
Privacy-Preserving Data Processing
with Flexible Access Control

Wenxiu DING , Zheng Yan , Senior Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—Cloud computing provides an efficient and convenient platform for cloud users to store, process and control their data.

Cloud overcomes the bottlenecks of resource-constrained user devices and greatly releases their storage and computing burdens.

However, due to the lack of full trust in cloud service providers, the cloud users generally prefer to outsource their sensitive data in an

encrypted form, which, however, seriously complicates data processing, analysis, as well as access control. Homomorphic encryption

(HE) as a single key system cannot flexibly control data sharing and access after encrypted data processing. How to realize various

computations over encrypted data in an efficient way and at the same time flexibly control the access to data processing results has

been an important challenging issue. In this paper, we propose a privacy-preserving data processing scheme with flexible access

control. With the cooperation of a data service provider (DSP) and a computation party (CP), our scheme, based on Paillier’s partial

homomorphic encryption (PHE), realizes seven basic operations, i.e., Addition, Subtraction,Multiplication, Sign Acquisition, Absolute,

Comparison, and Equality Test, over outsourced encrypted data. In addition, our scheme, based on the homomorphism of attribute-

based encryption (ABE), is also designed to support flexible access control over processing results of encrypted data. We further prove

the security of our scheme and demonstrate its efficiency and advantages through simulations and comparisons with existing work.

Index Terms—Homomorphic encryption, privacy preservation, data sharing, attribute-based encryption

Ç

1 INTRODUCTION

CLOUD computing has been widely adopted in various
application domains owing to its specific advantages.

It enables cloud users to store their data and perform var-
ious computations on the data without incurring a high
cost. With the advent of Internet of Things, enormous
amounts of data are produced and outsourced to the
cloud or cloudlets for storage and analysis. Data analysis
helps to gain insights on related entities in a physical
world, which can provide tremendous values to various
applications in multifarious domains (e.g., medical [1]
and business [2]).

However, the cloud may not be fully trusted by cloud
users since it may reveal or disclose the data outsourced by
the cloud users or their processing results, which may seri-
ously impact user privacy. For example, medical case analy-
sis can help in predicting potential illness, but patients may
be reluctant to provide their health data due to privacy con-
cerns. Therefore, it is of great significance to protect sensitive
data and data processing results from being leaked to any
unauthorized parties. A standard solution is to encrypt the

data before uploading them to the cloud. However,
data encryption introduces several challenges as described
below.

First, encryption seriously restricts computations and
analyses over the outsourced data in the cloud. With tradi-
tional encryption algorithms (e.g., AES), it is impossible for
the cloud to process the encrypted data directly. Some exist-
ing efforts adopted partial homomorphic encryption (PHE)
to solve the problem, but they are limited to multiplication
and addition operations on encrypted data [3], [4], which
cannot satisfy the demands of many applications. More
operations, such as sign acquisition, comparison, absolute
and equality test, are expected to be supported in practice
[5], [6]. This requests further study on privacy-preserving
computations. More basic operations over ciphertexts can
obviously support more applications that apply different
functions and algorithms, e.g., privacy-preserving classifica-
tions in machine learning [7], trust evaluation in Internet of
Things [8], and medical analysis in e-health [9]. To realize
arbitrary computations over ciphertexts, schemes based on
fully homomorphic encryption (FHE) were designed [10],
[11], [12]. However, most FHE based schemes suffer from
huge computational overhead and high storage cost, which
make them impractical for real world deployment and wide
use. Currently, the literature still lacks serious studies on
efficient computations over ciphertexts.

Second, multi-user access control over ciphertext proc-
essing results should also be supported [13]. Existing PHE
and FHE schemes are both single-user systems, which
inherently lack support on multi-user access to the process-
ing results of encrypted data. The scheme based on PHE
[14] supports distribution of addition operation results
through an interactive protocol between two servers. But

� W. Ding is with the State Key Laboratory on Integrated Services Net-
works, School of Cyber Engineering, Xidian University, Changan Qu
710126, China. E-mail: wenxiuding_1989@126.com.

� Z. Yan is with the State Key Lab on Integrated Services Networks, School
of Cyber Engineering, Xidian University, No.2 South Taibai Road, Xi’an
710071 China, and with the Department of Communications and Network-
ing, Aalto University, Konemiehentie 2, P.O.Box 15400, Espoo 02150,
Finland. E-mail: zyan@xidian.edu.cn.

� R.H. Deng is with the School of Information Systems, Singapore Manage-
ment University, Singapore 188065. E-mail: robertdeng@smu.edu.sg.

Manuscript received 22 July 2017; revised 27 Nov. 2017; accepted 7 Dec.
2017. Date of publication 22 Dec. 2017; date of current version 18 Mar. 2020.
(Corresponding author: Zheng Yan.)
Digital Object Identifier no. 10.1109/TDSC.2017.2786247

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020 363

1545-5971 � 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
mailto:
mailto:
mailto:


this protocol must be executed for each data request, thus it
is inefficient. Attribute-based encryption (ABE) is an effec-
tive tool to support fine-grained access control and multi-
user access. It has been applied in many application scenar-
ios [15], [16], [17]. However, to our knowledge, there is no
effort in the literature on fine-grained access control over
the computation/analysis results based on encrypted data.
Our previous work [18] aims to solve this problem by com-
bining homomorphic encryption and proxy re-encryption,
but it only supports one requester access at one time. In case
multiple users want to access the same result, it needs to
execute the designed scheme for each requester one by one,
which obviously incurs high communication and computa-
tion costs, as shown in experiments in Section 5.2.3.

In this paper, we propose a novel scheme in order to
overcome the challenges as described above. It supports
multiple basic computations over encrypted data and real-
izes flexible access control over the processing results by
employing PHE and ABE. Specifically, the contributions of
this paper can be summarized as follows:

� Wepropose a generic systemarchitecture consisting of
a data service provider (DSP) and a computation party
(CP) that seamlessly work together to simultaneously
support secure computations over encrypted data and
fine-grained access control of computation results.

� We present a family of protocols to efficiently realize
seven basic computations over encrypted data: Addi-
tion, Subtraction, Multiplication, Sign Acquisition, Abso-
lute, Comparison, and Equality Test.

� We propose to utilize ABE with homomorphism to
realize fine-grained access control of the processing
result of encrypted data, which is not revealed to
any system entities including DSP and CP.

� We prove the security of the proposed scheme and
demonstrate its efficiency through simulations and
comparisons with existing schemes. We show that
the proposed scheme is suitable for big data process-
ing. It can be applied in any scenarios with either a
small or a large number of data providers.

The rest of this paper is organized as follows. Section 2
gives a brief overview of related work. Section 3 introduces
the system model and attack model of our proposed
scheme, followed by its detailed design in Section 4. In
Section 5, security analysis and performance evaluation are
given. Finally, a conclusion is presented in the last section.

2 RELATED WORK

With the development of cloud computing, cloud users
benefit from outsourcing data storage and computation to
the cloud. However, the risk of personal data disclosure
makes it urgent to enhance data security and user privacy.
Besides those schemes focusing on data aggregation [19],
[20], [21], [22], [23], [24], [25], other studies were conducted
to achieve more efficient privacy-preserving operations. In
addition, many constructions have been proposed to realize
secure access control although the aforementioned issues
are still open.

2.1 Secure Data Processing Based on SMC

Secure multi-party computation (SMC) enables computa-
tions over multi-user outsourced data without revealing

any input. It lays a technical foundation for many problems,
such as database query, intrusion detection and data mining
with privacy preservation [8]. Several schemes [26], [27]
based on the popular SMC construction Sharemind [28]
were proposed to achieve various secure computations,
e.g., multiplication. But the product of N pieces of data
needs about 3N multiplications of 32-bit numbers under the
cooperation of three involved servers, which obviously can-
not adapt to big data processing. Although a data requester
can easily obtain the final result by requesting all secret pre-
processing shares from all involved servers, how to realize
fine-grained access control in SMC is still an open issue.

2.2 Secure Data Processing Based on
Homomorphic Encryption

FHE schemes [10], [11], [12] are designed to realize arbitrary
computations over encrypted data. Due to high computation
overhead, some extended schemes [29], [30] were proposed
to improve FHE efficiency. However, the computation and
storage costs of existing schemes are still not satisfactory for
practical use [31], [32].

PHE has been widely used in many applications because
it is more efficient and practical than FHE although it can
only support limited computations. Some schemes [3], [4]
were proposed to support more types of computations, but
they can only support addition and multiplication over a
limited number of data inputs. In [3], decryption requires
solving the problem of discrete logarithm, which seriously
restricts the length and the number of data inputs. The mul-
tiparty computation framework proposed in [4] achieves
addition and multiplication by applying secret sharing.
Similar to the SMC-based scheme in [27], it is unable to sup-
port the multiplication of a large number of data inputs. Liu
et al. [5] proposed a framework for efficient outsourced data
calculations with privacy preservation, which can deal with
several types of operations, such as addition, multiplication,
and division. But this framework cannot support multipli-
cation of a large number of data.

Besides the problems mentioned above, the biggest prob-
lem of PHE is that it is a single-user system. This means that
the data processing result based on PHE can only be
decrypted and accessed by the user with the corresponding
secret key of PHE. PHE is not flexible to directly support
multi-user access.

2.3 Secure Data Access Control

Cloud storage enables cloud users to upload their data to
the cloud for storage and further sharing. However, this
causes a new problem that the cloud users lose full control
over their data. Thus, an efficient and secure data access
control scheme is needed. A number of solutions have been
proposed to protect the outsourced data in the cloud, as
briefly introduced below.

