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Abstract

We present a privacy-preserving system for estimating
the size of inhomogeneous crowds, composed of pedestrians
that travel in different directions, without using explicit ob-
ject segmentation or tracking. First, the crowd is segmented
into components of homogeneous motion, using the mixture
of dynamic textures motion model. Second, a set of simple
holistic features is extracted from each segmented region,
and the correspondence between features and the number
of people per segment is learned with Gaussian Process re-
gression. e validate both the crowd segmentation algo-
rithm, and the crowd counting system, on a large pedes-
trian dataset (2000 frames of video, containing 49,885 total
pedestrian instances). Finally, we present results of the sys-
tem running on a full hour of video.

1. Introduction

There is currently a great interest in vision technology
for monitoring all types of environments. This could have
many goals, e.g. security, resource management, or adver-
tising. Yet, the deployment of vision technology is invari-
ably met with skepticism by society at large, given the per-
ception that it could be used to infringe on the individu-
als’ privacy rights. This tension is common in all areas of
data-mining [1, 2], but becomes an especially acute prob-
lem for computer vision for two reasons: 1) the perception
of compromised privacy is particularly strong for technol-
ogy which, by default, keeps a visual record of people’s ac-
tions; 2) the current approaches to vision-based monitoring
are usually based on object tracking or image primitives,
such as object silhouettes or blobs, which imply some at-
tempt to “identify” or “single out” the individual.

From the laymen’s point of view, there are many prob-
lems in environment monitoring that can be solved without
explicit tracking of individuals. These are problems where
all the information required to perform the task can be gath-

Figure 1. Examples of a low-resolution scene containing a sizable
crowd with inhomogeneous dynamics, due to pedestrian motion in
different directions.

ered by analyzing the environment holistically: e.g. mon-
itoring of traffic flows, detection of disturbances in public
spaces, detection of speeding on highways, or estimation of
the size of moving crowds. By definition, these tasks are
based on either properties of 1) the “crowd” as a whole,
or 2) an individual’s “deviation” from the crowd. In both
cases, to accomplish the task it should suffice to build good
models for the patterns of crowd behavior. Events could
then be detected as variationsin these patterns, and abnor-
mal individual actions could be detected as outliers with re-
spect to the crowd behavior. This would preserve the indi-
vidual’s identity until there is good reason to do otherwise.

In this work, we introduce a new formulation for surveil-
lance technology, which is averse to individual tracking and,
consequently, privacy preserving. We illustrate this new for-
mulation with the problem of pedestrian counting. This is a
canonical example of a problem that vision technology ad-
dresses with privacy invasive methods: detect the people in
the scene [3, 4, 5, 6, 7], track them over time [8, 9, 10], and
count the number of tracks. While a number of methods
that do not require explicit detection or tracking have been
previously proposed [11, 12, 13, 14, 15, 16, 17], they have
not fully established the viability of the privacy-preserving
approach. This has a multitude of reasons: from limited
applications to indoor environments with controlled light-
ing (e.g. subway platforms) [11, 12, 13, 14, 16]; to ignoring
the crowd dynamics (i.e. treating people moving in differ-
ent directions as the same) [11, 12, 13, 14, 15, 17]; to as-



sumptions of homogeneous crowd density (i.e. spacing be-
tween people) [16]; to measuring a surrogate of the crowd
size (e.g. crowd density or percent crowding) [11, 12, 16];
to questionable scalability to scenes involving more than a
few people [17]; to limited experimental validation of the
proposed algorithms [11, 12, 13, 15, 16].

Unlike these proposals, we show that there is in fact no
need for pedestrian detection, object tracking, or object-
based image primitives to accomplish the pedestrian count-
ing goal, even when the crowd is sizable and inhomoge-
neous, e.g. has sub-components with different dynamics, as
illustrated in Figure 1. In fact, we argue that, when consid-
ered under the constraints of privacy-preserving monitoring,
the problem actually appears to become simpler. We sim-
ply develop methods for segmenting the crowd into the sub-
parts of interest (e.g. groups of people moving in different
directions) and estimate the number of people by analyzing
holistic properties of each component. This is shown to be
quite robust and accurate.

