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Abstract

Background: To facilitate long-term safety surveillance of marketing drugs, many spontaneously reporting systems

(SRSs) of ADR events have been established world-wide. Since the data collected by SRSs contain sensitive personal

health information that should be protected to prevent the identification of individuals, it procures the issue of

privacy preserving data publishing (PPDP), that is, how to sanitize (anonymize) raw data before publishing.

Although much work has been done on PPDP, very few studies have focused on protecting privacy of SRS data

and none of the anonymization methods is favorable for SRS datasets, due to which contain some characteristics

such as rare events, multiple individual records, and multi-valued sensitive attributes.

Methods: We propose a new privacy model called MS(k, θ*)-bounding for protecting published spontaneous ADE

reporting data from privacy attacks. Our model has the flexibility of varying privacy thresholds, i.e., θ*, for different

sensitive values and takes the characteristics of SRS data into consideration. We also propose an anonymization

algorithm for sanitizing the raw data to meet the requirements specified through the proposed model. Our

algorithm adopts a greedy-based clustering strategy to group the records into clusters, conforming to an

innovative anonymization metric aiming to minimize the privacy risk as well as maintain the data utility for ADR

detection. Empirical study was conducted using FAERS dataset from 2004Q1 to 2011Q4. We compared our model

with four prevailing methods, including k-anonymity, (X, Y)-anonymity, Multi-sensitive l-diversity, and (α, k)

-anonymity, evaluated via two measures, Danger Ratio (DR) and Information Loss (IL), and considered three different

scenarios of threshold setting for θ*, including uniform setting, level-wise setting and frequency-based setting. We

also conducted experiments to inspect the impact of anonymized data on the strengths of discovered ADR signals.

Results: With all three different threshold settings for sensitive value, our method can successively prevent the

disclosure of sensitive values (nearly all observed DRs are zeros) without sacrificing too much of data utility. With

non-uniform threshold setting, level-wise or frequency-based, our MS(k, θ*)-bounding exhibits the best data utility

and the least privacy risk among all the models. The experiments conducted on selected ADR signals from

MedWatch show that only very small difference on signal strength (PRR or ROR) were observed. The results show

that our method can effectively prevent the disclosure of patient sensitive information without sacrificing data

utility for ADR signal detection.
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Conclusions: We propose a new privacy model for protecting SRS data that possess some characteristics

overlooked by contemporary models and an anonymization algorithm to sanitize SRS data in accordance with the

proposed model. Empirical evaluation on the real SRS dataset, i.e., FAERS, shows that our method can effectively

solve the privacy problem in SRS data without influencing the ADR signal strength.

Keywords: Adverse drug reaction, ADR signal detection, Data anonymization, Privacy preserving data publishing,

Spontaneous reporting system

Background

It is well known that a new drug before hitting the mar-

ket needs to undergo a series of clinical trials to reveal

all possible adverse drug reactions (ADRs). Unfortu-

nately, many serious ADRs cannot be disclosed in the

premarketing stage through the limited number of vol-

unteers participate in clinical trials; on the contrary, they

can only be identified through long term surveillance of

extensive usages of the drug on the masses. Therefore,

most of highly developed countries have established

various spontaneous reporting systems (SRSs) to collect

adverse drug events (ADEs) as a data repository for ADR

detection and analysis, e.g., the FDA Adverse Event

Reporting System (FAERS) of the US Food and Drug Ad-

ministration (FDA) [1], the UK Yellow Card scheme [2],

and the MedEffect Canada [3], among others.

Usually, the data collected by the SRSs contain sensitive

personal health information that should be protected to

prevent the identification of individuals. This procures the

need of anonymizing the raw data before being published,

namely privacy-preserving data publishing (PPDP) [4].

Although in the past few years there have been a lot of

researches on this topic, none of the anonymization

methods is favorable for SRS datasets, due to which con-

tain some characteristics, including rare events, multiple

individual records, and multi-valued sensitive attributes.

In this paper, we present a new privacy-preserving

model, called MS(k, θ*)-bounding, for protecting the pub-

lished spontaneous ADE reporting data from privacy at-

tacks. We also propose an anonymization algorithm for

sanitizing the raw data to meet the requirements specified

through the proposed model. Empirical study conducted

using FAERS datasets show that our method can effectively

prevent the disclosure of patient sensitive information

without sacrificing data utility for ADR signal detection. In

what follows, we present some background knowledge re-

lated to this work, including ADR signal detection and

privacy-preserving models, followed by a summarization of

our previous work [5] on the deficiency of contemporary

PPDP models for publishing SRS datasets.

Spontaneously reporting systems and ADR signal detection

According to WHO, the definition of ADRs or ADEs

is uncomfortable, noxious, unexpected, or potentially

harmful reactions resulting from the use of given

medications for patients. Usually, an ADR signal

(rule) can be represented as an association between

symptoms and drugs with some extra conditions, for

example, a rule “Avandia, age > 18 years old ⇒ death.”