Proxy re-encryption was adopted to manage data sharing
in cloud [33], [34]. But it cannot support fine-grained access
control on homomorphic computation results. Role-based
access control (RBAC) can only provide partial flexibility
based on one level policy, which ensures that only the user
with a specified role can access data. But, the constructions
[35], [36] based on RBAC cannot support flexible access pol-
icies described with various attribute structures. ABE [37],

364 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020



[38] was widely applied in cloud storage management for
achieving fine-grained access control [39], [40], [41]. Fur-
thermore, trust-based schemes [15], [16], [17] simplify the
attributes involved in ABE and take into consideration only
trust levels. These schemes highly reduce computational
costs. But, only one system entity (such as one user or one
server) is in charge of the access control, which makes this
entity obviously knows the contents of results. Thus, it can-
not satisfy the demand that the final result cannot be
accessed by any unauthorized entity including servers. In
this paper, we propose a scheme by taking advantage of the
homomorphism of ABE under the same policy to control
the access of the processing result of encrypted data based
on the cooperation of two servers.

3 PROBLEM STATEMENTS

3.1 System Model

Our proposed system mainly comprises five types of enti-
ties as shown in Fig. 1:

1) Data service provider (DSP) stores user data, provides
some computation service and controls user access.
DSP can be operated by a public cloud provider.

2) Computation party (CP) bears the responsibility of
computations and access control. It can be served by
a private cloud service provider or an administrative
department of a company or an institute, which ful-
fills partial computations and controls access. There
may exist multiple CPs for different applications.
Each CP provides services for its own consumers.
Herein, we simplify our design by considering only
one CP in this paper.

3) Data providers (DPs) are the data collectors or pro-
ducers that encrypt data and store ciphertexts in the
DSP for storage and processing.

4) Data requesters (DRs) are the data consumers that
acquire the result of data processing/analyzing in a
specific context. A DR can also be a DP. DRs are
cloud users that take advantage of cloud computing
in terms of data storage and data computation. Since
the provided data are encrypted, the data processing
result is also in an encrypted form. This raises the
issue of data access control with regard to the proc-
essing results of encrypted data.

5) Authority is fully trusted, which is responsible for
system parameter generation and ABE key issuing.

The DPs provide their personal data in an encrypted
form and store them at the DSP. Then the DSP cooperates
with the CP to complete basic computations over the col-
lected data. In addition, the DSP and CP together execute
the access control over the final result of data processing.
Only those DRs that satisfy a specific policy can access the
final result with the key issued by Authority.

3.2 Attack Model

In the above system, the Authority is regarded as fully
trusted to perform its duties, which acts honestly and would
never collude with any other entities. All other entities are
curious-but-honest. That is, they are curious about others’
data, but act honestly by strictly following the design of the
system. The DSP and the CP would never collude with each
other due to conflict of business interests (e.g., consumer
resources and market division) and their legal responsibil-
ity. Any their collusion will make them lose reputation,
which finally impacts their profits. Herein, we introduce an
adversary A� in our model, which aims to obtain some spe-
cific data by challenging a cloud user (either a DR or a DP)
with following capabilities:

1) A� may eavesdrop all communication channels to
access any encrypted data except the channels
between Authority and DRs;

2) A� may compromise the DSP (or the CP) to guess the
raw data of all ciphertexts outsourced from the DPs,
and the raw data of all ciphertexts sent to the CP (or
the DSP) and the DR;

3) A� may compromise the DSP (or the CP) together
with the DPs to guess the final data processing result.

4) A� may compromise the DSP (or the CP) together
with the DR to guess the raw data from the DP.

The attack model has one restriction: A� cannot compro-
mise the challenged DR or DP. The adversary would like to
know the raw data of DP (by attacking the DP) or the proc-
essing result (by attacking the DR).

4 PRIVACY-PRESERVING DATA PROCESSING WITH

ACCESS CONTROL

4.1 Notations and Preliminaries

4.1.1 Notations

For easy presentation, Table 1 summarizes the notations
used in this paper.

4.1.2 Additive Homomorphic Encryption

Paillier’s cryptosystem [42] is one of the most important
additive homomorphic encryption. Suppose we have N
pieces of encrypted data under same key pk, which can be
presented as ½mi�pk ði ¼ 1; 2; . . . ; NÞ. The additive homo-
morphic encryption satisfies the following equation:

Dsk

YN

i¼1
mi½ �pk

� �
¼

XN

i¼1
mi ;

where DskðÞ is the corresponding homomorphic decryption
algorithm with secret key sk.

Fig. 1. A system model.

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 365



4.1.3 Key-Policy Attribute-Based Encryption (KP-ABE)

In KP-ABE, ciphertexts are generated based on some
descriptive attributes while decryption keys are associated
with policies. Generally, KP-ABE [38] consists of four algo-
rithms: Setup, Encrypt, KeyGen, and Decrypt.

SetupABEð�; UÞ ! ðPK0;MSK0Þ. The setup algorithm
takes in security parameter � and attribute universe descrip-
tion U ¼ f1; 2; . . . ;vg. It outputs public paramters PK0

(T1 ¼ gt1 ; . . . ; TjU j ¼ gtjU j ; Y ¼ eðg0; g0Þy) and master secret
key MSK0ðt1; . . . ; tjU j; yÞ, where g0 is the generator of G1

with e : G1 �G1 ! GT .

EncABEðM; g; PK0Þ ! CK0. The encryption algorithm
takes in message M, a set of attributes g and PK0. It outputs
ciphertext CK0ðg; E0 ¼ MY s; fEi ¼ Ti

sgi2gÞ, where s is a
randomly chosen number.

KeyGenABEðT ;MSK0Þ ! SK0. The key generation algo-
rithm takes in access structure T , the master secret key
MSK0. It outputs decryption key SK0 (SK0

i ¼ g0qxð0Þ=ti where
i ¼ attðxÞ, qxð0Þ ¼ qparentðxÞðindexðxÞÞ) and qrð0Þ ¼ y.

DecABEðCK0; PK0; SK0Þ ! M. The decryption algo-
rithm takes in PK0, SK0 and the ciphertext CK0. If the set of
attributes satisfies the access policy tree T embedded in the
private key, it finally outputs the messageM.

For more details about KP-ABE, refer to [38]. Notably,
ciphertext-policy attribute-based encryption (CP-ABE) [37]
can also be applied to implement our scheme. The KP-ABE
is multiplicative homomorphic if the same attributes are
employed to encrypt two pieces of raw data. That is, given
two ABE ciphertexts of M1 and M2 under the same policy,
the ciphertext ofM1�M2 can be obtained through the multi-
plication of two ciphertexts EncABEðM1; g; PK

0Þ�EncABE

ðM2; g; PK
0Þ, marked as HEABE . The length of raw data is

limited and highly related to the system parameters. In
this paper, we employ this feature to realize the secure
access control that can prevent the reveal of processing

result to any involved entities. Refer to Section 5.2.3 for
more details.

4.2 Homomorphic Re-Encryption Scheme (HRES)

In order to support privacy-preserving data processing, we
revise the scheme [43] (named as EDD) and design the
HRES to provide two-level decryption and achieve secure
data processing. The complete version of HRES is intro-
duced in our previous work [18].

Key Generation (KeyGenKeyGen). Let k be a security parameter
and p, q be two large primes, where LðpÞ ¼ LðqÞ ¼ k (Lð�Þ
returns the bit length of input data). Due to the property of
safe primes, there exist two primes p0 and q0 which satisfy
that p ¼ 2p0 þ 1, q ¼ 2q0 þ 1. We compute n ¼ p�q and
choose a generator g with order � ¼ 2p0q0, which can be cho-
sen by selecting a random number z 2 Z�

n2
and computing

g ¼ �z2n. The value � can be used to decrypt the encrypted
data, but we choose to conceal it and protect it from all
involved parties. In the HRES, we only use key pair ðsk; gskÞ
for data encryption and decryption. The DSP and the CP
generate their key pairs:ðskDSP ¼ a; pkDSP ¼ gaÞ and
ðskCP ¼ b; pkCP ¼ gbÞ, and then negotiate their Diffie-Hell-
man key PK ¼ pkDSP

skCP ¼ pkCP
skDSP ¼ ga�b. To support

encrypted data processing, PK is public to all involved par-
ties. At system setup, cloud user i (i.e., DP or DR) generates
its key pair ðski; pkiÞ ¼ ðki; g

kiÞ. The public system parame-
ters include fg; n; PKg.

First, the original encryption is directly obtained from
[43], which is a general public key cryptosystem.

Encryption (EncEnc). Any entity (e.g., cloud user or cloud
server) wants to send its data to a specific cloud user i. It sim-
ply encrypts its data with the pubic key of cloud user i (pki)
and random r 2 ½1; n=4�, and sends ciphertext to cloud user i:

m½ �pki ¼ 1þm � nð Þpki
r; grf g mod n2

� �
:

Decryption (DecDec). Upon receiving the encrypted data,
cloud user i can directly decrypt it to obtain the original
data:

m ¼ L 1þm � nð Þpki
r= grð Þkimod n2

� �
:

Second, a Two-Level Decryption scheme is newly designed
to flexibly support outsourced data processing, as presented
below:

Encryption with Two Keys (EncTKEncTK). Given message
mi 2 Zn provided by cloud user i, we first select random
number r 2 ½1; n=4� and then encrypt it with PK generated
from the keys of two servers. The ciphertext is generated as
½mi� ¼ ½mi�PK ¼ fTi; Ti

0g, where Ti ¼ ð1þmi�nÞ�PK
r mod n2

and T 0
i ¼ gr mod n2.

Note: for ease of presentation, we use ½mi� to denote the
ciphertext of mi encrypted with PK, which can only be
decrypted under the cooperation of DSP and CP.