The contributions of this paper are three-fold. First, we
present a privacy-preserving vision system for estimating
the size of inhomogeneous crowds that does not depend
on object detection or feature tracking. The system is also
privacy-preserving in the sense that it can be implemented
with hardware that does not produce a visual record of the
people in the scene, i.e. with special-purpose cameras that
output low-level features (e.g. segmentations, edges, and
texture). Second, we validate the system quantitatively on a
large dataset of pedestrian video, containing 49,885 pedes-
trian instances. Third, we demonstrate its robustness by pre-
senting results on an hour of video. To our knowledge, this
is the first privacy-preserving pedestrian counting system
that accounts for multiple pedestrian flows, and successfully
operates continuously in an outdoors, unconstrained, envi-
ronment for such time periods. The remainder of the pa-
per is organized as follows. In Section 2 we review related
work in crowd counting. In Section 3, we introduce a crowd
counting system based on motion segmentation and Gaus-
sian processes. Finally, we present the pedestrian database
and experimental results in Sections 4 and 5.

2. Related work

The taxonomy of crowd counting algorithms consists
of three paradigms: 1) pedestrian detection, 2) visual fea-
ture trajectory clustering, and 3) feature-based regression.
Pedestrian detection algorithms are based on boosting ap-
pearance and motion features [3], Bayesian model-based
segmentation [4], or integrated top-down and bottom-up
processing [5]. Because they detect whole pedestrians,
these methods tend to suffer in very crowded scenes with
significant occlusion, which has been addressed to some ex-
tent by adopting part-based detectors [6, 7].

The second paradigm counts people by identifying and
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Figure 2. Correspondence between crowd size and segmentation
area. The Gaussian process regression is plotted with the two
standard-deviations error bars (gray area).

tracking visual features over time. The feature trajectories
that exhibit coherent motion are clustered, and the number
of clusters is the estimate of the number of moving people.
Examples of this formulation include [8], which uses the
KLT tracker and agglomerative clustering, and [9], which
takes an unsupervised Bayesian approach.

Feature-based regression for crowd counting was first
applied to subway platform monitoring. These methods
typically work by: 1) subtracting the background; 2) mea-
suring various features of the foreground pixels, such as to-
tal area[11, 12, 14], edge count [12, 13, 14], or texture [16];
and 3) estimating the crowd density or crowd count by a
regression function, e.g. linear [11, 14], piece-wise linear
[13], or neural networks [12, 16]. In recent years, feature-
based regression has also been applied to outdoor scenes.
For example, [15] applies neural networks to the histograms
of foreground segment areas and edge orientations. [17] es-
timates the number of people in each foreground segment
by matching its shape to a database containing the silhou-
ettes of possible people configurations, but is only applica-
ble when the number of people in each segment is small
(empirically, less than 6).

3. Privacy preserving crowd counting

Figure 1 shows examples of a crowded scene on a pedes-
trian walkway. The goal of the proposed system is to esti-
mate the number of people moving in each direction, in a
privacy-preserving manner. Given a segmentation into the
two sub-components of the crowd, it is shown that crowd
size can indeed be estimated from low-level features ex-
tracted from each crowd segment. For example, as shown
in Figure 2, a simple feature such as the segmentation area
is approximately linear in the crowd size.

An outline of the crowd counting system appears in Fig-
ure 3. The video is segmented into crowd regions mov-
ing in different directions, using a mixture of dynamic tex-
tures. For each crowd segment, various features are ex-
tracted, while applying a perspective map to weight each
image location according to its approximate size in the real
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Figure 3. Crowd counting system: the scene is segmented into
crowds with different motions. Normalized features that account
for perspective are extracted from each segment, and the crowd
count for each segment is estimated with a Gaussian process.

scene. Finally, the number of people per segment is esti-
mated with Gaussian process regression. The remainder of
this section describes each of these system components.

3.1. Crowd segmentation

We adopt the mixture of dynamic textures [18] to seg-
ment the crowds moving in different directions. The video
is represented as collection of spatio-temporal patches (7 x
7 x 20 patches in all experiments reported in the paper),
which are modeled as independent samples from a mix-
ture of dynamic texture models [19]. The mixture model is
learned with the expectation-maximization (EM) algorithm
[18]. Video locations are then scanned sequentially, a patch
is extracted at each location, and assigned to the mixture
component of largest posterior probability. The location is
declared to belong to the segmentation region associated
with that component. For long sequences, where charac-
teristic motions are not expected to change significantly, the
computational cost of the segmentation can be reduced by
learning the mixture model from a subset of the video (e.g.
a representative clip). The remaining video can then be seg-
mented by computing the posterior assignments as before.
This procedure tends to work well in practice, and was used
in this paper to segment a full hour of video. The resulting
segmentations are illustrated in Figures 9 and 11.

