
Privacy Preserving Data Quality Assessment
for High-Fidelity Data Sharing

Julien Freudiger, Shantanu Rane, Alejandro E. Brito and Ersin Uzun
PARC

Palo Alto, CA

ABSTRACT
In a data-driven economy that struggles to cope with the volume
and diversity of information, data quality assessment has become a
necessary precursor to data analytics. Real-world data often con-
tains inconsistencies, conflicts and errors. Such dirty data increases
processing costs and has a negative impact on analytics. Assessing
the quality of a dataset is especially important when a party is con-
sidering acquisition of data held by an untrusted entity. In this sce-
nario, it is necessary to consider privacy risks of the stakeholders.

This paper examines challenges in privacy-preserving data qual-
ity assessment. A two-party scenario is considered, consisting of
a client that wishes to test data quality and a server that holds the
dataset. Privacy-preserving protocols are presented for testing im-
portant data quality metrics: completeness, consistency, unique-
ness, timeliness and validity. For semi-honest parties, the protocols
ensure that the client does not discover any information about the
data other than the value of the quality metric. The server does not
discover the parameters of the client’s query, the specific attributes
being tested and the computed value of the data quality metric. The
proposed protocols employ additively homomorphic encryption in
conjunction with condensed data representations such as counting
hash tables and histograms, serving as efficient alternatives to solu-
tions based on private set intersection.

1. INTRODUCTION
Data is now the crux of the Internet economy. Businesses across

many technological sectors are taking advantage of data commer-
cialization opportunities and monetizing their data with other com-
panies [1]. Popular approaches include data monetization with ad-
vertisers (e.g., social networks, credit services, cloud providers),
and participation in collaborative data sharing initiatives (e.g., col-
laborative security, healthcare analytics). Real-world data typically
contains inconsistencies, conflicts and errors. Enterprises com-
monly expect that about 1 to 5% of their data contains errors [2].
Such dirty data increases processing costs and has a negative im-
pact on data commercialization [3]. Dirty data costs US businesses
about 600 billion dollars annually because cleaning data accounts
for 30 to 80% of the development time of most big data projects [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WISCS’14, November 3, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3151-7/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663876.2663885.

Over time, a large body of work has focused on methods to es-
timate data quality according to various metrics [5–7] and to auto-
matically clean the data [8–10]. These techniques involve running a
series of algorithms that check for integrity constraints on the data,
identify dependencies among data attributes and detect inconsisten-
cies in the dataset.

In this paper, we identify a new challenge in data quality as-
sessment that consists in verifying the quality of data owned by an
untrusted party. Specifically, one organization might prefer to ver-
ify data quality in a privacy-preserving manner prior to acquiring
it from another organization. As the data monetization model be-
comes increasingly prevalent, it is vital to develop the capability
to assess data quality prior to data acquisition. Similarly, organi-
zations that participate in collaborative data sharing environments
would benefit from assessing the quality of a potential collabora-
tor’s data before initiating the data sharing process. In existing
data quality assessment solutions, data quality is directly verified
by data owners themselves, so these aspects of data collaboration
have not received much attention.

The problem of assessing the quality of an untrusted party’s data
raises privacy risks since the data itself as well as the data quality
parameters are sensitive. In particular, there is a need for techniques
that protect the privacy of both the querying party and the data
owner while they interactively assess the data quality of datasets.

For example, consider the following healthcare scenario. Access
to healthcare data is a long and costly procedure that is strictly reg-
ulated by government regulations, such as HIPAA [11]. It would
be beneficial for healthcare researchers to evaluate the quality of
clinical trial data before engaging in the full data access procedure.
However, healthcare data is sensitive and cannot be shared in plain-
text with researchers. Similarly, data quality aspects — such as
whether every element of a certain medical attribute is populated
— are sensitive as they may reveal the research agenda.

Another example is that of a market research company that would
like to assess whether an attribute related to a particular market
demographic contains data that is both valid, and rich enough for
useful analytics. It is desirable to have a method that allows such
assessments while not only keeping the data private until the shar-
ing officially takes place, but also keeping the demographic sector
of interest confidential from the data owner.

A third example is cyber threat mitigation. Previous work has
proposed to help organizations share security data with each other
in order to improve the effectiveness of their cyber threat mitigation
systems [12–19]. However, dirty security data reduces the effec-
tiveness of collaboration because it makes data integration difficult,
requires data cleaning, and increases the risk of false positives. Un-
fortunately, cyber threat data is sensitive [20–22], and so are data
quality parameters such as testing of dependencies between attack

Client! Server!
1. Data quality metric

Data Quality Metrics!
!

Completeness

Validity

Uniqueness

Consistency

Timeliness

Ds
A1, ..., Am

2. [Attributes + parameters]

3. [Data quality value]

Figure 1: System architecture and basic protocol. After select-
ing the data quality metric, the client defines data quality con-
straints and associated parameters, interacts with the server
via a secure protocol and obtains the data quality value. The
secure protocol protects the privacy ofDs, as well as that of the
client’s data quality constraint parameters, the queried data
attributes, and the resulting data quality value.

vectors and port numbers. Therefore, obtaining data quality assur-
ance in a privacy-preserving way prior to data sharing, would have
tangible benefits for collaborative threat mitigation.

Contributions: This paper describes two novel contributions. First,
we identify the class of problems in privacy-preserving data qual-
ity assessment. This is a subclass of problems in privacy-preserving
data mining, in which the queries involve specific properties of the
dataset. To the best of our knowledge, we are the first to explic-
itly consider the class of data quality assessment problems under
privacy constraints and to propose a systematic analysis. Second,
we provide a series of efficient protocols that evaluate data quality
while keeping the data, the query parameters and resulting qual-
ity value private. Our solutions rely on two-party secure compu-
tations for oblivious computation of data quality metrics. Privacy-
preserving data quality assessment ensures that poor quality data
will not be acquired. Furthermore, since data quality is ascertained
beforehand, our protocols have the potential to reduce the onerous
overhead involved in cleaning the data and facilitate the emergence
of high-fidelity data sharing platforms.

