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Abstract: Privacy-preserving data aggregation in wireless sensor networks (WSNs) with 

mobile nodes is a challenging problem, as an accurate aggregation result should be derived 

in a privacy-preserving manner, under the condition that nodes are mobile and have no  

pre-specified keys for cryptographic operations. In this paper, we focus on the SUM 

aggregation function and propose two privacy-preserving data aggregation protocols for 

two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against 

non-colluded Aggregator and Sink (PDAAS) and Privacy-preserving Data Aggregation 

against Colluded Aggregator and Sink (PDACAS). Both protocols guarantee that the sink 

can derive the SUM of all raw sensor data but each sensor’s raw data is kept confidential. In 

PDAAS, two keyed values are used, one shared with the sink and the other shared with the 

aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, 

compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink 

collude. In PDACAS, multiple keyed values are used in data perturbation, which are not 

shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes 

even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. 

Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency 

of both schemes. 
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1. Introduction 

In recent years, Wireless Sensor Networks (WSNs) have drawn a lot of attention from both academia 

and industry. Typically, a WSN has a large number of sensor nodes which conduct the sensing operation, 

process the sensed data and transmit them to the sink. WSNs have very broad applications, for example, 

military surveillance [1], mobile target tracking [2], environmental monitoring [3], domestics [4], health 

care [5], to list but a few. WSNs are radically changing the way human beings interact with the 

environment. 

In a WSN, a potentially large number of sensors generate a substantial amount of data. However, 

sensors are usually resource-limited, suffering from restricted computation, storage, communication 

resources, and most importantly, battery energy. It is an important challenge to design and develop 

techniques to efficiently process the data. Fortunately, in many applications, the sink does not need the 

raw data sensed by certain specific sensors, but instead some statistics. Hence, in-network data 

aggregation [6] arises to address the resource limitation problem. With data aggregation, either sensors 

or certain nodes called aggregators aggregate the raw data and/or data received from other sensors, and 

forward only the aggregated result. This way, the amount of data communicated can be significantly 

reduced, and as a result, bandwidth consumption and energy depletion are decreased effectively. Typical 

aggregation functions include SUM, AVERAGE, MAX/MIN, and so on [7]. In this paper, we focus on 

the additive aggregation function, i.e., SUM.  

Another important issue in WSNs are privacy concerns, as wireless sensor network applications are 

expanding to process increasingly sensitive measurements in everyday life. For example, a Private 

Households application, as mentioned in CPDA [8], uses wireless sensors placed in houses to collect 

statistics about water, gas and electricity consumption. The aggregated statistics are very useful for 

individuals, businesses and government agencies for resource planning and usage advice. However, the 

individual sensor readings could reveal the daily activities of a household, such as when all family 

members are absent. Without privacy protection approaches, such applications will not be accepted by 

people, since participants may not allow tracking their activities. Thus, how to support efficient  

in-network data aggregation while at the same time preserving data privacy has become an  

important requirement.  

To address the privacy-preserving data aggregation problem, some approaches have been  

proposed [8–16]. However, most of these schemes focus on data aggregation for WSNs with static 

topology and homogeneous sensor nodes. In this paper, we address the challenge of designing  

privacy-preserving protocols for data aggregation in two-tiered mobile WSNs, which are usually formed 

into cells, each including a static resource-rich aggregator and multiple resource-limited mobile sensor 

nodes. Such protocols should satisfy the following security and operating requirements:  

(1) privacy-preserving. The raw sensed data of a sensor node should be protected from being disclosed 

to any other sensor node, the aggregator, the sink, and an external eavesdropper that can monitor all 

network traffic; (2) mobility. The large portion of sensor nodes is equipped with some extent of mobility. 
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The privacy of raw data of sensor nodes should be protected even with mobility and dynamic 

membership; (3) efficiency. Such a protocol is efficient in terms of computation and communication to 

reduce energy consumption and increase the life time of a WSN. To the best of our knowledge, none of 

the existing privacy-preserving data aggregation algorithms can completely satisfy these requirements. 

To meet the above requirements, this paper presents two privacy-preserving data aggregation 

protocols called Privacy-preserving Data Aggregation against Aggregator and Sink (PDAAS) and 

Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS), for additive 

aggregation function in tiered WSNs with mobile sensor nodes. 

In PDAAS, each sensor node shares a secret key with the cell header and the sink, respectively. Note 

that, to support node mobility and save storage, each cell header does not directly share a key with each 

sensor node, but uses a master key and a pseudorandom function to derive the shared key dynamically 

when it is required. During the aggregation phase, each sensor node does not send the raw data to the 

cell header which acts as an aggregator, but instead a perturbed data obtained by processing the raw data 

two times: in the first time, a keyed value generated from the secret key shared with the sink is added, 

and in the second time, another keyed value generated from the secret key shared with the aggregator. 

The cell header removes all the keyed values generated from secrets shared with it, and transmits the 

intermediate aggregation result to the sink. The sink can recover the final aggregate result by removing 

all the keyed values generated from secret keys shared with it. This way, the raw data of a node can be 

protected against other nodes, the aggregator, the sink, and an eavesdropper. 

