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Abstract—In this article, we develop distributed iterative algo-
rithms that enable the components of a multicomponent system,
each with some integer initial value, to asymptotically compute
the average of their initial values, without having to reveal to other
components the specific value they contribute to the average cal-
culation. We assume a communication topology captured by an
arbitrary strongly connected digraph, in which certain nodes (com-
ponents) might be curious but not malicious (i.e., they execute the
distributed protocol correctly, but try to identify the initial values
of other nodes). We first develop a variation of the so-called ratio
consensus algorithm that operates exclusively on integer values
and can be used by the nodes to asymptotically obtain the average
of their initial (integer) values, by taking the ratio of two integer
values they maintain and iteratively update. Assuming the pres-
ence of a trusted node (i.e., a node that is not curious and can
be trusted to set up a cryptosystem and not reveal any decrypted
values of messages it receives), we describe how this algorithm
can be adjusted using homomorphic encryption to allow the nodes
to obtain the average of their initial values while ensuring their
privacy (i.e., without having to reveal their initial value). We also
extend the algorithm to handle situations where multiple nodes set
up cryptosystems and privacy is preserved as long as one of these
nodes can be trusted (i.e., the ratio of trusted nodes over the nodes
that set up cryptosystems decreases).

Index Terms—Average consensus, distributed algorithms,
homomorphic encryption, privacy preservation.

I. INTRODUCTION

This article addresses the topic of privacy-preserving asymptotic

average consensus, which has recently received attention by the control

community (we review related literature at the end of this section). The

distributed algorithms we develop and analyze are based on homomor-

phic encryption and enable the components of a distributed system,

each with a certain initial value, to calculate the average of these initial

values, without loss of privacy, i.e., by preventing certain curious but

not malicious components that might be present to determine their exact

initial value. Curious but not malicious components are assumed to have
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full knowledge of the proposed protocol and are allowed to collaborate

arbitrarily among themselves, but do not interfere in the computation

of the average value of the network in any other way (in other words,

these nodes behave normally but they may use their observations to

infer the private information of other nodes). For brevity, we refer to

such nodes as “curious nodes” in the remainder of the article.

The backbone of the privacy-preserving schemes we propose in this

article is a ratio consensus (more generally, a push sum) iteration (see,

for example, [2]) extended, however, to exclusively involve integer

operations (i.e., integer variables and integer weights). The proposed

privacy-preserving distributed algorithms rely on one or more homo-

morphic cryptosystems (e.g., Pailler encryption [3]), the public keys of

which are assumed to be known by all components of the distributed

system. In the first algorithm, we propose, we assume that there is a

trusted node, i.e., a node that is trusted by all nodes in the network

to 1) generate a correct cryptosystem, with a publicly available key,

and 2) not to reveal the decrypted values of any of the messages it

receives. In the basic version of the algorithm, the key for decryption

is held by the trusted node, which is in charge of announcing the result

of the computation (after a large enough number of iterations), so that

components learn what the average is (e.g., via a flooding operation).

Compared to centralized algorithms that rely on a trusted node, the main

advantage of this algorithm is that it allows in-network processing of

encrypted values (by all nodes in the system with no routing or other

setup costs), while at the same time preventing curious nodes from

gathering information about the private (initial) values of other nodes.

The second algorithm we develop relaxes the assumption that there

is a single node that is trusted by all nodes in the distributed system. In

particular, the algorithm allows for two or more nodes to issue public

keys for their own homomorphic cryptosystems (and be in charge of

decrypting and announcing the result of the iteration associated with

their cyptosystem). All nodes can participate in homomorphic iterations

that involve these available cryptosystems. We argue that if at least

one of these cryptosystems is set up by a trusted node, then privacy is

preserved (i.e., the requirements on the ratio of the number of trusted

nodes over the number of nodes that set up cryptosystems are relaxed).

An extreme version of this second scheme is when each node sets

up a cryptosystem and issues its own public key (and is in charge of

decrypting and announcing the result of the iteration associated with its

cryptosystem). In such case, the requirement that each node can find at

least one trusted cryptosystem is trivially satisfied.

A. Literature Review

An anonymization transform using random offsets on the initial

values was proposed for a cooperative wireless network in [4]. This

method relies on the fact that the random initial offsets chosen by

each node following the protocol are i.i.d. random variables with zero

mean; thus, if an infinite number of nodes add a random offset, their

net effect will be zero and the average calculation will not be affected.

In real networks of finite size, however, this method fails to converge
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to the true average and introduces a random offset with zero mean

and some finite variance. Differential privacy techniques like the above

have also appeared in the context of distributed averaging (see, for

example, [5]–[7]). Unlike these works, the work proposed in this article

leads to the exact average of the initial values.