2. PRELIMINARIES
The main goal of this paper is to propose techniques where one

party can verify various aspects of the quality of data held by an-
other party in a privacy-preserving manner, i.e., the querying party
should learn nothing besides the value of the data quality metric
and the data owner should learn nothing besides the data quality
metric under consideration.

2.1 System Model
We consider two entities, a client that checks for data quality and

a server that owns the dataset under examination. The server holds
a dataset Ds with a known schema including a list of m attributes
A1, ..., Am. A tuple is a row in the dataset and n is the total number
of tuples. The system architecture is illustrated in Fig. 1.

2.2 Threat Model
Following Kerckhoff’s Principle [23], we assume that both the

server and client know which data quality metric is being mea-
sured, which protocol is being executed, and the explicit constraints
of each protocol. The proposed protocols do not reveal the server’s
data to the client (data privacy), and do not reveal the data quality
constraint parameters, the data attributes under consideration, and
the resulting values of the quality metric to the server (query pri-

First Name Last Name Age State Zip
John Steinbeck 32 CA 94043
Jimi Hendrix 27 WA 01000
Isaac Asimov -15 NY NULL

Table 1: Example of a dirty dataset Ds. The second tuple is
inconsistent because zip code does not match state. The third
tuple is incomplete and invalid because it misses a zip code and
age is negative.

vacy). All our protocols are two-party interactions. We regard the
client and server as semi-honest (honest-but-curious, passive) ad-
versaries that monitor all protocol communications and try to infer
as much information as possible about data held by the other party.
Being passive players, they follow the rules of the protocol and do
not misrepresent their inputs at any stage of the protocol.

2.3 Data Quality Constraints and Metrics
There are numerous ways of ascertaining the quality of infor-

mation held in a dataset [5–7]. We consider two fundamental ap-
proaches to determining data quality, viz., by testing integrity con-
straints on individual data attributes, and dependency constraints
across two or more attributes.

Testing integrity constraints involves defining a variety of con-
straints on dataset attributes with associated parameters and deter-
mining whether the data satisfies each constraint. Suppose that d is
an element in dataset Ds, θ is a possible singleton parameter, and
Θ is a set of parameter values. Examples of integrity constraints
include equality constraints (e.g., d = θ), comparison constraints
(e.g., d > θ), subset constraints (e.g., d ∈ Θ), interval constraints
(e.g., d ∈ [θmin, θmax]), and conjunctions of these constraints
(e.g., d ∈ Θ ∧ d > 0). Note that, unlike integrity checks used for
communication security (such as Message Authentication Codes
and hashing techniques), integrity constraints test data semantics
and do not detect changes to the data.

Testing dependency constraints involves defining a variety of
relations between attributes and testing whether the data satisfies
those dependencies. For example, “zip code ↔ state” is a
dependency constraint that verifies whether zip codes are consis-
tent with the associated state.

The selection of constraints to be verified depends on the data
quality metrics under consideration. There is a large body of work
on determining proper data quality metrics [5, 6]. The selected data
quality metric depends upon the type of data and the context or ap-
plication in which the data is expected to be used. In this paper, we
focus on metrics recommended by the US Department of Defense
for cyber security data [24]: Completeness, Validity, Uniqueness,
Consistency and Timeliness.

Completeness: This metric is defined as the percentage of ele-
ments that are properly populated. Specifically, a test for complete-
ness asks whether each tuple has a value for each attribute. For
example, in Table 1, the third tuple is missing a zip code and is thus
incomplete. It is generally possible to test for completeness using
equality and/or subset constraints. An example of a test for data
completeness is an integrity constraint that checks for the presence
and frequency of occurrence of values such as NULL, “”, and other
symbols that suggest unpopulated data attributes.

Validity: This metric is defined as the percentage of elements,
whose attributes possess meaningful values. The validity of an at-

tribute can be tested using a comparison constraint and/or an in-
terval constraint, which is a composition of multiple comparison
constraints. For example, in Table 1, the third tuple has a negative
age and is thus clearly invalid. In this case, the integrity constraint
could be a reasonable interval constraint on the age, such as [0,110].

Uniqueness: This metric is defined as the number of unique values
taken by an attribute, or a combination of attributes in a dataset.
This is an important test because it evaluates the variety and rich-
ness of the data; data without sufficient variety may not be worth
acquiring or worth using for analytics.

Consistency: Consistency is defined as a measure of the degree
to which the data attributes satisfy a set of constraints [24]. To ex-
plicitly exclude validity and completeness considerations from dis-
cussions on consistency, we narrow down the definition of consis-
tency as follows: Consistency is a measure of the degree to which
two or more data attributes satisfy a well-defined dependency con-
straint. One way to measure consistency for a certain dependency
constraint is to report the percentage of tuples that satisfy that de-
pendency constraint. As an example, in Table 1, the first tuple
is consistent with respect to the “zip code ↔ state” depen-
dency because “94043” is a legitimate California zip code. How-
ever, the second tuple is inconsistent because “01000” is not a le-
gitimate Washington zip code.

Timeliness: This metric is defined as the percentage of elements
whose time attributes are within a specified time frame. For exam-
ple, one may be interested in acquiring data only if the tuples have
time stamps in the year 2014. Though timeliness is listed as a data
quality metric, it is easy to see that it has the same abstract form as
a validity metric. Thus, any protocol that can measure validity can
also measure timeliness.

2.4 Cryptography Background
This section provides an overview of cryptographic tools used in

subsequent sections to build protocols for privacy-preserving eval-
uation of the data quality metrics.