In PDACAS, the aggregators and the sink don’t possess any key. Each sensor node is loaded a key 

ring, which is randomly selected from a large key pool, before deployment. During data aggregation, all 

the sensor nodes currently in the cell are organized as a conceptual circulation list. Each sensor first 

perturbs its raw data by multiple keyed values generated from keys in its key ring. Then the intermediate 

aggregation result will traverse the circulation list two times, each time all the sensor nodes will process 

it in a one-by-one manner, to remove all the keyed values and submit the intermediate aggregation result 

to the aggregator. After collecting all the intermediate results, the sink simply adds them up and gets the 

final aggregation result. With PDACAS, privacy of raw data of a sensor can be protected, even though 

the aggregator and the sink collude.  

We conduct thorough analysis on the proposed schemes in terms of efficacy of privacy preservation. 

Then we evaluate them in terms of communication and computation overhead. The theoretical analysis 

and the experimental results demonstrate the efficacy and efficiency of our schemes. 

The rest of the paper is organized as follows: Section 2 summarizes the related work. Section 3 

describes the network model and assumptions. In Section 4, we present our PDAAS protocol, while 

Section 5 details the PDACAS protocol, both with theoretical analysis of the privacy-preserving 

capability. The experiment-based evaluation of the two protocols is presented in Section 6. Section 7 

presents our conclusions. 

2. Related Work  

For WSNs, in-network data aggregation is an effective approach to save resources, by aggregating 

data along the path to the sink and reducing traffic in the network. There has been extensive work that 

addresses the data aggregation problem in sensor networks, to name a few, [17–20]. However, all these 
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work shares the assumption that sensors are trusted and communications are secure. Thus, privacy issue 

is not taken into consideration.  

Mobility has also been introduced into WSNs, because it is required by some applications, such as 

wildlife tracking and healthcare. Mobility brings several advantages over traditional WSNs with static 

nodes [21]: good connectivity, reduced cost, high reliability, and energy efficiency. Extensive work has 

been conducted to address the problem of routing [22], data gathering [23], key management [24], and 

so on, for mobile WSNs. However, privacy-preserving data aggregation in mobile WSNs has not been 

well addressed. 

There has been a lot of work on privacy-preserving data aggregation in WSNs. For more technical 

details on this topic, we refer the reader to some good surveys, such as [25–27]. Here we only briefly 

summarize the related work. Early work for privacy protection in data aggregation follows a hop-by-hop 

encryption/decryption approach [9–11]. In these approaches, each intermediate aggregation node has to 

decrypt the received data, aggregate them and finally encrypt the aggregated result before forwarding it. 

This approach will incur heavy computation overhead, due to the frequent decryption/encryption, and 

more seriously, cannot provide data confidentiality at the aggregator nodes. 

In [12], homomorphic encryption is employed to support efficient aggregation of encrypted data 

without decryption involved in the intermediate nodes. However, the scheme does not guarantee the 

privacy of individual sensed data either against other nodes or against the sink.  

The data perturbation technique in [13] inspires PDAAS and PDACAS. In the scheme in [13], during 

the aggregation phase, each node does not submit its raw data, but rather the sum of its sensed data and 

a secret value shared with the sink. The sink can recover the final aggregate of sensed values by removing 

all the secret values. This scheme can protect the privacy of a sensor data against other nodes, but not 

the sink that can monitor the node’s incoming and outgoing traffic.  

Two different schemes, CPDA and SMART, are proposed in [8]. In CPDA, sensor nodes are 

organized into cells, with the cell header acting as the intermediate aggregator. In the intermediate 

aggregations within cells, each sensor will introduce noise to its raw data. The noises are carefully 

designed to exploit the cooperation between sensor nodes, such that the accurate aggregated value can 

be obtained. The computation overhead is heavy in CPDA. In SMART, each sensor divides its sensed 

data into multiple slices and sends them to selected neighbors in a secure way. Each sensor sums all the 

received slices and its own slice left, and sends the result to the next aggregator. SMART will incur too 

much communication overhead. 

Recent representative work on privacy-preserving data aggregation for WSNs includes [14–16].  

In [14], the authors propose PASKOS and PASKIS, which are also based on the concept of data 

perturbation [13]. The key idea of both schemes is that, each node computes a perturbed data by adding 

a secret keyed value to its sensed data and submits only the perturbed data. The keyed values are 

computed based on keys from a key ring, which is randomly chosen from a key pool. The difference 

between the two schemes is that, in PASKOS, the sink possesses the whole key pool, whereas in 

PASKIS, the sink does not possess any key. DyDAP [15] is a dynamic and secure  

end-to-end data aggregation with privacy function, by employing the similar techniques in [13]. Based 

on SMART, [16] proposes PEPDA, to reduce collision during data transmission and energy consumption 

and to compensate loss caused by the collision. 
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Existing approaches [8–16] are developed for sensor networks with static and homogeneous sensor 

nodes formed in a flat structure, usually an aggregation tree. In contrast, this paper focuses on  

privacy-preserving data aggregation in two-tiered WSNs with heterogeneous nodes and dynamic node 

membership, in which sensor nodes and aggregators do not know each other beforehand. Thus, they 

have no pre-specified keys for end-to-end encryption. As a result, existing work [8–16] can’t be applied 

directly to this scenario. 

3. Problem Formulation 

3.1. Network Model  

Heterogeneous Wireless Sensor Networks, which include nodes with varying capabilities and usually 

are organized into a two-tiered structure [23], have drawn a lot of attention to address the fundamental 

scalability and performance limitations of homogeneous sensor networks [28], in which all sensor nodes 

have the same capabilities. In a tiered heterogeneous WSN, the lower layer consists of resource-limited 

sensor nodes performing the sensing task and the upper layer comprises resource-rich nodes acting as 

intermediate data collectors. In this paper, we consider such two-tiered Wireless Sensor Networks with 

lower-layered mobile nodes, as shown in Figure 1. 

