
Privacy-Preserving Decision Trees

over Vertically Partitioned Data�

Jaideep Vaidya1 and Chris Clifton2

1 MSIS Department, Rutgers University, Newark, NJ 07102
jsvaidya@rbs.rutgers.edu

http://cimic.rutgers.edu/~jsvaidya
2 Department of Computer Science, Purdue University,

West Lafayette, IN 47907
clifton@cs.purdue.edu

http://www.cs.purdue.edu/people/clifton

Abstract. Privacy and security concerns can prevent sharing of data,
derailing data mining projects. Distributed knowledge discovery, if done
correctly, can alleviate this problem. In this paper, we tackle the problem
of classification. We introduce a generalized privacy preserving variant
of the ID3 algorithm for vertically partitioned data distributed over two
or more parties. Along with the algorithm, we give a complete proof of
security that gives a tight bound on the information revealed.

1 Introduction

There has been growing interest in privacy-preserving data mining since the sem-
inal papers in 2000 [1,2]. Classification is one of the most ubiquitous data mining
problems found in real life. Decision tree classification is one of the best known
solution approaches. ID3, first proposed by Quinlan[3] is a particularly elegant
and intuitive solution. This paper presents an algorithm for privately building
an ID3 decision tree. While this has been done for horizontally partitioned data
[4], we present an algorithm for vertically partitioned data: a portion of each
instance is present at each site, but no site contains complete information for
any instance. This problem has been addressed[5], but the solution is limited
to the case where both parties have the class attribute. In addition, both the
previous methods are limited to two parties. The method presented here works
for any number of parties, and the class attribute (or other attributes) need be
known only to one party. Our method is trivially extendible to the simplified
case where all parties know the class attribute.

There has been other work in privacy-preserving data mining. One approach
is to add “noise” to the data before the data mining process, and using tech-
niques that mitigate the impact of the noise from the data mining results[1,6,7,8].
However, recently there has been debate about the security properties of such
algorithms [9].
� This material is based upon work supported by the National Science Foundation

under Grant No. 0312357.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 139–152, 2005.

c© IFIP International Federation for Information Processing 2005

140 J. Vaidya and C. Clifton

Other work follows the secure multiparty computation approach found in
cryptography, achieving “perfect” privacy, i.e., nothing is learned that could not
be deduced from one’s own data and the results. This includes Lindell’s work
[2], as well as work on association rule mining [10,11,12,13], clustering [14,15],
and some work on classification [16,5]. While some of this work makes trade-offs
between efficiency and information disclosure, all maintain provable privacy of
individual information and bounds on disclosure, and disclosure is limited to
information that is unlikely to be of practical concern.

Privacy preservation can mean many things: Protecting specific individual
values, breaking the link between values and the individual they apply to, pro-
tecting source, etc. This paper aims for a high standard of privacy: Not only
individual entities are protected, but to the extent feasible even the schema (at-
tributes and possible attribute values) are protected from disclosure. Our goal is
for each site to disclose as little as possible, while still constructing a valid tree
in a time suitable for practical application.

To this end, all that is revealed is the basic structure of the tree (e.g., the
number of branches at each node, corresponding to the number of distinct values
for an attribute; the depth of each subtree) and which site is responsible for the
decision made at each node (i.e., which site possesses the attribute used to make
the decision, but not what attribute is used, or even what attributes the site
possesses.) This allows for efficient use of the tree to classify an object; otherwise
using the tree would require a complex cryptographic protocol involving every
party at every possible level to evaluate the class of an object without revealing
who holds the attribute used at that level. Each site also learns the count of
classes at some interior nodes (although only the class site knows the mapping
to actual classes – other sites don’t even know if a class with 30% distribution at
one node is the same class as one with a 60% distribution at a lower node, except
to the extent that this can be deduced from the tree and it’s own attributes.)
At the leaf nodes, this is desirable: one often wants probability estimates, not
simply a predicted class. As knowing the count of transactions at each leaf node
would enable computing distributions throughout the tree anyway, this really
doesn’t disclose much new information.