Partial Decryption with SSKKDSPDSP (PDecPDec1). Once ½mi� is
received by the DSP, algorithm PDecPDec1will be run to transfer
it into another ciphertext that can be decrypted by the CP as
follows:

mi½ �pkCP ¼ Ti
1ð Þ; Ti

0 1ð Þ
n o

¼ Ti; Ti
0ð Þ
skDSP

n o

¼ 1þmi � nð ÞPKr; gr�af g mod n2

¼ 1þmi � nð ÞpkCP
a�r; gr�af g mod n2:

TABLE 1
Notation Description

Symbols Description

g The system generator that is public;
n The system parameter;
ðskDSP ; pkDSP Þ The key pair of DSP for data processing;
ðskCP ; pkCP Þ The key pair of CP for data processing;
PK ¼ pkDSP

skCP

¼ pkCP
skDSP

The public parameter based on keys of DSP
and CP;

mi The raw data provided by DP i;
½m� The ciphertext ofm under PK;
½m�pki The ciphertext ofm under public key pki;
m̂ The masked message ofm;
f The sign flag in Sign Acquisition, Comparison, and

Equality Test;
r The random value;
N The number of data providers;
Lð�Þ The bit length of input data;
ðck; pkckÞ The key pair for final access control;
CK0 The ciphertext of ck using ABE;
ck1 The partial key for access control chosen by DSP;
ck2 The partial key for access control chosen by CP;
MSK0 The master secret key in ABE;
SK0 The decryption key in ABE;
PK0 The public key in ABE

366 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020



Partial Decryption with SSKKCPCP (PDecPDec2). Once the
encrypted data ½mi�pkCP is received, the CP can directly
decrypt it with its own secret key as follows:

1) Ti
0ð2Þ ¼ ðTi

0ð1ÞÞskCP ¼ gr�a�b ¼ PKr mod n2;
2) mi ¼ LðTi

ð1Þ=Ti
0ð2Þ mod n2Þ, where LðuÞ ¼ ðu� 1Þ=n.

In addition, the encrypted data under any public key pk
has the following properties:

1) Additive homomorphism:
½m1�pk � ½m2�pk ¼ ½m1 þm2�pk;

2) ð½m�pkÞ
t ¼ ffð1þm�nÞpkrgt; ðgrÞtg mod n2

¼ fð1þm � nÞtpkr�t; gr�tg mod n2

¼ fð1þ t �m � nÞpkr�t; gr�tg mod n2

¼ ½t �m�pk;

3) ð½m�pkÞ
n�1 ¼ ffð1þm � nÞpkrgðn�1Þ; ðgrÞðn�1Þg mod n2

¼ fð1þm � ðn� 1Þ � nÞpkrðn�1Þ; grðn�1Þg mod n2

¼ fð1�m � nþm � n2Þpkrðn�1Þ; grðn�1Þg mod n2

¼ fð1�m � nÞpkrðn�1Þ; grðn�1Þg mod n2

¼ ½�m�pk:

4.3 Data Processing Procedure

The brief procedure of data processing is shown in Fig. 2. It
mainly involves six steps:

Step 1 (System Setup @ All Entities). Authority calls the
algorithm KeyGen in Section 4.2 and SetupABEð�;UÞ in
Section 4.1.3 to complete the setup of HRES and ABE. Note:
if multiple CPs are employed in the system, each CP can
negotiate a Diffie-Hellman key PK with the DSP and pub-
lish this key to its customers.

Step 2 (Data Upload @ DPs). DPs encrypt their personal
data before uploading it to the DSP. It directly recalls
EncTKEncTK to encrypt data mi (Unless otherwise specified,
jmij < LðnÞ=4):

mi½ � ¼ Ti; T
0
i

� �
¼ 1þmi � nð Þ � PKri ; grif gmod n2:

Step 3 (Data Preparation @ DSP). Upon receiving the data
from DPs, the DSP needs to do some analyses over the
encrypted data. It pre-processes the data and provides a
data packet DPacket and ABE ciphertext for access control
to the CP. The details of this process differ in various

operations and are given in the next sub-section. In addi-
tion, CP chooses a random partial key ck1 for access control,
which will be used in Step 5.

Step 4 (Data Process @ CP). Upon receiving the pre-proc-
essing results from the DSP, the CP chooses another random
partial key ck2 and further processes data to obtain the pre-
processing result ½m̂�pkck2

or ½f̂�pkck2
.

Regarding to access control, CP encrypts ck2 using ABE
to get CK0

2 ¼ EncABEðck2; g; PK
0Þ and forwards it to DSP.

Step 5 (Additional Process @ DSP). The DSP needs to fur-
ther remove the mask from ciphertext ½m̂�pkck2

or ½f̂�ck2 to

obtain the final processing ciphertext ½m�pkck or ½f �pkck where
pkck ¼ gck ¼ gck1�ck2 and ck ¼ ck1�ck2.

Regarding to access control, the DSP encrypts ck1 using
ABE under the same policy to get CK0

1 and further gets CK0

through the homomorphism of ABE:

CK0 ¼ CK0
1 � CK0

2 ¼ EncABE ck1 � ck2; g; PK
0ð Þ:

Finally, the DSP keeps ½m�pkck or ½f �pkck , and CK0 for user
access.

Step 6 (Data Access @ DR). If the DR satisfies the access
policy, Authority issues a secret key SK0 to the DR. Hence,
the DR can decrypt CK0 to get ck, and further obtain m or f
to meet their computation demand.

4.4 Detailed Data Processing

System setup and data collection are the same as those in
Section 4.3. The operations for access control are also the
same as those above, thus we do not introduce the details in
this section.

Our proposed scheme supports seven basic operations
over encrypted data: 1) Addition; 2) Subtraction; 3)Multiplica-
tion; 4) Sign Acquisition; 5) Absolute; 6) Comparison; and 7)
Equality Test. In the following sub-sections, we mainly focus
on the steps from 3 to 5 in each basic operation.

4.4.1 Addition

Addition obtains the sum of all raw data: m ¼
PN

i¼1 mi,
which can be accomplished by multiplying all ciphertexts.
Note that the number of the data in Addition affects the
length of the provided data. If we want to get the sum result
ofN pieces of data, it should guarantee thatmi < n=N .

Step 3 (Data Preparation @ DSP). Due to additive homo-
morphism, the DSP can directly multiply encrypted data
one by one as follows:

m½ � ¼ T; T 0ð Þ ¼
YN

i¼1
mi½ � ¼

YN

i¼1
T

i
;
YN

i¼1
Ti

0
� �

To realize group access control, it chooses a random
number r1 and the first partial key ck1, and then computes
as follows:

1) Compute c1 ¼ ck1
�1mod n2;

2) Mask ciphertext:

c1 mþ r1ð Þ½ � ¼ ~T; eT 0
� �

¼ T 1þ r1 � nð Þð Þc1 ; T 0ð Þ
c1

� �

3) Call PDecPDec1 to partially decrypt it:

c1 mþ r1ð Þ½ �pkCP ¼ T̂ ; bT 0
� �

¼ ~T; eT 0
� �an o

Fig. 2. A brief procedure of data processing.

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 367



Then DSP sends ½c1ðmþ r1Þ�pkCP to the CP.

Step 4 (Data Process @ CP). The CP calls the algorithm
PDecPDec2 with skCP to finally decrypt the encrypted data and
obtain c1ðmþ r1Þ. And then the CP chooses the second partial
key ck2 and a randomnumber r to encrypt data as follows:

c1 mþ r1ð Þ½ �pkck2
¼ �T; T 0

� �
¼ 1þ c1 mþ r1ð Þnð Þgck2�r; gr

� �

where pkck2 ¼ gck2 .
Then the CP encrypts ck2 to obtain CK0

2 and forwards
½m̂�pkck and CK0

2 back to the DSP.

Step 5 (Additional Process @ DSP). The DSP computes to
obtain the final encrypted processing result with ck1 and r1:

m½ �pkck ¼
�T
ck1 1� r1nð Þ; T 0

� �
¼ 1þm � nð Þgck1�ck2�r; gr

� �

where pkck ¼ gck1�ck2 and ck ¼ ck1�ck2.
Similar to Section 4.3, it encrypts ck1 using ABE and gets

CK0 ¼ CK0
1 � CK0

2 ¼ EncABEðck1 � ck2; g; PK
0Þ.

4.4.2 Subtraction

Subtraction obtains the subtraction of some data ðm ¼PW
i¼1 mi �

PN
i¼W miÞwith encrypted data ½mi�ði ¼ 1; . . . ; NÞ.

It can be accomplished by negating the subtracted terms (by
raising to the power of ðn� 1Þ), then following the proce-
dure of Addition.

Step 3 (Data Preparation @ DSP). The DSP first computes
½
PW

i¼1 mi� ¼
QW

i¼1 ½mi� and ½
PN

i¼Wþ1 mi� ¼
QN

i¼Wþ1 ½mi�. It

further calculates ½�
PN

i¼Wþ1 mi� ¼ ð½
PN

i¼Wþ1 mi�Þ
n�1 and

multiplies them to obtain: ½m� ¼ ½ð
PW

i¼1 mi �
PN

i¼Wþ1 miÞ� ¼

½
PW

i¼1 mi� � ½�
PN

i¼Wþ1 mi�. Then the subsequent process is
the same to that in Addition. Due to length and simplicity
reasons, we skip its details.

4.4.3 Multiplication

Multiplication obtains the product of all raw data
(m ¼

QN
i¼1 miÞ. Multiplication is a bit more complicated

than Addition. It can be accomplished with three steps: 1)
mask the raw data by raising to the power of a random
number c; 2) decrypt all masked ciphertexts, multiply them
in the form of plaintexts and then re-encrypt masked result;
3) encrypt masked multiplication result and then remove
the mask. For ease of presentation, we describe the details
with two pieces of data (½m1�, ½m2�). The DR wants to get the
multiplication resultm ¼ m1 � m2.

Note that the available number of the data in multiplica-
tion influences the length of original raw data. If we need to
get the product of N pieces of data, it must be guaranteed
that LðmiÞ < LðnÞ=ð2NÞ, which is different from Addition.