Statisticians have developed various criteria based on the

concept of measuring disproportionality or information

component (IC) to evaluate the significance of an ADR

signal [6]. The most widely adopted disproportionality-

based measurements are Proportional Reporting Ratio

(PRR) [7] and Reporting Odds Ratio (ROR) [8]. The PRR

measure is used by the U.K. Yellow Card database and UK

Medicines and Healthcare products Regulatory Agency

(MHRA), while ROR is used by the Netherlands Pharma-

covigilance Foundation. All of these measurements can be

calculated using a contingency table as shown in Table 1.

Table 2 shows some ADR measures and thresholds that

commonly used in the pharmacovigilance community for

detecting ADR signals.

Privacy models for microdata publishing

Microdata refer to a kind of data which contains individ-

ual information and usually can be represented as tables

including tuples defined in a set of attributes, and we

can divide these attributes into the following categories:

� Explicit Identifiers (ID): These refer to attributes that

can uniquely identify each individual, such as SSN,

Name, etc.

� Quasi-identifiers (QID): These refer to attributes

that might be linked with external information to

re-identify some of the individuals, e.g., Sex, Age,

ZIP code, etc.

� Sensitive Attributes (SA): These refer to attributes

that contain sensitive information, such as Disease,

Salary, etc.

Table 1 The 2 × 2 contingency table used for the identification

of ADRs

Suspected ADR Without the
suspected ADR

Total

Suspected drug a b a + b

Other drugs c d c + d

Total a + c b + d N = a + b + c + d
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� Non-sensitive Attributes (NSA): These refer to

attributes not fall into the above three categories.

Since Sweeney [9] pointed out that publishing micro-

data by only removing ID without paying attention to

QID may threat the privacy of data owners, there have

been a lot of researches on this topic [4]. These research

efforts towards protecting released microdata aim at

thwarting two primary types of privacy attacks, individual

disclosure and attribute disclosure.

Individual disclosure (also known as table linkage

attack) refers to the situation that a specific tuple for an

individual in the published table is re-identified. The

most famous privacy model for this purpose is k-ano-

nymity [9]. With k-anonymity, the data publisher should

generalize QID of the data such that each QID group

contains no less than k tuples, making a given record in-

distinguishable from at least k - 1 other records by QID.

Attribute disclosure (also known as attribute linkage at-

tack) refers to the situation that the sensitive attribute

value of an individual can be inferred without the neces-

sity to link the value to a specific tuple. The prevailing

model for this protection is l-diversity [10], which re-

quires each QID group contains at least l “well-repre-

sented” sensitive values so as to ensure the probability of

inferring the specific sensitive value within each QID

group will be no more than 1/l.

Problems of contemporary privacy models

We summarize our previous work on the deficiency of

contemporary PPDP models for publishing SRS datasets

[5]. First, we present the features of SRS data, and then

summarize the results of our analysis.

Special features of SRS data

� Rare Events: Usually, undiscovered or new ADRs are

rarely observed, so almost all criteria used in

measuring the significance of ADRs ignore or

overlook the frequency of ADRs. For example, the

MHRA measure may output a suspected signal even

it occurs only three times. With PPDP models, we

often generalize or suppress the records, which may

increase the risk of false positive as well as false

negative signals of ADRs, especially when we perform

stratified ADR detection by factors such as Age,

Gender, and Location, i.e., members of the typical QID.

� Multiple Individual Records: A typical SRS data

usually contains reports called follow-ups, which

complement the information of an initial report and

have to be merged with the initial report to form a

more accurate and complete version. Most of

contemporary PPDP models assume that there is

only one record for each individual, e.g., k-anonymity,

l-diversity. Overlooking the existence of multiple

individual records might impair the privacy

requirement to be achieved. For example, consider

a table satisfying k-anonymity. A QID group might

contain k tuples, all of which are of the same

individual, thus ruin the privacy requirement.

� Multi-valued Sensitive and Quasi-sensitive Attribute:

Quasi-sensitive attributes (QSA) are not sensitive

attributes, but as link to external knowledge may

reveal sensitive information of an individual. Typical

SRS datasets, e.g., FAERS, usually contain Drug and

PT (Preferred Terms of symptoms), each of which, if

being linked with external knowledge of clinical

treatments, could reveal the disease information of

an individual. For example, Prezista and Ritonavir

are commonly used together for treating HIV;

knowing a patient taking these medicines is almost

equivalent to perceiving him having HIV. Besides,

FAERS contains another attribute named INDI_PT,

which records the indications of the patient before

treatment. Values of this attribute can be sensitive

(represent some disease, e.g., Multiple Sclerosis) or

quasi-sensitive (describe symptoms of some illness,

e.g., Muscle Spasticity, possibly caused by Parkinson’s

disease). All of these three attributes are multi-valued,

i.e., containing more than one value. Very few PPDP

models can handle multi-valued sensitive attributes

and consider the existence of quasi-sensitive attributes.

Analysis of previous work

Our previous work in [5] can be summarized as follows:

(1)Variants of k-anonymity or l-diversity overlook the

existence of rare instances in the dataset.