3.2. Per spective normalization

Before extracting features from the video segments, it is
important to consider the effects of perspective. Because
objects closer to the camera appear larger, any feature ex-
tracted from a foreground object will account for a smaller
portion of the object than one extracted from an object far-
ther away. This makes it important to normalize the fea-
tures for perspective. One possibility is to weight each pixel
according to a perspective normalization map. The pixel
weight is based on the expected depth of the object which
generated the pixel, with larger weights given to far objects.

In this work, we approximate the perspective map by lin-

Figure 4. Perspective map: a) reference person at the front of walk-
way, and b) at the end; c) the perspective map, which scales pixels
by their relative size in the true 3d scene.

early interpolating between the two extremes of the scene.
A ground plane is first marked, as in Figure 4a, and the dis-
tances |ab| and |cd| are measured?. Next, a reference pedes-
trian is selected, and the heights 4, and hs are measured
when the center of the person is on ab and cd (see Figures
4a and 4b). The pixels on ab are given a weight of 1, and
the pixels on cd a weight of %. Finally, the remain-
ing pixel weights are computed by interpolating linearly be-
tween the two lines. Figure 4c shows the perspective map
of the scene using the above procedure. In this case, ob-
jects on the front-line ab are approximately 2.4 times big-
ger than objects on the back-line cd. Finally, for features
based on area (e.g. segmentation area), the weights are ap-
plied to each pixel. For features based on edges (e.g. edge
histogram), the square-roots of the weights are used.

3.3. Feature extraction

Ideally, features such as segmentation area or number of
edges should vary linearly with the number of people in the
scene [14, 11]. Figure 2 plots the segmentation area ver-
sus the crowd size. While the overall trend is indeed lin-
ear, there exist local non-linearities that arise from a vari-
ety of factors, including occlusion, segmentation errors, and
pedestrian configuration (e.g. spacing within a segment). To
model these non-linearities, we extract an additional 28 fea-
tures from each crowd segment.

Segment features: These features capture segment shape
and size.

e Area - total number of pixels in the segment.
e Perimeter — total number of pixels on the segment
perimeter, computed with morphological operators.

e Perimeter edge orientation — orientation histogram of
the segment perimeter. The orientations are quantized

IHere we assume that the horizontal ground plane is parallel to the
horizontal axis of the image, but the procedure can be generalized if not.



into 6 bins, and opposite orientations (180° apart) are
considered equal. The orientation of each edge pixel is
computed by finding the maximum response to a set of
oriented Gaussian filters at that point.

e Perimeter-area ratio — ratio between the segment
perimeter and area, which measures the complexity
of the segment shape. Segments of high ratio contain
bumps in their perimeter, which may be indicative of
the number of people contained within.

Internal edge features. The edges contained in a crowd
segment are a strong clue about the number of people in the
segment [15, 14]. A Canny edge detector [20] is applied to
the entire image, the edge image is masked by the crowd
segmentation, and the following features are computed:

e Total edge pixels — total number of edge pixels con-
tained in the segment.

e Edge orientation — histogram of the edge orientations
in the segment, generated in the same way as the
perimeter edge histogram (also using 6 bins).

e Minkowski dimension — the Minkowski fractal dimen-
sion of the edges in the segment, which estimates their
degree of “space-filling” (see [21] for more details).

Texturefeatures: Texture features, based on the gray-level
co-occurrence matrix (GLCM), were used in [16] to clas-
sify image patches into 5 classes of crowd density. In this
work, we adopt a similar set of measurements for counting
the number of pedestrians in each segment. The image is
quantized into 8 gray levels, and the 2nd-order joint condi-
tional probability density function f (<, j|d, 0) is estimated
for distance d = 1 and angles # = {0°,45°,90°,135°}.
The following texture properties are computed:

£(i.j1d.0)
ij TH(—))?

o Energy: Sy(d,0) =3, ; f(i,jld,0)
e Entropy: S,(d,0) =3, ; f(i, jld,0)log f (i, j|d., )
resulting in a total of 12 texture features.

e Homogeneity: Sy, (d,0) =

3.4. Gaussian processregression

A Gaussian process (GP) [22] is used to regress feature
vectors to the number of people per segment. The GP de-
fines a distribution over functions, which is “pinned down”
at the training points. The classes of functions that the GP
can model is dependent on the kernel function used. For the
task of pedestrian counting, we note that the dominant trend
of many of the features is linear (e.g. segment area), with lo-
cal non-linearities. To capture both trends, we combine the
linear and the squared-exponential (RBF) kernels, i.e.
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Figure 5. Ground-truth annotations of pedestrian traffic. Red and
green tracks are people moving away from, and towards the cam-
era, respectively. The ROI for the experiments is highlighted.