Additively Homomorphic Cryptosystems: These are public-key
cryptosystems in which it is possible to perform mathematical op-
erations on ciphertexts that result in addition operations on the un-
derlying plaintext. There are several additively homomorphic cryp-
tosystems in the literature. Our protocols can employ either the
Paillier cryptosystem [25] or a generalization due to Damgård and
Jurik [26]. For concreteness, we restrict the discussion below to
the original Paillier cryptosystem only. Denoting by E(·) andD(·)
respectively the encryption and decryption functions of the Paillier
cryptosystem, we have the following two properties for any two
integers d1 and d2 in the set of allowable messages:

D(E(d1, r1) · E(d2, r2) mod N2) = d1 + d2 mod N

D(E(d1, r1)d2 mod N2) = d1 · d2 mod N

where N = pq is a large modulus, p, q are two large primes and
r1, r2 are random numbers in Z∗N , which is a subset containing
those elements of ZN = {0, 1, ..., N − 1} that have a multiplica-
tive inverse. As indicated above, the Paillier cryptosystem is prob-
abilistic, i.e., a fresh random parameter ri is used during every en-
cryption operation. The cryptosystem is thus semantically secure.
This property is desirable because it makes the cryptosystem secure
against a Chosen Plaintext Attack (CPA). Note that the random pa-
rameters ri are not required for decryption. For simplicity, we omit
the random parameters in our development, with the implicit un-

derstanding that semantic security is ensured by the choice of a
fresh random parameter whenever encryption is performed. Then,
the above properties of the Paillier cryptosystem are depicted more
concisely as:

E(d1) · E(d2) = E(d1 + d2)

E(d1)d2 = E(d1 · d2)

Private Set Intersection Cardinality (PSI-CA): [27–30] This is a
cryptographic primitive involving two parties, a server with set S,
and a client with set C that execute a privacy-preserving protocol.
At the end of the PSI-CA protocol, the client learns |S ∩C|, and the
server only learns the client’s set size. As PSI-CA only reveals the
size of the intersection, but not the actual contents, it can be seen
as a more conservative variant of Private Set Intersection (PSI) [27,
31, 32]. In what follows, we will briefly review how, using some
preprocessing of the client’s query and the server’s data, PSI-CA
can be adapted to privately evaluate certain data quality metrics.

3. PRIVACY-PRESERVING DATA QUALITY
ASSESSMENT

We propose a number of protocols in which a client assesses the
quality of a server’s dataset according to the data quality metrics
discussed earlier. As illustrated in Fig. 1, the client first chooses
a quality metric and accordingly defines integrity constraints and
dependencies. A secure protocol ensues between the client and the
server. As a result of the secure protocol, the client only learns the
value of the data quality metric.

3.1 PSI-based Protocols
Private Set Intersection (PSI) protocols enable two parties to

compute the intersection set of their data while protecting data pri-
vacy for both parties. Data quality metrics discussed in Section 2
are aggregate measures in which the client is interested not in spe-
cific data items, but in the number of occurrences of specific data
values. PSI-CA reveals to the client the cardinality of the set inter-
section and therefore appears better suited to data quality assess-
ment than PSI. We illustrate the use of PSI-CA via a protocol in
which the client assesses completeness of the server’s data.

Setup: The client first determines the set of values to test, for ex-
ample, U = {NULL, “”}. The clients then tests the number of
occurrences of each element u ∈ U in the server’s dataset.

Protocol: Typically, the inputs to a PSI-CA protocol are sets, i.e.,
each element is unique. Therefore, a default execution of PSI-CA
with the client possessing U and the server possessingDs will sim-
ply yield information about whether a u ∈ U is present in Ds or
not. For the protocol to output the number of occurrences of each
u ∈ U in the server’s dataset, the client must preprocess its input.
For each value u ∈ U , the client creates a set:

Dc,u = {(1, u), (2, u), ..., (n, u), (n+ 1, u), ..., (2n, u), ...,

(n(m− 1) + 1, u), ..., (mn, u)}

where, n is the number of dataset tuples. For each attribute Ai

where i ∈ 1, ...,m, the server computes the following set:

D̄s = {(1, d1), (2, d2), ..., (n, dn), (n+ 1, dn+1), ..., (2n, d2n), ...,

(n(m− 1) + 1, dn(m−1)+1), ..., (mn, dmn)}

where d(i−1)n+j represents the value of the attribute Ai in the j th

tuple in Ds. An execution of PSI-CA for each u ∈ U yields the

number of occurrences of u in D̄s. The client can then compute the
completeness metric as follows:

Completeness = 1−
∑

u |D̄s ∩ Dc,u|
nm

(1)

Correctness: The preprocessing step applied by the client and
server ensures that the protocol correctly evaluates the number of
occurrences of each u ∈ U . A large value for Completeness means
that the dataset is relatively complete and few elements inDs match
an element in the set U . A small value of Completeness indicates
a dirty dataset with many missing elements.

Privacy: The construction of the PSI-CA protocols ensures that the
client and server only discover the cardinality of the intersection set
of Dc,u and D̄s.

Cost: The construction in [30] has complexity linear in the total
number of elements under consideration, i.e., mn in this problem.
Thus, the communication overhead is rather high. Even with state
of the art computation performance for PSI protocols (about 500ms
for sets containing 200 elements), the presented protocol would
induce large overhead in the assessment of completeness. Similar
or higher complexity would be incurred while testing for validity,
uniqueness and consistency. Thus, even though PSI and PSI-CA
can be adapted to data quality assessment problems, more practical
solutions are necessary.

Recently, there have been several attempts to speed up PSI by re-
lying on server-aided computations [33], garbled Bloom filters [34],
or computational optimizations [35]. Inspired by those efforts, we
propose efficient privacy-preserving protocols tailored to the data
quality assessment problem in the next section.

3.2 Data Quality Assessment Protocols
Our approach is to transform datasets and queries into represen-

tations that are efficient for testing data quality metrics. Concretely,
we propose to project the server’s dataset Ds into a representative
vector that is efficient in the sense that its length is typically small
in comparison with the number of dataset tuples. Possible vector
representations include binary vectors, hash maps, and histograms.

The vector representation makes it is possible to test for data
quality constraints by selectively accessing vector values and ag-
gregating them. For instance, it is possible to test for completeness
by selecting undesirable attribute values in a histogram and aggre-
gating the number of occurrences. This approach readily extends
to validity evaluation which is concerned with counting the number
of occurrences on a range of values. Thus, it is essential to have an
efficient privacy-preserving primitive for selective aggregation that
can be leveraged for evaluating various data quality metrics.

