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In healthcare, there is a vast amount of patients’ data, which can lead to important discoveries if combined. Due to legal and ethical issues, such
data cannot be shared and hence such information is underused. A new area of research has emerged, called privacy preserving data publishing
(PPDP), which aims in sharing data in a way that privacy is preserved while the information lost is kept at a minimum. In this Letter, a new
anonymisation algorithm for PPDP is proposed, which is based on k-anonymity through pattern-based multidimensional suppression (kPB-
MS). The algorithm uses feature selection for reducing the data dimensionality and then combines attribute and record suppression for
obtaining k-anonymity. Five datasets from different areas of life sciences [RETINOPATHY, Single Proton Emission Computed
Tomography imaging, gene sequencing and drug discovery (two datasets)], were anonymised with kPB-MS. The produced anonymised
datasets were evaluated using four different classifiers and in 74% of the test cases, they produced similar or better accuracies than using
the full datasets.
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single value variable

x
 vector

|x|
 number of elements in vector x

X
 n × d matrix

Xi, j
 value of the jth feature of the ith instance
1. Introduction: In recent years, with the infiltration of information
technology in healthcare, many healthcare related entities such as
hospitals and pharmaceutical companies, have vast amounts of
patients’ data. Although it is clear that sharing such data can
increase the likelihood of identifying novel findings or even
replicating existing research results, this is not happening due to
legal and ethical issues. Attempts have been made by research
programs like Linked2Safety [1], for merging data across
different healthcare entities and preserve individuals privacy, but
one needs to also decide which data to share, so that the
likelihood that the shared data will lead to new findings is
increased. The problem is more evident in the case of genetic
data, since they can reveal the identity of an individual and
possible risk factors that she/he may have. Hence, they are highly
sensitive data and caution is needed even if a part of them is shared.

The aim of privacy-preserving data publishing (PPDP) is to
provide the means for publishing data in a way so that the
privacy of individuals is preserved with a minimum loss of informa-
tion [2]. One approach that is employed for data anonymisation is
k-anonymity [3, 4]. In k-anonymity, a dataset is considered anon-
ymised if the combined values of the quasi-identifiers appear at
least k times, which means that there is at most 1/k probability of
identifying an individual using the available data. Features are
considered as quasi-identifiers, if their combined values can be
linked to publicly available information and can lead to the
re-identification of individuals [4]. Knowing beforehand all of the
features that can be used as quasi-identifiers are difficult [4]
(e.g. genetic data), hence one could consider all features as such
and therefore publish datasets whose records exist at least k times.

The most common methods for achieving the k-anonymity
requirement are generalisation and suppression [5]. In generali-
sation, the values of features are transformed into more general
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ones so that details of the individuals are disclosed. For example,
the address of an individual could be replaced with the zip code,
the city or even the country the individual is living, depending on
how abstract the information needs to be so that k-anonymity is
obtained. This requires the creation of value generalisation hierarch-
ies (taxonomy trees) for the quasi-identifiers, so that an anonymisa-
tion algorithm can select the minimum level of generalisation
needed. Research focused more on the generalisation approach,
resulting in many such algorithms [6–9], but their need for tax-
onomy trees makes it hard to use in high-dimensional data.
Algorithms that can cope with the lack of user defined taxonomy
trees such as TDR [10] exist, but in general, high-dimensionality
can severely affect the information contained in the anonymised
datasets [11].

In suppression, part of the dataset is removed so that the
k-anonymity requirement is not violated. This can be achieved by
various suppression methods, such as record suppression and attri-
bute suppression. For example, in record suppression, all records
(instances) that appear less than k times in the dataset are
removed, whereas in attribute suppression, features that have
values that do not conform to k-anonymity are removed. This ap-
proach can lead to substantial information loss since data are
removed instead of being replaced by generalised values, hence
caution is needed when used. Methods that employ suppression
for obtaining k-anonymity before data publishing have been
proposed [4, 12, 13] and there has been some focus on suppression
methods that also combine feature selection [14, 15]. With the use
of feature selection, the dimensionality of the data is reduced and
features that are not related to the problem of interest can be
removed. With fewer features, the probability of having records
that are unique decreases, thus less suppression is required for
obtaining k-anonymity.