away  towards  total

# of unique people 108 81 189
max # in frame 33 16 46
min # in frame 3 4 11
total # of people 29,577 20,308 49,885
# of training people || 13,047 7,428 20,475
# of test people 16,530 12,880 29,410

Table 1. Properties of the pedestrian database

with hyperparameters & = {1, as, oz, as }. The first and
second terms of the kernel are the linear and RBF compo-
nents, while the third term models observation noise.
Figure 2 shows an example of GP regression for seg-
mentation area. Note that the linear component of the ker-
nel captures the dominant trend, while the RBF component
models local non-linearities. Finally, while the same fea-
ture set is used throughout the system, a different regressor
is learned for each direction of crowd motion because the
appearance changes with the traveling direction.

4. Pedestrian database

In this section, we describe the pedestrian database used
in the experiments. An hour of video was collected from a
stationary digital camcorder overlooking a pedestrian walk-
way at UCSD. The original video was captured at 30 fps
with a frame size of 740 x 480, and was later downsampled
to 238 x 158 and 10 fps. The first 2000 frames (200 sec-
onds) of video were selected for ground-truth annotation,
which we will refer to as the pedestrian dataset.

A region-of-interest (ROI) was selected on the walkway
(see Figure 5), and the traveling direction (*away from” or
“towards” the camera) and visible center of each pedestrian?
was annotated every five frames. Pedestrian locations in
the remaining frames were estimated with linear interpo-
lation. An example annotation is shown in Figure 5. Note
that the ground-truth pedestrian locations are not required to
train the crowd-counting system, but necessary to test per-
formance. The dataset contains a total of 49,885 pedestrian
instances (see Table 1 for a summary). Figure 6 presents the
ground-truth pedestrian count over time.

2Bicyclists and skateboarders were treated as normal pedestrians.
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Figure 6. Ground-truth pedestrian count over time. The count is
split into pedestrians moving away from, and towards the camera.

The video was split into a training set, for learning the
GP, and a test set, for validation. The training set contains
800 frames, between frame 600 and 1399, with the remain-
ing 1200 frames held out for testing. This split tests the
ability of the crowd-counting system to extrapolate beyond
the training set. In contrast, spacing the training set evenly
throughout the dataset would only test the ability to inter-
polate between the training points, which provides little in-
sight into generalization ability and robustness. The dataset
is available to the vision community [23].

5. Experiments and Discussion

Successful crowd counting depends on effective crowd
segmentation. Hence, we first test the segmentation algo-
rithm, and then present crowd counting results.

5.1. Motion segmentation results

The mixture of dynamic textures was used to segment
the crowd according to motion: people moving towards
the camera, and people moving away. The segmentation
was validated with an ROC curve based on the ground-
truth pedestrian locations. In each frame, a true positive
is recorded if the ground-truth location of a person is within
the correct motion segment, and a false positive is recorded
otherwise. The true positive and false positive rates (TPR
and FPR) are computed over all 2000 frames, and an ROC
curve was generated from the TPR and FPR for dilations
and erosions of the segmentation with variable size disks.

The ROC curve produced by the mixture of dynamic tex-
tures (DTM) is shown in Figure 7. For comparison, the
scene was also segmented with normalized cuts and motion-
profiles [24], which is denoted by NCuts. At the operating
point of the segmentation algorithms (i.e. no morphological
post-processing), DTM achieves a high TPR of 0.936, at a
low FPR of 0.036. NCuts achieves a lower TPR (0.890) at
a higher FPR (0.103). In addition, DTM has a larger area
under the ROC curve (AROC) than NCuts (0.9727 versus
0.9545). These results validate the DTM as a robust seg-
mentation algorithm for these types of crowded scenes.

TPR

DTM (AROC=0.9727)
0.3}

= = = NCuts (AROC=0.9545)
0.2
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10 10 10 10
FPR

Figure 7. Crowd motion segmentation: ROC curve for the mixture
of dynamic textures (DTM) and normalized cuts (NCuts). The
circle indicates the operating point of the algorithm.