3.2.1 Select and Aggregate Protocol
We present a protocol that enables the client to obliviously obtain

the summation of selected elements from the server’s vector. The
protocol ensures that the client and server do not discover elements
of each other’s vectors. There are many ways of achieving this;
we consider an efficient approach that uses additively homomor-
phic encryption. This approach is closely related to the method of
implementing Oblivious Transfer (OT), and secure inner products
using an additively homomorphic cryptosystem.

Inputs: The client has a vector a ∈ {0, 1}t. The server has an
integer vector b ∈ Zt. The client possesses the public/private key
pair of an additively homomorphic cryptosystem, while the server
only has the client’s public key.

Output: The client receives
∑t

j=1 ajbj , but discovers nothing
about the bj . The server discovers nothing.

Protocol: SelectAndAggregate(a,b)

1. The client encrypts each aj ∈ a to obtain E(aj). It sends
the encrypted vector to the server.

2. For each bj ∈ b, the server computes:

E(ajbj) = E(aj)
bj (2)

3. The server then computes:

E(γ) = E

(
t∑

j=1

ajbj

)
=

t∏
j=1

E(ajbj) (3)

Note that the server operates on encrypted data and does not
see value of γ. The server transmits this result to the client.

4. Using its private key, the client decrypts γ.

Correctness: The correctness of the protocol is based on the prop-
erties of the additively homomorphic cryptosystem. Intuitively, the
protocol selects bj for which aj = 1, adds them up, and reveals the
result to the client.

Privacy: The protocol ensures that the server does not see the
query vector, as it operates only in the encrypted domain. Note that
the semantic security property of the homomorphic cryptosystem
ensures that the server cannot make inferences on the binary vector
a based on E(aj). The client, on the other hand, obtains no infor-
mation about the server’s data vector b, other than the aggregate
summation γ.

Cost: The protocol clearly incurs a computational and communica-
tion overhead that is linear in the length of the vectors a and b. Iin
order to ensure that our data quality testing protocols are more effi-
cient than the PSI-CA-based implementation described earlier, the
inputs a,b to the SelectAndAggregate protocol must have lengths
considerably smaller than the number of dataset elements mn.

Intuitively, the protocols that we present below can be under-
stood as consisting of two main tasks: (1) Finding a low-dimensional
representation of the client’s query and server’s data that is suitable
for testing the quality metric under consideration; (2) Inputing the
low-dimensional representation to the SelectAndAggregate proto-
col.

3.2.2 Completeness Evaluation Protocol
We propose to use hash maps together with the SelectAndAggregate

protocol to efficiently assess data completeness. The protocol is il-
lustrated in Fig. 2.

Inputs: The client has a set U consisting of values to test such
as “NULL”, the empty string “”, and so on. It also possesses the
public/private key pair of an additively homomorphic cryptosys-
tem. The server possesses a dataset Ds, whose completeness is to
be tested. The server also has the client’s public key.

Output: The client obtains the sum of the number of occurrences
in the server’s dataset of each element u ∈ U . This allows the
client to compute a measure of completeness. The server discovers
nothing.

Protocol: The protocol proceeds as follows:

Server Client

0

.

.

.

H(NULL): 1

.

.

.

0

HashMap

Select &
Aggregate
Protocol

Counting HashMap

5

H(b1): 23

.

.

.

H(NULL): 5

.

.

.

H(bt): 2

Figure 2: Illustration of the completeness evaluation protocol.
The client computes a hash map vector full of 0’s with 1’s only
for undesirable values such as NULL. The server computes a
counting hash map of its dataset Ds.

1. The server computes the number of unique elements t =
Unique(Ds) and shares t with the client.

2. The client maps each element u ∈ U onto a hash map given
by a = Hashmap(U , t).

3. For each attributeAi where i ∈ 1, ...,m, the server computes
a counting hash map bi = CountingHashmap(Ds[, Ai], t).
Note that the hash map a and the counting hash map b use
the same hashing functions and have equal length that de-
pends on t.

4. For each attribute Ai where i ∈ 1, ...,m, the client and
server execute the SelectAndAggregate protocol with inputs
a and bi respectively. At the end of the protocol, the client
receives γi = SelectAndAggregate(a,bi).

5. The client computes the completeness metric can be com-
puted as:

Completeness = 1−
∑

i∈M γi

n|M|

where M is the set of attributes whose completeness the
client wants to test. For example, if the client wants to test the
completeness of the whole dataset, thenM = {1, 2, ...,m}.

Correctness: The client’s hash map a is a binary vector with ones
corresponding to the elements ofU . Based on the SelectAndAggregate
protocol, the dot product of a with b only preserves the member-
ship count of the elements of U . For each attribute Ai, the client is
finally provided with the sum γi.

Privacy: Privacy is inherited from the SelectAndAggregate proto-
col. Note that, if the client chooses, he can test the completeness of
only a few attributes, without revealing which attributes are being
tested. Because the server returns γi for each i = 1, 2, ...,m, the
client has the flexibility to choose the set of interesting attributesM
and consider only those γi for which i ∈ M. Thus, the protocol
provides the client with query privacy in that the server discovers
neither the attribute setM, nor the values being tested (e.g., NULL
entries), nor the value of the completeness metric. The client also
obtains no information about the server’s data, other than the num-
ber of unique elements t, and the number of occurrences of the
elements of U .

Cost: The protocol has cost linear in the size of the hash maps,
i.e., the computational and communication overhead is O(t). Re-
call that t is the number of unique elements inDs, which is the sum
of the number of unique values taken by each attribute Ai of Ds.

Server Client

0

0

0

1

1

1

0

0

0

1

4

6

7

2

0

1

Binary vector

Select &
Aggregate
Protocol

Histogram of attribute

15

Figure 3: Illustration of the validity evaluation protocol. The
client computes a binary vector full of 0’s with 1’s only corre-
sponding to the range of interest. The server computes a his-
togram of each attributes in its dataset Ds.