Figure 1. A Two-tiered WSN with Mobile Nodes. 

Cell Header
Mobile Sensor node

Sink

Cell

 

The network region is partitioned into physical cells, each containing a cell header in charge of sensor 

nodes moving into that cell. The cell headers are resource-rich in terms of storage, energy, 

communication and computation. These cell headers are all static, i.e., without mobility. They 

communicate with the sink via relatively long-range, high-rate radios. We assume that there are m cell 

headers, each has a unique ID, denoted as CHj, j∈{1,2,…,m}. Usually, m is not large. 

In contrast, sensor nodes are resource-constrained in storage, energy, and computation. The sensor 

nodes are mobile and can move among different cells, performing the sensing task to collect data from 

the environment. They communicate with neighbor nodes or cell headers, but not the sink, via  

low-power, low-rate, and short-distance radios. Usually, a WSN includes hundreds or even thousands of 

sensor nodes. We assume that each sensor node also has a unique ID denoted as si, i∈{1,2,…,n}. 

A user accesses the network via the sink, collecting aggregated information of the sensed data of all 

nodes in the network. When queried by the sink, the cell headers act as aggregators, each aggregating 



Sensors 2014, 14 21179 

 

 

the data items collected by the sensors currently in the cell it manages. Typical aggregated information 

includes SUM, AVERAGE, MIN, MAX, and COUNT. In this paper, we focus on the SUM of sensed 

raw data of all sensor nodes, based on which other useful aggregated information such as average, count 

can be computed. 

3.2. Adversary Model  

This paper focuses on thwarting attacks on breaching nodes’ data privacy, i.e., preventing the raw 

data of each sensor node from being disclosed to any other entity. Other important issues, such as data 

integrity and authenticity, are out of the scope of this paper. 

Adversaries may be external or internal. An external adversary is an eavesdropper outside the 

network, for example, a receiver equipped with powerful antennas. Due to the openness nature of 

wireless communications, an external eavesdropper can monitor all the traffic across the WSN and 

intercept transferred messages. As a result, any transferred raw data can be accessed by an external 

eavesdropper, resulting in the breach of the contributor’s data privacy. 

Internal adversaries may be malicious or compromised senor nodes, cell headers, or even the sink. 

The adversary may physically compromise a sensor node and directly access its sensed raw data. In 

addition, if other sensor nodes use the compromised node as a relay, and transfer raw data or data 

perturbed by secrets solely shared with the compromised node, their data privacy will be breached. The 

adversary may also compromise a cell header, and then access data collected from the sensor nodes in 

the corresponding cell. As with a compromised node, if sensor nodes in the cell transfer raw data or data 

perturbed by secrets shared with the compromised cell header, their data privacy will be breached. Once 

the sink is compromised, the adversary can access the key information, if any, and uses it to obtain 

private data of sensor nodes. In addition, compromised sensor nodes, cell headers, and the sink may 

collude to attempt deducing sensed raw data of target nodes. For example, if each raw data is perturbed 

by two secrets, one shared with the cell header and the other with the sink, while the sink and the cell 

header collude, they can collaboratively recover every raw data. 

3.3. Design Goals  

Our designed approach should simultaneously achieve the following privacy and performance goals: 

Correctness: The aggregation result should be accurate, i.e., as the same as the result without privacy 

protection. 

Privacy against the external adversaries: Our approach should prevent an external eavesdropper from 

accessing the raw data collected by sensor nodes. 

Privacy against the internal adversaries: Our approach should also provide raw data privacy against 

internal adversaries, including malicious or compromised senor nodes, cell headers, or even the sink, 

considering the situation in which some of them may collude. 

Efficiency: Above goals on privacy should be achieved with low communication and computation 

overhead, especially for resource-restricted sensor nodes. 
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4. The PDAAS Protocol 

In this section, we present the PDAAS protocol, which can protect the privacy of a node against any 

other sensor node, the aggregator and the sink, if the aggregator and the sink don’t collude. The basic 

idea is that, each sensor node owns two keys, one shared with the sink and the other shared with the 

aggregator (cell header). When queried to submit a data, each sensor node computes two keyed values 

from the two keys, adds the keyed values to the raw data to perturb it, and submits the perturbed data. 

4.1. Key Distribution 

In PDAAS, each sensor node perturbs its raw data using some keyed values before submitting the 

data, which necessitates a key distribution process. This key distribution process includes two steps: key 

pre-distribution and keyed value establishment. Note that, the key distribution process must take the 

sensor mobility into consideration. 

Before deploying the WSN, there is a key pre-distribution phase, in which a trusted key server 

distributes some necessary key information. This key pre-distribution is executed in an offline manner. 

Specifically, the key server needs to do the following: 

1. For the sink, the key server generates a master key, MSK, and loads a pseudo-random function 

(PRF), f.  

