = nm is large
enough). The communication cost of Protocol 1 is p � t �
n � d, where p � 2 and t are security parameters such that
�00 = pt is large enough. Setting �0 = �00 = � for the
sake of comparison, the communication cost of Protocol 3
is 4 log� nd

logn
and the communication cost of Protocol 1 is

p log �
log p

nd. When n is large, Protocol 3 is more efficient than
Protocol 1.

The communication cost of the circuit evaluation proto-
col is c � n � d2, where c is the number of bits sent over
the network in the 1-out-of-n Oblivious Transfer protocol.
Although the value of c depends on the specific implemen-
tation of the protocol, it is reasonable to assume c = d;
therefore the communication cost becomes n � d3, which is
significantly more expensive than our scalar product proto-
cols.

4 Secure Two-Party Statistical Analysis
Problems and Protocols

4.1 Statistical Analysis Background

Without loss of generality, throughout this paper, we will
use a data set D of size n that only consists of two different
features x and y, where D = f(x1; y1); : : : ; (xn; yn)g.

As a preliminary study on the topic of secure two-party
statistical analysis, we only focus on several basic statistical
analysis, which are reviewed in the the following:

� Mean Value: �x = 1
n

Pn

i=1 xi.

� Correlation Coefficient between x and y: Correlation
coefficient measures the strength of a linear relation-
ship between x and y, namely the degree to which
larger x values go with larger y values and smaller x

values go with smaller y values. Correlation coeffi-
cient r is computed using the following equation:

r =

Pn

i=1(xi � �x)(yi � �y)pPn

i=1(xi � �x)2
Pn

i=1(yi � �y)2

=

Pn

i=1 xiyi � n�x�yp
(
Pn

i=1 x
2
i � n�x2)(

Pn

i=1 y
2
i � n�y2)

� Linear Regression Line: The purpose of linear regres-
sion is to find the line that comes closest to your data.
More precisely, the linear regression program finds
values for the slope and intercept that define the line
that minimizes the sum of the square of the vertical
distances between the points and the line. The linear
regression line is represented by the following equa-
tion: y = bx+ (�y � b�x), where

b =

Pn

i=1 xiyi � n�x�yPn

i=1 x
2
i � n�x2

4.2 Two Models of Cooperation

There are many ways two parties could cooperate in per-
forming statistical analysis; Figure 2 describes two ways
of cooperation that are common in practice. The first one
is the heterogeneous cooperation model (Figure 2.b). In
this model, each party holds different features of a data set.
For example, if the whole data set consists of employees’
salaries and ages, in a heterogeneous model, Alice could
hold the salary information while Bob holds the age infor-
mation.

The second way of cooperation is the homogeneous co-
operation model (Figure 2.c). In this model, both party hold
the same features, but each party holds a different subset of
the data set. For instance, in a homogeneous model, Alice
could hold department A’s employee information while Bob
holds department B’s employee information.

Both of the above cooperation models are quite common
in practice. In this paper, we have formally defined se-
cure two-party statistical analysis problems corresponding
to these cooperation models, and have developed protocols
for those problems.

4.3 Heterogeneous Model

Problem 2. (Secure Two-Party Statistical Analysis Prob-
lem in Heterogeneous Model) Alice has a data set D1 =
(x1; : : : ; xn), and Bob has another data set D2 =
(y1; : : : ; yn), where xi is the value of variable x, and yi is
the corresponding value of variable y. Alice and Bob want
to find out the following:
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Figure 2. Two Models of Cooperation

1. correlation coefficient r between x and y.

2. regression line y = bx+ (�y � b�x).

Correlation Coefficient Let u =
pPn

i=1(xi � �x)2, and
v =
pPn

i=1(yi � �y)2. To compute the correlation coeffi-
cient r, we have the following equations:

r =

Pn

i=1(xi � �x)(yi � �y)pPn

i=1(xi � �x)2
Pn

i=1(yi � �y)2

=

nX
i=1

(xi � �x)

u

(yi � �y)

v

= (
x1 � �x

u
; : : : ;

xn � �x

u
) � (

y1 � �y

v
; : : : ;

yn � �y

v
)

This indicates that the task of computing the correlation
coefficient is reduced to a secure two-party scalar product
problem. It can be computed using Scalar Product Protocol
(Protocol 1 or 3).