(2)Only very few models, e.g., (X, Y)-privacy [11],

consider multiple individual records.

(3)Except QS l-diversity [12], no model notices the

existence of quasi-sensitive attributes, not to mention

the case of multivalued quasi-sensitive attributes.

(4)Most models entail the assumption of single

sensitive attribute, while very few embrace the

situation of multiple sensitive attributes, e.g., (α, k)-

anonymity [13], Multi-sensitive l-diversity [14].

(5)No model takes into account all of the

mentioned features of SRS datasets, which raises

the need to design a new PPDP model to handle

these features.

Table 2 Commonly used ADR measures and thresholds

Measure Formula Threshold

PRR
a= aþbð Þ
c= cþdð Þ PRR − 1.96 × SD > 1

PRR≥ 2, a≥ 3, χ2≥ 4

ROR
a=c
b=d ROR − 1.96 × SD > 1

IC log2
a aþbþcþdð Þ
aþbð Þ aþcð Þ Expect(IC) − 1.96 × SD > 0
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Methods

The proposed MS(k, θ*)-bounding model

To solve the aforementioned problems, we developed a

privacy model called Multi-Sensitive (k, θ*)-anonymity

(abbrev. MS(k, θ*)-anonymity). Let D be SRS data to be

published that consists of four disjoint sets of attributes,

QID, SA, QSA, and NSA, i.e., D = <QID, SA, QSA, NSA>,

and D* the released SRS data after anonymization. We

called the records with the same QID values a “QID-

group.” We also assume an external knowledge table E

about treatment is available, which can be constructed

from websites such as Drugs.com, wrongdiagnosis, etc.

For simplicity, let E contain a pair of attribute group

(QE, SE), where QE denotes the set of attributes that can

be linked with QSA in D, e.g., Drug, and SE the set of

sensitive attributes, e.g., Disease.

Definition 1 (Confidence). Let s be a sensitive value

in SA or SE. For a QID-group in D (or D*) with value of

q, we define the probability that q have s as

conf q→sð Þ;

and the same probability after linking E via SA and SE as

conf q→s; Eð Þ:

Definition 2 (Confidence Bounding). Let S = {s1, s2,

…, sl} be the set of sensitive values to be protected and

θ* = (θ1, θ2, …, θl) be the user specified disclosure prob-

ability thresholds associated with S, where θi denotes the

threshold for si, 1 ≤ i ≤ l. That is, θi is an upper bound of

the confidence to infer any QID-group having si, with or

without external knowledge E, i.e.,

conf q→si; Eð Þ≤θi:

Note that S is a subset of all values legal in SA and

SE, i.e.,

S�UA∈ SA∪ SE dom Að Þ;

where dom(A) represents the domain of attribute A.

Definition 3 (MS(k, θ*)-bounding). Given S and the

corresponding θ*, we say a release data D* satisfies MS(k,

θ*)-bounding if

(1)Every QID-group contains at least k distinct

individuals (cases);

(2)The confidence to infer any QID-group q having si is

less than θi, i.e., conf(q→ si, E) ≤ θi.

In MS(k, θ*)-bounding, we define θ* to control the ratio

of sensitive values in QID group because not all sensitive

values is “really” sensitive. For example, most diseases are

sensitive for people, but it does not matter when the

others know someone got a flu. This model can solve the

multiple individual records problem because k is defined

by the distinct individuals, and it is easy to check whether

the QID group satisfies the model or not.

Another noteworthy thing is about the setting of con-

fidence bounding θ*. In general, as applying MS(k, θ*)-

bounding to the dataset, every θi in θ* should be no less

than the frequency of si in the dataset, i.e., we must set

every θi so as to satisfy θi ≥ P(si). This is because after

generalization the occurrence of si in every QID-group is

no less than P(si), and so setting θi < P(si) nullifies the

work of anonymization, i.e., the result fails to meet the

privacy requirement. However, for a dataset containing

some relatively frequent sensitive values, we still can

apply MS(k, θ*)-bounding to the dataset using some

other methods like adding counterfeit records or sup-

pressing some of those sensitive values, though those

method may severely decrease the utility of the data.

Example 1. Table 3 illustrates a sample of the FAERS

data, where ISR and CaseID denote the IDs of a record

and an event, respectively. Since an event may have more

than one reporting records, a CaseID can correspond to

many different ISRs. Here we assume QID comprises

{Age, Gender, Country}. Table 3(a) shows the anonymized

table D* composed of two QID groups, ([20–30], M, USA)

and ([30–40], F, UK), each of which contains two different

events; Table 3(b) represents the external table E showing

knowledge of treating diseases with drugs. It is not hard to

derive that the probability of each disease associated with

a specific QID group is less than 0.4, e.g., conf([30–40], F,

UK→Headache, E) = 0.25. This anonymized table D* thus

satisfies MS(2, 0.4)-bounding.