Step 3 (Data Preparation @ DSP). First, the DSP chooses a
random partial key ck1 and a random number c1, and sets
another one as c2 ¼ ðck1 � c1Þ

�1 mod n.
To conceal each raw data from the CP, the DSP does one

exponentiation and one decryption with its own secret key
by calling PDecPDec1:

1) ½c1 �m1� ¼ fT1
c1 ; ðT1

0Þ
c1g;

2) ½c1 �m1�pkCP ¼ ðT1
ð1Þ; T1

0ð1ÞÞ ¼ fT1
c1 ; ðT1

0Þ
c1�ag ¼

fð1þ c1 �m1 � nÞ � PK
r1�c1 ; gr1�a�c1g;

3) ½c2 �m2� ¼ fT2
c2 ; ðT2

0Þ
c2g;

4) ½c2 �m2�pkCP ¼ ðT2
ð1Þ; T2

0ð1ÞÞ ¼ fT2
c2 ; ðT2

0Þ
c2�ag ¼ fð1þ c2 �

m2 � nÞ � PK
r2�c2 ; gr2�a�c2g.

The data packet sent to the CP is {½c1�m1�pkCP ;
½c2 � m2�pkCP }.

Step 4 (Data Process @ CP). Upon receiving the data
packet from the DSP, the CP uses the algorithm PDecPDec2 to
decrypt the data:

c1 �m1 ¼ T1
1ð Þ= T1

0 1ð Þ
� �b

; c2 �m2 ¼ T2
1ð Þ= T2

0 1ð Þ
� �b

:

It then chooses ck2 and a random number r, and encrypts
c1 � m1 � c2 � m2 and ck2 as follows:

1) ½m̂�pkck2
¼ ½c1c2m�pkck2

¼ ð �T; T 0Þ ¼ fð1þ c1m1c2m2 � nÞ

gck2�r; grg;

2) CK0
2 ¼ EncABEðck2; g; PK

0Þ.
Finally, the CP forwards ½m̂�pkck2

and CK0
2 to the DSP.

Step 5 (Additional Process @ DSP). The DSP further pro-
cesses the data packet with ck1 and then gets ciphertext of
key as follows:

1) ½m�pkck ¼ f �T
ck1 ; T 0g ¼ fð1þm � nÞgck1�ck2�r; gr};

2) CK0 ¼ CK0
2 � Enc

ABEðck1; g; PK
0Þ.

4.4.4 Sign Acquisition

We assume that LðmÞ < LðnÞ=4 and BIG is the largest raw
data of m. Then the raw data is in the scope ½�BIG;BIG�.
DR wants to know the sign of raw data m1 from ½m1�. Sign
Acquisition can be achieved by masking the original cipher-
texts with random numbers of limited length and then
checking the length of the masked data to further determine
the real length of original data. Here, the DR targets to
obtain the final sign indicator f from ½m1�.

Step 3 (Data Preparation @ DSP). The DSP chooses three
random numbers R (LðRÞ < LðnÞ=4Þ, c1 and ck1. It first
encrypts “1” and then computes as follows:

1) ½1� ¼ fð1þ nÞ� PKr0 ; gr
0
g;

2) ½2�m1 þ 1� ¼ ðT; T 0Þ ¼ ½m1�
2�½1� ¼ fð1þ ð2�m1 þ 1Þ�

nÞ�PKr0þ2�r1 ; gr
0þ2�r1g;

3) Then it flips a coin s. If s ¼ �1; it computes:

m0½ �pkCP ¼ Tn�R; T 0ð Þ
a� n�Rð Þ

n o
¼ �R� 2�m1 þ 1ð Þ½ �:

4) Otherwise (s ¼ 1), it calls PDecPDec1 and computes:
½m0�pkCP ¼ fTR; T 0a�Rg ¼ ½R�ð2 � m1 þ 1Þ�.

5) The DSP computes c2 ¼ ðck1Þ
�1mod n, and s0 ¼

c1 � c2 � s mod n.
The data packet sent to the CP is {½m0�pkCP ; s0}.
Step 4 (Data Process @ CP). Upon receiving the data

packet from the DSP, the CP decrypts ½m0�pkCP with PDecPDec2
to obtain raw datam0.

The CP compares Lðm0Þ with LðnÞ=2. If Lðm0Þ < LðnÞ=2,
it sets u ¼ 1; otherwise, u ¼ �1.

The CP chooses a random number r and a second partial
key ck2, and further computes as follows:

1) ½f̂�pkck2
¼ ð �T; T 0Þ ¼ fð1þ s0u�nÞgck2�r; grg;

2) Encrypt ck2 using ABE: CK0
2 ¼ EncABEðck2; g; PK

0Þ.

Finally, the CP forwards ½f̂ �pkck2
to DSP.

368 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020



Step 5 (Additional Process @ DSP). The DSP further pro-
cesses the data packet as follows:

1) Compute c3 ¼ c1
�1mod n;

2) ½f�pkck ¼ f �T
ck1�c3 ; ðT 0Þ

c3g ¼ fð1þ su�

nÞgck1�ck2�r�c3 ; gr�c3g.
3) CK0 ¼ EncABEðck1; g; PK

0Þ � CK0
2.

Step 6 (Data Access @ DR). The DR satisfying the access
policy in ABE can decrypt CK0 to obtain ck and further
decrypt ½f�pkck to obtain f .

Note: if f ¼ 1,m1 � 0; Otherwise,m1 < 0.

4.4.5 Absolute

Besides the operations in Sign Acquisition, Absolute needs to
mask the original data by raising to the power of a random
number, and then remove the mask according to sign indi-
cator to achieve a final absolute result. We assume that
LðmÞ < LðnÞ=4 and that BIG is the largest raw data of m.
Then the raw data is in the scope ½�BIG;BIG�. Here, given
ciphertext ½m1�, DR wants to get the absolute value jm1j.

Step 3 (Data Preparation @ DSP). The DSP chooses three
random numbers R where LðRÞ < LðnÞ=4, c1 and c2, and
also chooses the first partial key ck1. It first encrypts “1” and
then computes as follows:

1) ½1� ¼ fð1þ nÞ� PKr0 ; gr
0
g;

2) ½2 � m1 þ 1� ¼ ðT; T 0Þ ¼ ½m1�
2 � ½1� ¼

fð1þ ð2 � m1 þ 1Þ � nÞ � PKr0þ2�r1 ; gr
0þ2�r1g;

3) Then it flips a coin s. If s ¼ �1; it computes:

m0½ �pkCP ¼ Tn�R; T 0ð Þ
a� n�Rð Þ

n o
¼ �R � 2 � m1 þ 1ð Þ½ �

Otherwise (s ¼ 1), it calls PDecPDec1 and computes:
½m0�pkCP ¼ fTR; T 0a�Rg ¼ ½R � ð2 � m1 þ 1Þ�;

4) Compute ½c1m1� ¼ ½m1�
c1 , and call PDecPDec1 to obtain

½c1m1�pkCP .

5) The DSP sets c3 ¼ ðck1Þ
�1mod n, and s0 ¼ c2 � c3 � s

mod n.
The data packet sent to the CP is {½m0�pkCP ; s0; ½c1m1�pkCP }.

Step 4 (Data Process @ CP). Upon receiving the data
packet from the DSP, the CP decrypts ½c1m1�pkCP and

½m0�pkCP with PDecPDec2 to obtain c1m1 andm0, respectively. The

CP compares Lðm0Þ with LðnÞ=2. If Lðm0Þ < LðnÞ=2, it sets
u ¼ 1; otherwise, u ¼ �1.

Then CP chooses r and the second partial key ck2, and
further computes as follows:

1) ½c1m1s
0u�pkck2

¼ ð �T; T 0Þ ¼ fð1þ c1m1s
0u � nÞgck2�r; grg;

2) Encrypt ck2 using ABE: CK0
2 ¼ EncABEðck2; g; PK

0Þ.

Finally, the CP forwards ½c1m1s
0u�pkck2

and CK0
2 to DSP.

Step 5 (Additional Process @ DSP). The DSP further pro-
cesses the data packet as follows:

1) Set c4 ¼ ðc1Þ
�1mod n and c5 ¼ ðc2Þ

�1mod n;

2) ½su�m1�pkck ¼ f �T
ck1�c4�c5 ; T 0c4�c5g ¼ fð1þ su � m1 � nÞ

gck1�ck2�r�c4�c5 ; gr�c4�c5g;
3) CK0 ¼ EncABEðck1; g; PK

0Þ�CK0
2.

Step 6 (Data Access @ DR). The DR that satisfies the access
policy in ABE can decrypt CK0 to obtain ck. The DSP sends

the data packet ½su�m1�pkck to the DR in a secure way. Then

the DR can decrypt it to obtain su � m1.

Note: if m1 � 0, su ¼ 1; Otherwise, su ¼ �1. Hence,
su � m is the absolute of datam.

4.4.6 Comparison

Comparison can be simply accomplished by checking the
sign of the difference value of two data by calling Sign
Acquisition. Similar to the functions above, DR wants to
compare the raw data ðm1;m2Þ based on their encrypted
data. For ease of presentation,m1 �m2 is denoted asm1�2.

m1½ � ¼ T1; T1
0ð Þ ¼ 1þm1 � nð Þ � PKr1 ; gr1f g

m2½ � ¼ T2; T2
0ð Þ ¼ 1þm2 � nð Þ � PKr2 ; gr2f g

Step 3 (Data Preparation @ DSP). DSP first computes to get
the subtraction of encrypted data:

T; T 0ð Þ ¼ T1 � T2ð Þn�1; T1
0 � T2

0ð Þ
n�1

n o
¼ m1 �m2ð Þ½ �:

The following steps are the same as those in Sign Acquisi-
tion, which are skipped for the reason of paper length limi-
tation. Through the cooperation of the DSP and the CP, the
DR finally gets the sign of m1�2 ¼ m1 �m2. In the end, the
DR can obtain the comparison result. If m1�2 � 0, m1 � m2;
otherwise,m1 < m2.

4.4.7 Equality Test

Equality Test needs to check the signs of both difference
value and negative difference value of original two data by
calling Comparison twice. DR wants to know whether m1 is
equal to m2 or not from the encrypted data (½m1�, ½m2�). The
DSP and the CP directly interact with each other in two par-
allel computations of Comparison.

They compare m1 and m2 in two forms: 1) m1�2 ¼
m1 �m2; 2) m2�1 ¼ m2 �m1. Through the operations in
Comparison, DSP can get two results ½f1�pkck and ½f2�pkck ,
respectively. Then the DSP can obtain ½f�pkck ¼½f1 þ f2�pkck ¼
½f1�pkck � ½f2�pkck .