We now go directly into the algorithm for creating a tree. In Section 3 we
describe how the tree (distributed between sites) is used to classify an instance,
even though the attribute values of the instance to be classified are also private
and distributed between sites. Section 4 formalizes what it means to be secure,
and gives a proof that the algorithms presented are secure. Section 5 presents
the computation and communication complexity of the algorithm. Section 6
discusses future work and concludes the paper.

2 Privacy-Preserving ID3: Creating the Tree

The basic ID3 algorithm[3] is given in Algorithm 1. We will introduce our dis-
tributed privacy-preserving version by running through this algorithm, describ-
ing pieces as appropriate. We then give the full algorithm in Algorithm 7. Note

Privacy-Preserving Decision Trees over Vertically Partitioned Data 141

Algorithm 1. ID3(R,C,T) tree learning algorithm
Require: R, the set of attributes
Require: C, the class attribute
Require: T , the set of transactions
1: if R is empty then
2: return a leaf node, with class value assigned to most transactions in T
3: else if all transactions in T have the same class c then
4: return a leaf node with the class c
5: else
6: Determine the attribute A that best classifies the transactions in T
7: Let a1, . . . , am be the values of attribute A. Partition T into the m partitions

T (a1), . . . , T (am) such that every transaction in T (ai) has the attribute value ai.
8: Return a tree whose root is labeled A (this is the test attribute) and has m

edges labeled a1, . . . , am such that for every i, the edge ai goes to the tree
ID3(R− A, C, T (ai)).

9: end if

that for our distributed algorithm, no site knows R, instead each site i knows its
own attributes Ri. Only one site knows the class attribute C. In vertical parti-
tioning, every site knows a projection of the transactions ΠRiT . Each projection
includes a transaction identifier that serves as a join key.

We first check if R is empty. This is based on Secure Sum[17,10], and is
given in Algorithm 2. Basically, the first party adds a random r to its count
of remaining items. This is passed to all sites, each adding its count. The last

Algorithm 2. IsREmpty(): Are any attributes left?
Require: k sites Pi (the site calling the function is P1; any other site can be Pk),

each with a flag ARi = 0 if no remaining attributes, ARi = 1 if Pi has attributes
remaining.

Require: a commutative encryption function E with domain size m > k.
1: P1 chooses a random integer r uniformly from 0 . . . m− 1.
2: P1 sends r + AR1 to P2

3: for i = 2..k − 1 do
4: Site Pi receives r′ from Pi−1.
5: Pi sends r′ + ARi mod m to Pi+1

6: end for
7: Site Pk receives r′ from Pk−1.
8: r′ ← r′ + ARk mod m
9: P1 and Pk create secure keyed commutative hash keys E1 and Ek

10: P1 sends E1(r) to Pk

11: Pk receives E1(r) and sends Ek(E1(r)) and Ek(r′) to P1

12: P1 returns E1(Ek(r′)) = Ek(E1(r)) {⇔ r′ = r ⇔ ∑k
j=1 ARi = 0 ⇔ 0 attributes

remain }

142 J. Vaidya and C. Clifton

site and first then use commutative encryption to compare the final value to r
(without revealing either) – if they are the same, R is empty.

Line 2 requires determining the majority class for a node, when only one
site knows the class. This is accomplished with a protocol for securely determin-
ing the cardinality of set intersection. Many protocols for doing so are known
[13,18,19]. We assume that one of these protocols is used. Each site determines
which of its transactions might reach that node of the tree. The intersection of
these sets with the transactions in a particular class gives the number of trans-
actions that reach that point in the tree, enabling the class site to determine the
distribution and majority class; it returns a (leaf) node identifier that allows it
to map back to this distribution.