Anonymization algorithm for MS(k, θ*)-anonymity

Algorithm basics

Our algorithm is a hybrid of greedy and clustering

approaches. We view each QID-group as a cluster and

Table 3 A sample FAERS data satisfying MS(2, 0.4)-bounding

(a) Anonymized table

ISR CaseID Age Gender Country Drugs

001 001 [20–30] M USA Paracetamol

002 001 [20–30] M USA Paracetamol

003 002 [20–30] M USA Intron A, Antacid

004 002 [20–30] M USA Intron A, Antacid

005 003 [30–40] F UK Paracetamol

006 004 [30–40] F UK Antacid

(b) External table

Drug Diseases

Asprin Flu, Headache, Fever

Intron A Hepatitis B, Hepatitis C, Leukemia, Melanoma

Paracetamol Headache, Fever

Antacid Stomachache, GERD
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so develop a clustering-based method [15] to form all

QID-groups.

Each QID-group (cluster) begins with a randomly se-

lected record, and then is gradually increased by adding

an isolated record that exhibits the best characteristic

among all candidates. This process continues until the

group is composed of k different cases. Finally, the QIDs

of all records belonging to the same cluster are general-

ized to the same value.

We use generalization rather than suppression as the

anonymization operation because suppression tends to

remove records corresponding to rare events. We adopt

both hierarchy-based generalization and hierarchy-free

generalization; the former is used when a value

generalization hierarchy is defined for the attribute (usu-

ally, it is categorical), otherwise the latter is used. For ex-

ample, we adopt the age hierarchy defined in MeSH

[16], a domain knowledge of value generalization hier-

archies widely used in medical and healthcare areas. In

the following, we describe the metric for evaluating an

isolated record quality.

Intuitively, the best record to be included into a QID-

group should exhibit the most similarity to the group.

This implies its addition will result in the least degree of

generalization (distortion of data, destruction of utility,

or information loss) to be performed on the QID attri-

butes of the group. Here in this study, we adapt the

measure of information loss defined in [15].

Definition 4 (Information Loss). Let g denote a

group (cluster) constructed during the execution of our

algorithm, where the QID comprise two different sets,

numerical attributes N1, N2, …, Nm, and categorical attri-

butes C1, C2, …, Cn, and each Ci is associated with a

generalization hierarchy Ti. The information loss (IL) of

group g is defined as follows:

IL gð Þ ¼ gj j �
X

m

i¼1

max N i; gð Þ−min N i; gð Þ

max N ið Þ−min N ið Þ
þ
X

n

j¼1

h Cj; g
� �

h C j

� �

 !

;

ð1Þ

where max (Ni) (min(Ni)) and max(Ni, g) (min(Ni, g))

denote the maximum (minimum) values of attribute

Ni in the whole dataset and group g, respectively; |g|

denotes the number of records in g; h(Cj) is the

height of the hierarchy tree Tj, and h(Cj, g) the height

of the generalized value of Cj for all records in g, i.e.,

the lowest common ancestor in Tj with respect to

every Cj value in g.

The information loss measures how generalization im-

pact the data utility. As we are building a group g by

adding new records, we can use the difference of IL

(ΔIL) between the original group and the group with

record r to determine the best record that produces the

least ΔIL, i.e.,

ΔIL g; rð Þ ¼ IL g∪ rf gð Þ– IL gð Þ; ð2Þ

and the best choice rbst is

rbst ¼ argminrΔIL g; rð Þ: ð3Þ

In addition to the data distortion, the privacy require-

ment is another factor critical for the determination of

the best record. This is because the inclusion of a new

record would increase the disclosure risk of some sensi-

tive values in the resulting QID-group. We introduce a

new parameter called Privacy Risk (PR) to measure the

risk of sensitive value disclosure incurred by adding new

records into the QID-group, thus alleviating the breach

of our privacy requirement.

Let Sr denote the set of sensitive values contained in

record r. Consider a QID-group g and a sensitive value

s∈Sr. Let σs(g) represent the number of records in g con-

taining sensitive value s. We define the maximum num-

ber of records in g, ηs(g), that will cause the breach of

the bound θs associated with s

ηs gð Þ ¼ ⌊max k; gj jf g � θs⌋; ð4Þ

and the privacy risk to explore s with the inclusion of

record r as

PRs g ∪ rf gð Þ ¼
σs gð Þ

ηs g ∪ rf gð Þ−σ s gð Þ
if ηs g ∪ rf gð Þ > σs gð Þ

∞ otherwise

8

<

:

ð5Þ

Since a record may contain multiple sensitive values,

the privacy risk of group g caused by including r can be

defined as the summation of the risk to each sensitive

value.