5.2. Crowd counting results

The crowd counting system was trained on the 800 train-
ing frames, and tested on the remaining 1200. The GP out-
put was rounded to the nearest integer to produce a crowd
count, and both the mean-squared-error (MSE) and the ab-
solute error between this estimate and the ground-truth were
recorded. For comparison, we also trained the system with
different subsets of the features: only segment area, the seg-
ment features, and the segment and edge features. Finally,
we compared performance against the feature sets of [15]
(segment size histogram and edge orientation histogram)
and [14] (segment area and total edges).

Table 2 shows the error rates for the two crowd direc-
tions, under the different feature representations. Using
only the area feature performs the worst, with an MSE
of 8.155/2.663 (away/towards), and performance improves
steadily as other features are added. Using all the seg-
ment features improves the MSE to 6.163/2.147, and us-
ing both the segment and edge features further improves to
5.153/1.987. Finally, using all features (i.e. adding the tex-
ture features) performs best, with an MSE of 4.181/1.291.
This demonstrates the informativeness of the different fea-
ture subsets: the segment features provide a coarse linear
estimate, which is refined by the edge and texture features
accounting for various non-linearities. The full feature set
also performs better than those of [15, 14]. Finally, using
features that do not accounting for perspective, the system
performance drops significantly (MSE 6.869/2.541), indi-
cating that normalization is indeed required.

Figures 8a and 8b show the crowd count estimates (using
all features) as a function of time, for the two crowd direc-
tions. The estimates track the ground-truth well in most of
the test frames. The overestimate of the size of the “away”
crowd in frames 180-300 is caused by two bicyclists travel-
ing quickly through the scene, as shown in the second im-
age of Figure 9. Figures 8c and 8d show the cumulative
error, i.e. the frequency with which the counting error is be-
low a particular number of people. The count is within 3
people of the ground-truth 91% of the time for the “away”



Away Towards
Feature Set MSE  |error| MSE  |error|
all features 4181 1.621 | 1.291 0.869
segm+edge 5.153 1.767 1.987 1.122
segm 6.163 1.894 2.147 1.172
only area 8.155  2.037 | 2.663  1.307
all (nonorm.) || 6.869  2.191 | 2.541  1.321
[15] 5.438  1.808 | 2.871 1.343
[14] 6.953 1.995 2.131 1.108
Table 2. Crowd counting results: MSE and absolute error on the

test set using different feature sets.

crowd, and within 2 people 98% of the time for the “to-
wards” crowd. On average, the count estimate is within
1.62 and 0.87 (“away” and “towards”, respectively) of the
ground-truth. This suggests that the system is robust and
accurate enough for monitoring pedestrian traffic over long
time-periods. Finally, Figure 9 shows the original image,
segmentation, and crowd estimates for several frames in the
test set. A video is also available from [23].

Finally, we trained the GP on the full 2000 frames of the
pedestrian dataset, and ran the system on the remaining 50
minutes of captured video. The resulting crowd estimates
are shown in Figure 10, while Figure 11 shows several ex-
ample outputs of the system (the video is also available from
[23]). Qualitatively, the system tracks the changes in pedes-
trian traffic fairly well. Most errors tend to occur when there
are very few people (less than two) in the scene. These
errors are reasonable, considering that there are no train-
ing examples with such few people, and the problem could
be fixed by simply adding training examples of such cases.
Note that the GP signals its lack of confidence in these esti-
mates, by assigning them larger error bars.

A more challenging set of errors occur when bicycles,
skateboarders, and golf carts travel quickly on the walkway.
Again, these errors are reasonable, since there are very few
examples of fast moving bicycles and no examples of golf
carts in the training set. These cases could be handled by
adding more mixture components to the segmentation al-
gorithm, which would label fast moving objects as different
classes. Another GP could then be trained to count the num-
ber of fast moving vehicles in the scene. Another possibility
would be to simply identify these objects as outliers, based
on the posterior assignment probabilities of the segmenta-
tion stage. Any of these possibilities would require larger
training sets, with a richer representation of the outliers. We
intend to analyze them in future work.
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Figure 8. Crowd counting results over both the training and test sets for: (a) people moving away and (b) people moving towards the
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Figure 9. Crowd counting results: The red and green segments are the “away” and “towards” crowds. The estimated crowd count for each
segment is in the top-left, with the (rounded standard-deviation of the GP) and the [ground-truth]. The ROI is also highlighted.
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Figure 10. Count estimates on 55 minutes of video. The shaded bars indicate periods when the GP model had low confidence (o > 3).

Figure 11. Example counting results on 55 minutes of video. The counts are in the top-left, with the (rounded standard-deviation).




