
SPECIAL SECTION ON INTELLIGENT BIG DATA

ANALYTICS FOR INTERNET OF THINGS, SERVICES AND PEOPLE

Received December 3, 2020, accepted December 22, 2020, date of publication January 13, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051530

Privacy-Preserving Distributed IDS Using
Incremental Learning for IoT Health Systems

ALIYA TABASSUM1, (Student Member, IEEE), AIMAN ERBAD2, (Senior Member, IEEE),

AMR MOHAMED 1, (Senior Member, IEEE), AND MOHSEN GUIZANI 1, (Fellow, IEEE)
1Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha, Qatar
2Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Corresponding author: Aiman Erbad (aerbad@hbku.edu.qa)

This work was supported by Qatar University - Grant IRCC [2020-003]. The findings achieved herein are solely the responsibility of

the authors.

ABSTRACT Existing techniques for incremental learning are computationally expensive and produce dupli-

cate features leading to higher false positive and true negative rates. We propose a novel privacy-preserving

intrusion detection pipeline for distributed incremental learning. Our pre-processing technique eliminates

redundancies and selects unique features by following innovative extraction techniques. We use autoen-

coders with non-negativity constraints, which help us extract less redundant features. More importantly,

the distributed intrusion detection model reduces the burden on the edge classifier and distributes the load

among IoT and edge devices. Theoretical analysis and numerical experiments have shown lower space and

time costs than state of the art techniques, with comparable classification accuracy. Extensive experiments

with standard data sets and real-time streaming IoT traffic give encouraging results.

INDEX TERMS Deep learning, internet of things (IoT), intrusion detection system (IDS), incremental

learning, pre-processing.

I. INTRODUCTION

The Internet has become an indispensable part of our lives at

work and in our home applications, such as personal health

assistants, remote health monitoring, and smart home secu-

rity. The remote monitoring applications especially health

applications generate a large volume of continuous data from

vital signs and other signals (e.g., EEG, ECG). This health

data is confidential so we want to ensure that the data privacy

is not violated. Any tampering of the data by an attacker

can cause a serious issue, such as false diagnosis, delay in

an emergency, and other health complications, which can

lead to death [1]. In this new era, a shift to digital transac-

tions in different applications mandates a shift in our mind-

set to secure all these transactions as they traverse small

IoT sensors or home appliances. Security of the Internet of

Things (IoT), especially the security of IoT networks and

end-devices, is essential for our safety and security. Despite

various security practices such as authentication, encryp-

tion, and access controls, security practitioners recommend

active network monitoring and adaptable Intrusion Detection

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Xiao.

System (IDS) [2], [3]. Various Intrusion detection systems

are proposed to detect malicious activities on IoT devices

usingMachine Learning (ML) and Deep Learning (DL) tech-

niques [4]. Usually, an IDS system involves 2 major steps:

pre-processing and classification [5]. Pre-processing tasks

using ML techniques, extract or select features from the

network traffic and sends it to the classifier. The performance

ofML classifiers depends on the features selected. Traditional

ML algorithms can either select the features manually or

using a predefined feature selection algorithm. Sometimes,

the feature selection can cause the classification models to

underfit or overfit, affecting the accuracy when dealing with

massive data. Classical ML models suffer from a lack of

scalability and low detection rate in massively distributed

IoT nodes. On the other hand, Deep Learning (DL) mod-

els can choose features automatically and provide adequate

representation of features [4]. Among these, Convolutional

Neural Network (CNN) is a deep learning technique proven

to give higher detection accuracy and better feature analysis

with massive traffic [6].

Moreover, diverse and novel attacks emerge every day,

hence, the IDS must identify those correctly. Most of the

new attacks are variants of existing and the same attacks are

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 14271

https://orcid.org/0000-0002-1583-7503
https://orcid.org/0000-0002-8972-8094

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

launched using different techniques. When the IDS is unable

to categorize unknown network intrusion activity properly,

it gives higher False Positive (FP) and True Negative (TN)