Definition 5 (Privacy Risk). Let g denote a group

(cluster) constructed during the execution of our

Table 4 An example data

(a) A known group g

CaseID Gender Age Weight Indications

r1 Male Young Adult [50–75] I1

r2 Male Young Adult [50–75] I2, I3, I4

r3 Male Young Adult [50–75] I2, I3

r4 Male Young Adult [50–75] I2

(b) Isolated records

CaseID Gender Age Weight Indications

r5 Male Adocent 50 I1

r6 Female Adult 40 I3, I4

r7 Male Young Adult 80 I2, I3
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algorithm. The privacy risk (PR) to group g caused by in-

cluding a record r is

PR g; rð Þ ¼
1þ

X

s∈Sr

PRs g ∪ rf gð Þ if ηs g ∪ rf gð Þ > σ s gð Þ

∞ otherwise

8

<

:

ð6Þ

Finally, we refine ΔIL into ΔIL’ as follows:

ΔIL’ g; rð Þ ¼ ΔIL g; rð Þ � PR g; rð Þ; ð7Þ

and

rbst ¼ argminr ΔIL’ g; rð Þ: ð8Þ

Note that when all sensitive values in Sr are new to

group g, σs(g) = 0 and so is PR(g, r), which will dismiss

the effect contributed by information loss (ΔIL). To

avoid this situation, we add an increment into (6).

Example 2. Consider Table 4 which consists of a group

of four cases, r1 to r4, with g = {Male, Young Adult, 50–

75} and three isolated cases, r5 to r7. Figure 1 shows the

age hierarchy defined in MeSH and Fig. 2 depicts a simple

hierarchy for gender. Let QID = {Gender, Age, Weight}

and SA = {Indications}, and suppose k = 5, θ* = 0.6, and

weight range = 0 ~ 100. The information loss for group g is

IL gð Þ ¼ 4�
0

1
þ
0

2
þ
75−50

100−0

� �

¼ 4� 0:25 ¼ 1;

and for g ∪ {r5}, g ∪ {r6}, and g ∪ {r7} the values are

IL g ∪ r5f gð Þ ¼ 5�
0

1
þ
2

2
þ
75−50

100−0

� �

¼ 5� 1þ 0:25ð Þ ¼ 6:25

IL g ∪ r6f gð Þ ¼ 5�
1

1
þ
1

2
þ
75−40

100−0

� �

¼ 9:25

IL g ∪ r7f gð Þ ¼ 5�
0

1
þ
0

2
þ
85−50

100−0

� �

¼ 5� 0:35ð Þ ¼ 1:75

Next, it is easy to compute the ΔILs.

ΔIL g; r5ð Þ ¼ 6:25 – 1:4 ¼ 4:85

ΔIL g; r6ð Þ ¼ 7:25 – 1:4 ¼ 5:85

ΔIL g; r7ð Þ ¼ 1:75 – 1:4 ¼ 0:35

The privacy risks are

PR g; r5ð Þ ¼ 1þ
1

3−1
¼ 1:5

PR g; r6ð Þ ¼ 1þ
2

3−2
þ

1

3−1
¼ 3:5

PR g; r7ð Þ ¼ ∞

Finally, we can compute the ΔIL’s and obtain the best

choice rbst among r5 to r7, concluding rbst = r5.

rbst ¼ argminr ΔIL’ g; r5ð Þ; ΔIL’ g; r6ð Þ; ΔIL’ g; r7ð Þf g
¼ argminr 4:18� 1:5; 5:85� 3:5;∞f g ¼ r5

Detail description

Algorithms 1 and 2 present the description of our algo-

rithm, which is composed of two stages. The first stage

is to create as many QID-groups that satisfy MS(k, θ*)-

bounding as possible. We introduce a concept called

combined record (or super record) to handle the issue of

multiple individual records. That is, all records with the

same CaseID are combined into a super record before

the anonymization procedure. This avoids the abnormal

situation that members of this CaseID group will be,

after generalization, divided into different QID-groups,

which will cause larger bias on the data quality and per-

plex the process of identifying duplicate records during

ADR signal detection.
Fig. 2 Value hierarchy for gender

Fig. 1 Value hierarchy for age
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Initially, we combine records with the same CaseID

into one super record per CaseID by generalizing the

values of those records. The generalization is neces-

sary because not all members of the same CaseID ex-

hibit the same QID value. This is due to the existence

of follow-up records, which represent compensation

for the initial report and so may contain update

information.

Next, we create an empty group and add into it a ran-

domly selected record, then into which we add more re-

cords step by step, each with the least ΔIL’ (defined in

(7)) until the group satisfies MS(k, θ*)-bounding. Thirdly,

we choose a new record that is most distinguished from

the one chosen for creating the latest group and repeat

the same steps to grow the group. These steps are re-

peated until the remaining records cannot form a group,

e.g., the number of records is less than k or most of the

remaining records contain the same sensitive value.

The second stage is then activated by calling function

QID-generalization (see Algorithm 2). First, we take care

of the ungrouping records by adding each of them into

the group that produces the least ΔIL’ to ensure the util-

ity and meet the privacy requirement. Next, we split

those combined records back to their original records

(do not change the group they belong to). Finally, we

generalize all records within the same group into the

same QIDs such that the whole data set will satisfy

MS(k, θ*)-bounding.