An alternative to differential privacy techniques are privacy-

preserving techniques that aim at calculating the exact average of the ini-

tial values. For example, the work in [8] describes a privacy-preserving

protocol that is a variation of an asymptotic average consensus protocol

that runs, in a distributed manner, a linear iteration with weights that

form a doubly stochastic matrix. The main enhancement is that, at each

time-step, each node following the protocol adds an arbitrary offset

value to the result of its update, in an effort to avoid revealing its

own initial value as well as the initial values of other nodes. What

is important for each node is to ensure that the total (accumulated sum

of) offsets that it adds cancel themselves out in the end. Similarly,

the work in [9] proposed a strategy in which nodes asymptotically

subtract their initial offsets, and characterized the mean square con-

vergence rate and the covariance matrix of the maximum likelihood

estimate on the initial state. Gupta et al. [10] proposed a distributed

privacy mechanism that preserves the privacy of noncurious nodes by

masking their inputs in a structured manner. Wang [11] proposed a

protocol in which the state of a node is randomly decomposed into

two substates, such that the mean remains the same and only one of

the substates is revealed to neighboring nodes. Finally, Gao et al. [12]

achieved privacy-preserving average consensus in digraphs by adding

randomness on the edge weights used in a ratio consensus iteration.

All of the above works lead to the exact value of the average, but

privacy guarantees rely on topological conditions on the structure of the

underlying communication topology. In contrast, the homomorphically

encrypted protocols proposed in this article offer great advantages in

that nodes that may overhear communications intended for other nodes

cannot interpret them, which decouples the effectiveness of the scheme

from the structure of the underlying communication topology (as long

as the digraph describing it is strongly connected).

The approaches in [13] and [14] preserve privacy via homomorphic

encryption over undirected topologies for a gossip-based consensus

scheme and an average consensus scheme, respectively. In both cases,

the nodes use homomorphic encryption to perform a pairwise exchange

of the values (without revealing them). Freris and Patrinos [15]

discussed how Paillier cryptography can be used to achieve consensus

in systems that operate over finite fields. The distributed algorithms

proposed in this article essentially extend these ideas over the set of

integers (and over directed communication topologies) by introducing

integer ratio consensus and constructing appropriate choices of weight

matrices.

II. MATHEMATICAL BACKGROUND AND NOTATION

A. Digraphs and Distributed Averaging

A distributed system, the components of which can exchange infor-

mation via (possibly directed) links, can conveniently be captured by

a digraph (directed graph). A digraph of order N (N ≥ 2) is defined

as Gd = (V, E), where V = {v1, v2, . . . , vN} is the set of nodes and

E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of edges. A directed edge

from node vi to node vj is denoted by (vj , vi) ∈ E , and indicates that

node vi can send information to node vj .

A digraph is called strongly connected if for each pair of vertices

vj , vi ∈ V , vj �= vi, there exists a directed path from vi to vj , i.e., we

can find a sequence of vertices vi =: vl0 , vl1 , . . . , vlt := vj such that

(vlτ+1
, vlτ ) ∈ E for τ = 0, 1, . . . , t− 1. All nodes that can directly

send information to node vj are said to be in-neighbors of node vj and

the set comprising them is denoted by N−
j = {vi ∈ V | (vj , vi) ∈ E}.

The cardinality of N−
j is called the in-degree of vj and is denoted by

D−
j . The nodes that can directly receive information from node vj are

referred to as its out-neighbors and the set comprising them is denoted

by N+
j = {vl ∈ V | (vl, vj) ∈ E}. The cardinality of N+

j is called the

out-degree of vj and is denoted by D+
j .

Consider a distributed system, captured by a directed graph Gd =
(V, E), in which each node vj ∈ V has an initial value Vj . Ratio con-

sensus is a distributed algorithm that allows the nodes to asymptotically

calculate the average 1
N

∑N

l=1 Vl by performing two linear iterations.

The algorithm does not require the nodes to have any knowledge of the

global structure of the network or the total number of nodes. The only

requirement is for each node vj to be aware of the local structure of

the network (i.e., its in-neighbor and out-neighbor sets, N−
j and N+

j );

in fact, in some variations of ratio consensus, node vj does not need

explicit knowledge of the set of out-neighbors N+
j but only knowledge

of D+
j . Running-sum ratio consensus with retransmissions [16] does

not require knowledge of the out-neighbors or the out-degree.

In the simplest version of ratio consensus, each node vj maintains

two state variables, yj [k] and zj [k], and updates them, at iterative step

k (k ≥ 0), as follows:

yj [k + 1] =
∑

vi∈N
−
j
∪{vj}

yi[k]/(1 +D+
i ) (1)

zj [k + 1] =
∑

vi∈N
−
j
∪{vj}

zi[k]/(1 +D+
i ) (2)

whereyj [0] = Vj , and zj [0] = 1, forvj ∈ V . The protocol assumes that

each node vj is aware of its out-degree D+
j and transmits the values

yj [k] := yj [k]/(1 +D+
j ) and zj [k] := zj [k]/(1 +D+

j ) to all of its

out-neighbors; each receiving node simply adds the values it receives

from all of its in-neighbors. Compactly, the above iterations can be

written as

y[k + 1] = Pcy[k] (3)

z[k + 1] = Pcz[k] (4)

where y[k] = [y1[k], . . ., yN [k]]T, z[k] = [z1[k], . . ., zN [k]]T, and

Pc is a column stochastic matrix such that Pc(l, j) =
1

1+D+
j

if vl ∈

N+
j ∪ {vj} (zero otherwise).

At each time step k, each node vj can calculate the ratio rj [k] :=
yj [k]/zj [k]; under the assumption that the digraph describing the

exchange of information is strongly connected [2], it can be shown

that rj [k] asymptotically converges to the average of the initial values.