rates. Researchers have proposed IDS based on incremental

feature learning to retrain the model to cope up with the

emerging attacks [7]. However, most of the incremental learn-

ing techniques assume that the data arriving is labeled, which

is not practical and makes the IDS incapable of dealing with

new attacks [8], [9]. Some of the incremental semi-supervised

algorithms were proposed to deal with unlabelled incoming

data [10]. However, these algorithms do not achieve appro-

priate performance during the testing phase because of the

redundant pre-processing, high computational demands and

high memory consumption, as the huge amount of data is

transferred from IoT devices to cloud/edge platforms (where

the IDS is placed) to provide various services. The streamed

IoT data is massive and heterogeneous with a mix of data

with known and unknown labels arriving one by one or

chunk by chunk, which may overwhelm the classifier and

lead to slow classification [11]. Therefore, the accuracy of

incremental deep learningmodels can decrease. The response

time (latency) between the IoT and the deep learning mod-

els has to be synchronized to handle the vast amount of

real-time traffic. The operational stability of the IoT IDS

system might also get compromised when there is a delay

between the IoT domain and deep learning models detecting

intrusions [12].

To sum up, the accuracy reduction is not the only problem

with the existing incremental IDS algorithms. The processing

cost, memory consumption, and decision time are high when

deployed in a real-time IoT network, where the traffic patterns

are dynamic. Sometimes, the classifier is jammed or gives

incorrect results. Only a classifier with less response time

and higher accuracy can ensure the security of the network.

To meet the requirements of quick and correct response from

the deep learning model, there has to be a shift from the tradi-

tional way of data transfer from the IoT devices. In this paper,

we aim to distribute the model with parallel pre-processing

on IoT devices to reduce the overhead on the deep learning

classifier model. To speed up the classification and minimize

the input of the classification model, we pre-process the data

on the IoT devices and on the bridge IoT network so that

less data is sent to the remote classifier. When the raw data

is sent directly to the classifier, various privacy concerns

and confidentiality issues arise [13]. Data is vulnerable to

be intercepted or reverse engineered by some adversaries,

which may lead to privacy and security threats. In our model,

the pre-processed data is sent to the classifier, which is dif-

ferent from the raw input and guarantees data privacy. Also,

the risk of reverse-engineering the data decreases because the

data processing is distributed over multiple distributed net-

works (i.e., IoT devices, IoT bridge network, and the remote

classifier network).

The contributions of this article are as follows:

1) A distributed IDS model to reduce the overhead on

the centralized edge classifier is proposed such that the

subsequent latency between pre-processing and deci-

sion making phase is minimum.

2) Parallel pre-processing on IoT end-devices that uti-

lizes computational power and memory resources of

the IoT devices to ensure the security and privacy of the

raw data. Sharing the pre-processing task among IoT

devices reduces computational resources and delays at

the source, and gives comparable performance to the

centralized classification task.

3) An incremental learning model is proposed to update

the classifier seamlessly with emerging features in

order to detect new attacks. Adding new features min-

imizes the objective function residuals and merging

similar features avoids overfitting and gives a compact

representation of the features. Our incremental model

gives better accuracy than other approaches.

4) A Comprehensive evaluation of our distributed intru-

sion detection model using different experiments with

standard datasets and real-time IoT traffic. We also

perform decision time analysis for the classification

process and compare it to other centralized models.
The rest of the paper is organized as follows. Section II

discusses the related work. Section III presents the novel

distributed intrusion detection model based on parallel

pre-processing on IoT devices and incremental learning.

It includes a detailed presentation of the data pre-processing,

feature comparison and selection, and the CNN classification

algorithm. Section IV discusses the technical implementation

details, while the evaluation metrics and experimental results

are presented in Section V. Finally, we draw conclusions and

future research directions in Section VI.

II. RELATED WORK

This section reviews related work on incremental learning

algorithms. We discuss problems of intrusion detection with

the streaming IoT data, the threat model of smart home IoT

health system, and other relevant information.