To formalize this, we introduce the notion of a Constraint Set. As the tree
is being built, each party i keeps track of the values of its attributes used to
reach that point in the tree in a filter Constraintsi. Initially, this is all don’t
care values (‘?’). However, when an attribute Aij at site i is used (lines 6-7 of
id3), entry j in Constraintsi is set to the appropriate value before recursing to
build the subtree. An example is given in Figure 1. The site has 6 attributes
A1, . . . , A6. The constraint tuple shows that the only transactions valid for this
transaction are those with a value of 5 for A1, high for A2, and warm for A5.
The other attributes have a value of ? since they do not factor into the selection
of an instance. Formally, we define the following functions:

?warm??high5

A 6A 5A 4A 3A 2A 1

Fig. 1. A constraint tuple for a single site

Constraints.set(attr, val): Set the value of attribute attr to val in the local
constraints set. The special value ‘?’ signifies a don’t-care condition.

satisfies: x satisfies Constraintsi if and only if the attribute values of the in-
stance are compatible with the constraint tuple: ∀i, (Ai(x) = v ⇔
Constraints(Ai) = v) ∨ Constraints(Ai) = ‘?’.

FormTransSet: Function FormTransSet(Constraints): Return local transac-
tions meeting constraints
1: Y = ∅
2: for all transaction id i ∈ T do
3: if ti satisfies Constraints then
4: Y ← Y ∪ {i}
5: end if
6: end for
7: return Y

Privacy-Preserving Decision Trees over Vertically Partitioned Data 143

Now, we determine the majority class (and class distributions) by computing for
each class

⋂
i=1..k Yi, where Yk includes a constraint on the class value. This is

given in Algorithm 3.

Algorithm 3. DistributionCounts(): Compute class distribution given current
constraints
Require: k sites Pi with local constraint sets Constraintsi

1: for all sites Pi except Pk do
2: at Pi: Yi ← FormTransSet(Constraintsi)
3: end for
4: for each class c1, . . . , cp do
5: at Pk: Constraintsk.set(C, ci) {To include the class restriction}
6: at Pk: Yk ← FormTransSet(Constraintsk)
7: cnti ← |Y1∩ . . .∩Yk| using the cardinality of set intersection protocol ([13,18,19])
8: end for
9: return (cnt1, . . . , cntp)

The next issue is determining if all transactions have the same class (Algo-
rithm 1 line 3). If all are not the same class, as little information as possible
should be disclosed. For efficiency, we do allow the class site to learn the count
of classes even if this is an interior node; since it could compute this from the
counts at the leaves of the subtree below the node, this discloses no additional
information. Algorithm 4 gives the details, it uses constraint sets and secure
cardinality of set intersection in basically the manner described above for com-
puting the majority class at a leaf node. If all transactions are in the same class,

Algorithm 4. IsSameClass(): Are all transactions of the same class?
Require: k sites Pi with local constraint sets Constraintsi

1: (cnt1, . . . , cntp)← DistributionCounts()
2: if ∃j s.t. cntj �= 0 ∧ ∀i �= j, cnti = 0 {only one of the counts is non-zero} then
3: Build a leaf node with distribution (cnt1, . . . , cntp) {Actually, 100% class j}
4: return ID of the constructed node
5: else
6: return false
7: end if

we construct a leaf node. The class site maintains a mapping from the ID of that
node to the resulting class distribution.

The next problem is to compute the best attribute: that with the maximum
information gain. The information gain when an attribute A is used to partition
the data set S is:

Gain(S, A) = Entropy(S)−
∑

v∈A

(|Sv|
|S| ∗ Entropy(Sv)

)

144 J. Vaidya and C. Clifton

Algorithm 5. AttribMaxInfoGain(): return the site with the attribute having
maximum information gain
1: for all sites Pi do
2: bestgaini ← −1
3: for each attribute Aij at site Pi do
4: gain← ComputeInfoGain(Aij)
5: if gain > bestgaini then
6: bestgaini ← gain
7: BestAtti ← Aij

8: end if
9: end for

10: end for
11: return argmaxj bestgainj {Could implement using a set of secure comparisons}

Algorithm 6. ComputeInfoGain(A): Compute the Information Gain for at-
tribute A
1: S ← DistributionCounts() {Total number of transactions at this node}
2: InfoGain← Entropy(S)
3: for each attribute value ai do
4: Constraints.set(A,ai) {Update local constraints tuple}
5: Sai ← DistributionCounts()
6: Infogain← Infogain−Entropy(Sai) ∗ |Sai |/|S| {|S| is