2. For each cell header CHj, the key server also generates a master key, MCKj, which has an ID 

same as the cell header’s ID, and load the same PRF f. As sensor nodes are mobile, each cell 

header has no idea which sensor node will moves into its cell. In addition, the number of sensor 

nodes is large. Thus, letting each cell header shares a key with each sensor node is not efficient, 

as it will consume a lot of storage. In our solution, each cell header is loaded with a master key 

and a PRF, by which it can generate the shared key with each sensor node 

3. For each sensor si, the key server first generates a long-lived key that si shares with the sink, 

( )i MSK ilsk f s . As sensor nodes are mobile and can move between different cells, there is no 

binding between senor nodes and cell headers. Thus, the key server generates another m keys, 

one for each cell header, leki
 j=fMCKj(si). The key server loads a secure hash function, Hash, to 

the sink, the cell headers, and all the sensor nodes. 

Note that, the sink and the cell headers need not to store the keys shared with sensor nodes, as they 

can reconstruct them when required. The keyed value establishment is executed at each sensor node after 

the WSN is deployed in the interested area and begin to operate, to derive two short-lived keyed values, 

one shared with the current cell header and the other shared with the sink. These two keyed values will 

be used in data aggregation. 

The sensor nodes collect data from the environment, with some kind of mobility. In order for a sensor 

node to know the cell it currently stays, each cell header CHj will periodically broadcast a hello message, 

which includes its ID, to all the sensor nodes currently stayed in the cell. This way, each sensor that just 

moves in can obtain the ID of the cell header, and choose the corresponding key to be used in data 

submitting. 

When queried by the user, the sink will broadcast a “data collection” request message to all the cell 

headers. This message includes a seed Scurrent (e.g., a timestamp), which serves as an identification of the 
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current aggregation process. Each cell header forwards this message, plus a nonce current
jn , to all the sensor 

nodes currently stayed in the cell it manages. After receiving the request, each sensor node si will derive two 

short-lived keyed values, one shared with the sink, ( || )i i currentsk Hash lsk S , and the other shared with the cell 

header CHj, ( || )j j curret
ji iek Hash lek n . Note that, || denotes the concatenating operation.  

4.2. Data Aggregations 

The basic idea of this protocol is that each node uses its two short-lived keyed values to compute a 

perturbed value, and the cell header can remove one to get the intermediate result, while the sink can 

remove the other to get the final aggregation result, both without accessing the raw sensor data. 

Algorithm 1. PDAAS_Sensor_Aggregate. 

Input:  

Raw data item di; keyed values 
j

iek  and 
isk  

Output:  

A perturbed data item di with sensor ID 

Method: 

1. di = di; 

2. di = di + ski; 

3. di = di + ek
j 

i; 

4. Sends <si, di> to the cell header. 

A sensor node si follows steps in Algorithm 1. It simply adds the two keyed values, 
j

iek  and 
isk , to 

the raw data and gets the perturbed data. Then the sensor sends the perturbed data di and its ID to the 

cell header. Note that, “+” means modular addition as in [13]. That is, the perturbed value is computed 

as follows: 

Perturbed_value = sensed_value + keyed_values mod M 

We select a sufficiently large value, i.e., M > n*Dmax, for M, where Dmax is the upper bound for the 

sensed raw data. This is necessary to remove all keyed values from the aggregation result to obtain the 

precise sum of the sensed data. For simplicity, we will use “+” and “−” as modular addition and 

subtraction in this paper. 

Each cell header, CHj, acts as an aggregator of the cell, and follows Algorithm 2. It first initializes 

the intermediate aggregation result Dj to be 0, and the set Sj of sensor IDs that contribute to the 

intermediate aggregation result to be empty. Suppose in current aggregation process, CHj receives Nj 

perturbed data items. For each perturbed data item di received from sensor node si, CHj first computes 

the short-lived keyed value shared with si, using its master key, sensor ID, the hash function Hash and 

the PRF f. Then CHj subtracts this value from the perturbed data item, and adds the result to Dj. 

In addition, CHj puts the IDs of the sensors that contribute into the set Sj. Finally, CHj sends <Sj, Dj> 

to the sink. 
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Algorithm 2. PDAAS_CellHeader_Aggregate. 

Input:  

Perturbed data items di, {1,2,... }ji N  

Output:  

An intermediate aggregation result 

Method: 

1. Dj = 0; 

2. jS  ; 

3. For each di do 

    3.1 ( ( ) || )j current

i MCKj i jek Hash f s n ; 

    3.2 Dj = Dj + di − ek
j 

i; 

    3.3 { }j j iS S s ; 

4. Sends <Sj, Dj> to the sink. 

The sink follows Algorithm 3 to obtain the final result. It first initializes the aggregation result 
aD  to 

be 0, and the set 
aS  of IDs that contribute to the aggregation to be empty. For each intermediate 

aggregation result, the sink adds Dj to 
aD , and joins Sj to 

aS . Then for each ID in 
aS , the sink computes 

the short-lived keyed value shared with the sensor in current aggregation, using its master key, sensor 

ID, the hash function Hash and the PRF f. This value will be subtracted from 
aD . Finally, the sink gets 

the final aggregation result, 
aD . 

Algorithm 3. PDAAS_Sink_Aggregate. 

Input:  

<Sj, Dj>, {1,2,... }j m  

Output:  

The final accurate aggregation result 

Method: 

1. 0aD  ; 

2. aS  ; 

3. For each <Sj, Dj> do 

    3.1 Da = Da + Dj; 

    3.2 a a jS S S ; 

4. For each i as S  do 

    4.1 ( ( ) || )i MSK i currentsk Hash f s S ; 

    4.2 a a iD D sk  ; 

5. Return 
aD . 
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4.3. Analysis of PDAAS  

Correctness: A data item is perturbed by two keyed values, one shared with the cell header and the 

other with the sink. At the cell header, it uses the ID of the sensor that collects the data item to derive 

one of the keyed values, and remove it. At the sink, it derives the other keyed value and removes it. 