In this paper, k-anonymity through pattern-based multidimen-
sional suppression (kPB-MS) is proposed for PPDP. The algorithm
uses feature selection for reducing the data dimensionality and then
combines attribute and record suppression for obtaining
k-anonymity. The proposed algorithm can be used on categorical
data for classification tasks. The remaining of this Letter is orga-
nised as follows: Section 2 introduces a new measure, which is
used in the proposed feature selection algorithm presented in
Section 3. In Section 4, the anonymisation methodology is
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Table 1 Example of a contingency table

f1 f2 f3 Class = 0 Class = 1

1 2 1 10 0
1 2 2 0 10
2 3 1 10 20
2 3 3 10 10
3 1 1 20 0
3 1 3 0 10

Fig. 1 PB-FSS
shown, whereas Section 5 presents the datasets and the evaluation
methodology used. The last three sections contain the results of
the algorithm along with a discussion and the concluding remarks.

2. Pattern-based classification accuracy (PBCA): In this section,
a new measure is proposed, which will be used as the performance
metric of the feature selection step of the anonymisation
methodology. PBCA uses the discrimination power of the
patterns in a dataset to calculate the accuracy that can be obtained
by classifiers. It is applicable on categorical data, and considers
each input instance as a pattern. As will be shown it is the upper
limit of the classification accuracy that can be obtained by
classifiers when the entire dataset is used both for training and
testing. The mathematical notations that will be used in this
Letter are given in the Nomenclature section.
The PBCA of the features in X and the response variable y, can be

calculated using the following equation

PBCA(X , y) =
∑p

i=1 max(Ti,c:c [ [1, |c|])
n

(1)

where p is the number of rows of the contingency table (number of
unique patterns), T is the contingency table, Ti,c is the number of
instances of row/pattern i in the contingency table T that belong
to class c, |c| is the number of classes of the response variable
and n is the number of instances in the dataset.
PBCA is model free and can capture both linear and non-linear

dependencies among the features and the response variable. The
complexity of the approach for calculating the PBCA is O(n),
since it requires one pass from the data to create the contingency
table and a single pass from the contingency table to calculate the
PBCA.
A disadvantage of the measure is that it is biased towards vari-

ables with many categorical values. For example, if the unique iden-
tifier of each instance is included in the dataset, then the PBCA
would be 100%, regardless of the values of the rest of the variables.
Table 1 shows a contingency table of a hypothetical dataset. The

dataset has three features (f1, f2, f3) with three categorical values
each, whereas the response variable (class) is binary. The first
row indicates that all ten instances with the values (pattern)
{1, 2, 1} for features f1, f2 and f3, respectively, belong to class
‘0’. Similarly, the rest of the rows indicate how many instances
for each pattern belong to each class in the dataset. Such a contin-
gency table can be created with a single pass from the dataset using
a hash table, in which the key used is the pattern of the instances.
When applying (1) on the dataset in Table 1, a PBCA of 80% is

obtained, which means that (10 + 10 + 20 + 10 + 20 + 10) = 80
instances out of the total 100 would be correctly classified.
An ideal classifier would classify an instance to class ‘0’ if most

of the instances of a pattern belonged to ‘0’, and ‘1’ otherwise.
Using the dataset shown in Table 1, it would classify instances
that match the pattern of the first row as class ‘0’, instances that
match the pattern of the second row as class ‘1’ and so on. In the
case of a tie among the number of instances that belong to each
class of a pattern, any of the classes can be selected. Hence by
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selecting the most probable class for each pattern, as observed in
the dataset, the PBCA for the dataset can be calculated. As can
be seen, since the most probable class for each pattern is selected,
the PBCA indicates the upper limit of the classification accuracy
that can be obtained when the entire dataset is used for both training
and testing by a classifier.