This number tends to be much smaller than the number of dataset
tuples n for large datasets. For e.g., If we have a dataset of students
in a large country with 2 attributes, viz., integer scores from 1 to
100 and the type of school attended (public/private), then t = 200,
whereas the number of students can be in the hundreds of thou-
sands. The protocol thus consumes significantly less overhead than
the PSI-CA-based protocol above.

3.2.3 Validity Evaluation Protocol
Validity testing relies on checking range constraints, which can

be tested using histograms and indicator vectors constructed on the
desired ranges [36]. We propose a validity evaluation protocol in
which the client builds such an indicator vector over the range of
interest and the server builds a histogram on its data. The protocol
is illustrated in Fig. 3.

Inputs: The client has a set of attributes M whose validity it is
interested in testing. For each attribute Ai ∈ M, the client posses
a range of valid values to be tested. These ranges can be contiguous
or disjoint sets, which we denote byRi. It also possesses the pub-
lic/private key pair of an additively homomorphic cryptosystem.
The server possesses a dataset Ds, whose validity is to be tested.
The server also has the client’s public key.

Output: For each attribute Ai ∈M, the client obtains the number
of occurrences of valid entries, i.e., entries that belong to the valid-
ity setsRi. This allows the client to compute a measure of validity.
The server discovers nothing.

Protocol: For each attribute Ai, i = 1, 2, ...,m:

1. The client and server agree on reasonable rangeQi of values
corresponding to the maximum and minimum values that the
attribute can take, a bin size `i and the number of bins ti. For
example, if the ith attribute is age, then a reasonable range of
values is [0, 110], the bin size can be 1, which means that the
ages are quantized to the nearest integer, and the number of
bins can be 111. Thus, Qi = {0, 110}, `i = 1, ti = 111.
Note that these ranges are based on public-domain knowl-
edge about the attribute under consideration, and thus do not
leak information about the server’s data.

2. The server computes a histogram of the attribute Ai with the
given bin size `i, and number of bins ti and the ranges spec-
ified inQi. Specifically, the server computes
bi = Histogram(Ds[, Ai], ti, `i,Qi).

3. The client generates a binary vector ai of size ti, where each
entry of ai corresponds to a bin of the histogram of Ai. If it
is not interested in testing the validity of attribute Ai, i.e., if

Ai /∈M, then the client initializes all elements of ai to 0. If
it is interested in testing the validity of attributeAi, it locates
the bins that intersect with Ri, and sets the corresponding
entry in ai to 1 and leaves the rest to 0. For example, if
the client is interested in the age range [0, 35] in the above
example, it sets the corresponding 36 entries of ai to 1, and
all others to 0.

4. The client and server execute the SelectAndAggregate pro-
tocol with inputs ai and bi respectively. At the end of the
protocol, the client receives γi = SelectAndAggregate(ai,bi).

Finally, the client computes the validity metric as:

Validity =

∑
i∈M γi

n|M| (4)

Correctness: The client’s binary vector a contains 1’s only at
places corresponding to valid values of the attribute being tested,
while the server’s histogram vector b contains the number of oc-
currences of all observed values for that attribute. The dot product
of a with b thus returns the number of valid items.

Privacy: Again, privacy is inherited from the SelectAndAggregate
protocol. If the client chooses, he can test the validity of only a few
attributes, without revealing which attributes are being tested. This
is because the server returns γi for each i = 1, 2, ...,m, while the
client has the flexibility to choose the set of interesting attributes
M, forcing γi = 0 when Ai /∈ M. The protocol provides the
client with query privacy because the server discovers neither the
interesting attribute setM, nor the validity rangesRi, nor the value
of the validity metric. The client also obtains no information about
the server’s data, other than the number of occurrences of valid
quantities in the attributes of interest.

Cost: The protocol has cost linear in the number of histogram bins,
i.e., the computational and communication overhead isO(

∑m
i=1 ti).

As in the case of completeness, the number of bins in the histogram
of Ai tends to be much smaller than the number of dataset tuples
n. Again, the protocol consumes significantly less overhead than
the PSI-CA protocol.

Observation: Since timeliness is a validity constraint, the valid-
ity evaluation protocol can also be used to evaluate timeliness by
choosing appropriate constraint parameters for attributes that are
associated with time. The correctness, privacy and cost guarantees
remain the same as above.

3.2.4 Consistency Evaluation Protocol
Recall that testing for consistency involves determining the num-

ber of dataset tuples that satisfy a dependency constraint speci-
fied by the client. The dependency constraint may involve two
or more attributes. We develop a privacy-preserving protocol for
evaluating the consistency with respect to a given dependency con-
straint. The intuition is that the client can define the dependency
constraint in terms of an association rule involving two or more at-
tributes, and the server computes the dependency that is observed
among those attributes in its dataset. Then the overlap between
the association rule specified by the client, and the observed de-
pendency in the server’s dataset is a measure of consistency. This
intuition is depicted in Fig. 4, wherein the multidimensional asso-
ciation rule at the client’s end and the multidimensional attribute
dependency observed at the server’s end are vectorized so that the
SelectAndAggregate protocol can be reused.

Server Client

1

1

0

1

1

0

1

1

1

0

1

1

1

0

0

1

Vectorized expected

association rule

Select &
Aggregate
Protocol

Vectorized observed

association rule

4

Figure 4: Illustration of the consistency evaluation protocol.
This protocol can be thought of as a multidimensional exten-
sion of the validity evaluation protocol with the caveat that the
server’s data structure is a binary vector rather than a his-
togram.

Inputs: The client is interested in a set of attributesM⊆ {A1, ..., Am}.
It also possesses the public/private key pair of an additively homo-
morphic cryptosystem. The server possesses a dataset Ds, whose
consistency is to be tested with respect to some attributes chosen
privately by the client. The server also has the client’s public key.

Outputs: The client obtains the number of entries for which the
attributes in the setM are consistent. This allows it to measure the
consistency of those attributes. The server discovers nothing.