Specifically, with the chosen initial conditions, we have

lim
k→∞

rj [k] =

∑
l yl[0]∑
l zl[0]

=

∑
l Vl

N
∀vj ∈ V. (5)

It turns out that ratio consensus works with any primitive column

stochastic matrix P (whose zero/nonzero structure—excluding the di-

agonal elements—necessarily reflects the given communication topol-

ogy, so that the distributed protocol conforms to the communication

constraints) [2]. In fact, ratio consensus iterations can also take the

time-varying form

y[k + 1] = P [k]y[k] (6)

z[k + 1] = P [k]z[k] (7)

where P [k], k = 0, 1, 2, . . . , are column stochastic N ×N matrices

that vary at each time step. Subject to some joint properties on the

sequence of matrices P [k], k = 0, 1, 2, . . . , the convergence result in

(5) still holds, although the proof is more complex [16]–[19]. More
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specifically, the following are sufficient conditions for reaching asymp-

totic average consensus [as in (5)].

C1) At each iteration k, the matrix P [k] is a column stochastic matrix

with nonzero entries bounded away from zero.

C2) There exists a finite window K, such that

P [τK +K − 1] . . . P [τK + 1]P [τK] , τ = 0, 1, 2, . . .

form primitive column stochastic matrices. A sufficient condition

for C2 to hold is for matrices P [k] to have positive elements on

the diagonal and the union graphs

Gd[τK +K − 1] ∪ . . . ∪ Gd[τK + 1] ∪ Gd[τK]

:= (V, E [τK +K − 1] ∪ . . . ∪ E [τK + 1] ∪ E [τK])

τ = 0, 1, 2, . . . , to be strongly connected (here, Gd[k] is the

digraph corresponding to the zero/nonzero structure of P [k]).

B. Homomorphic Encryption

An encryption scheme is captured by an encryption mechanism E
and a decryption mechanism D. The encryption mechanism takes a

message m, typically treated as a non-negative integer in some range,

and encrypts it into a (possibly non-unique) ciphertext c, also treated

as a non-negative integer in some range; similarly, the decryption

mechanism D takes the ciphertext c and generates the original mes-

sage. In other words, we have m = D(E(m)). In most encryption

schemes, knowing E (the encyption mechanism) implies knowledge of

D (the decryption mechanism); public key cryptography schemes (e.g.,

RSA [20]), however, are such that knowledge of E depends on a public

key (which is available to everybody), but knowledge ofD depends on a

private key (which is not available to everybody and cannot be inferred

easily based on the public key). Thus, everybody knows E but only one

entity (which presumably designed the cryptosystem) knows D.

Homomorphic encryption (see, for example, [21]) has the property

that E(m1 ◦m2) = E(m1)⊙E(m2) where ◦ and ⊙ are binary op-

erations defined on the message and ciphertext spaces, respectively.

Effectively, this allows certain types of processing of the data without

necessarily having direct access to them. Naturally, with the emergence

of cloud storage and the need for big data analytics, homomorphic

encryption has recently generated a lot of interest [22].

Among popular homomorphic encryption algorithms, the one we are

interested in is the Paillier cryptosystem [3]. Due to space limitations,

we do not provide the full details of the scheme, but only the features

that are necessary for our development. (Below, gcd(a, b) denotes the

greatest common divisor of a pair of integers a and b, and ⌊r⌋ denotes

the floor of a real number r, i.e., the largest integer that is smaller or

equal to r.) The public key is given by (n, g) and the private key is

given by (λ, µ), where n, g, λ, and µ are non-negative integers chosen

according to the code design. Encryption of a message m (viewed as an

integer in [0, n− 1]) is c = E(m, r) where c is obtained by choosing

a random integer r, 0 < r < n such that gcd(r, n) = 1 (any random

r that satisfies this can be chosen), and setting c = gmrn mod n2.

Decryption of a ciphertext c is defined as m′ = D(c), where m′ is

obtained by setting L′ = ⌊ (cλ mod n2)−1
n

⌋ and m′ = L′µ mod n.

An important feature of the Paillier cryptosystem is that it has the

following homomorphic property:

m1 +m2 mod n = D(E(m1, r1)E(m2, r2) mod n2)

and the following (semi-homomorphic) property:

m1m2 mod n = D(E(m1, r1)
m2 mod n2)

= D(E(m2, r2)
m1 mod n2)

(notice that one of the two messages remains unecrypted). In particular,

this means that the multiplication of a message m by a constant integer

weight w satisfies

wm mod n = D(E(m, r)w mod n2)

where the weightw is unencrypted. Also, note that the random numbers

(r1, r2, r above) used to encrypt are not important in the decoding

operations.

III. INTEGER DISTRIBUTED AVERAGING

In this section, we present variations of ratio consensus and push

sum that operate on integer values and use integer weights, so that

all operations involve integer values. The main motivation for this is

to allow for encyption of the data (using a public key homomorphic

cryptosystem, such as the Paillier cryptosystem), which is done in

subsequent sections.