3. Pattern-based feature subset selection (PB-FSS): As
mentioned, with feature selection one can reduce the
dimensionality of a dataset and remove any redundant and
non-informative features. For the needs of the proposed
anonymisation process, a new feature selection algorithm is
presented and shown in Algorithm 1 (see Fig. 1). PB-FSS has
three main steps. The first step is to perform forward sequential
feature selection (FSFS) using PBCA as its performance metric.
The second step is to remove any features that are redundant in
the features subset and the final step is to order the selected
features based on their importance.

FSFS begins with empty features subsets and sequentially adds
the features that increase the performance metric. At each iteration
of the FSFS, the feature that maximises PBCA when added to the
selected features subset is found. If the selected feature increases
the PBCA when included in the features subset s, the process is
repeated. If the PBCA is not increased then the process finishes
and the feature subset without this feature is returned. Since the
entire process depends on the PBCA, to overcome its bias
towards features with many categorical values, cross-validation is
used in the PBCA calculation.

When adding features in the subset using FSFS, it is possible that
some of the already selected ones become redundant. For example,
a new feature that is selected, interacts with one or more features in
a way that the effect of a previously selected feature is masked and
hence is no longer needed. In such cases, features that become
redundant need to be removed. The second step of PB-FSS is
responsible for removing such features and is performed in the
function removeRedundantFeatures. At each iteration of the func-
tion, a feature is removed from the subset and the PBCA is recalcu-
lated. If the PBCA remains the same after the removal of a feature,
that feature is considered as redundant and it is removed from the
selected features subset, otherwise it is kept in the final subset.

The third step of the PB-FSS, sorts the selected features in
descending order based on their contribution to the PBCA. To
calculate the PBCA contribution of a feature the following proced-
ure is followed. Each feature is removed from the subset to calculate
the PBCA that can be obtained without it and then it is added back
to the subset. The feature that produced the smallest PBCA differ-
ence when removed, is considered as the one with the smallest
contribution and is added to the beginning of a new subset list.
This is repeated until no features remain in the initial subset list.
The reason the sorting is performed in a backward feature selection
manner, is that this allows taking into consideration feature inter-
actions and produce a better ranking.

Since PB-FSS is based on the PBCA, which is model free, it can
capture any type of non-linear interactions among the features. In
addition, the algorithm is able to remove features whose effect
can be expressed by the interactions of the other selected features,
which can further decrease the size of the returned subset.
Finally, it provides a ranking of the features that accounts any
17
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Fig. 2 kPB-MS

Table 3 Summary of the datasets

Dataset Number of
features

Number of
instances

Number of
classes

Class
instances

RETINOPATHY 19 1151 2 540/611
SPECT 22 267 2 55/212
SPLICE 60 3190 3 767/768/

1655
HTS 1024 3115 2 2000/1115
DOROTHEA 100,000 1150 2 112/1038
feature interactions that exist. A disadvantage of the method, due to
its forward selection strategy, is that it could end up in not selecting
interacting features with low main effects, such as in the XOR
problem.
4. k-Anonymity through pattern-based multidimensional
suppression: Data anonymisation using the suppression method
of k-anonymity, can result in the removal of a substantial amount
of the initial instances, especially when the dataset is high
dimensional. In addition, by removing instances from the dataset
there is the risk of removing important information, which can
lead to poorer classification results or even to wrong models. To
address these issues, a new anomysation process called kPB-MS
is proposed.

The steps of kPB-MS are shown in Algorithm 2 (see Fig. 2).
Initially PB-FSS is performed for reducing the dimensionality of
the dataset and for ranking the selected features based on their im-
portance. In the anonymisation step, a contingency table with each
pattern in the reduced dataset is created like in Table 1. For each
pattern, a new 2 × |c| contingency table is created, where |c| is the
number of classes. An example of such a contingency table is
shown in Table 2.