A. SMART HOME HEALTH IoT SYSTEM SCENARIO

We study a smart home consisting of various IoT devices,

such as medical sensors, home appliances, and utilities as

shown in Figure 1. To be more concrete, we consider the

new medical applications that are becoming significant in

our homes, such as early diagnosis and real-time patient

monitoring. Real-time monitoring using vital signs and auto-

mated emergency response reduces the dependency of the

patient-caregiver and decreases the healthcare costs. Differ-

ent wearable IoT sensors interact with each other for com-

munication using different protocols. The amount of traffic

is large and the data is flowing continuously. The nature

of the data is confidential and needs to be secured. This

diverse environment provides a potential attacking surface

and the attacker may manipulate the traffic patterns. If the

manipulated patterns are not detected at the early stages,

it may lead to the unavailability of the system. If an adversary

compromises the smart home IoT health system network by

14272 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

attacking any one of the wearable IoT sensors, for instance,

the vital signs can be changed threatening the life of a

patient. An attacker may gain control of the whole network

by compromising devices through performing different types

of attacks. Our task is to identify the compromised device

using IDS before it gets multiple devices compromised in the

network.

B. INTRUSION DETECTION IN STREAMING IoT DATA

Classification of streaming data is difficult due to the dynamic

nature of the incoming traffic. This is a major problem

in data mining and machine / deep learning applications.

The learning algorithms are trained at one time but need

to be re-trained due to the continuously evolving nature of

data. Re-training involves huge time overhead, computational

resource requirement, and memory footprint due to the large

scale IoT datasets arriving in real-time from the environment.

While many learning algorithms can work with the raw input

features but their behavior degrades as the number of sam-

ples grows. The performance degradation and the inability

to classify is due to the high number of features that has to

be processed for decision making, which is referred to as the

‘‘curse of dimensionality’’ [14].

C. DIMENSIONALITY REDUCTION USING AUTOENCODERS

Feature selection is one of the approaches to reduce input

features/ values given to the classifier. Usually, feature selec-

tion techniques analyze each variable independently, which is

an NP-hard combinatorial problem. Sometimes, the variables

that do not provide any information individually, give useful

information when put together with other variables. There-

fore, feature extraction methods are proposed to construct

meaningful features or to extract high-level information from

the raw features [15]. Data compression is the reduction in the

number of bits to represent the data. Auto Encoders (AE) are

unsupervised neural networks that perform data compression.

AE is a simple learning neural network that reconstructs input

into output with the least possible distortion, i.e., the output

to be as close to the input. It applies backpropagation, similar

to Artificial Neural Network (ANN), to set the target values

to be equal to the inputs. AEs can be used for supervised

or unsupervised learning, it means it can handle data that is

unlabelled but labeled data has more information that can be

used.

AEs are efficient in reducing noise, dimensionality reduc-

tion, and learning important features in the data while recon-

structing the input (Pre-training). The learned features reveal

the non-linear properties of the data. Extracted features

provide a good discriminative ability for the classification

task [16]. The input features are crucial parameters for effi-

cient intrusion detection. Different features change the detec-

tion performance of the IDS model. There are standard algo-

rithms for dimensionality reduction, such as Principal Com-

ponent Analysis (PCA), but AE gives higher efficiency due

to the deep extraction of non-linear properties of the features.

AE gives a representation of the output at each layer, giving

multiple transformations at different dimensions of the input

parameters. Data projections and visualizations using AE are

more accurate than PCA and other dimensionality reduction

techniques. In addition, outliers’ detection is a by-product of

any AutoEncoder technique. PCA, LDA, and other standard

ML feature extraction/ data reduction methods are used as

they are easier to implement. However, these methods are less

capable in modeling nonlinear structures of data, compared to

the deep learning methods, especially in large datasets. The

compressed representation of data with deeper AE networks

can improve model performance [17].

One of the hybrid feature-extraction methods is proposed

by merging Sparse AutoEncoders (SAE) and Principal Com-

ponent Analysis (PCA) to extract low-level features and is

applied to various classifiers [18]. The results prove that the

large numbers of nodes in hidden layers and deep informa-

tion extraction from features are two critical parameters for

achieving high performance [19]. Traditional auto encoders

fail to inspect relationships of data samples. They generate

new features by minimizing only the reconstruction loss of

the data. To resolve this problem, we minimize the recon-

struction loss for data and relationships between data features.

We have investigated various autoencoder networks that

may fit our problem. Among all, we chose Sparse AutoEn-

coders, as it allows us to activate a selected number of nodes,

which is the first requirement for this research challenge.