We consider a distributed system, captured by a strongly connected

digraph Gd = (V, E), in which each node vj ∈ V has an initial integer

value Vj . The goal is to devise an algorithm to calculate the average
1
N

∑N

l=1 Vl. The proposed algorithm operates as follows: each node

vj maintains two (integer-valued) state variables yj [k] and zj [k], and

updates them, at iterative step k (k ≥ 0), as follows:

yj [k + 1] =
∑

vi∈N
−
j
∪{vj}

wji[k]yi[k] (8)

zj [k + 1] =
∑

vi∈N
−
j
∪{vj}

wji[k]zi[k] (9)

where yj [0] = Vj , and zj [0] = 1, for vj ∈ V . The time-varying weights

wlj [k] are required to take non-negative integer values such that, for

each k,
∑

vl∈N
+
j

∪{vj}
wlj [k] = c[k] for all vj ∈ V for some positive

integer (time-varying) value c[k].
Using matrix-vector notation, the above iterations can be captured

concisely via

y[k + 1] = W [k]y[k] (10)

z[k + 1] = W [k]z[k] (11)

where the matrices W [k] satisfy the requirements in the following

lemma.

Lemma 1: Consider a strongly connected digraph Gd = (V, E)
where the nodes execute the iterations in (10)–(11) so that the chosen

weight matrices W [k], k = 0, 1, 2, . . ., satisfy the following.

1) Each entry of W [k] is a non-negative integer; in particular,

wlj [k] = 0 if vl /∈ N+
j ∪ {vj} and wlj [k] ≥ 0 otherwise.

2) The column sums of each W [k] are equal to c[k] ≥ 1 where

c[k] ≤ cmax for some maximum value cmax.

3) Condition C2 is satisfied on the sequence of column stochastic

matrices P [k] = 1
c[k]

W [k].
Then

lim
k→∞

rj [k] =

∑
l yl[0]∑
l zl[0]

=

∑
l Vl

N
.

Proof: Let P [k] := 1
c[k]

W [k], where P [k] is a column stochastic

matrix with zero/nonzero structure that adheres to the given digraph

Gd. Furthermore, the nonzero entries of P [k] are bounded below by
1

c[k]
≥ 1

cmax
.

We can unwrap the iterations for y as follows:

y[k + 1] =
(
Πk

τ=0W [τ ]
)
y[0]

=
(
Πk

τ=0c[τ ]
) (

Πk
τ=0P [τ ]

)
y[0].
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Similarly, we obtain z[k + 1] = (Πk
τ=0c[τ ])(Π

k
τ=0P [τ ])z[0].

Matrices P [k], k = 0, 1, 2, . . . , satisfy Condition C1 (since the

entries are bounded below by 1
cmax

). Thus, the ratio r′j [k] =
y′
j
[k]

z′
j
[k]

(where y′[k + 1] = 1
Πk

τ=0
c[τ ]

y[k + 1] and z′[k + 1] = 1
Πk

τ=0
c[τ ]

z[k +

1]) converges to the average according to (5). We conclude that

lim
k→∞

rj [k] =

∑
l yl[0]∑
l zl[0]

=

∑
l Vl

N
∀vj ∈ V

which completes the proof of the lemma. �

We next discuss some possible weight choices that lead to matrices

W [k] that satisfy the above requirements.

A. Transmission to a Single Out-Neighbor

Suppose that each node vj can select which node to transmit to.

Furthermore, suppose that each node vj does the following at each k.

1) it sets its self-weight to wjj [k] = 1;

2) it chooses (in a round robin fashion, in some arbitrary order) one of

its out-neighbors vl, vl ∈ N+
j , and sets the weight on that out-going

link to wlj [k] = 1;

3) it sets the weights on all of its remaining out-going links to zero,

i.e., wl′j [k] = 0 for l′ �= l, l′ �= j.

If all nodes do this in a synchronized manner, the resulting matrix

W [k] will have columns that sum to c[k] = 2, because each column

j has exactly two nonzero entries, the diagonal entry W (j, j) = 1
and W (l, j)[k] = 1. Since node vj has D+

j out-neighbors, the jth

column of matrix W [k] can take D+
j , different forms (depending on

the out-neighbor node vj chooses to transmit to). In total, there are

K := ΠN
ℓ=1D

+
ℓ different possible matrices W [k] (depending on the

out-neighbor that is chosen by each node). However, it is possible that

not all such matrices materialize at some specific iterative stepk because

of common factors among the node degrees {D+
1 ,D

+
2 , . . .,D

+
N}. More

specifically, node v1 will cycle through its out-neighbors every D+
1

iterations, node v2 will cycle through its out-neighbors every D+
2

iterations, and so forth, implying that all nodes will cycle through the

same matrices every K ′ := lcm(D+
1 ,D

+
2 , . . .,D

+
N ) iterations (leading

to K ′, K ′ ≤ K, different matrices), where lcm(i1, i2, . . ., iN ) is the

least common multiple of the integers in its argument. In any case,

since we are guaranteed that all links are active at least once every

K (or K ′) time steps (and the diagonal elements are positive, and the

graph is strongly connected), conditions C1 and C2 will be satisfied on

matrices P [k] := 1
2
W [k], and the ratios will converge to the average

of the initial values.

B. Transmission to All Out-Neighbors

The above scheme would not necessarily work if we allowed nodes

to send their values to all of their out-neighbors, i.e., if we had

W [k] = Ad + IN , where Ad is the adjacency1 matrix of the digraph

and IN is the N ×N identity matrix. The problem is that nodes

might have different out-degrees, which means that column sums are

not necessarily equal (note that the ratios still converge, but to a

weighted average [2]). The following variation, however, would work:

set W [k] = Ad +D =: W , where D = diag(1 +D+
max −D+

j ) (i.e.,

a diagonal matrix such thatD(j, j) = 1 +D+
max −D+

j ), withD+
max =

maxvj∈V D
+
j being the maximum out-degree among all nodes in the

1The adjacency matrix of a digraph Gd = (V, E) satisfies Ad(l, j) = 1 if
(vl, vj) ∈ E (and is zero otherwise).

graph. Note that as long as the graph is strongly connected, we are guar-

anteed thatP := 1

1+D+
max

W is a primitive column stochastic matrix (in

this case c[k] = 1 +D+
max).