Thus, the sink can obtain an accurate sum of all the data items. 

Privacy: First, before sending the data item, each sensor node perturbs it using two keyed values. The 

two keyed values are computed locally and not communicated with any other. Thus, each sensor has a 

distinct pair of keyed values, which can’t be eavesdropped. As a result, PDAAS can protect the data 

privacy of each sensor node against any other node and an external passive eavesdropper. Second, 

PDAAS can protect the data privacy of each sensor node against the cell header or the sink, because the 

data item is perturbed with two keyed values, one shared with the cell header and the other with the sink. 

If the cell header and the sink don’t collude, neither can recover the raw data correctly. Third, PDAAS 

can protect the data privacy of each sensor node against a powerful external eavesdropper that can 

compromise a portion of the network (but not the sink and cell headers simultaneously). This is because, 

without compromising the sink and the cell header at the same time, the adversary can’t get both the two 

keyed values used in perturbing data item. As a result, the adversary can’t recover the raw data item. 

However, if the adversary compromises the sink and a cell header at the same time, or if the sink and a 

cell header collude, PDAAS fails to protect privacy of any sensor node using the cell header as the 

aggregator. Let Pch and Psink denote the probability that a cell header or the sink is compromised  

(or intends to collude), and let Pdisclosure denote the probability that private data of a sensor  

node is disclosed: 

Pdisclosure = Pch * Psink (1)  

Efficiency: In PDAAS, each sensor node keeps a constant (m + 1) number of long-lived keys, one 

shared with the sink, and others shared with cell headers. Thus, the storage overhead per sensor node is 

bounded by the constant m + 1. In each aggregation, each sensor node needs to compute two  

short-lived keyed values using a hash function, and adds the two keyed values to the raw data item. This 

will incur a constant computation overhead bounded by 2. As each sensor node sends its ID and a 

perturbed data item to the cell header, the communication overhead is also constant, which is 

2 2log logn M bits. For the cell header CHj, it collects Nj perturbed data items, each with an ID, 

computes Nj keys, and conducts Nj subtractions. Then the cell header sends an intermediate aggregation 

result and Nj IDs to the sink.  

5. The PDACAS Protocol  

The PDAAS protocol proposed in the previous section cannot protect the privacy of sensor nods in a 

strong adversary model, where the sink and a cell header collude or are both compromised. To deal with 

colluded sink and cell headers, this section presents PDACAS.  

In PDACAS, each sensor node doesn’t share any key with the cell header or the sink, but rather holds 

a distinct (with high probability) key ring chosen from a large key pool. In data aggregation, each sensor 

node perturbs its raw data using multiple keyed values generated from keys in its key ring. Then all the 

sensor nodes collaborate to remove all the keyed values, to get the intermediate aggregation result. This 



Sensors 2014, 14 21184 

 

 

way, even the sink and cell heads collude, they can’t get the raw data of sensor nodes. However, overhead 

incurred by PDACAS is slightly heavier than PDAAS. 

5.1. Key Distribution 

As in PDAAS, before the WSN is deployed, a trusted key server loads some key information to all 

the sensor nodes. This key pre-distribution scheme is similar to Eschenauer and Gligor’s scheme [29], 

but with a different purpose. 

Specifically, the trusted key server first generates a large key pool of p keys, 1 2{ , ,... }pKP k k k . Each 

key in the pool has a unique key ID ranging from 1 to p. Then for each sensor si, the key server randomly 

draws q keys, q p , from the key pool to establish the key ring of si, 
1 2{ , ,... }q

i i i iKR k k k . The key 

server loads the key ring and the identifiers of all the keys into the memory of si. In addition, the key 

server also loads a p-bit bitmap, biti, into si, with the bits corresponding to the key identifiers in the key 

ring set to be 1, and other bits to be 0. For example, let us suppose p = 8, and the key ring of a sensor 

contains k1, k4 and k6, then the bitmap is 10010100. 

As in PDAAS, the key server loads a secure hash function, Hash, to all the sensor nodes. Differently 

from PDAAS, in PDACAS, the trusted key server doesn’t load any key information into the sink and 

the cell headers. 

After deployment, all sensor nodes begin to collect data. When a sensor node moves into a new cell, 

it will receive the periodically broadcasted hello message from the cell header, and reply with its ID. 

Thus, the cell header can obtain an ID set that contains all the IDs of sensor nodes currently in the cell. 

We use Sj to denote the ID set maintained by cell header CHj. The cell header will impose an order on 

all the sensor IDs in Sj; that is, each sensor will have a predecessor and a successor, with the successor 

of the last be the first one. Conceptually, this means that all the sensor nodes in a cell are organized as a 

one-way circulation list, with a sensor acting as the head node.  

When queried by the user, the sink will broadcast a “data collection” request message identified with 

a seed Scurrent, to all the cell headers. Each cell header forwards this message to all the sensor nodes in 

the cell, and each sensor node si will compute q keyed values: ( || )j j

i i currentek Hash k S ,  

1 ≤ j ≤ q. These keyed values will be used to perturb the raw sensed data.  