Protocol: The protocol proceeds as follows:

1. For each attribute Ai, the client and server agree on reason-
able range Qi of values corresponding to the maximum and
minimum values that the attribute can take, a bin size `i and
the number of bins ti As in the validity evaluation protocol,
these ranges are based on public-domain knowledge about
the attribute under consideration, and thus do not leak infor-
mation about the server’s data.

2. The client generates an association rule involving the attributes
Ai ∈ M, and expresses the association rule as a binary val-
ued mapping f(d1, ..., dm) where dk is a value taken by at-
tribute Ak and f takes a value 1 if the tuple (d1, ..., dm)
is a legitimate collection according to the association rule.
Otherwise, it takes a value 0. As an example, considering a
three-attribute dataset with zip codes, state names, and po-
litical party affiliations, where the client is only interested in
checking the consistency of zip codes and states and does
not care about political party affiliations. Then, |M| = 2,
f(94043,CA, ·) = 1, but f(01000,WA, ·) = 0.

3. The server reads the values of the attribute tuples (d1, ..., dm)
and computes a binary valued mapping g(d1, ..., dm) where
the mapping g takes a value 1 if the tuple (d1, ..., dm) exists
in the dataset. Otherwise, it takes a value 0. As there are n
tuples, the map g has n ones and

∏m
i ti − n zeros.

4. The client and server vectorize their mappings f and g ac-
cording to an indexing scheme that is agreed upon. As a
result, the client has the vector a, while the server has the
vector b, where a,b each have length

∏m
i ti.

5. The client and server execute the SelectAndAggregate pro-
tocol with inputs a and b respectively. At the end of the pro-
tocol the client receives γ = SelectAndAggregate(a,b).

6. The client computes the consistency metric as:

Consistency(M) =
γ

n
(5)

Correctness: To see that the protocol is correct, observe that the
client generates a binary map representing an association rule, while
the server generates a binary map representing associations ob-
served in its dataset. Then, the protocol privately computes the
element-wise logical AND function on the corresponding elements
of the binary maps and adds up the result using an additively ho-
momorphic cryptosystem.

Privacy: Once again, privacy in the computation of γ is inherited
from the SelectAndAggregate protocol. The protocol provides the
client with query privacy in that the server discovers neither the
attribute set of interest to the clientM, nor the client’s association
rule, nor the value of the consistency metric. The client also obtains
no information about the server’s data, other than the number of
tuples that are consistent with respect to the attributes of interest.

Cost. The ciphertext computation and communication cost of the
scheme is O(

∏m
i ti). In comparison, a protocol that adapts PSI-

CA for consistency testing using a method similar to the one de-
scribed in Section 3.1 would incur an overhead of O(nm).

3.2.5 Uniqueness Evaluation Protocol
Testing for uniqueness involves counting the number of unique

values taken by an attribute in a range specified by the client. Rather
than counting values at arbitrary precision, it may be advisable
for the client and server to agree on a quantization of the attribute
space, i.e., a constant or variable bin size. Then uniqueness is rede-
fined as the number of populated bins in the histogram of the data
attribute held by the server.

A privacy-preserving protocol for determining uniqueness is read-
ily obtained by a small modification to the second step in the va-
lidity evaluation protocol. The modification involves replacing the
non-zero entries in the vector b = Histogram(Ds(Ai), ti, `i,Q)
by 1. It can be verified, that owing to this modification, the client
obtains the number of bins in the histogram of the server’s data, that
contain at least one attribute value. Correctness, privacy and cost
can be determined using exactly the same procedure as that used
for the validity evaluation protocol.

4. RELATED WORK
In this paper, we have proposed specialized protocols for privacy

preserving computation of specific data quality metrics. Below, we
review several related proposals.

4.1 Privacy-Preserving Cloud Auditing
The literature on data integrity checking contains work on public

auditability of remotely stored data [37–40]. Public auditability
allows an external party, in addition to the data owner himself, to
verify the correctness of data remotely stored in the cloud. Wang
et al. [41] proposed a privacy-preserving auditing protocol. Their
scheme supports an external auditor to audit outsourced data in the
cloud without gaining knowledge about the data.

These approaches were developed in the context of secure out-
sourced data storage. Data quality assessment is a related problem
but the focus is on verifying semantic notions of data quality rather
than on the integrity or retrievability of third party data.

4.2 Privacy-Preserving Data Mining
The data mining community has contributed a number of a num-

ber of seminal papers proposing secure protocols to compute clus-
ters, and perform regression and classification across vertically par-
titioned databases while protecting the privacy of participants [42–
44]. For example, it is possible to conduct statistical analysis on

joint datasets, while preserving the confidentiality of each partic-
ipant [45]. Existing work focused on data mining computations
which are not directly applicable to the data quality assessment
problem. Data quality is concerned with simpler tests, such as
equality, comparisons and conjunctions. Our work could be used
in conjunction with data mining approaches, in order to assess the
quality of data held by an untrusted party, prior to running privacy-
preserving data mining algorithms. This helps increase confidence
in the quality of results.

Among the specialized protocols that could help with privacy-
preserving data quality assessment, Private Set Intersection (PSI)
has generated a lot of interest. PSI involves two parties, a server
with a set S, and a client with a set C. At the end of an inter-
active protocol, the latter only learns S ∩ C, whereas the former
learns nothing beyond client’s set size. State-of-the-art implemen-
tations of PSI include garbled circuit-based techniques [34, 46] as
well as specialized protocols [27, 31, 32, 47, 48], and are character-
ized by different computational assumptions and complexity guar-
antees. However, as discussed, PSI is a symmetric data sharing
problem and does not solve the data quality assessment problem.

With Private Set Intersection Cardinality (PSI-CA) [27–30], we
show that it is possible to assess data quality privately. Yet, the
overhead is large, and thus not satisfactory in real-world scenarios.
Our specialized protocols are inspired from recent developments
to scale PSI to large datasets. A number of researchers [34, 49–
51] have proposed the use of Bloom filters to reduce the size of
input sets and increase the scalability of PSI. Other related efforts
to speed up PSI include [33, 35].