Example 1: Consider the (strongly connected) digraph on the left

of Fig. 1 (with n = 5 nodes) with initial values taken to be Vj = j,

j = 1, 2, 3, 4, 5 (so that the average is 3). Consider first the scheme in

which each node selects, at each time step k, a single out-neighbor, as-

suming the following order in which nodes choose their out-neighbors:

node v3 chooses v4, then v5 (and repeat); node v4 chooses v1, then

v5 (and repeat); node v5 chooses v1, then v2 (and repeat). Note that

nodes v1 and v2 only have one out-neighbor. The middle of Fig. 1

shows the two possible update matrices, W0 and W1. In particular,

at iterative step k = 0, the update matrix is W [0] = W0; at iterative

step at k = 1, the update matrix is W [1] = W1; then, W [2] = W0,

W [3] = W1, and so forth. Note that, despite the fact that we could

potentially have K = Π5
ℓ=1D

+
ℓ = 8, different possibilities for the val-

ues that matrices W [k] could take (depending on the out-neighbor

that it is chosen by each node), only two instantiations materialize

in this example. This is in agreement with our earlier discussions

since in this case K ′ = lcm(D+
1 ,D

+
2 , . . .,D

+
5 ) = lcm(1, 1, 2, 2, 2) =

2. Moreover, we are guaranteed that all links are active at least once

every K ′ = 2 time steps and conditions C1 and C2 are satisfied on

matricesP [k] := 1
2
W [k], so ratios converge to the average of the initial

values asymptotically.

Consider next the scheme in which each node selects all out-

neighbors (with weight 1) and adjusts its self-weight so that the sum

of each column of the weight matrix is 1 +D+
max. The right of Fig. 1

shows the (constant) weight matrix Wall used in the updates. Again,

convergence of the ratios to the average of the initial values is asymp-

totic, but the ratios get close to the average of the initial values relatively

quickly (after approximately ten iterative steps). �

Remark 1: Since the integer matrices used are scaled versions of

column stochastic matrices, rates of convergence can be obtained using

the techniques applicable to column stochastic matrices. For example,

if the same matrix is used for all iterations (namely, transmission to all

out-neighbors), then the rate of convergence is governed by |λ2(P )|,
where λ2(P ) is the second largest in magnitude eigenvalue of matrix

P := 1

1+D+
max

W [23]. If transmission to a single out-neighbor is used

at a time, then the rate of convergence is governed by |λ2(P )|
1
K′ ,

where P := 1

2K
′ W1W2. . .WK ′ with K ′ := lcm(D+

1 ,D
+
2 , . . .,D

+
N ),

capturing the number of different matrices W that are realized (this

bound can be obtained by looking over the K ′ iterations that involve all

matricesW [k] that are realized). Bounds on the rate of convergence can

also be easily obtained based on the smallest nonzero entry in any of

the 1
c[k]

W [k] matrices or using coefficients of ergodicity [23]. Rate of

convergence analysis could be used to determine what would constitute

a large enough number of iterations for all of the nodes to reach

values that are close to their asymptotic limits; alternatively, distributed

stopping techniques like the ones proposed for ratio consensus in [24]

can be used. �

IV. HOMOMORPHICALLY ENCRYPTED RATIO CONSENSUS

Assume that there is a trusted node (without loss of generality taken

to be node v1), which devises a homomorphic encryption scheme

using the Paillier cryptosystem and issues a public key (n, g) that gets

distributed (by flooding or other means) to all the nodes. Node v1 is

trusted in the sense that it will generate a correct cryptosystem and will

not reveal the decrypted value of any of the messages it receives, at

least not before a large enough number of iterations has been executed.

We use ỹ = E(y) to denote the encrypted version of integer y (where
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Fig. 1. Digraph used in Example 1 (left); weight matrices W0 and W1 for the case when each node transmits to only one out-neighbor at each
iterative step (middle); weight matrix Wall for the case when each node transmits to all of its out-neighbors (right).

0 ≤ y < n). (This value is nonunique as it depends on the random

integer r used by the encryption mechanism, but any value of ỹ that is

used will have the same properties.)

The first observation is that the linear iterations in (8)–(9) involve

non-negative integers (at all time steps, at all nodes). If the integer n is

large enough (so that these values do not exceed n for the number of

iterative steps we are interested in), then performing the linear iterations

modulo n does not change anything in the process. Note that this is not

a restrictive assumption given that encryption schemes typically require

n to be a very large integer. Thus, we can think of the iteration in (8),

as an iteration where the operations are modulo n

yj [k + 1] =

⎛
⎜⎝

∑

vi∈N
−
j
∪{vj}

wji[k]yi[k]

⎞
⎟⎠ mod n

=

⎛
⎜⎝

∑

vi∈N
−
j
∪{vj}

(wji[k]yi[k] mod n)

⎞
⎟⎠ mod n (12)

with yj [0] = Vj mod n, for vj ∈ V . The time-varying weights wlj [k]
remain exactly the same as before: in particular, they take positive

integer values such that
∑

l wlj [k] = c[k] for all vj ∈ V for some

positive integer value c[k].
Note that each node vj is in charge of selecting wlj [k] and sending

to its neighbor vl, vl ∈ N+
j , the values wlj [k]yj [k] and wlj [k]zj [k].