For privacy consideration, a distinct seed for each data collection round is required. The reason is 

that, as the seed is changed in each round, the keyed values used to perturb the raw data are different. 

As a result, even though an adversary monitors the communications of the WSN for multiple collection 

rounds, it is hard to derive the key information of each sensor node. Thus, when a “data collection” 

request message is received, each sensor node will check the seed to make sure that it is a fresh one. In 

practice, the seeds can be time-based, i.e., the current timestamp. This only requires all the nodes to 

loosely synchronize with the sink.  

5.2. Data Aggregations 

A cell header CHj follows Algorithm 4 to get an intermediate aggregation result and send it to  

the sink. Specifically, each cell header CHj first broadcasts the ordered sensor ID set Sj to all the sensor 

nodes in the cell, to let each sensor node know its predecessor and successor. In addition, CHj initiates 
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the intermediate aggregation result, Dj, to be 0, and a p-bit 0-string BITj. Dj and BITj are then sent to the 

head node of the one-way circulation list. Dj and BITj will traverse the one-way circulation list two times, 

each time all the sensor nodes will process them in a one-by-one manner. Afterwards, the cell header 

will receive the intermediate aggregation result, and report it to the sink. 

Algorithm 4. PDACAS_CellHeader_Aggregate. 

Input:  

None 

Output:  

An intermediate aggregation result Dj 

Method: 

1. Broadcasts the ordered ID set Sj to all the sensor nodes in the cell; 

2. Dj = 0; 

3. Initiates a p-bit bitmap BITj, with each bit to be 0; 

4. Sends Dj and BITj to the head node in Sj; 

5. Waits for Dj and BITj to traverse the one-way circulation list of sensor nodes two times; 

6. receives Dj; 

7. Sends Dj to the sink. 

For each sensor node si, it initiates a counter, ci, to be 0, and follows the steps in Algorithm 5. Note 

that, ci is used to indicate how many times that si has received Dj and BITj. 

When receiving Dj and BITj, si first increments ci by 1. Then according to different ci, si will take 

different actions. If ci equals to 3, which indicates that Dj and BITj have traversed the one-way circulation 

list of sensor nodes two times, si will transmit Dj to the cell header.  

If ci equals to 1, which means that si is processing Dj and BITj for the first time, si will perturb its raw 

data item and adds the perturbed data to Dj. In the perturbation, si checks each k-th (1 ≤ k ≤ p) bit of BITj 

and biti: If both equal to 1, which means that there is some sensor node which holds a same key, thus a 

same keyed value, with si, and has used this keyed value to perturb its raw data, si will subtract the keyed 

value from di, and clear the k-th bit of BITj; if the k-th bit of biti is 1 while the k-th bit of BITj is 0, si will 

add the keyed value generated from this key to di and set the k-th bit of BITj. The perturbed data item is 

added to Dj, and si will send Dj and BITj to its successor.  

If ci equals to 2, which means that si is processing Dj and BITj for the second time, si will remove 

keyed values generated from some of its keys. It checks each k-th (1 ≤ k ≤ p) bit of BITj and biti: If both 

equal to 1, si will subtract the corresponding keyed value from Dj and clear the k-th bit of BITj. Then si 

sends Dj and BITj to its successor.  

Note that, a sensor may send data to the successor directly, if both sensor nodes are in the 

communication range of each other; or indirectly through the cell header otherwise. 

After receiving all the intermediate aggregation results from the cell headers, the sink retrieves the 

final aggregation result simply by summing them up, as shown follows: 

 
(2)  
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Algorithm 5. PDACAS_Sensor_Aggregate. 

Input:  

Dj; BITj; biti; Sj; raw data di; keyed values 
j

iek , 1 ≤ j ≤ q 

Output:  

Altered Dj and BITj 

Method: 

1. ci = ci + 1; 

2. if ci = 3 

transmit Dj to the cell header CHj; 

return 

3. if ci = 1 

3.1 for (int k = 1; k <= p; k++) 

if both the kth bit of BITj and biti are 1s 

                
j

i i id d ek  ; 

                Set the kth bit of BITj to be 0; 

else if the kth bit of biti is 1 

               
j

i i id d ek  ; 

               Set the kth bit of BITj to be 1; 

3.2 Dj = Dj + di; 

3.3 transmits Dj and BITj to the successor; 

3.4 return 

4. if ci = 2 

4.1 for (int k = 1; k <= p; k++) 

if both the kth bit of BITj and biti are 1s 

                  Dj = Dj − ek
j 

i; 

                  Set the kth bit of BITj to be 0; 

4.2 transmits Dj and BITj to the successor; 

4.3 return 

5.3. Analysis of PDACAS  

Correctness: In data aggregation, all the sensor nodes are organized as a one-way circulation list, and 

Dj will traverse this list two times. 

When Dj traverses the one-way circulation list for the first time, each sensor will perturb its data item 

by keyed values generated from its keys, and add the perturbed data to Dj. In raw data perturbation, 

sensor node si checks each keyed value it possesses. If a keyed value has been used by some other sensor 

node (because that sensor node and si share a common key to generate the same keyed value), si will 

subtract this keyed value; otherwise, this keyed value is added. When the first travel of Dj is finished, Dj 

equals to the sum of all the raw data items and some keyed values. 

When Dj traverses the one-way circulation list for the second time, each sensor node will remove the 

keyed values generated from some of its keys, which have been added but not removed in Dj’s first 

travel. Thus, all the keyed values will be removed, and the cell header can get the accurate aggregate of 

all sensed values. 