∑p
i=1 cnti}

7: end for
8: Constraints.set(A, ‘?’) {Update local constraints tuple}
9: return InfoGain

The entropy of a dataset S is given by:

Entropy(S) = −
p∑

j=1

Nj

N
log

Nj

N

where Nj is the number of transactions having class cj in S and N is the number
of transactions in S. As we see, this again becomes a problem of counting trans-
actions: the number of transactions that reach the node N , the number in each
class Nj , and the same two after partitioning with each possible attribute value
v ∈ A. Algorithm 6 details the process of computing these counts; Algorithm 5
captures the overall process.

Once the best attribute has been determined, execution proceeds at that site.
It creates an interior node for the split, then recurses.

3 Using the Tree

Instance classification proceeds as in the original ID3 algorithm, except that
the nodes (and attributes of the database) are distributed. The site requesting
classification (e.g., a master site) knows the root node of the classification tree.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 145

Algorithm 7. PPID3(): Privacy-Preserving Distributed ID3
Require: Transaction set T partitioned between sites P1, . . . , Pk

Require: p class values, c1, . . . , cp, with Pk holding the class attribute
1: if IsREmpty() then
2: Continue at site Pk up to the return:
3: (cnt1, . . . , cntp)← DistributionCounts()
4: Build a leaf node with distribution (cnt1, . . . , cntp)
5: {class← argmaxi=1..p cnti}
6: return ID of the constructed node
7: else if clsNode← (at Pk :) IsSameClass() then
8: return leaf nodeId clsNode
9: else

10: BestSite← AttribMaxInfoGain()
11: Continue execution at BestSite:
12: Create Interior Node Nd with attribute Nd.A ← BestAttBestSite {This is best

locally (from AttribMaxInfoGain()), and globally from line 8}
13: for each attribute value ai ∈ Nd.A do
14: Constraints.set(Nd.A, ai) {Update local constraints tuple}
15: nodeId← PPID3() {Recurse}
16: Nd.ai ← nodeId {Add appropriate branch to interior node}
17: end for
18: Constraints.set(A, ‘?’) {Returning to parent: should no longer filter transactions

with A}
19: Store Nd locally keyed by Node ID
20: return Node ID of interior node Nd {Execution continues at site owning parent

node}
21: end if

The basic idea is that control passes from site to site, based on the decision
made. Each site knows the transaction’s attribute values for the nodes at its site
(and can thus evaluate the branch), but knows nothing of the other attribute
values. The complete algorithm is given in Algorithm 8, and is reasonably self-
explanatory if viewed in conjunction with Algorithm 7.

We now give a demonstration of how instance classification would actually
happen in this instance for the tree built with the UCI “weather” dataset[20].
Assume two sites: The weather observatory collects information about relative
humidity and wind, a second collects temperature and cloud cover forecast as
well as the class (“Yes” or “No”). Suppose we wish to know if it is a good day
to play tennis. Neither sites wants to share their forecasts, but are willing to
collaborate to offer a “good tennis day” service. The classification tree is shown
in Figure 2, with S1 and S2 corresponding to the site having information on that
node. The private information for each site is shown within italics. If today is
sunny with normal humidity, high temperature, and weak wind; classification
would proceed as follows: We know that Site 1 has the root node (we don’t need
to know anything else). Site 1 retrieves the attribute for from S1L1: Outlook.
Since the classifying attribute is outlook, and Site 1 knows the forecast is sunny,

146 J. Vaidya and C. Clifton

No S2L8:YesS2L4: Yes

S2L2 Humidity

S2L7:

S1L1:Outlook

S2L6:Wind

Val1:Sunny Val2:Overcast Val3:Rain

S1L5:Yes

Val1:High Val2: Normal Val1:Strong Val2:Weak

S2L3:No

Fig. 2. The privacy preserving ID3 decision tree on the weather dataset (Mapping from

identifiers to attributes and values is known only at the site holding attributes)

the token S2L2 is retrieved. This indicates that the next step is at Site 2. Site
2 is called with the token S2L2, and retrieves the attribute for S2L2: Humidity.
The humidity forecast is normal, so the token S2L4 is retrieved. Since this token
is also present at Site 2, it retrieves the class value for nodeId S2L4 and returns
it: we receive our answer of “Yes”.