Assuming all nodes are aware of the public key (n, g), we can perform

the y iteration in (8) modulon [i.e., the iteration in (12)] in the encrypted

space. Specifically, using the homomorphic properties at the end of

Section II-B, we can execute the following y-iteration in the ciphertext

space

ỹj [k + 1] =
(
Πvi∈N

−
j
∪{vj}

E(wji[k]yi[k])
)
mod n2

= Πvi∈N
−
j
∪{vj}

(
(ỹi[k])

wji[k] mod n2
)
mod n2

where ỹj [0] = E(yj [0]).
Effectively, the proposed protocol does the following: each node vj

encrypts its initial value to ỹj [0] = E(yj [0]); then, the nodes perform

(in a synchronized manner) the above iteration for ỹ, as well as the

unencrypted iteration for z in (9).

At some iterative step k0 (where k0 is sufficiently large), node v1
(which holds the private key) can decrypt ỹ1[k0] via y1[k0] =
D(ỹ1[k0]), calculate the ratio r1[k0] = y1[k0]/z1[k0], and then for-

ward this value (or forward both y1[k0] and z1[k0]) to all other nodes

(via flooding or other means).

We consider the privacy of a noncurious node vj to be preserved if

the curious node(s) cannot determine its exact initial value. Note that, as

long as node v1 is trustworthy, the above strategy will preserve privacy.

In fact, this is easy to see if decrypting is done by node v1 only once (say,

at time step k0) to let other nodes know what the ratio r1[k0] (i.e., the

average of the initial values) is. In such case, the only value that becomes

known to curious nodes is the average of the initial values. If N is also

known, the curious nodes will be in position to calculate the sum of the

initial values of all other nodes (by multiplying r1[k0] by N and, then,

subtracting their own initial values). Notice, however, that regardless

of how the average is calculated, this information will necessarily be

available to curious nodes that are colluding (in particular, we need at

least two nodes to be noncurious for privacy preservation to be possible).

V. HOMOMORPHICALLY ENCRYPTED ITERATIONS

One concern regarding the strategy discussed in the previous section

is that it relies heavily on the (universally) trusted node v1 that is

supposed to eventually (at some large enough iterative step k0) decrypt

the ỹ1[k0]-value and provide the ratio y1[k0]/z1[k0] (or, alternatively

provide y1[k0] and z1[k0]) so that all nodes can obtain the average.

In this section, we relax this assumption by allowing the average to

be calculated based on the result of K (K ≤ N ) homomorphically

encrypted iterations, which requires that at least one node out of a set

of K nodes can be trusted (but not necessarily all).

We first describe the unencrypted version of the protocol and then

analyze its encrypted version.

A. Average Consensus via Multiple Ratio Consensus Iterations

We assume that we are given a distributed system, captured by a

strongly connected directed graph Gd = (V, E), in which each node

vj ∈ V has a non-negative integerVj as an initial value. We will execute

K iterations, each of which is associated with one of the nodes in the

set {v1, v2, . . ., vK}. We will denote the y-values and z-values held at

node vj for the ℓth iteration at time step k by y
(ℓ)
j [k] and z

(ℓ)
j [k], and

we will update them as in (8)–(9). Letting

y(ℓ)[k] = [y
(ℓ)
1 [k], y

(ℓ)
2 [k], . . ., y

(ℓ)
N [k]]T , ℓ = 1, 2, . . .,K

z(ℓ)[k] = [z
(ℓ)
1 [k], z

(ℓ)
2 [k], . . ., z

(ℓ)
N [k]]T , ℓ = 1, 2, . . .,K

we can use matrix-vector notation to concisely capture the K y-

iterations and z-iterations as

y(ℓ)[k + 1] = W [k]y(ℓ)[k] , ℓ = 1, 2, . . .,K (13)

z(ℓ)[k + 1] = W [k]z(ℓ)[k] , ℓ = 1, 2, . . .,K. (14)

As in the previous section, the weight matrices, W [k], k = 0, 1, 2, . . .,
are time-varying but identical for all iterations at a particular time

step. Furthermore, we assume that the W [k]’s satisfy the require-

ments in Lemma 1. Notice that z(ℓ)[0] = 1N , ℓ = 1, 2, . . .,K (where

1N is the N -dimensional all-ones vector). Thus, the vectors, z(ℓ)[k],
ℓ = 1, 2, . . .,K, evolve identically and only one of them, which we

denote simply by z[k], needs to be maintained by the nodes. As a result,

(14) becomes

z[k + 1] = W [k]z[k]. (15)
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Fig. 2. Sum of ratios at nodes v1, v2, and v3, as a function of k: transmission to single out-neighbor (left); transmission to all out-neighbors (right).

Note that we use zj [k] to denote the scalar z-value held at node vj at

step k.