Finally, the literature on search over encrypted data and privacy-
preserving querying of databases also makes use of techniques for
obliviously computing equality, comparison and range queries [36,
52, 53]. Those efforts, however, seek to provide search results,
in contrast with data quality metrics, many of which involve data
aggregation. This difference is significant as it allows us to rely on
dimensionality reducing representations, such as histograms, that
dramatically reduce overhead.

4.3 Private Sharing of Security Data
Large-scale data sharing for cyber threat mitigation raises nu-

merous challenges, including efficiency, data protection, and san-
itization [17, 19]. Consequently, the research community has at-
tempted to balance data utility with privacy protection via anonymiza-
tion and data encryption techniques. Lincoln et al. [21] suggested
sharing sanitized security data for collaborative analysis of security
threats. Specifically, they removed sensitive data — such as IP ad-
dresses — prior to sharing. Other mechanisms were proposed to
anonymize traces, ranging from prefix-preserving anonymization
of IP addresses [54, 55] to statistical obfuscation [56]. However,
previous work showed that inference attacks can de-anonymize net-
work traces [57], and that it is difficult to maintain data utility [58–
61]. Alternatively, Applebaum et al. [20] presented cryptographic
protocols for private data aggregation, and leveraged the computed
aggregates for anomaly detection. Burkhart et al. [22] proposed
a distributed solution based on secure multi-party computation and
secret sharing that supports aggregation of security alerts and traffic
measurements among peers, e.g., to estimate global traffic volume.
Finally, Freudiger et al. [19] estimate benefits of data sharing prior
to collaboration by computing in a privacy-preserving way the sim-
ilarity between different data sets.

Our work complements secure and private data sharing solutions.
Specifically, our protocols help organizations assess data quality
before deciding whether or not to engage in secure data sharing.

5. CONCLUSION AND FUTURE WORK
Our motivation is to facilitate high fidelity data collaboration en-

vironments by mitigating the cost associated with exchange or ac-
quisition of dirty data. We identify challenges in privacy-preserving
data quality assessment. The problem consists in protecting data
and query privacy while enabling assessment of data quality held
by untrusted parties. We present an overview of principal data qual-
ity metrics and show that existing secure protocols are not effective
for data quality computation. To overcome this problem, we pro-
pose secure two-party protocols for computation of various data
quality metrics: Completeness, Validity, Uniqueness, Consistency
and Timeliness. We design the protocols so that they operate on
reduced dimensionality descriptions. As a result, they can scale
to large datasets. Our results show that it is possible to efficiently
verify data quality in a privacy-preserving manner.

Our next step is to evaluate our protocols on real-world pub-
lic datasets. From a protocol design standpoint, we are interested
in investigating the impact of attribute value quantization for the
more computationally intensive tasks such as consistency testing.
In some cases, our protocols can be applied to strings by consid-
ering their ASCII representations. An interesting extension con-
sists in supporting private data quality testing with general non-
numeric attributes. In the consistency evaluation protocol, we pre-
sented a general method for investigating dependencies among at-
tributes, however, it may be possible to design more efficient pro-
tocols for certain kinds of functional dependencies [9]. Another
related area of interest is the investigation of mutual data qual-
ity in data integration scenarios (such as Extract, Transform, Load
(ETL)), where data quality also depends on the compatibility of the
untrusted server’s data with the client’s own databases [3]. Finally,
a relevant but extremely difficult problem is to privately evaluate
the reliability, i.e., truthfulness of data held by an untrusted party.

References
[1] J. Plansky, J. Solomon, R. Karp, and C. Drisko. The Data Gold Rush,

Strategy Report 2013. http://www.strategyand.pwc.com/media/
file/Strategyand_The-Data-Gold-Rush.pdf, 2013.

[2] Thomas C Redman. The impact of poor data quality on the typical
enterprise. Communications of the ACM, 41(2), 1998.

[3] Maurizio Lenzerini. Data integration: A theoretical perspective. In
PODS, 2002.

[4] Wayne W Eckerson. Data quality and the bottom line. TDWI Report,
The Data Warehouse Institute, 2002.

[5] Yang W Lee, Diane M Strong, Beverly K Kahn, and Richard Y Wang.
AIMQ: a methodology for information quality assessment. Informa-
tion & management, 40(2), 2002.

[6] Diane M Strong, Yang W Lee, and Richard Y Wang. Data quality in
context. Communications of the ACM, 40(5), 1997.

[7] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent
query answers in inconsistent databases. In PODS, 1999.

[8] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello San-
toro. The llunatic data-cleaning framework. VLDB Endowment, 6(9),
2013.

[9] Wenfei Fan. Dependencies revisited for improving data quality. In
PODS, 2008.

[10] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Im-
proving data quality: Consistency and accuracy. In VLDB, 2007.

[11] An Act. Health insurance portability and accountability act of 1996.
Public Law, 104:191, 1996.

[12] Fabio Soldo, Anh Le, and Athina Markopoulou. Predictive blacklist-
ing as an implicit recommendation system. In INFOCOM, 2010.

[13] Sachin Katti, Balachander Krishnamurthy, and Dina Katabi. Collabo-
rating against common enemies. In IMC, 2005.

[14] Ernesto Damiani, S De Capitani di Vimercati, Stefano Paraboschi,
and Pierangela Samarati. P2P-based collaborative spam detection and
filtering. In P2P, 2004.

[15] George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robin-
son. A framework for a collaborative DDoS defense. In ACSAC, 2006.

[16] Brent Tzion Hailpern, Peter Kenneth Malkin, Robert Jeffrey Schloss,
Steve R White, Philip Shi-Lung Yu, and Charles Campbell Palmer.
Collaborative server processing of content and meta-information with
application to virus checking in a server network, 2001. US Patent
6,275,937.

[17] Phillip Porras and Vitaly Shmatikov. Large-scale collection and san-
itization of network security data: risks and challenges. In Workshop
on New security paradigms, 2006.

[18] Jian Zhang, Phillip A Porras, and Johannes Ullrich. Highly predictive
blacklisting. In USENIX Security, 2008.