4 Security Discussion

We evaluate the security of our algorithm under the basic framework of Secure
Multiparty Computation [21]. As such, we assume the security of the underlying

Algorithm 8. classifyInstance(instId, nodeId): returns the class/distribution
for the instance represented by instId
1: {The start site and ID of the root node is known}
2: if nodeId is a LeafNode then
3: return class/distribution saved in nodeId
4: else {nodeId is an interior node}
5: Nd← local node with id nodeId
6: value← the value of attribute Nd.A for transaction instId
7: childId← Nd.value
8: return childId.Site.classifyInstance(instId, childId) {Actually tail recursion:

this site need never learn the class}
9: end if

Privacy-Preserving Decision Trees over Vertically Partitioned Data 147

set intersection algorithm, and then prove the security of our privacy-preserving
ID3 algorithm.

The proof of security is given assuming semi-honest adversaries. A semi-
honest party follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol to compromise
security. While this protocol provides somewhat strong guarantees in the absence
of collusion, due to space constraints we will only prove security for the semi-
honest case.

Privacy by Simulation. The basic proof style is to show that the view of each
party during the execution of the protocol can be effectively simulated given the
input and the output of that party. This is sufficient to prove that the protocol is
secure [21]. Thus, in all of the following proofs of security, we show that we can
simulate each message received. Once the received messages are simulated, the
algorithm itself can be used to simulate the rest of the view. This does not quite
guarantee that private information is protected. Whatever information can be
deduced from the final result is not kept private. However, nothing beyond the
results is learned.

4.1 Secure ID3

We first analyze the security of the constituent algorithms, then the security of
the complete algorithm. Although it may seem that some of the constituent al-
gorithms leak a large quantity of information, in the context of the full algorithm
the leaked information can be simulated by knowing the distribution counts at
each node, so overall privacy is maintained.

Lemma 1. Algorithm 2 reveals nothing to any site except whether the total num-
ber of attributes left is 0.

Proof. The algorithm has two basic phases: The sum (through Pk), and the
comparison between Pk and P1. First, the sum: simulating the messages received
at lines 2 and 7. The value received by Pi at these steps is r+

∑i−1
j=1 ARj mod m.

We will simulate by choosing a random integer uniformly from 0 . . .m− 1 for r′.
We now show that the probability that the simulated r′ = x is the same as the
probability that the messages received in the view = x.

Pr{V IEWi = x} = Pr{x = r +
i−1∑

j=1

ARj mod m}

= Pr{r = x−
i−1∑

j=1

ARj mod m}

=
1
m

= Pr{Simulatorir
′ = x}

148 J. Vaidya and C. Clifton

The key to the derivation is that arithmetic is mod m. r and r′ are chosen
uniformly from 0 . . .m− 1, so the probability of hitting any particular value in
that range is 1/m.

Simulating the message received by Pk at line 11 is simple: Secure encryption
gives messages where the distribution is independent of the key/message, so a
selection from this distribution of possible encrypted messages simulates what
Pk receives.

The messages received by P1 are more difficult. The problem is that if r = r′,
Ek(r′) must be such that when encrypted with E1 it is equal to Ek(E1(r)).
For this, the simulator requires the ability to decrypt. The simulator computes
m = D1(Ek(E1(r)) = Ek(r). If r = r′, this is the message used to simulate
Ek(r′). If not, a random message 	= m is chosen, as in the simulator for Pk.
�
Lemma 2. Algorithm 3 reveals only the count of instances corresponding to all
combinations of constraint sets for each class.

Proof. The only communication occurs at line 7 which consists of a call to the
Cardinality of Set Intersection algorithm. This reveals only the size of the inter-
section set for all subsets of Yi, which are the counts revealed. Algorithm 3 is
secure except for revealing this information.
�
Lemma 3. Algorithm 4 finds if all transactions have the same class, revealing
only the class distributions described in Lemma 2.