Linear Regression Line Let w =
Pn

i=1 x
2
i � n�x2. Be-

cause computing w only requires the value of variable x,
it can be calculated by Alice alone. Therefore, we can use
the following equations to compute the slope of the linear
regression line:

b =

Pn

i=1(xi � �x)(yi � �y)Pn

i=1 x
2
i � n�x2

= (
x1 � �x

w
; : : : ;

xn � �x

w
) � (y1 � �y; : : : ; yn � �y)

This indicates that the task of computing b is also re-
duced to a secure two-party scalar product problem, and
thus can be solved using Scalar Product Protocol (Proto-
col 1 or 3). The details of the protocol are described in the
following:

Protocol 4. (Secure Two-Party Statistical Analysis Proto-
col in Heterogeneous Model))

Inputs: Alice has a data set D1 = (x1; : : : ; xn), and Bob
has another data set D2 = (y1; : : : ; yn).
Outputs: Alice and Bob gets r and b.

1. Alice computes �x, u =
pPn

i=1(xi � �x)2, and w =Pn

i=1 x
2
i � n�x2.

2. Bob computes �y and v =
pPn

i=1(yi � �y)2.

3. Alice and Bob use Scalar Product Protocol (Protocol 1
or 3) to compute

r = (
x1 � �x

u
; : : : ;

xn � �x

u
) � (

y1 � �y

v
; : : : ;

yn � �y

v
)

b = (
x1 � �x

w
; : : : ;

xn � �x

w
) � (y1 � �y; : : : ; yn � �y)

4.4 Homogeneous Model

Problem 3. (Secure Two-Party Statistical Analysis Prob-
lem in Homogeneous Model) Alice has a data set D1 =
((x1; y1); : : : ; (xk; yk)), and Bob has another data setD2 =
((xk+1; yk+1); : : : ; (xn; yn)), where xi is the value of vari-
able x, and yi is the corresponding value of variable y. Alice
and Bob want to find out the following:

1. mean value �x (resp., �y).

2. correlation coefficient r between x and y.

3. regression line y = bx+ (�y � b�x).

Let us first consider the above problem under the follow-
ing privacy constraint:

Privacy Constraint A: Alice does not want to
disclose the information about D1 other than
the aggregate information including

Pk

i=1 xi,Pk

i=1 x
2
i ,
Pk

i=1 yi,
Pk

i=1 y
2
i , and

Pk

i=1 xiyi.
Accordingly, Bob does not want to disclose the
information about D2 other than the aggregate
information including

Pn

i=k+1 xi,
Pn

i=k+1 x
2
i ,Pn

i=k+1 yi,
Pn

i=k+1 y
2
i , and

Pn

i=k+1 xiyi.



Under Privacy Constraint A, computing mean value is
trivial because both parties know

Pn

i=1 xi and
Pn

i=1 yi.
After getting �x and �y, computing the correlation coefficient
and the linear regression line is straightforward according
to the following equations:

r =
(
Pk

i=1 xi � yi +
Pn

i=k+1 xi � yi)� n � �x�yq
(
Pk

i=1 x
2
i +
Pn

i=k+1 x
2
i )� n�x2

�
1q

(
Pk

i=1 y
2
i +
Pn

i=k+1 y
2
i )� n�y2

b =
(
Pk

i=1 xi � yi +
Pn

i=k+1 xi � yi)� n � �x�y

(
Pk

i=1 x
2
i +
Pn

i=k+1 x
2
i )� n�x2

Now let us consider the same problem under a more strict
privacy constraint:

Privacy Constraint B: Alice and Bob do not
want to disclose too much information about their
data; more specifically, they do not want to dis-
close any more information than what can be de-
rived from �x, �y, r and b. This implies that Alice
can disclose

Pk

i=1 xi and
Pk

i=1 yi to Bob, and
Bob can disclose

Pn

i=k+1 xi and
Pn

i=k+1 yi to
Alice because those can be derived from �x and �y.

Under this privacy constraint, computing the mean value
is still trivial, but computing the correlation coefficient r
and the linear regression line is not. In what follows, we
demonstrate how to compute r (the linear regression line
can be computed similarly).