Finally, the DR that satisfies the access policy in ABE can
decrypt CK0 to obtain ck. The DSP sends the data packet
½f�pkck to the DR in a secure way. Then the DR can further
decrypt ½f �pkck to obtain f .

Note: if f ¼ 2,m1 ¼ m2; Otherwise,m1 6¼ m2.

4.5 Data Analysis over Fixed Point Numbers

In order to adapt to various applications, we further design
a scheme to deal with fixed point numbers rather than
integers.

Normally, a fixed-point number can be represented with
three parts: the sign field, integer field and fractional field.
Given a fixed point number m, we set it in binary format as
ðS; be�2; be�3; . . . ; b0; b�1; . . . ; b�fÞ, where S is its sign, e� 1 is
the length of the integer field, f is the length of the fractional
field and its value is m ¼ S �

Pe�2
i¼�f ðbi � 2

iÞ. In order to
encrypt number m, we should first scale jmj to
jm0j ¼ jmj � 2f . If m is a positive value, then we can set
m0 ¼ m � 2f ; otherwise, we should set m0 ¼ N �m � 2f .
Thenm0 as an integer can be encrypted as ½m0�.

Regarding to the operations presented in Section 4.4
except multiplication, it is easy to be executed over fixed
point numbers.

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 369



4.5.1 Multiplication over Encrypted Fixed

Point Numbers

For two fixed point numbers m1 and m2, we perform as
follows:

1) Get the integer representation of m1 and m2:
m0

1 ¼ m1 � 2f andm0
2 ¼ m2 � 2f ;

2) Users upload their ciphertext to CSP as: ½m0
1� and

½m0
2�.

3) Then execute Multiplication over ½m0
1� and ½m0

2�;
4) Finally, DR can get the value of m0

1 �m
0
2, then scale

down to obtain the final resultm1 � m2 ¼ m0
1 � m0

2 � 2�f .

4.5.2 Polynomial Computations over Encrypted Fixed

Point Numbers

For a clear presentation, we give an example ofm1 � m2 þm3.
The detailed procedure is presented as follows:

1) (@DPs) Get the integer representation of three num-
bers:m0

1 ¼ m1 � 2f ,m0
2 ¼ m2 � 2f andm0

3 ¼ m3 � 2f ;
2) (@DSP) Execute the same operations to the Step 3 in

Multiplication to get: {½c1 � m0
1�pkCP ; ½c2 � m0

2�pkCP g.
3) (@CP) Decrypt data packet to get c1�m

0
1 and c2�m

0
2;

Then encrypt c1 � m0
1 � c2 � m0

2 with Diffie-Hellman
key PK to get ½c1c2 � m0

1m
0
2�; Send it to DSP.

4) (@DSP) First compute ½m0
3�
2f to scale the original data

and get ½2f � m0
3�; Execute the proposed scheme

Addition over ½2f � m0
3� and ½c1c2 � m0

1m
0
2� under the

cooperation with CP.
Note: The length of data encrypted via Paillier system is

less than LðnÞ. In order to support various computations
above over positive and negative numbers, we strictly
restrict the length of data such that LðmÞ < 1=2 � LðnÞ. If
multiplication of N pieces of data is needed, then it has a
strict limitation that LðmÞ ¼ ðeþ fÞ < LðnÞ=ð2NÞ. Here,
with the default setting LðnÞ ¼ 1024, e ¼ 45, f ¼ 15, we
should limit the multiplication times (i.e., the number of
provided data) to 8.

5 SECURITY ANALYSIS AND PERFORMANCE

EVALUATION

5.1 Security Analysis

The semantic security of HRES has been proved in our pre-
vious work [18]. Hence, we skip its security proof and focus
on the security analysis of our proposed schemes. Here, we
adopt the security model for securely realizing an ideal
functionality in the presence of semi-honest (non-colluding)
adversaries. It involves four types of parties: DSP, CP, DP
and DR. Thus, we construct four simulators Sim ¼ ðSimDP ;
SimDSP ; SimCP ; SimDRÞ to against four kinds of adversaries
(ADP ;ADSP ;ACP ;ADR) that corrupt DP , DSP , CP and DR,
respectively.

Theorem 1. The Addition scheme in Section 4.4.1 can securely
obtain the plaintext of addition via computations on ciphertexts
in the presence of semi-honest (non-colluding) adversaries
A ¼ ðADR;ADSP ;ACP ;ADP ).

Proof. We present the construction of four independent sim-
ulators ðSimDP ; SimDSP ; SimCP ; SimDRÞ. Here, we prove
the security of the case with two inputs (i.e.,N ¼ 2). tu

SimDP receives the input of m1 and m2, then it simulates
ADP as follows: it encrypts data m1 as ½m1� ¼ EncTKðm1Þ,
and data m2 as ½m2� ¼ EncTKðm2Þ. Finally, it returns ½m1�
and ½m2� to ADP , and outputs the entire view of ADP .

The view of ADP is the encrypted data. The views of ADP

in the real and the ideal executions are indistinguishable.
SimDSP simulates ADSP as follows: it runs the EncTKEncTK on

two randomly chosen numbers fm1 and fm2; then it multiplies
½fm1� by ½fm2� to get ½ ~m� where m ¼ fm1 þ fm2; further it masks
the ciphertext with two randomnumbers r1 and ck1, and runs
the PDecPDec1 to obtain ½c1ð ~mþ r1Þ�pkCP . By accessing SimCP , it

receives ½b~m�pkck2
and gCK0

2$ based on a randomly generated

key ck2. Then it computes to obtain ½ ~m�pkck and
gCK0 . Finally,

SimDSP outputs ½c1ð ~mþ r1Þ�pkCP , ½
b~m�pkck2

, gCK0
2 , ½ ~m�pkck and

gCK0 toADSP . IfADSP replieswith?, SimDSP returns?.

The view of ADSP consists of the encrypted data and the
ciphertext of corresponding decryption key. Owing to the
honesty of the challenged cloud user and the security of
the HRES, ADSP receives the same output in both real and
ideal executions. As the decryption key ck is randomly con-
structed by CSP and CP in each challenge, ADSP would not
obtain more information by executing multiple challenges.
Thus, the views are indistinguishable.

SimCP simulates ACP as follows: it randomly chooses
data m̂, uses EncEnc to obtain ½m̂�pkck2

and calls ABE encryption

to obtain dCK0
2 . Then it sends ½m̂�pkck2

and dCK0
2 to ACP . If ACP

replies with ?, SimCP returns ?. In both real and ideal exe-
cutions, it receives the output of two ciphertexts. In the real
world, the security is guaranteed by the semantic security
of HRES and the security of ABE.

SimDR simulates ADR as follows: (it cannot enquire for
the challenged data) it randomly chooses data ½m0�pkck and

decrypts it to obtain m0, and then sends it to ADP . If ADP

replies with ?, SimDR returns ?.
The view of ADR is the decrypted result without any

other information. But in both the real and ideal executions,
it is guaranteed by the semantic security of the HRES. The
views are indistinguishable in both executions.

No matter how many times the adversary accesses the
simulator ADR, it is still difficult to obtain the original real
data for two reasons: 1) the randomly chosen data have no
relation to the original real data; 2) exhaustion attack is hard
owing to the randomness of the chosen numbers.

The security proofs of other operations are similar to that
of the Addition under the semi-honest (non-colluding)
adversaries A ¼ ðADR;ADSP ;ACP ;ADP ).

5.2 Performance Evaluation

In this section, we analyze the computational complexity
and the communication overhead of our proposed seven
computing operation schemes. Further, we implemented
them and tested their performances through simulations.

5.2.1 Computational Complexity Analysis

Herein, we analyze the computational complexity of our
designed schemes. Notably, the ABE and the HRES are
based on different cryptographic techniques, while the
computational complexity by employing ABE to control
access in each operation is the same. Hence, we analyze the
computational complexity of ABE in a separate part.

370 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020



1) The Computational Complexity of ABE. As presented in
Section 4.1.3, the computations of all four algorithms are
related to the number of attributes. In order to clarify the
relationships, we assume that there are jU j universal attrib-
utes, that jgj attributes are in the access policy tree T , and
that at most # attributes should be satisfied in the policy
tree T to decrypt ciphertext.

The setup algorithm SetupABEðÞ should choose the system
parameters and generate the public parameters. It needs to
do jU j þ 1 exponentiations and one bilinear pairing. The
encryption algorithm EncABEðÞ needs to generate the cipher-
text by involving each attribute in T with one exponentiation,
and encrypt the original message with one exponentiation.
Hence, the encryption algorithm needs jgj þ 1 exponentia-
tions in total. KeyGenABEðÞ operates jgj þ 1 exponentiations
to generate decryption key.HEABEðÞmerely involves jgj þ 1

multiplications. As exponentiation is significantly more
costly thanmultiplication, we ignore the computation cost of
HEABEðÞ in our anlysis. Themain operation inDecABEðÞ is to
compute the divided pieces of encrypted partial keys, which
performs at most # bilinear pairings.

The system setup and data encryption only need to be
executed once. Thus, their computational complexity can be
amortized when multiple users access the final result.
Though the computation cost of cloud users in decryption
algorithm is higher than our previous scheme [18], it enhan-
ces the security of processing results by introducing fine-
grained access control. The system should balance efficiency
and security according to its capabilities and requirements.
Moreover, trust can be used as a single attribute in ABE in
order to greatly reduce computational cost [15], [16], [17].

2) The Computational Complexity of Data Analysis. As the
computations related to ABE for access control neither vary
with the number of provided data nor varywith the designed
functions, their costs are ignored in the following analysis.

The modular exponentiation operation is significantly
more time-consuming than the modular addition and multi-
plication, thus we ignore the fixed numbers of additions and
multiplications in the following analysis. In addition, the
computational complexity of basic operations (modular
exponentiation in HRES, exponentiation and bilinear pairing
in ABE) would never be affected by the number of provided
data or access policy. Thus, we set all their computational
complexities to beOð1Þ.