Results and Discussions

We have conducted a series of experiments to confirm if

our model is more suitable for anonymizing SRS data-

sets than prevailing PPDP models. We describe the de-

sign of each experiment, present the experimental

results, and state our observations.

Experimental design

All experiments were conducted over FAERS datasets,

which is a SRS system provided by U.S. Food and Drug

Administration (FDA) and released quarterly. Each re-

port in FAERS is uniquely identified by an attribute

called ISR, and contains an attribute CaseID to identify

distinct individuals, along with some demographic informa-

tion such as Weight, Age, and Gender, drugs information

such as drug name (Drug) and indication (INDI_PT), and

reaction information (PT).

We used {Weight, Age, Gender} as QID, CaseID as the

individual identifier, and used drug indication (INDI_PT)

and drug reaction (PT) as SA. Datasets from 2004Q1 to

2011Q4 were selected to build the test sets, where any

record with QID containing missing values was discarded.

Four prevailing PPDP models were evaluated against

our model. They are k-anonymity, (X, Y)-anonymity,

Multi-sensitive l-diversity, and (α, k)-anonymity. These

models were chosen because each of them is the repre-

sentative or the prevailing models, and can be applied to

anonymize SRS data without additional modification;

this is why l-diversity is replaced by Multi-sensitive

l-diversity.

All models were evaluated from two aspects: the qual-

ity of resulting anonymized dataset, measured by two
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criteria, i.e., data utility and privacy risk, and the influ-

ence to ADR signals.

For the anonymization quality, we considered two

measurements. The first one called Normalized Informa-

tion Loss (NIL) is used to measure the data utility, defined

as follows:

NIL D�ð Þ ¼
1

ng � QIDj j

X

g∈D�

IL gð Þ

 !

; ð9Þ

where D* is the anonymized data table, ng denotes the

number of QID-groups in D*, g denotes a QID-group,

and |QID| the cardinality of QID. The value of NIL

ranges over [0, 1]; larger NIL means poorer data utility.

The second one called Dangerous Ratio (DR) is used

to measure the privacy risk of anonymized dataset, de-

fined as follows:

DR ¼
number of dangerous QID−groups

number of QID−groups
ð10Þ

A QID-group is dangerous if it contains at least one

unsafe sensitive value, that is, the attacker’s confi-

dence for inferring that value is higher than the speci-

fied threshold. In this sense, the DR measure also

estimates the privacy-preserving quality of an anon-

ymized table.

For the influence to ADR signals, we inspect the im-

pact of anonymized data on the strength of observed

ADR rules. Following our previous work in [17], we

chosen from FDA MedWatch [18] all significant ADR

rules that render withdrawal or warning of the drugs

and associated with patient demographics, such as age

or gender conditions. Detail description of these ADR

rules is shown in Table 5.

Since our model allows non-uniform settings of confi-

dence bounding, i.e., θ*, we considered three different

scenarios of thresholds for θ* to inspect the effect of

different settings: 1) Uniform setting for θ*, i.e., all confi-

dences of symptoms were set to the same value (0.2 or

0.4); 2) Level-wise specification, that is, all symptoms (or

diseases) were classified into three levels, high sensitive,

low sensitive, and non-sensitive. Those symptoms cor-

responding to high sensitive are assigned a smaller

threshold, i.e., 0.2, low sensitive are assigned a larger

threshold, i.e., 0.4, and non-sensitive are assigned to 1; 3)

Frequency-based strategy, the threshold of each symptom

is determined based on the idea: “The more frequently the

symptom occurs, the less sensitive it is.”

Results for uniform confidence setting

We assume every symptom is of the same sensitivity with

confidence bounded by 0.2 or 0.4. Analogously, α is set to

0.2 or 0.4 for (α, k)-anonymity, while k (or l) = 5, 10, 15, 20

for k-anonymity, (X, Y)-anonymity, Multi-sensitive l-diver-

sity, and our MS(k, θ*)-bounding. First, we compared

the data utility generated by each anonymization method.

Figures 3 and 4 show the resulting NILs for every method,

where MS l-diversity means Multi-sensitive l-diversity.

Panels inside are for better view of data position, and ap-

plicable to all following figures. Since the results for k (or l)

= 10, 15 are somewhere in between those for k (or l) = 5, 20

and conform to the overall trend, hereafter we omit these

two cases. From the obtained results, we observe that

1. k-anonymity and (X, Y)-anonymity are good at

preserving the data utility, and both exhibit nearly

identical results, which are less than those generated

by our methods.

2. (α, k)-anonymity and our model yield similar NIL

results, because under uniform setting the only

difference between (α, k)-anonymity and our model

is that (α, k)-anonymity does not consider duplicate

reports, yielding not too much effect in information

loss. Furthermore, (α, k)-anonymity and our model

suffer from much less information loss when the

confidence threshold is set relatively higher

(0.4 vs 0.2).

3. Multi-sensitive l-diversity causes much more

information loss than the other models because the

top-down method tends to create larger QID-groups

than that by bottom-up method.