Let a1 =
Pk

i=1 xi �yi�k�x�y, b1 =
Pn

i=k+1 xi �yi�(n�

k)�x�y, a2 =
Pk

i=1 x
2
i �k�x2, b2 =

Pn

i=k+1 x
2
i � (n�k)�x2,

a3 =
Pk

i=1 y
2
i � k�y2, and b3 =

Pn

i=k+1 y
2
i � (n � k)�y2.

Note that ai is only known to Alice, and bi is only known to
Bob. We have

r2 =
(a1 + b1)

2

(a2 + b2)(a3 + b3)

=
(a21 + 2a1b1 + b21)

(a2a3 + b2a3 + a2b3 + b2b3)

By using Scalar Product Protocol, we can let Alice learn
u1 and u2, and let Bob learn v1 and v2, where u1 + v1 =
a21+2a1b1+ b21 and u2+ v2 = a2a3+ b2a3+ a2b3+ b2b3.
Now the question becomes how to compute u1+v1

u2+v2
.

Problem 4. (Division Problem) Alice has u1 and u2; Bob
has v1 and v2. Alice and Bob want to compute z = u1+v1

u2+v2
.

Alice should not learn v1 or v2; Bob should not learn u1 or
u2.

In the following protocol, we first let Bob generate two
random numbers r1 and r2; then we let Alice (only Alice)
get the result of z1 = r1(u1 + v1), z2 = r2(u2 + v2), and
r = r2

r1
. Therefore, Alice can compute z = rz1

z2
= u1+v1

u2+v2
.

If r1 and r2 are both real numbers, Alice could not learn v1
(resp., v2) from z1 (resp., z2).

Protocol 5. (Division Protocol)
Input: Alice has u1 and u2; Bob has v1 and v2.
Output: Alice and Bob both gets the result of z = u1+v1

u2+v2

1. Bob generates two random numbers r1 and r2, and
sends r = r2

r1
to Alice.

2. Alice and Bob use Scalar Product Protocol on (u1; 1)
and (r1; r1v1) to get z1 = r1(u1 + v1).

3. Alice and Bob use Scalar Product Protocol on (u2; 1)
and (r2; r2v2) to get z2 = r2(u2 + v2).

4. Alice computes z = r z1
z2

= u1+v1
u2+v2

, and sends it to Bob.

Protocol 6. (Secure Two-Party Statistical Analysis Proto-
col in Homogeneous Model)
Inputs: Alice has a data setD1 = ((x1; y1); : : : ; (xk ; yk)),
Bob has another data set D2 = ((xk+1; yk+1); : : : ;
(xn; yn)),
Outputs: Alice and Bob both get �x, �y, r and b.

1. Alice sends
Pk

i=1 xi and
Pk

i=1 yi to Bob.

2. Bob sends
Pn

i=k+1 xi and
Pn

i=k+1 yi to Alice.

3. Alice and Bob both compute �x and �y.

4. Alice computes a1 =
Pk

i=1 xi � yi � k�x�y, a2 =Pk

i=1 x
2
i � k�x2, and a3 =

Pk

i=1 y
2
i � k�y2.

5. Bob computes b1 =
Pn

i=k+1 xi � yi� (n� k)�x�y, b2 =Pn

i=k+1 x
2
i � (n�k)�x2, and b3 =

Pn

i=k+1 y
2
i � (n�

k)�y2.

6. Using Scalar Product Protocol, Alice gets u1 and u2,
while Bob gets v1 and v2, where u1 + v1 = a21 +
2a1b1+ b21 and u2+ v2 = a2a3+ b2a3+ a2b3+ b2b3.

7. Using Division Protocol, Alice and Bob gets r2 =
u1+v1
u2+v2

and b = a1+b1
a2+b2

.

5 Summary and Future Work

In this paper, we have studied the problem of how to
conduct the statistical analysis in a cooperative environment
where neither of the cooperating parties wants to disclose
its private data to the other party. Our preliminary work
has shown that this problem, the secure two-party statistical



analysis problem, could be solved in a way more efficient
than the general circuit evaluation approach.

Apart from those basic statistical analysis computations
studied in this paper, many other types of statistical analy-
sis are also used in practice. A future direction would be to
study more complicated statistical analysis computations,
such as nonlinear regression, variance analysis and so on.
Furthermore, we could also study, under the same secure
two-party context, various data analysis computations other
than the statistical analysis. Data mining is a very interest-
ing and more complicated data analysis computation that is
worth of study.
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