Proof. Line 1 is an invocation of Algorithm 3; Everything else is computed lo-
cally, and can be simulated from the knowledge from Lemma 2.
�
Lemma 4. Algorithm 6 reveals nothing except the counts S, Sai , and the con-
stituent subcounts described in Lemma 2 for each attribute value ai and class j,
assuming the number of distinct class values is known.

Proof. The only messages received are at lines 1 and 5, invocations of the
DistributionCounts() function. Since the underlying function is secure, Algo-
rithm 6 is secure.
�
Lemma 5. Algorithm 5 finds the site with the attribute having the maximum
information gain while revealing only the best information gain at each site and
the information discussed in Lemma 4.

Proof. Communication occurs at lines 4 and 11. Line 4 consists of an invocation
of Algorithm 6. Line 11 is implemented by letting the site compare all the values;
revealing the value of the best information gain at each site. Assuming this is
revealed (part of the input to the simulator), it is trivially simulated.
�
Further reduction of the information revealed is possible by using a secure pro-
tocol for finding the maximum among a set of numbers. This would reveal only
the site having the attribute with the maximum information gain and nothing
else.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 149

Theorem 1. Algorithm 7 computes the decision tree while revealing only:

– The distribution subcounts of each node, as described in Lemma 2. (The full
counts, and some of the subcounts, can be computed knowing the distribution
counts at the leaves.)

– The best information gain from each site at each interior node (as discussed
above, this leak can be reduced.)

Proof. Knowing the final tree, the simulator at each site can uniquely determine
the sequence of node computations at a site and list the function calls occurring
due to this. Given this function call list, if the messages received in each function
call can be simulated, the entire algorithm can be proven to be secure.

Line 1 is an invocation of Algorithm 2. The result is simulated as either true
or false depending on whether the node in question is a leaf node in the final
tree or not.

Line 3 is an invocation of Algorithm 3. The actual counts are given by the
counts in the leaf node, which are known to the site Pk that invoked the algo-
rithm. The subcounts revealed by Algorithm 3 are presumed known.

Line 7 is an invocation of Algorithm 4. If the node in question is not a leaf
node in the final tree, the result is false. Otherwise the result is the nodeId of
the leaf node.

Line 10 consists of an invocation of Algorithm 5. The result is actually equal
to the Site which will own the child node. This information is known from the
tree structure. The subcounts and information gain values revealed during this
step are presumed known.

Line 15 is a recursive invocation that returns a node identifier; a part of the
tree structure.

Since all of the algorithms mentioned above have been proven secure, apply-
ing the composition theorem, Algorithm 7 is secure. The repeated invocations of
the cardinality of set intersection protocol are valid because in each invocation,
a new set of keys are chosen. This ensures that messages cannot be correlated
across calls.
�
Theorem 2. Algorithm 8 reveals nothing other than the leaf node classifying
the instance.

Proof. All the computations are local. The only information passed between var-
ious sites are node identifiers. This list of node identifiers can be easily simulated
from the classification tree once the final leaf is known.
�

5 Computation and Communication Analysis

The communication/computation analysis depends on the number of transac-
tions, number of parties, number of attributes, number of attribute values per
attribute, number of classes and complexity of the tree. Assume that there are:
n transactions, k parties, c classes, r attributes, p values per attribute (on aver-
age), and q nodes in final classification tree. We now give a rough analysis of the

150 J. Vaidya and C. Clifton

cost involved in terms of the number of set intersections required for building
the tree (erring on the conservative side).

At each node in the tree the best classifying attribute needs to be deter-
mined. To do this, the entropy of the node needs to be computed as well as the
information gain per attribute. Computing the entropy of the node requires c set
intersections (1 per class). Computing the gain of one attribute requires cp set
intersections (1 per attribute value and class). Thus, finding the best attribute
requires cpr set intersections. Note that this analysis is rough and assumes that
the number of attributes available at each node remains constant. In actuality,
this number linearly decreases with the depth of the node in the tree (this has lit-
tle effect on our analysis). In total, every node requires c(1+pr) set intersections.
Therefore, the total tree requires cq(1 + pr) set intersections.