Lemma 2: Consider a strongly connected directed graph Gd =
(V, E), where each node vj ∈ V has as an initial value a non-negative

integer Vj . Suppose that the nodes execute in parallel the K itera-

tions in (13) and the iteration in (15). If each node vj chooses the

initial values y
(ℓ)
j [0] for ℓ = 1, 2, . . .,K, to be integers that satisfy

∑K

ℓ=1 y
(ℓ)
j [0] = Vj , then we have

lim
k→∞

K∑

ℓ=1

r
(ℓ)
ℓ [k] =

∑
l Vl

N
(16)

where r
(ℓ)
ℓ [k] =

y
(ℓ)

ℓ
[k]

zℓ[k]
.

Proof: If we consider any node vj and any iteration ℓ, we know

from the discussion in Section II that

r
(ℓ)
j := lim

k→∞
r
(ℓ)
j [k] =

∑
l y

(ℓ)
l [0]

N
∀vj ∈ V

where r
(ℓ)
j [k] :=

y
(ℓ)
j

[k]

zj [k]
. In particular, for every iteration ℓ, ℓ =

1, 2, . . .,K, we have r
(ℓ)
ℓ =

∑
l y

(ℓ)
l [0]/N . If we sum up all r

(ℓ)
ℓ (over

the K iterations), we have

K∑

ℓ=1

r
(ℓ)
ℓ =

K∑

ℓ=1

∑
l y

(ℓ)
l [0]

N
=

1

N

∑

l

(
K∑

ℓ=1

y
(ℓ)
l [0]

)
=

∑
l Vl

N
.

(17)

�

Example 2: Consider again the strongly connected digraph on the

left of Fig. 1. Assume that K = 3 and that the nodes execute three

iterations with initial values y(1)[0] = [4,−4,−1,−2, 4], y(2)[0] =

[0, 5,−3,−2,−3]
T

, y(3)[0] = [−3, 1, 7, 8, 4]
T

. The values in vectors

y(1)[0] and y(2)[0] were chosen to be random integers in the interval

[−4, 5], with uniform probability and independently between differ-

ent entries of the vectors; then, y(3)[0] = [1, 2, 3, 4, 5]
T
− (y(1)[0] +

y(2)[0]).
As in Example 1, we consider two schemes, one in which each node

selects a single out-neighbor, and one in which each node transmits to

all out-neighbors. Consider first the scheme in which each node selects

a single out-neighbor, assuming (for simplicity of presentation) that the

order in which each node chooses its out-neighbors is exactly the same

as in Example 1. In such case, the resulting update matrices are W0 and

W1 as given in the middle of Fig. 1, i.e., at even k the weight matrix is

given by W0 and at odd k by W1.

On the left of Fig. 2, we plot the sum of the ratios r
(1)
1 [k] + r

(2)
2 [k] +

r
(3)
3 [k] as a function of k. Convergence of the sum of ratios to the

average of the initial values is asymptotic, but we see that this sum

becomes close to the average (as expected) after approximately 15

iterative steps. Note that the ratios that the nodes have for each iteration

converge asymptotically to the average of the initial values for that

iteration (i.e., the ratios for iteration 1 converge to 1/5, the ratios for

iteration 2 converge to −3/5, and the ratios for iteration 3 converge

to 17/5).

Consider next the scheme in which each node selects all out-

neighbors (with weight 1) and adjusts its self-weight so that the sum

of each column of the weight matrix is 1 +D+
max (the resulting weight

matrix is as on the right of Fig. 1). In this case, we also observe that

the ratios converge relatively quickly (after approximately ten iterative

steps) to the average of the initial values. On the right-hand side of

Fig. 2, we plot the sum of the ratios r
(1)
1 [k] + r

(2)
2 [k] + r

(3)
3 [k] as a

function of k. Again, we see that the sum of the ratios converges (as

expected) after approximately 15 iterative steps to the average. �

B. Privacy Preservation via Multiple Encrypted Ratio

Consensus Iterations

Assume that there is a set of K nodes (K ≤ N ), each of which de-

vises a homomorphic encryption scheme (using the Paillier cryptosys-

tem). Without loss of generality, we can take these K nodes to be nodes

v1, v2,..., vK and assume that each node vℓ, ℓ = 1, 2, . . .,K, issues a

public key (nℓ, gℓ) that gets distributed (by flooding or other means)

to all other nodes. We use ỹℓ = Eℓ(y), ℓ = 1, 2, . . .,K, to denote the

(nonunique) encrypted version of integer y (where 0 ≤ y < nℓ) using

the key issued by node vℓ (again, any value of ỹℓ will have the same

result). We propose a scheme that allows nodes to calculate the average

of the initial values in a privacy-preserving manner. More specifically,

node vj can be certain that its initial value cannot be inferred exactly as

long as it can trust at least one node in the set {v1, v2, . . ., vK}. A special

case would be when K = N , in which case each node is guaranteed

that its privacy is preserved (because each node can presumably trust

itself). As discussed earlier, we need at least two noncurious nodes to

ensure privacy preservation in any averaging scheme. As in the case

of a single iteration, we assume for simplicity that all initial values are

non-negative, so that the ℓ linear iterations in (13) involve non-negative
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integers (at all time steps, at all nodes). Let n = minℓ{nℓ} and assume

that n is large enough so that these values do not exceed n for the

number of iterations we are interested in.