4. Even in larger threshold setting, the information loss

generated by our method is around 5 to 40 times of

that by k-anonymity and (X, Y)-anonymity, though

the values are still small, normally between 0.01 to

0.2; the larger k value is, so is NIL. That it, the data

utility decreases as larger QID-group is allowed.

It is noteworthy that some datasets anonymized by

our method with lower θ produce very high NILs, i.e.,

2004Q4, 2007Q1, and 2010Q3. After further inspection

Table 5 Selected ADR rules from FDA MedWatch

Drug
name

Adverse reaction Demographic
condition

Marked
year

Withdrawn or
warning year

AVANDIA Myocardial infarction 18~ 1999 2010

Death

Cerebrovascular
accident

TYSABRI Progressive multifocal
leukoencephalopathy

18~ 2004 2005

ZELNORM Cerebrovascular
accident

Female 2002 2007

WARFARIN Myocardial infarction 60~ 1940 2014

REVATIO Death ~18 2008 2014
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we found that it is because most of these datasets con-

tain some relatively high frequent symptoms. For ex-

ample, there are 22,730 reports (without missing values)

in 2007Q1, and 3,890 (17.1 %) of them recorded “Dia-

betes Mellitus Non-Insulin-Dependent,” and in 2010Q3,

12,833 of 63,838 (20.1 %) reports containing “Smoking

Cessation Therapy.” In this situation, it is hardly to apply

(α, k)-anonymity or our MS(k, θ*)-bounding with α (so

as θ) = 0.2 (<20.1 %) to this dataset. It looks like uniform

threshold setting of our model is not suitable to data with

Fig. 3 Comparison of models on NILs with θ* (or α) = 0.2 and k (or l) = 5 or 20

Fig. 4 Comparison of models on NILs with θ* (or α) = 0.4 and k (or l) = 5 or 20
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high frequent sensitive values, but in most scenarios, the

more frequent the values occur, the lesser sensitive they

are. All we need is to adopt non-uniform setting for θ*, as

to be shown later.

Next, we compared the privacy risk raised by each anon-

ymization method. Figures 5 and 6 depict the resulting

DRs for all methods. From the obtained results, we ob-

serve that

1. Our MS(k, θ*)-bounding yields no DR because the

flexibility to set θ* according to user requirement.

On the contrary, (α, k)-anonymity would suffer from

some DRs because QID-groups contain duplicate

reports, which may decrease actual group size,

causing violation of the privacy requirement. While

k is getting larger, the probability of duplicate

reports accumulated to the same group is increasing,

further aggravating DRs.

2. Multi-sensitive l-diversity does not perform well on

protecting the sensitive values. This is because it

only guarantees the number of records with distinct

sensitive values in each group no less than l, which

may fail to thwart the attacker’s confidence on

inferring the patient symptoms.

For those models not considering confidence thresh-

old on sensitive values, including k-anonymity and (X,

Y)-anonymity, it can be observed that the larger k is,

the lower DR being generated. That it, the data privacy

risk increases as larger QID-group is allowed.

Results for level-wise confidence setting

To inspect the applicability of our model to more prac-

tical situation, we also adopted level-wise setting of θ*.

In practice, most symptoms or indications are not

“really” sensitive. We choose group of symptoms called

“Acquired immunodeficiency syndromes” (a High Level

Term (HLT) in MedDRA), which contains 32 PTs and

most of them are similar to AIDS, as “high sensitive”

with confidence threshold = 0.2, and another two groups

called “Coughing and associated symptoms” and “Allergies

to foods, food additives, drugs and other chemicals,”

which contain 44 PTs, as “non-sensitive” symptoms

with confidence threshold = 1. The confidence thresh-

olds of symptoms not belonging to the above groups

are set to 0.4.

We compared our MS(k, θ*)-bounding with those

models considering sensitive values, including Multi-

sensitive l-diversity and (α, k)-anonymity. The parameter

setting is α = 0.2 and 0.4, and k (or l) = 5, 10, 15, and 20.

Figures 7 and 8 show the resulting NILs and DRs, re-

spectively. From the obtained results, we observe that

1. All NILs generated except by MS(k, θ*)-bounding

are the same as observed previously, but DRs are

different because of various threshold settings.

Fig. 5 Comparison of models on DRs with θ* (or α) = 0.2 and k (or l) = 5 or 20
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Fig. 6 Comparison of models on DRs with θ* (or α) = 0.4 and k (or l) = 5 or 20

Fig. 7 Comparison of our MS(k, θ*)-bounding with level-wise setting with other models on NILs with k (or l) = 5 or 20
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2. Because records containing “high sensitive” and

duplicate records are rare, (0.2, k)-anonymity

generate very few DRs. However, the generated

NIL is very high for data with high frequent

sensitive value that may decrease data utility

severely.

3. MS(k, θ*)-bounding produces only a little

larger NIL than (0.4, k)-anonymity because in

this level-wise specification, most symptoms

receive confidence threshold at 0.4. In contrast,

MS(k, θ*)-bounding does not produce any

DR but (0.4, k)-anonymity violates the

privacy requirement more often due to

overlooking duplicate records.