EncEnc and EncTKEncTK need two modular exponentiations.
Both the algorithms DecDec and PDecPDec2 take one modular expo-
nentiation and one modular multiplication to obtain the
ciphertext, and PDecPDec1 needs one modular exponentiation.
Based on these analyzed results, we further give the compu-
tational complexity in seven operation functions. We hold
the assumption that there are N pieces of provided data in
Addition, Subtraction, andMultiplication.

Computational Complexity of DP. The DP directly outsour-
ces its data with EncTKEncTK for data processing/analyzing. Its
computation cost of outsourcing one piece of data is two
modular exponentiations, which is with the computational
complexity Oð1Þ.

Computational Complexity of DSP. In Addition, the DSP has
two parts of computations in each algorithm. In Step 3,
the DSP first needs to multiply the N pieces of data, mask
ciphertexts with random numbers through two modular

exponentiations, and then call PDec1. Moreover, it should do
onemodular exponentiation for removing the mask in Step 5.
In Subtraction, the DSP needs to obtain the negative of subtrac-
tor with twomoremodular exponentiations than that inAddi-
tion.As themodular exponentiation of gr with r 2 ½1; n� needs
at most n modular multiplications, the multiplication of N
(N < n) pieces of provided data results in computational
complexity of Oð1Þ. Thus, the DSP has the computational
complexity ofOð1Þ in bothAddition and Subtraction.

In Multiplication, the DSP should first mask each piece of
data with a random number through two exponentiations
and then call PDecPDec1 to partially decrypt the data in Step 3,
which results in 3N modular exponentiations. In Step 5, it
should do one exponentiation to remove the mask from
original data. Hence, the computational complexity of DSP
results in OðNÞ.

In Sign Acquisition, the DSP needs to do four modular
exponentiations in Step 3, and two more in Step 5. In
Absolute, the DSP needs to do three more modular exponen-
tiations in Step 3 than it does in Sign Acquisition. In Compari-
son, the DSP should first get the subtraction of two pieces of
encrypted data, which needs two modular exponentiations,
and then do the same operation as it does in Sign Acquisi-
tion. In Equality Test, the DSP needs invoke the Comparison
twice. Hence, its computational complexity in these three
schemes are all Oð1Þ.

Computational Complexity of CP. In the schemes except
Multiplication, Absolute and Equality Test, the CP first
decrypts ciphertext by calling PDecPDec2 and then encrypts the
data with a partial secret key, which needs three modular
exponentiations in total. Hence, the computational complex-
ities in them are allOð1Þ regardless of the ABE encryption.

In Multiplication, the CP should first decrypt each cipher-
text of masked original data with PDecPDec2, then encrypt their
product withEncEnc. It totally needs ðN þ 2Þmodular exponen-
tiation and results in computational complexityOðN þ 2Þ.

Different from the analysis above, the CP in Absolute
should first do two partial decryptions PDec2. Generally, it
needs four modular exponentiations. Its computational
complexity results in Oð1Þ.

In Equality Test, the CP takes the double computation costs
in Comparison, which needs six modular exponentiations but
still results in the computational complexity ofOð1Þ.

Computational Complexity of DR. The DR should first call
DecABEðÞ to obtain the decryption key ck. Then, it further
decrypts the pre-processing result to obtain the final result
by callingDecDec, which needs one modular exponentiation.

3) The Summary of Computation Analysis in Seven Operation
Schemes. In the following tables and figures, we use the foll-
owing corresponding notations: Addition (Add), Subtraction
(Sub.), Multiplication (Mul.), Sign Acquisition (Sign), Absolute
(Abs.), Comparison (Comp.), and Equality Test (Equal). Here,
we present the total computation costs in each algorithm and
compare themwith existingwork [18] in Table 2. The constant
number of multiplications is not considered in the table. We
can observe that our new schemes introduce some computa-
tion cost to the involved entities, but it can greatly reduce
the cost of DSP and CP when the number of DRs is high,
especially in Multiplication, which is further discussed in
Section 5.2.2. Moreover, our scheme provides fine-grained
access control and enhances the security of processing results.

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 371



5.2.2 Communication Overhead

Each ciphertext is composed of two parts: ½mi� ¼ fTi; Ti
0g. It

is highly related to the length of n2, which has 2LðnÞ bits.
Hence, it has to transmit 4LðnÞ bits for each ciphertext.
Here, we set the bit length of each element in ABE to be LD.

Further, we summarize the communication overhead in
each scheme and compare with existing work with the
assumption of N pieces of provided data, which is shown
in Table 3. Notably, the communication overhead in Data
Analysis (e.g., Add., Sub. and Mul., etc.) can be amortized
over multi-user accesses, while the communication cost
during Data Access is needed for each authorized DR.
Moreover, the communication overhead caused by data
provision can also be amortized by other data processing,
which is not counted in Table 3. We can observe that the
communication overhead in Addition and Subtraction does
not rely on the number of provided data, while the

communication overhead inMultiplication is proportional to
the number of provided data. But the cost in other schemes
does not vary much as it has only one or two data inputs.
From the comparisons, we can find that the communication
cost during data analysis in our new scheme is independent
of the number of DRs, which saves the cost for multi-user
access. In general, the communication cost is reasonable
and our schemes are suitable for various applications.

5.2.3 Experimental Results

The efficiency of HRES has been presented in [18]. Hence, we
focused on the performance evaluation of the proposed seven
operation schemes. We implemented the proposed seven
computing operation functions and tested their performances
to check with aforementioned theoretical analysis. The evalu-
ations are performed on a laptop with Intel Core i5-3337U
CPU 1.8 GHz and 8 GB RAM with Java Pairing-Based Cryp-
tography library (jPBC). To achieve better accuracy, we tested
each algorithm 500 times and reported the average value of
all testing results. Unless particularly specified, the parame-
ters in our tests are set as the default values listed in Table 4.

Note: In our simulations, we set Lðck1Þ ¼ Lðck2Þ ¼ 250

bits and employ the curve of TYPEA in jPBC (http://gas.dia.
unisa.it/projects/jpbc/docs/ecpg.html#TypeA). If higher
security is desired, TYPE E can be adopted to support keys
with longer length Lðck1Þ ¼ Lðck2Þ ¼ 500 bits. In our test
machine, one pairing can be computed in approximately 9.8
milliseconds (ms).

In our proposed schemes, we adopt HRES to achieve the
privacy-preserving data processing, while ABE is used to
realize the data access control. As they are influenced by dif-
ferent parameters, we analyze the efficiency of data process-
ing and access control separately. The CP in Step 4 and DSP
in Step 5 encrypt the partial decryption key using ABE and

TABLE 2
Computation Analysis

Role Operation Computations

of our work

Complexity of

our work

Computations

in [18]

DP ALL 2 �ModExp Oð1Þ 2 �ModExp

DSP

Add N �ModMulþ

4 �ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ ðN �ModMulþ

3ModExpÞNR

Sub. N �ModMulþ

6�ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ ðN �ModMulþ

5ModExpÞNR

Mul. ð3N þ 1ÞModExpþ

ðjgj þ 1 ÞExp

OðN þ jgjÞ NRð2N þ 2Þ�

ModExp

Sign 6 �ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ 3NR �ModExp

Abs. 9 �ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ –

Comp. 8 �ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ 4NR �ModExp

Equal 16 �ModExpþ

ðjgj þ 1 ÞExp

OðjgjÞ 8NR �ModExp

Vari. – – NRð4N þ 2Þ�

ModExp

CP

Add 3 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ 3NR �ModExp

Sub. 3 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ 3NR �ModExp

Mul. ðN þ 2ÞModExpþ

ðjgj þ 1 ÞExp

OðN þ jgjÞ NRðN þ 2Þ �

ModExp

Sign 3 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ 3NR �ModExp

Abs. 4 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ –

Comp. 3 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ 3NR �ModExp

Equal 6 �ModExp þ

ðjgj þ 1 ÞExp

OðjgjÞ 6NR �ModExp

Vari. – – NRððN þ 2Þ �

ModExpþ

ðjgj þ 1ÞExpÞ)

Authority ALL NRðjgj þ 1ÞExp OðjgjÞ –

DR ALL 1 �ModExpþ#�

BiPair

Oð#Þ 1 �ModExp

Notes: N : the number of provided data; BiPair: the bilinear pairing in ABE;
Exp : the exponentiation in ABE; ModExp : the modular exponentiation in
HRES; ModMul : the modular multiplication; ALL: fits all schemes; jgj: the
number of attributes in access policy tree T ; #: the number of attributes needed
to satisfy policy T ; NR: the number of data requesters.

TABLE 3
Communication Overhead of Each Scheme

Schemes Communication
overhead

of our work

Communication
Overhead in [18]

Add 8LðnÞ þ ðjgj þ 1ÞLD 8LðnÞNR

Sub. 8LðnÞ þ ðjgj þ 1ÞLD 8LðnÞNR

Mul. 4ðN þ 1ÞLðnÞ þ ðjgj þ 1ÞLD 4ðN þ 3ÞLðnÞNR

Sign 9LðnÞ þ ðjgj þ 1ÞLD 12LðnÞNR

Abs. 13LðnÞ þ ðjgj þ 1ÞLD –
Comp. 9LðnÞ þ ðjgj þ 1ÞLD 12LðnÞNR

Equal 18LðnÞ þ ðjgj þ 1ÞLD 24LðnÞNR

Vari. – 4ð2N þ 1ÞLðnÞNR

Data Access NRð4LðnÞ þ ðjgj þ 1ÞLDÞ 4LðnÞNR

Note: LD: bit length of elements in ABE; NR: the number of data requesters.