The first row has the initial number of instances of each class for
that pattern. The second row contains the remaining number of
instances once k-anonymity is performed. This means that in the
second row, the number of instances of the classes that violate
k-anonymity are replaced with the value of zero. Fisher’s exact
test is then performed on this contingency table, for testing the sig-
nificance of the change in the number of instances in each class. In
case the change is statistically significant, all of the instances of that
pattern are removed, instead of only removing the ones that do not
conform to k-anonymity.

Finally, the percentage of the lost instances (loss) from the anon-
ymisation process is calculated. In case the loss is above the user’s
defined threshold (t), the least important feature (in this case the last
feature in the subset) is removed and the process is repeated,
otherwise the anonymised dataset Z is returned.
5. Evaluation methodology: In this section, a description of the
datasets used is given along with the preprocessing steps applied
on them. Then the process followed for the analysis of the
datasets is described.
Table 2 Contingency table for testing the effect of k-anonymity

Class = 0 Class = 1

initial 10 20
k-anonymised (k = 15) 0 20
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5.1. Datasets: A summary of the datasets used in the evaluation is
given in Table 3. All of the datasets are from the UCI Machine
Learning Repository [16], except HTS which was created from
PubChem [http://www.pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?
aid=633]. Since the proposed algorithms require categorical data,
any continuous features in the datasets were discretised using the
minimum description length principle [17].

The datasets are from different areas of life sciences.
RETINOPATHY has features extracted from the Messidor image
set [18] to predict whether an image contains signs of diabetic ret-
inopathy or not, whereas Single Proton Emission Computed
Tomography (SPECT) contains data on cardiac SPECT images
and is on the classification of normal and abnormal patients.
SPLICE contains gene sequences and is on the identification of
splice junctions. SPLICE is the only dataset with three classes.
HTS is on drug discovery and was created using the compounds
and outcomes from PubChem. The fingerprints were calculated
using the LiSIs platform [19] using a radius equal to two and a fin-
gerprint size of 1024. The initial distribution of the classes for this
dataset was highly imbalanced (99%/1%), thus resampling was
used for selecting a subset of the instances of the frequent class
(2000 instances). DOROTHEA is also on drug discovery and it is
the largest dataset used in the experiments. This high-dimensional
dataset is imbalanced, with its less frequent class representing
11% of the instances.

5.2. Analytical methodology: For the evaluation of kPB-MS, the
following methodology was followed. Initially, each dataset was
anonymised using kPB-MS. Different k values for k-anonymity
were used and the accepted loss of instances (t) was set to 10%.
Specifically k was set to the values 1, 3, 5, 10 and 20. For the case
that k was set to 1, the non-anonymised dataset that results from
PB-FSS, is used, so that the effects of k can also be observed. All
of the features in the datasets were considered as quasi-identifiers.

Once the anonymised datasets were produced, classification with
a 10-fold stratified cross-validation was performed on the full and
the anonymised datasets. The same folds were used in the training
and testing of both the full and the anonymised datasets.
Specifically, the test folds were always the same among the full
and the anonymised datasets, but the training folds could either
be the same or use a subset of the instances in the anonymised data-
sets. This is due to the fact that instances could be removed during
the anonymisation process. The statistical significance among the
results was calculated with a paired t-test and it compared the accur-
acies on the ten test folds of the anonymised and the full datasets.
The difference was considered as statistically significant, when
the obtained p-value was <0.05.