[19] Julien Freudiger, Emiliano De Cristofaro, and Alex Brito. Privacy-
friendly collaboration for cyber threat mitigation. arXiv preprint
arXiv:1403.2123, 2014.

[20] B. Applebaum, H. Ringberg, M.J. Freedman, M. Caesar, and J. Rex-
ford. Collaborative, privacy-preserving data aggregation at scale. In
PETS, 2010.

[21] Patrick Lincoln, Phillip Porras, and Vitally Shmatikov. Privacy-
preserving sharing and correction of security alerts. In USENIX Secu-
rity, 2004.

[22] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dim-
itropoulos. SEPIA: Privacy-preserving aggregation of multi-domain
network events and statistics. In Usenix Security, 2010.

[23] Auguste Kerckhoffs. La Cryptographie Militaire. University Micro-
films, 1978.

[24] Phillip Cykana, Alta Paul, and Miranda Stern. DoD Guidelines on
Data Quality Management. In IQ, pages 154–171, 1996.

[25] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, 1999.

[26] I. Damgård and M. Jurik. A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System. In Work-
shop on Practice and Theory in Public Key Cryptosystems, pages 119–
136, 2001.

[27] Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, 2004.

[28] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing
across private databases. In SIGMOD, 2003.

[29] S. Hohenberger and S. Weis. Honest-verifier private disjointness test-
ing without random oracles. In PETS, 2006.

[30] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and Private Computa-
tion of Cardinality of Set Intersection and Union. In CANS, 2012.

[31] Lea Kissner and Dawn Song. Privacy-preserving set operations. In
CRYPTO, 2005.

[32] S. Jarecki and X. Liu. Fast secure computation of set intersection. In
SCN, 2010.

[33] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed
Sadeghian. Scaling private set intersection to billion-element sets. In
FC, 2014.

http://www.strategyand.pwc.com/media/file/Strategyand_The-Data-Gold-Rush.pdf
http://www.strategyand.pwc.com/media/file/Strategyand_The-Data-Gold-Rush.pdf

[34] Changyu Dong, Liqun Chen, and Zikai Wen. When Private Set Inter-
section Meets Big Data: An Efficient and Scalable Protocol. In CCS,
2013.

[35] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private
set intersection based on ot extension. In USENIX Security, 2014.

[36] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range
Queries on Encrypted Data. In TCC, 2007.

[37] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring,
Osama Khan, Lea Kissner, Zachary Peterson, and Dawn Song. Re-
mote data checking using provable data possession. TISSEC, 14(1):12,
2011.

[38] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling
public verifiability and data dynamics for storage security in cloud
computing. In ESORICS. 2009.

[39] Hovav Shacham and Brent Waters. Compact proofs of retrievability.
In ASIACRYPT. 2008.

[40] Ari Juels and Burton S Kaliski Jr. PORs: Proofs of retrievability for
large files. In CCS, 2007.

[41] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-
preserving public auditing for data storage security in cloud comput-
ing. In INFOCOM, 2010.

[42] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In
CRYPTO, 2000.

[43] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data
mining. ACM Sigmod Record, 29(2), 2000.

[44] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hun-
dreds of millions of records. In S&P, 2013.

[45] Wenliang Du and Mikhail J Atallah. Privacy-preserving cooperative
statistical analysis. In ACSAC, 2001.

[46] Y. Huang, D. Evans, and J. Katz. Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols? In NDSS, 2012.

[47] E. De Cristofaro and G. Tsudik. Practical private set intersection pro-
tocols with linear complexity. In FC, 2010.

[48] E. De Cristofaro and G. Tsudik. Experimenting with fast private set
intersection. In TRUST, 2012.

[49] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko,
N Asokan, and Ahmad-Reza Sadeghi. Do I know you?: efficient and
privacy-preserving common friend-finder protocols and applications.
In ACSAC, 2013.

[50] Dilip Many, Martin Burkhart, and Xenofontas Dimitropoulos. Fast
private set operations with SEPIA. Technical report, 2012.

[51] Florian Kerschbaum. Public-key encrypted Bloom filters with appli-
cations to supply chain integrity. In Data and Applications Security
and Privacy. 2011.

[52] Steven Michael Bellovin and William R Cheswick. Privacy-enhanced
searches using encrypted Bloom filters. 2007.

[53] Femi Olumofin and Ian Goldberg. Privacy-preserving Queries over
Relational Databases. In PETS, 2010.

[54] Adam Slagell and William Yurcik. Sharing computer network logs
for security and privacy: A motivation for new methodologies of
anonymization. In Security and Privacy for Emerging Areas in Com-
munication Networks, 2005.

[55] Jun Xu, Jinliang Fan, Mostafa H Ammar, and Sue B Moon. Prefix-
preserving IP address anonymization: Measurement-based security
evaluation and a new cryptography-based scheme. In ICNP, 2002.

[56] Eytan Adar. User 4xxxxx9: Anonymizing query logs. In Query Log
Analysis Workshop, 2007.

[57] Scott E Coull, Charles V Wright, Fabian Monrose, Michael P Collins,
Michael K Reiter, et al. Playing Devil’s Advocate: Inferring Sensitive
Information from Anonymized Network Traces. In NDSS, 2007.

[58] Erin Kenneally and Kimberly Claffy. Dialing privacy and utility: a
proposed data-sharing framework to advance Internet research. IEEE
S&P, 8(4), 2010.

[59] Kiran Lakkaraju and Adam Slagell. Evaluating the utility of
anonymized network traces for intrusion detection. In SE-
CURECOMM, 2008.

[60] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. BotGrep: Finding Bots with Structured Graph Analy-
sis. In Usenix Security, 2010.

[61] Titan Threat Intelligence System. http://www.gtresearchnews.
gatech.edu/titan-threat-intelligence-system/, 2013.

http://www.gtresearchnews.gatech.edu/titan-threat-intelligence-system/
http://www.gtresearchnews.gatech.edu/titan-threat-intelligence-system/