Under the above assumptions, we can think of each iteration in (13)

for ℓ = 1, 2, . . .,K as an iteration where the operations are modulo n

[refer to (12)] with y
(ℓ)
j [0] chosen for each iteration as described in the

previous section. The time-varying weights wlj [k] remain exactly the

same as before: in particular, they take positive integer values such that∑
l wlj [k] = c[k] for all vj ∈ V for some positive integer value c[k].
Note that each node vj is in charge of selecting wlj [k] and send-

ing to its neighbor vl, vl ∈ N+
j , the K y-values wlj [k]y

(ℓ)
j [k], ℓ =

1, 2, . . .,K, and the z-value wlj [k]zj [k]. Assuming all nodes are aware

of the public key (nℓ, gℓ) for each iteration, we can perform each y
iteration in (13) modulo n using the homomorphic encryption scheme

devised by the corresponding node. Specifically, using the homomor-

phic properties at the end of Section II-B, we can replace the iteration

in (13) (for each ℓ in the set {1, 2, . . .,K}) by the following ỹ-iteration

in the ciphertext space:

ỹ
(ℓ)
j [k + 1] =

(
Πvi∈N

−
j
∪{vj}

E(wji[k]y
(ℓ)
i [k])

)
mod n2

= Πvi∈N
−
j
∪{vj}

(ỹ
(ℓ)
i [k])wji[k] mod n2 (18)

where ỹ
(ℓ)
j [k] = Eℓ(y

(ℓ)
j [k]) and the initial values satisfy ỹ

(ℓ)
j [0] =

E(y
(ℓ)
j [0]).

Effectively, the proposed approach executes the K average con-

sensus iterations described in the previous section, each encrypted

according to the homomorphic encryption scheme devised by one of

the nodes in the set {v1, v2, . . ., vK}. If we assume that at some step k0
(where k0 is sufficiently large), these K nodes (which hold the private

keys needed to decrypt) provide the values y
(ℓ)
ℓ [k0] = Dℓ(ỹ

(ℓ)
ℓ [k0]),

for ℓ = 1, 2, . . .,K, and their corresponding zl[k0] value, then the

nodes can compute the quantity
∑K

ℓ=1

y
(ℓ)

ℓ
[k0]

zℓ[k0]
, which, as argued in

the previous section, asymptotically reaches the desirable average of

their initial values, at least for large values of k0 [see (17)].

We now discuss the privacy-preservation capabilities of the proposed

scheme. To do that, we assume for simplicity that k0 is large enough

(so that all ratios have effectively reached values that are adequately

close to their asymptotic values) and that decryption by at least one

of the nodes v1, v2, ..., and vK occurs only once (at time step k0).

For simplicity, let us consider the case when K = 2; assuming (as a

worst-case assumption) that curious nodes can collaborate arbitrarily,

what becomes available to them at time step k0 (when decryption takes

place by nodes v1 and v2) are the values of the following two sums,

namelyX1 =
∑

vj∈Vnc
y
(1)
j [0] andX2 =

∑
vj∈Vnc

y
(2)
j [0], whereVnc

denotes the remaining nodes (i.e., the nodes that are not in the set of

curious colluding nodes). In general, the curious nodes have no way

of isolating the values y
(ℓ)
j [0], vj ∈ Vnc, ℓ ∈ {1, 2}, because there are

only two equations and 2|Vnc| unknowns. This remains true even if

one of the two nodes, say node v2, is curious, in which case (depending

on the position of node v2) the curious node(s) may have access to the

(unencrypted) values yj,2[0] for some (or all) of the nodes vj in Vnc.

Note, however, that curious nodes can use the data that are available to

them to form an estimate of the initial values of nodes in the setVnc. This

could be formulated, for instance, as an estimation problem where Vj

needs to be estimated based on the values of X1, X2, and the statistics

that are known about the variables y
(ℓ)
j [0], vj ∈ Vnc, ℓ ∈ {1, 2} (e.g.,

one could use mean square error estimation).

Remark 2: Note that, even if we ignore the complexity of devising

cryptosystems and performing the encryption/decryption computations

(one-time costs), the computational complexity of the proposed scheme

increases by a factor ofK (whereK is the number of homomorphically

encrypted iterations). Also, each addition/multiplication is replaced by

addition/multiplication modulo a large number. �

VI. CONCLUSION AND FUTURE WORK

In this article, we have considered the problem of privacy-preserving

asymptotic average consensus in the presence of curious (but not

malicious) nodes. Specifically, we described how nodes in a distributed

system can use homomorphic encryption to perform integer operations

(additions only or additions and multiplications) in order to asymptot-

ically reach consensus to the average of their integer initial values in a

privacy-preserving manner.

In our future work, we will study possible extensions to real initial

values (i.e., take into account finite precision effects) and to schemes

that guarantee privacy preservation (in the sense that they involve

all nodes in the encryption), but do not require the execution of N
iterations. Other interesting future directions include: 1) An analysis of

information leakage (i.e., partial information about the initial values)

in the context of homomorphically encrypted iterations, particularly

for the case when the trusted node(s) decrypt their ratio value(s)

at multiple time instants). 2) Handling of possibly malicious nodes,

e.g., by combining some of the techniques proposed here with some

of the techniques in [25]–[27], which describe ways to precisely or

approximately compute, in a distributed manner, functions of the initial

values (including the average).
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