For the classification task, four non-linear classifiers were
selected. The support vector machine (SVM) [20] with its default
parameters, the 1-nearest neighbour (1-NN) algorithm [21], the
C4.5 decision tree [22] with its default parameters, and the
random forest (RF) algorithm [23] using 50 trees. Their accuracies
were calculated in R using the RWeka package [24] for k-NN and
C4.5 and the e1071 package for the SVM and the randomForest
package [25] for RF.
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Table 4 The effect of k on the dimensionality and the instance loss

Dataset Features used (instance loss)

k = 1 k = 3 k = 5 k = 10 k = 20

RETINOPATHY 4 (0%) 4 (3%) 4 (5%) 2 (2%) 2 (5%)
SPECT 1 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (100%)
SPLICE 4 (0%) 4 (2%) 4 (8%) 3 (1%) 2 (6%)
HTS 25 (0%) 25 (7%) 21 (10%) 13 (9%) 8 (9%)
DOROTHEA 19 (0%) 19 (4%) 19 (4%) 19 (8%) 14 (10%)

Fig. 3 Results on the full datasets and the kPB-MS anonymised datasets with different values for k
Each plot represents the results of a classifier on a specific dataset. The x-axis has the values of k-anonymity (‘Full’ means that the full dataset was used) and the
y-axis has the classification accuracy obtained. Boxplots with a white background indicate that there is no statistical significance (at p < 0.05) in the difference
among the results of the full dataset and the anonymised dataset. Green boxplots indicate anonymised datasets with better classification results than the full
dataset and red boxplots indicate anonymised datasets with worse results than the full dataset
6. Results: For each classifier, its results on the full and
anonymised datasets are illustrated in Fig. 3. The x-axis of each
plot represents the value used in k-anonymity, whereas the y-axis
represents the classification accuracy obtained. The colours of the
boxplots indicate if the classification accuracy, using the
anonymised dataset had a statistically significant change
compared to the one obtained when the full dataset is used. The
white colour indicates no significant accuracy differences, the
green colour indicates that better accuracies were obtained with
the anonymised dataset and the red colour indicates that better
accuracies were obtained with the full dataset.
In Table 4, the features retained in the anonymised dataset and

the instance loss for different values of k are shown. For the
SPECT dataset, with k = 20, the removed instances were more
than the accepted threshold so no data could be published. For
the rest of the datasets, anonymised data could be published for
all of the tested values of k.
As can be seen in Fig. 3, the PB-FSS datasets with k = 1 did not

affect negatively the classifiers accuracies in 80% of the cases.
Hence the proposed feature selection algorithm is capable of select-
ing informative features. With the increase of the value of k, the
obtained accuracies are affected as expected [14, 26]. This is due
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to the fact that more instances are being suppressed, which can
cause the use of fewer features when the instances loss is above
the pre-specified threshold. The effect is more visible for values
larger than five in the datasets tested (see Table 4). This also
shows that before publishing data an analysis on the effect of
different values of k should be performed before selecting the
most appropriate value, so that a balance between privacy and
information loss is acquired.
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In general kPB-MS with a k > 1 did not have a statistically signifi-
cant negative effect on the obtained accuracies in 74% of the test
cases. The best results were obtained in SPECT and
DOROTHEA. In SPECT only one feature was selected and it had
enough information to produce similar accuracies with the full
dataset. In DOROTHEA, the anonymised datasets had better or
similar accuracies with the full dataset since the high dimensionality
was affecting the classifiers ability to model the data.

7. Discussion: The proposed kPB-MS, combines feature selection
with both attribute and record suppression and additionally
provides a method for selecting the accepted percentage of
records to be lost. The algorithm attempts to reduce the
information lost and as seen from the results it accomplishes this
in most of the tested datasets.

The first step of kPB-MS uses the PB-FSS, hence informative
features are selected and ranked according to their importance.
This can help researchers focus on these features and help them in-
terpret their results. In addition, by sharing the anonymised datasets
produced by kPB-MS they increase the probability of replicating
the results obtained since they are focusing on informative features.