In summary, the performance of our MS(k, θ*)-bound-

ing is better than the other models, while Multi-sensitive

l-diversity yields the worst performance.

Results for frequency-based confidence setting

Finally, we consider another scenario of confidence set-

ting: the threshold of a symptom is set according to its

frequency in the dataset. We calculated the frequencies

of all symptoms appear in the dataset and set the confi-

dence thresholds of the most 10 % frequent symptoms

to 1, the last 10 % frequent symptoms to 0.2, and the

remaining to 0.4, respectively.

Again, we compared our MS(k, θ*)-bounding with Multi-

sensitive l-diversity and (α, k)-anonymity with the same par-

ameter settings, i.e., α = 0.2 and 0.4, and k (or l) = 5, 10, 15,

and 20. Figures 9 and 10 show the resulting NILs and DRs,

respectively. From the obtained results, we observe that

1. As mentioned previously, all NILs generated except

by MS(k, θ*)-bounding are the same as the uniform

setting, while DRs are different because of different

threshold settings.

2. All models generate less DRs than that by

level-wise setting, because most dangerous

groups appearing in the previous experiments

are caused by high frequent symptoms, whose

thresholds are set to 1 in this experiment.

3. Even 90 % of θ's in θ
* are set to 0.4 or lower, our

MS(k, θ*)-bounding produces very small NIL than

(0.4, k)-anonymity when being applied to data with

high frequent symptoms such as 2004Q1 and 2007Q1.

In FAERS data, there are more than 20,000 different

symptoms, which will require much researching effort and

background knowledge to determine the threshold of each

symptom. The frequency-based approach is a simple but

reasonable method, and with this threshold definition, our

MS(k, θ*)-bounding exhibits the best data utility and the

least privacy risk among all the models we examined.

Fig. 8 Comparison of our MS(k, θ*)-bounding with level-wise setting with other models on DRs with k (or l) = 5 or 20
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Fig. 9 Comparison of our MS(k, θ*)-bounding with frequency-based setting with other models on NILs with k (or l) = 5 or 20

Fig. 10 Comparison of our MS(k, θ*)-bounding with frequency-based setting with other models on DRs with k (or l) = 5 or 20
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Influence on ADR signals

We also conducted an experiment to inspect the impact of

anonymized data on the strengths of discovered ADR rules.

For each ADR rule shown in Table 5, we computed and

checked the difference on the number of events, PRR and

ROR measures between the original datasets and anon-

ymized datasets. Since all rules exhibit similar pheno-

menon, we only show the results of the following rule

AVANDIA, age > 18⇒CEREBROVASCULAR ACCIDENT.

Figure 11 depicts the occurrence and strength of the

above rule in the original dataset (original count and ori-

ginal PRR) and from which the difference yielded from

the dataset anonymized by Multi-sensitive l-diversity,

(0.2, k)-anonymity, (0.4, k)-anonymity, and our MS(k, θ*)-

bounding with frequency-based setting, with k = 20. The

obtained results show that

1. Multi-sensitive l-diversity does not perform well

because of the top-down strategy, which is less

flexible to create QID-groups.

2. Most of the time there is no difference between the

original and anonymized datasets except Multi-sensitive

l-diversity. All of them are less than five, and the

extreme value only occurs when original count is

large (more than 80).

3. Not surprisingly, only very small difference on PRR

ranging from −1 to 1 were observed from the

anonymized datasets (except Multi-sensitive l-diversity),

which nearly can be ignored.

These observations reveal that our method can effect-

ively solve the privacy problem in SRS datasets without

overlooking rare events and influencing the ADR signal

strength.

Conclusions

In this paper, we proposed a new PPDP model for pro-

tecting SRS data that possess some characteristics over-

looked by contemporary models, including rare events,

multiple individual records, and multi-valued sensitive

attributes. We also presented an anonymization algo-

rithm to sanitize SRS data in accordance with the pro-

posed model. Empirical studies showed that our method

can prevent the disclosure of personal sensitive informa-

tion without sacrificing the data utility and biasing the

discovered ADR signals.

Although our approach is designed mainly for SRS

data, it can also be applied to other types of medical data

or applications with features analogous to SRS data; for

example, electronic health records (EHRs), which con-

tain more detailed private information and so deserve

further investigation.

We also notice that FAERS data contain lots of miss-

ing values. Existing PPDP methods usually ignore the

presence of missing values, simply deleting them before

executing data anonymization. However, for data with

enormous missing values, like SRS data, deleting all re-

cords with missing values may ruin the data utility ser-

iously, so how to deal with missing values is an interesting

Fig. 11 Comparison of rule occurrence and strength (in PRR) generated from original dataset and anonymized dataset by

different methods
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issue. Another important and challenging issue goes to

continuous data publishing [11, 19]. Typically, SRS data

are released sequentially. Combining related releases

would sharpen the identification of an individual record

or sensitive information. We are endeavoring to extend

our current approach to solve these problems.
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