TABLE 4
Parameter Settings

Parameter Value (bits)

LðnÞ 1024
LðmiÞ LðnÞ=4
LðskiÞ ¼ LðskjÞ ¼ LðskDSP Þ ¼ LðskCP Þ 500
Lðck1Þ ¼ Lðck2Þ 250
Lðr�Þ ¼ Lðc�Þ 500
LðRÞ ðLðnÞ=4Þ � 10

372 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

http://gas.dia.unisa.it/projects/jpbc/docs/ecpg.html#TypeA
http://gas.dia.unisa.it/projects/jpbc/docs/ecpg.html#TypeA


the DR decrypts to obtain the raw key with ABE in Step 6,
the computation time of which are all presented in Test 4.
Other data processing computation costs introduced by the
ABE algorithm are simulated in Tests 1, 2 and 3.

1) Efficiency of Data Processing
Test 1: Influence of the length of n on data processing
We presented the computation time of four involved

entities: DP, DSP, CP, and DR respectively. The DP only
involves in Step 2, which is similar in all schemes. We
directly tested its computation cost with different length of
n as shown in Fig. 3. We can observe that it is efficient and
acceptable for DP with constrained resources.

The computation costs of DSP include two parts: Step 3
and Step 5. For a clearer presentation, we do not combine
them, but present them in Figs. 4 and 6 respectively. We can
observe that the cost grows with the increase of the bit length
of n. In addition, theEquality Test is themost time-consuming,
which needs about 750 ms when n achieves 2048 bits, while
other algorithms take less than 400ms. The DSP needs to pro-
cess the Comparing twice to complete Equality Test. The per-
formance evaluation of which is consistent with our analysis
in Section 5.2.2. The computation cost of the DSP in Step 5 is
shown in Fig. 6. Generally, our proposed schemes are accept-
able for the cloud service provider, DSP.

From Fig. 5 that shows the computation cost of the CP,
the Equality Test is also the most time-consuming while
others take merely about 100 ms. As shown in Fig. 7, the
computation cost of the DR is much less than those of two
servers. Even when the bit length of n reaches 2048 bits, it
still only needs about 25 ms to complete the computation.

In general, the above tests prove that most computation
costs are undertaken by the DSP and the CP. The cloud
users do not have much computation overhead. This result
shows the practical advantage of the proposed schemes in
the usage of mobile environments.

2) Flexibility of Addition, Subtraction and Multiplication
The operations of DSP include Step 3 and Step 5, the time

of which are marked separately as DSP(1) and DSP(2) in
Figs. 8, 9, and 10.

Test 2: Performance of Addition and Subtraction with a large
number of provided data

In this experiment, we tested the performance of three
kinds of system entities (i.e., DSP, CP and DR) in Addition
with different numbers of provided data (N ¼ 10; 102;
103; 104; 105). As shown in Fig. 8, the computation cost of the

Fig. 3. Operation time of DPs with different length of n.

Fig. 4. Operation time of DSP in Step 3 with different length of n. Fig. 6. Operation time of DSP in Step 5 with different length of n.

Fig. 5. Operation time of CP with different length of n.

Fig. 7. Operation time of DR with different length of n.

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 373



DSP in Step 3 increases with the number of the provided
data, while it does not influence other steps. Even when the
number of provided data reaches 104, the DSP only takes
about 530 ms. It takes almost the same time for the DR to
complete the computation with different numbers of pro-
vided pieces of data. This fact implies that our schemes can
deal with a great number of data for addition efficiently.

We assume that the subtraction formula is ð
PW

i¼1 mi �PN
i¼Wþ1 miÞ with W ¼ N=2, which means that half of the

provided data is subtracted from the sum of another half.
Fig. 9 shows its performance, which is similar to that of
Addition and is efficient to support a big number of DPs.

In general, the scheme can flexibly be used in various sit-
uations with different number of data providers.

Test 3: Performance of Multiplication with a large number of
provided data

Different from Addition and Subtraction, the Multiplication
is time-consuming and communication-consuming. It is not
flexible and possible to support the computation of a huge
number of provided data. Thus, we only tested it with lim-
ited numbers ðN ¼ 100; 200; 300; 400; 500; 600; 700; 800Þ.
Moreover, the original data length is set as LðnÞ=N .

As shown in Fig. 10, it takes about 15 seconds to finish the
computation in Step 3 for the DSP when the number of pro-
vided messages achieves 800. However, the data numbers
do not influence the computation cost of the DR and no extra
overhead is introduced, whichmerely costs about 6.7 ms.

3) Efficiency of Attribute-Based Encryption
The non-colluding servers and the DRs employ ABE to

realize the flexible access control over the result of data

processing and the data retrieve, respectively. Here, we
focus on the performance of ABE through one test.

Test 4: Performance of ABE with different numbers of
attributes

In this experiment, we tested the performance of five
steps of ABE with different number of attributes: System
Setup (Setup_ABE), Encryption (Enc_ABE), Key Generation
(KeyGen_ABE), Decryption (Dec_ABE) and its homomor-
phic computation (HE_ABE). The test was executed with
the setting that all universal attributes are involved in
encryption and that one attribute is needed to satisfy the
policy tree. That is, OðjU jÞ ¼ #, which varies from 2 to 8 in
our tests while OðjgjÞ ¼ 1.

Fig. 11 shows the costs of all operations in ABE except the
algorithm HE_ABE, as it only takes less than 1ms. By apply-
ing trust-based access control schemes [15], [16], [17], the
decryption only involves one attribute and takes only
10 ms. We can observe that the computation cost of other
algorithms is proportional to the number of attributes.
Though employing ABE would cause high computation
overhead, high security and fine-grained access control can
be supported. Most computations are taken by cloud serv-
ers. In addition, the cloud servers only need to perform the
setup and encryption once, which can be amortized by mul-
tiple accesses of DRs.

4) Experimental Comparison with Existing Work
Test 5: Performance comparison of Multiplication schemes in

our work with an existing scheme in [18]
In this test, we compared the performance of Multiplica-

tion in our scheme with an existing scheme [18], as shown in
Fig. 12. We obtained the total computation time of all

Fig. 8. Operation time of each entity in Addition with different number of
DPs.

Fig. 9. Operation time of each entity in Subtraction with different number
of DPs.

Fig. 10. Operation time of each entity inMultiplication with different num-
ber of DPs.

Fig. 11. Operation time of KPABE with different numbers of attributes.

374 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020



involved entities with different number of DRs (NR ¼ 2;
4; 6; 8; 10). By comparing the performance of the two schemes
with two DPs, we can see that our proposed scheme outper-
forms that in [18] when the number of DRs is over 3. More-
over, we compared the performance of two schemes with
different number of DPs (N ¼ 2; 10). By observing the simu-
lation results, we find that our scheme showsmuch superior-
ity in performance, especially for a big number of DPs.

5.3 Comparison with Existing work

Herein, we further compare our proposed schemewith some
related work. With regard to secure data processing, HE-
based schemes [5], [30] provide a feasible way to deal with
the computation over encrypted data. But they have a seri-
ous problem because they are all single-user systems, which
restricts the possibility of multi-user access control. SMC-
based scheme [27] enables flexible access via secret sharing.
However, they all introduce high computation overhead in
big data processing, especially for multiplication. For a more
intuitive comparison, we compare their communication cost
and computation cost in multiplication overN pieces of data
with our scheme in Table 5. The result shows the advantages
of our scheme in terms of communication and computation
efficiency. Moreover, no existing work overcomes the chal-
lenges to realize multiple computations over encrypted data
and flexible access control over the processing result. Obvi-
ously, our work overcomes the current research challenges
and effectively achieves flexible and secure computations
over encrypted data with fine-grained access control.

6 CONCLUSION

In this paper, we proposed an efficient and secure scheme
to achieve privacy-preserving data processing with ABE-
based flexible access control. It can support seven basic
operations and achieve fine-grained access control without
the need of fully trusted cloud servers. Security analysis,
performance evaluation and performance comparison with
existing work further demonstrated that our scheme is effi-
cient and effective with regard to big data processing opera-
tions. In the future, we are going to realize more operations,
improve scheme efficiency and overcome latency by apply-
ing edge computing and pre-processing technologies. On
the other hand, we will further explore significant applica-
tions of our scheme towards practical use.

ACKNOWLEDGMENTS

This work is sponsored by the National Key Research and
Development Program of China (grant 2016YFB0800704),
the NSFC (grants 61672410 and U1536202), the Project Sup-
ported by Natural Science Basic Research Plan in Shaanxi
Province of China (Program No. 2016ZDJC-06), the Funda-
mental Research Funds for the Central Universities (grant
JBG161509), the 111 project (grants B08038 and B16037),Acad-
emy of Finland (grant 308087), and the AXAResearch Fund.

REFERENCES

[1] A. Belle, R. Thiagarajan, S. Soroushmehr, F. Navidi, D. A. Beard,
and K. Najarian, “Big data analytics in healthcare,” BioMed Res.
Int., vol. 6, 2015, Art. no. 370194.

[2] J. J. Stephen, S. Savvides, R. Seidel, and P. Eugster, “Practical con-
fidentiality preserving big data analysis,” in Proc. 6th USENIX
Workshop Hot Topics Cloud Comput., 2014, pp. 10–10.

[3] B. Wang, M. Li, S. S. Chow, and H. Li, “A tale of two clouds: Com-
puting on data encrypted under multiple keys,” in Proc. IEEE
Conf. Commun. Netw. Secur., 2014, pp. 337–345.

[4] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing
multiparty computation under multiple keys,” IEEE Trans. Inf.
Forensics Secur., vol. 8, no. 12, pp. 2046–2058, Dec. 2013.

[5] X. Liu, R. Choo, R. Deng, R. Lu, and J. Weng, “Efficient and pri-
vacy-preserving outsourced calculation of rational numbers,”
IEEE Trans. Dependable Secure Comput., vol. PP, no. 99, 2016,
doi: 10.1109/TDSC.2016.2536601.

[6] X. Liu, R. Deng, W. Ding, R. Lu, and B. Qin, “Privacy-preserv-
ing outsourced calculation on floating point numbers,” IEEE
Trans. Inf. Forensics Secur., vol. 11, no. 11, pp. 2513–2527,
Nov. 2016.

[7] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” IACR Cryptology ePrint
Archive, vol. 2014, 2014, Art. no. 331.