Since it is using suppression, no user defined taxonomy trees
need to be defined as is the case with generalisation techniques
[6, 7, 8], which makes the algorithm easier to use by non-domain
experts. In addition, one does not need to know beforehand,
which features are the possible quasi-identifiers, since all of the
features can be treated as such. This can further reduce the risk of
publishing data that might accidentally contain quasi-identifiers
that do not adhere to the k-anonymity requirement.

kPB-MS uses multidimensional suppression, which means that
it is taking into consideration all of the value combinations of the
features for preserving k-anonymity. A similar approach is also
followed by kACTUS [14]. kACTUS uses C4.5 for building a
classification tree and uses the selected features of the tree to rank
the features and decide which to suppress when they do not
comply to k-anonymity. Due to the use of C4.5, kACTUS is
bound to the performance of the classifier and in high dimensional
data like DOROTHEA, kPB-MS is expected to perform better.

In [15], DMPD is proposed, which uses a genetic algorithm for
searching for an optimal feature set partitioning. One difference
with kPB-MS is that it produces multiple feature subsets, which
can all be used by classifiers and then combine their classification
predictions. This approach is expected to produce less suppressions
than kPB-MS, since it can create many subsets with a small number
of features and hence have a smaller probability to not adhere to
k-anonymity. On the other hand, it might be computationally
demanding when used on data which are high dimensional like
genetic data, due to the increased search space and the need for par-
ameter optimisation. kPB-MS would require running PB-FSS on
the dataset once to get a ranked list of informative features and
then the optimisation of k and the instance loss threshold t can be
performed on the reduced dataset. Hence it is less computationally
demanding since the optimisation of the parameters does not
require rerunning the feature selection process on the entire
dataset each time. In addition, PB-FSS is also computationally
efficient, since it is based on forward sequential selection and its
performance metric (PBCA) can be calculated in O(n).

To the authors knowledge, there are no similar studies on the
datasets used in this Letter. Both DMPD [15] and kACTUS [14]
were shown to have significantly better results than traditional
methods, but were not compared with each other. Since the
performance of kACTUS is bound to C4.5, it is expected that if
evaluated on the five datasets investigated in this study, its
performance would be comparable to the C4.5 results documented
in Fig. 2 (for the full datasets). Based on this, it can be inferred that
kPB-MS is expected to give similar or better results than kACTUS
for four out of the five datasets investigated (as documented in
Fig. 2 for SPECT, RETINOPATHY, HTS and DOROTHEA).
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8. Conclusions: In this Letter, a new method for k-anonymising
datasets has been proposed. This includes the proposal of a
new measure and a new feature selection algorithm along
with multidimensional suppression. The proposed measure
(PBCA), is model free and has a complexity of O(n), which reduces
the computational demands of the feature selection algorithm and
makes the whole process applicable for high-dimensional data.
With PB-FSS, informative features are selected and ranked so that
only such features are shared. This can further increase the
probability of sharing data that can lead to replicating results.

The multidimensional suppression procedure of kPB-MS takes
into consideration the instances removed and the effect of record sup-
pression on classifiers. The first is obtained by allowing the user to
define the accepted loss of instances, whereas the second is obtained
by testing the significance of the suppression using Fisher’s exact test
on each pattern. As shown in the results, the algorithm did not nega-
tively affect the classifiers in 80% of the test cases, indicating that
kPB-MS can be used in privacy preserving data publishing.

As seen, the value of k can affect the overall results, hence before
publishing the data, a proper value for k should be selected. The
selection should be made in a way that it provides a balance
between the obtained privacy and the information lost. For this
task, the evaluation methodology used in this Letter can be used
on different values of k for guiding such a decision.

Since PB-FSS is using a forward selection method, it can miss
interacting features with low main effects such as in the XOR
problem. Thus, as part of future research, different search strategies
will be tested for overcoming this disadvantage. One such approach
could be the use of nature inspired search strategies. Furthermore,
work will be done in the expansion of the algorithm for being
directly used on continuous features.
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