The intersection protocol of [13] requires that the set of each party be en-
crypted by every other party. Since there are k parties, k2 encryptions are re-
quired and k2 sets are transferred. Since each set can have at most n transactions,
the upper bound on computation is O(nk2) and the upper bound on communi-
cation cost is also O(nk2 ∗ bitsize) bits.

Therefore, in total the entire classification process will require O(cqnk2(1 +
pr)) encryptions and cqnk2(1 + pr) ∗ bitsize bits communication. Note that the
encryption process can be completely parallelized reducing the required time by
an order of k.

Once the tree is built, classifying an instance requires no extra overhead, and
is comparable to the original ID3 algorithm.

6 Conclusions

It is possible to extend the protocols developed such that the class of each
instance is learned only by the party holding the class attribute (nothing is
learned by the remaining parties). In some cases, this might be preferable.

The major contributions of this paper are the following:

– It proposes a new protocol to construct a decision tree on vertically parti-
tioned data with an arbitrary number of parties where only one party has
the class attribute (The method is trivially extendible to the case where all
parties have the class attribute, and in fact causes a significant increase in
the efficiency of the protocol).

– The paper presents a general framework in which distributed classification
would work and how such a system should be constructed.

As part of future work, we are actually implementing the entire protocol
in JAVA, which should form the first working code in the area of PPDM. Our
work provides an upper bound on the complexity of building privacy preserving
decision trees. Significant work is required to propose more efficient solutions
and/or to find a tight upper bound on the complexity. We leave this for the
future.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 151

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the
2000 ACM SIGMOD Conference on Management of Data, Dallas, TX, ACM (2000)
439–450

2. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Advances in Cryptology
– CRYPTO 2000, Springer-Verlag (2000) 36–54

3. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986) 81–106
4. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15

(2002) 177–206
5. Du, W., Zhan, Z.: Building decision tree classifier on private data. In Clifton, C.,

Estivill-Castro, V., eds.: IEEE International Conference on Data Mining Work-
shop on Privacy, Security, and Data Mining. Volume 14., Maebashi City, Japan,
Australian Computer Society (2002) 1–8

6. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy pre-
serving data mining algorithms. In: Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Santa Barbara,
California, USA, ACM (2001) 247–255

7. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In: The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002) 217–
228

8. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining.
In: Proceedings of 28th International Conference on Very Large Data Bases, Hong
Kong, VLDB (2002) 682–693

9. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Proceedings of the Third
IEEE International Conference on Data Mining (ICDM’03), Melbourne, Florida
(2003)

10. Kantarcıoǧlu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data
Engineering 16 (2004) 1026–1037

11. Rozenberg, B., Gudes, E.: Privacy preserving frequent item-set mining in vertically
partitioned databases. In: Proceedings of the Seventeenth Annual IFIP WG 11.3
Working Conference on Data and Applications Security, Estes Park, Colorado,
U.S.A. (2003)

12. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002) 639–
644

13. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to
association rule mining. Journal of Computer Security (to appear)

14. Lin, X., Clifton, C., Zhu, M.: Privacy preserving clustering with distributed EM
mixture modeling. Knowledge and Information Systems (to appear 2004)

15. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: The Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC (2003) 206–215

16. Vaidya, J., Clifton, C.: Privacy preserving näıve bayes classifier for vertically parti-
tioned data. In: 2004 SIAM International Conference on Data Mining, Lake Buena
Vista, Florida (2004) 522–526

152 J. Vaidya and C. Clifton

17. Schneier, B.: Applied Cryptography. 2nd edn. John Wiley & Sons (1995)
18. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-

section. In: Eurocrypt 2004, Interlaken, Switzerland, International Association for
Cryptologic Research (IACR) (2004)

19. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, San Diego, California (2003)

20. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
21. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptog-

raphy. Volume 2. Cambridge University Press (2004)

	Introduction
	Privacy-Preserving ID3: Creating the Tree
	Using the Tree
	Security Discussion
	Secure ID3

	Computation and Communication Analysis
	Conclusions