[8] Z. Yan, P. Zhang, and A. V. Vasilakos, “A survey on trust manage-
ment for internet of things,” J. Netw. Computer Appl., vol. 42,
pp. 120–134, 2014.

[9] A. Khedr and G. Gulak, “SecureMed: Secure medical computation
using GPU-accelerated homomorphic encryption scheme,” IEEE
J. Biomed. Health Inf., Jan. 2017, doi: 10.1109/JBHI.2017.2657458.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
Proc. 3rd Innovations Theoretical Comput. Sci. Conf., 2012,
pp. 309–325.

[11] C. Gentry, “Computing arbitrary functions of encrypted data,”
Commun. ACM, vol. 53, no. 3, pp. 97–105, 2010.

[12] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Proc. Adv. Cryptol-
ogy–EUROCRYPT, 2010, pp. 24–43.

[13] V. C. Hu, T. Grance, D. F. Ferraiolo, and D. R. Kuhn, “An access
control scheme for big data processing,” in Proc. Int. Conf. Collabo-
rative Comput.: Netw. Appl. Worksharing, 2014, pp. 1–7.

[14] Z. Yan, W. Ding, V. Niemi, and A. V. Vasilakos, “Two schemes of
privacy-preserving trust evaluation,” Future Generation Comput.
Syst., vol. 62, pp. 175–189, 2015.

TABLE 5
Comparison with Existing Work in Multiplication

Communication
cost (bits)

Computation cost

PHE-
based [5]

36 �N � s

(s ¼ 1024)
18�N operations over

Z2s (s ¼ 1024)

SMC-
based [27]

480 � ðN � 1Þ
(with 32-bit data)

3N operations
over Z232

FHE-
based [30]

0 N operations over
Z2s (s > 106)

Our work ð4N þ 3Þ � s
(s ¼ 1024)

ð4N þ 3Þ operations
over Z2s (s ¼ 1024)

Note: s is the basic parameter and is different in each scheme;N : the number of
provided data;Fig. 12. Performance comparison of Multiplication schemes in our work

and previous scheme [18].

DING ET AL.: PRIVACY-PRESERVING DATA PROCESSING WITH FLEXIBLE ACCESS CONTROL 375

http://dx.doi.org/10.1109/TDSC.2016.2536601
http://dx.doi.org/10.1109/JBHI.2017.2657458


[15] C. Huang, Z. Yan, N. Li, and M. Wang, “Secure pervasive social
communications based on trust in a distributed way,” IEEE Access,
vol. 4, pp. 9225–9238, 2016.

[16] Z. Yan, X. Li, M. Wang, and A. Vasilakos, “Flexible data access
control based on trust and reputation in cloud computing,” IEEE
Trans. Cloud Comput., vol. 5, no. 3, pp. 485–498, Jul.-Sep. 2015.

[17] Z. Yan, X. Li, and R. Kantola, “Controlling cloud data access based
on reputation,”Mobile Netw. Appl., vol. 20, no. 6, pp. 828–839, 2015.

[18] W. Ding, Z. Yan, and R. H. Deng, “Encrypted data processing
with homomorphic re-encryption,” Inf. Sci., vol. 409-410, pp. 35–
55, 2017.

[19] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont, “Protect-
ing and evaluating genomic privacy in medical tests and personal-
ized medicine,” in Proc. 12th ACM Workshop Privacy Electron. Soc.,
2013, pp. 95–106.

[20] C. Castelluccia, A. C. Chan, E. Mykletun, and G. Tsudik, “Efficient
and provably secure aggregation of encrypted data in wireless
sensor networks,” ACM Trans. Sens. Netw., vol. 5, no. 3, 2009,
Art. no. 20.

[21] T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream
aggregation with fault tolerance,” in Financial Cryptography and
Data Security. Berlin, Germany: Springer, 2012, pp. 200–214.

[22] Q. Li, G. Cao, and T. La Porta, “Efficient and privacy-aware data
aggregation in mobile sensing,” IEEE Trans. Dependable Secure
Comput., vol. 11, no. 2, pp. 115–129, Mar. 2014.

[23] Q. Li and G. Cao, “Efficient privacy-preserving stream aggrega-
tion in mobile sensing with low aggregation error,” in Proc. Int.
Symp. Privacy Enhancing Technol. Symp., 2013, pp. 60–81.

[24] M. Joye and B. Libert, “A scalable scheme for privacy-preserving
aggregation of time-series data,” in Proc. Int. Conf. Financial Cryp-
tography Data Secur., 2013, pp. 111–125.

[25] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-pre-
serving aggregation of time-series data,” in Proc. 18th Annu. Netw.
Distrib. Syst. Secur. Symp., 2011, pp. 1–17.

[26] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure
multi-party computation for financial data analysis,” in Proc. Int.
Conf. Financial Cryptography Data Secur., 2012, pp. 57–64.

[27] L. Kamm and J. Willemson, “Secure floating point arithmetic and
private satellite collision analysis,” Int. J. Inf. Secur., vol. 14, no. 6,
pp. 531–548, 2015.

[28] D. Bogdanov, “Sharemind: Programmable secure computations
with practical applications,” PhD dissertation, University of
Tartu, Estonia, 2013.

[29] J. H. Cheon, et al., “Batch fully homomorphic encryption over
the integers,” in Proc. Annu. Int. Conf. Theory Appl. Cryptographic
Techn., 2013, pp. 315–335.

[30] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Trans. Com-
put., vol. 64, no. 3, pp. 698–706, Mar. 2015.

[31] L. Morris. “Analysis of partially and fully homomorphic
encryption,” (2017). [Online]. Available: http://www.liammorris.
com/crypto2/Homomorphic%20Encryption%20Paper.pdf

[32] X. Liu, R. H. Deng, Y. Yang, H. N. Tran, and S. Zhong, “Hybrid pri-
vacy-preserving clinical decision support system in fog–cloud
computing,” Future GenerationComput. Syst., vol. 78, pp. 825–837, 2018.

[33] Z. Yan, W. Ding, and H. Zhu, “A scheme to manage encrypted
data storage with deduplication in cloud,” in Proc. Int. Conf. Algo-
rithms Archit. Parallel Process., 2015, pp. 547–561.

[34] C. Dong, G. Russello, and N. Dulay, “Shared and searchable
encrypted data for untrusted servers,” in Proc. IFIP Annu. Conf.
Data Appl. Secur. Privacy, 2008, pp. 127–143.

[35] W. C. Garrison III, A. Shull, S. Myers, and A. J. Lee, “On the
practicality of cryptographically enforcing dynamic access control
policies in the cloud,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 819–838, doi: 10.1109/SP.2016.54.

[36] T. Zhu, W. Liu, and J. Song, “An efficient role based access control
system for cloud computing,” in Proc. IEEE 11th Int. Conf. Comput.
Inf. Technol., 2011, pp. 97–102.

[37] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attri-
bute-based encryption,” in Proc. IEEE Symp. Secur. Privacy, 2007,
pp. 321–334.

[38] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[39] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[40] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attri-
bute-based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 1, pp. 131–143, Jan. 2013.

[41] Z. Wan, J. E. Liu, and R. H. Deng, “HASBE: A hierarchical attri-
bute-based solution for flexible and scalable access control in
cloud computing,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 2,
pp. 743–754, Apr. 2012.

[42] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Adv. Cryptology—EUROCRYPT,
1999, pp. 223–238.

[43] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism
and its applications,” in Proc. Adv. Cryptology-ASIACRYPT, 2003,
pp. 37–54.

Wenxiu Ding received the BEng degree in infor-
mation security from Xidian University, Xi’an,
China, in 2012. Now, she is working toward the
PhD degree in information security in the School of
Telecommunications Engineering, Xidian Univer-
sity. She was the research assistant in the School
of Information Systems, Singapore Management
University from 2015 to 2016. Her research inter-
ests include RFID authentication, privacy preser-
vation, datamining and trust management.

Zheng Yan (M’06, SM’14) received the BEng
degree in electrical engineering and the MEng
degree in computer science and engineering
from Xi’an Jiaotong University, Xi’an, China, in
1994 and 1997, respectively, the second MEng
degree in information security from the National
University of Singapore, Singapore, in 2000, and
the licentiate of science and the doctor of science
in technology in electrical engineering from the
Helsinki University of Technology (current Aalto
University), Helsinki, Finland, in 2005 and 2007.

She is currently a full professor with the Xidian University, Xi’an, China
and a visiting professor and an academy research fellow with the Aalto
University, Espoo, Finland. Her research interests include trust, security
and privacy, as well as data mining. She is serving as an associate editor
of the IEEE Internet of Things Journal, the IEEE Access, the Information
Sciences, the Information Fusion, the Journal of Network and Computer
Applications, the Soft Computing, the Security and Communication Net-
works, etc. twelve journals. She serves as an organization and program
committee member for numerous international conferences. She is a
senior member of the IEEE.

Robert H. Deng is AXA chair professor of
Cybersecurity and director of the Secure Mobile
Centre, School of Information Systems, Singa-
pore Management University. His research inter-
ests include the areas of data security and
privacy, cloud security and Internet of Things
security. He received the Outstanding University
Researcher Award from National University of
Singapore, LeeKuanYew fellowship for Research
Excellence from SMU, and Asia-Pacific Informa-
tion Security Leadership Achievements Commu-

nity Service Star from International Information Systems Security
Certification Consortium. His professional contributions include an exten-
sive list of positions in several industry and public services advisory
boards, editorial boards and conference committees. These include the
editorial boards of the IEEE Security & Privacy Magazine, the IEEE
Transactions on Dependable and Secure Computing, the IEEE Transac-
tions on Information Forensics and Security, the Journal of Computer
Science and Technology, and Steering Committee chair of the ACM Asia
Conference on Computer and Communications Security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

376 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 2, MARCH/APRIL 2020

http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://www.liammorris.com/crypto2/Homomorphic%20Encryption%20Paper.pdf
http://dx.doi.org/10.1109/SP.2016.54