Privacy: First, PDACAS can protect privacy of any sensor node against an external passive 

eavesdropper, as the raw data is perturbed by q keyed values. Second, PDACAS can protect privacy of 
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any node’s raw data against the cell header and the sink, even they collude, because the cell headers and 

the sink don’t possess any key, and can’t remove the keyed values used in perturbing sensor data. Third, 

PDACAS can protect privacy of any node against certain number of colluded other sensor nodes, or an 

external and active attacker who has compromised certain number of sensor nodes, with a high 

probability. This is because, a sensor node uses all the keys in its key ring when perturbing its raw data 

item. As a result, to recover a node’s raw data, the adversary has to obtain the whole key ring of targeted 

node. By choosing appropriate parameters p and q, the probability that a sensor’s key ring is covered by 

the union of certain number of other key rings is negligible, as shown in the following. 

Assuming that t nodes are compromised by the adversary, but the target node si is not compromised. 

Without loss of generality, the key rings of the t compromised nodes are denoted as jKR , {1,2,... }j t . 

Because PDACAS and PASKOS [21] both use key rings in data perturbation, following the analysis of 

PASKOS in [21], we have: 
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(3)  

For example, let us suppose the key pool size is p = 100 and the key ring size is q = 4. The probability 

that a raw data of a sensor node can be recovered by some certain 10 and 20 nodes is 1.11% and 6.36%, 

respectively. Thus, even the key pool is not large and the key ring of each sensor node is small, the 

probability that a raw data of a sensor node can be recovered is acceptable.  

Efficiency: In PDACAS, each sensor node stores a p-bit bitmap, a key ring comprising q keys, and q 

key identifiers. Thus, the storage overhead per sensor node is p + q*Lkey + q*log2p bits, where Lkey denotes 

the length of a key. In addition, each sensor node needs to compute q keyed values, and performs 2*q 

additions or subtractions in the worst case. Thus, the computation overhead in PDACAS is bounded by 

q.  

As communication is concerned, each sensor node sends Dj and BITj to its successor two times. As a 

result, the communication overhead incurred by sending is 2*(p + log2M) bits. In addition, each sensor 

node will receive Dj and BITj from its predecessor two times, resulting in a 2*(p + log2M) bits receiving 

overhead. 

6. Performance Evaluation  

In this section, we first present numerical results of privacy-preserving efficacy of the proposed two 

protocols, in terms of probability that a sensor node’s raw data might be recovered. Then we present 

simulation-based evaluation of the efficiency of the two proposed protocols, in terms of energy 

consumption in the privacy-preserving operations. 
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6.1. Efficacy 

In PDAAS, a sensor’s raw data is disclosed when a cell header and the sink are both compromised 

(or both intend to collude). The probability of this disclosure is simple and is given in Equation (1). For 

simplicity, we set Pch = Psink = pd. Thus, the disclosure probability of a sensor node’s raw data is a 

quadratic function of pd. In a situation where the probability that a cell header and the sink are both 

compromised (or both intend to collude) is expected to be low, PDAAS can protect the data privacy of 

each sensor in an effective way. 

In PDACAS, a sensor’s raw data is disclosed when the following two events occur simultaneously: 

(1) Some other nodes are compromised, and  

(2) The target node’s key ring is covered by the union of the key rings of all the  

compromised nodes.  

The probability of the first event is a simple tth-order function of the probability that a sensor node is 

compromised, where t is the number of compromised sensor nodes. We ignore to discuss this probability, 

as it is straightforward. 

The probability of the second event is given in Equation (2), which is much complicated. In practice, 

WSNs have different scales, depending on the different applications. We compute the probabilities with 

different key pool and key ring sizes. Network operators can choose appropriate parameters based on 

the scale of their WSNs.  

Figure 2. Theoretical value of Pdisclose in PDACAS with (a) small key pool and key ring and 

(b) large key pool and key ring. 

  

(a) (b) 

 

Figure 2a presents the theoretical values of this probability when the key pool and the key ring of 

each sensor are small. Specifically, we set the key pool size p = 100 and p = 200, respectively. Then for 

key ring size q = 5, q = 10, and q = 20, we compute Pdisclose for different number of compromised sensor 

nodes. As shown in Figure 2, for a certain p, smaller key ring size indicates better privacy, which is 

consistent with the intuition that, the number of shared keys in any two key rings is smaller when the 

key ring size is smaller. For a certain q, larger key pool size can provide better privacy protection, 
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because the percentage of shared keys in any two key rings is smaller when the key pool is larger. For 

certain p and q, the more other sensor nodes are compromised, the worse privacy it can provide. This is 

easy to understand, because when more other sensor nodes are compromised, the probability that the 

target node’s key ring is covered by the union of key rings of the compromised nodes increases. 

For small key pool size and key ring size, when the number of compromised nodes increases, the 

probability that the raw data of the target node might be recovered will also increase dramatically. As a 

result, small key pool size and key ring size are only applicable to WSNs in which the number of sensor 

nodes in a cell at certain time is not large. 

Figure 2b presents the probability that a target node’s key ring is covered by the union of  

key rings of certain compromised other nodes, when the key pool size and the key ring size are relatively 

large. 

When the key pool size p = 1000, pdislose is negligible for any key ring size less than 100. If we set the 

key pool size p = 500, and choose a small key ring size, for example, not more than 50, pdislose is also 

acceptable. So, if the WSN is dense and at certain period, there are a large number of sensor nodes 

moving into a cell, to provide a good privacy with PDACAS, we should choose a large key pool and 

relatively small key rings. 

6.2. Efficiency 

To evaluate the computation and communication overhead of the two proposed protocols, we conduct 

simulations. The simulation environment is TOSSIM under TinyOS. We consider a WSN with 500 

mobile nodes which move uniformly at random among 20 cells, each with a fixed cell header acting as 

an aggregator. On average, there are 25 sensor nodes stayed in a cell in certain time period. The length 

of the sensor ID is 2log 500    = 9 bits. The communication range for each node is set to  

30 m, a typical one in an indoor environment. 

We set the upper bound for the sensed value Dmax = 500, which is sufficiently large for most  

WSN applications, as WSNs are deployed to collect data from the environment, such as temperature, 

humidity, CO2 concentration, and so on. Thus, the upper bound for the perturbed data item can  

be computed as 500 × 500 = 250,000, and the maximal length of a perturbed data item is 2log 250000    

= 18 bits. We choose HMAC as the hash function, and set the size of the key to be  

128 bits. 

For PDAAS, the overhead per sensor node is constant. The computation overhead includes two hash 

operations and two addition operations, and the communication overhead is incurred by sending a sensor 

ID and a perturbed data item. The overhead in terms of energy consumption on MICAz and TelosB is 

shown in Table 1. 

Table 1. PDAAS OVERHEAD. 

Operation MICAz TelosB 

Computation 1890 μJ 392 μJ 

Communication 69 μJ 73 μJ 
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On the MICAz platform, the energy cost is larger than TelosB. However, even on MICAz, the 

overhead in terms of energy cost for privacy-preserving operations is only about 2000 μJ, which has 

little impact on lifetime of sensor nodes. 

For PDACAS, the overhead incurred per sensor node in privacy-preserving operations is a function 

of p and q. Figure 3 summarizes the overhead in terms of energy cost of PDACAS on MICAz and 

TelosB, with different key pool size p and key ring size q.  

Figure 3. PDACAS Overhead. 

 

As shown in Figure 3, the energy consumption increases with the increase of the key pool size p. The 

reason is that, each sensor node will receive and send a p-bit bitmap twice in the data aggregation process. 

If p increases, a sensor node will consume more energy on communication. In addition, when p is given, 

the energy cost increases roughly linearly as q increases. This is because, as described in Section 5.3, 

the computation overhead includes q hash operations and 2q additions/subtractions, a linear function of 

q. From Figure 3, we can also see that, even with a large key pool, the total energy consumed on 

computation and communication for privacy protection is small, and will not post a great threat on the 

lifetime of a sensor node. 

We compare the proposed two protocols with PASKOS and PASKIS [14], because all of them are 

based on the concept of data perturbation [13], even though PASKOS and PASKIS are designed for 

sensor networks with static and homogeneous sensor nodes. In PASKOS and PASKIS, all sensors are 

homogeneous and are formed into an aggregation tree. In the comparison, for simplicity, we set the 

branch factor of each non-leaf node in the aggregation tree of PASKOS and PASKIS to be 3.  

We set the key pool size p = 200 and vary the key ring size q. The result on TelosB platform is shown 

in Figure 4. 
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Figure 4. Energy Consumption Comparison. 

 

As in Figure 3, when p is given, the communication overhead is fixed, i.e., two receiving and two 

sending, each involving a p-bit bitmap and a perturbed data item. However, the computation overhead 

is a linear function of q, i.e., q hash operations and 2q additions/subtractions. As a result, the total energy 

cost increases linearly as q increases. 

Our PDAAS protocol incurs the least overhead, because the overhead per sensor node is constant. In 

PDAAS, the computation overhead per sensor node involves only two hash operations and two additions, 

and the communications overhead is only 1 message sending. 

Our PDACAS protocol incurs a little more overhead than PASKOS. The reason is that, in PDACAS 

each sensor node needs to receive and send a p-bit string and the perturbed data items twice, resulting in 

more communication overhead.  

PASKIS incurs the most overhead. In PASKIS, an aggregation request broadcast containing a p-bit 

bitmap needs to be sent to each sensor node first. Then each non-leaf sensor node collects multiple 

perturbed data items plus a p-bit bitmap from its children. In addition, the data perturbation process 

involves a multiply operation. As a result, the PASKIS protocol will incur more overhead than the other 

three ones. 

7. Conclusions 

In this paper, we address the privacy protection problem for data aggregation in two-tiered WSNs 

with fixed aggregators and mobile sensor nodes. Two privacy protection protocols, namely PDAAS and 

PDACAS, are presented. These two protocols provide an effective protection against both external 

eavesdroppers and internal malicious entities. Specifically, PDAAS can protect privacy of a sensor node 

against other nodes, the aggregator, the sink, and an eavesdropper. PDACAS can protect privacy of a 

sensor’s raw data even the sink and the aggregator collude, at the cost of a slightly increased overhead. 

Thorough analysis and experimental evaluation confirm the efficacy and efficiency of both protocols. In 

the future, an evaluation of the two protocols on real deployments is an aspect that requires more in-

depth investigation. In addition, solutions to privacy-preserving data aggregation for other types of 

WSNs, e.g., tiered WSNs in which both aggregators and sensor nodes are mobile, have yet to be 

proposed. 
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