We merge correlated features into one, where we have to

activate and de-activate nodes and merge them by clustering

into one. Besides, SAE consists of a single hidden layer

which can be deployed on any of the IoT device irrespective

of its resource constraints. The loss function of the net-

work is constructed by penalizing the activations within the

layer [20]. SAE is efficient in encoding the input data by

approximating minimum error, which guarantees less loss

of information, and extraction of the best feature represen-

tation. From literature [21], we have known that, even with

the simplest algorithm, it is possible to extract useful fea-

tures and achieve higher performance by focusing on the

hyper-parameter choices rather than on the complexity of

the algorithm. We have incorporated these choices diligently

after experimenting with various values on SAE.

D. INCREMENTAL LEARNING AND DISTRIBUTED DEEP

LEARNING MODELS

Recently researchers have shown much interest in incre-

mental learning algorithms [22], also referred to as Transfer

Learning [23], Online Learning [24], and Federated Learn-

ing [25] to adapt to the complex real environments. Exist-

ing supervised incremental learning algorithms are Learn++

[26], incremental SVM [9], and incremental Support Vector

Machines (SVMs) that was proposed to incrementally learn

from a reduced number of support vectors [27]. Incremental

learning based on user-provided labels or pairwise constraints

is not suitable for dynamic data. Using streaming data, it is not

always possible to label all the arriving data. If the streaming

data is available at time-stamp t, the labeling of those samples

VOLUME 9, 2021 14273

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 1. System scenario: A Smart Home Environment.

either manually or automatically by any method may occur at

time-stamp t + 1, which is challenging and time-consuming.

Some researchers proposed semi-supervised algorithms to

resolve this issue by using Bayesian learning, Subspace learn-

ing [28], Clustering [29], and Classification techniques [30].

Fitting unlabelled data based on an inappropriate model mis-

leads the learning process and degrades the performance.

A distributed self-governing model is proposed where the

decision is taken locally on the data collection devices (i.e,

the positioning of the hierarchical processing layers on the

IoT devices). Distributed processing mitigates the latency

between the data transfer and decision making [31] as well

as helps the resource-limited devices to meet the demands of

the deep learning solutions for video/ image classification.

This model is unsuitable to be applied for intrusion detection

as the raw data is shared among the IoT devices for decision

making and it does not guarantee the privacy and security

requirements. In literature, we don’t have any incremental

algorithm that is developed in a distributed fashion.

E. NOTATIONS

In this paper, we denote Fi for input traffic (feature set) from

an IoT device, where each value is denoted as xi which is

unprocessed. After pre-processing the values are denoted as x̂i
and the whole set of pre-processed values from an IoT device

is denoted byGi. The total number of IoT devices in the smart

home health system is denoted by p, the number of input

traffic (unprocessed) is denoted by n and after processing the

number is denoted bym. The final optimal set of features used

for training is denoted byH and after every update, we denote

it by H ′. Based on these notations, Ci defines the nodes of

the generative network with hidden layers as hli, with weight

matrix and biases denoted byW and b respectively.

III. METHODOLOGY

The traditional feature selection and classification algorithms

do not perform well on massive real-time data as it is hetero-

geneous with a huge noise and other irrelevant information.

One of the major reasons where researchers fail to train

models on real-time traffic is the unavailability of real-time

traffic data sets. Organizations do not share real data for train-

ing purposes due to privacy and security concerns. Besides,

using real-time data from different sources for training is

vulnerable to manipulation attacks where the attacker injects

malicious traffic patterns to corrupt the training model. In this

section, we describe a privacy-preserving distributed IDS

model based on incremental learning, that identifies a Denial

of Service (DoS) attacks.

A. DISTRIBUTED ARCHITECTURE

Our distributed architecture is inspired by a method based

on Incremental semi-supervised learning on streaming data

for video classification which consists of 3 layers [32]. The

first layer learns features from the incoming streaming data,

the third layer regularises the network by building similarity

constraints. These two layers are connected by a bridge layer.

Likewise, our model is segregated into 3 deep networks,

namely, Generative network, Bridge network and a Classifier

network. The tasks that are implemented in these networks

are: pre-processing, comparison and classification, respec-

tively. The detection process is distributed over these net-

works right from pre-processing of the incoming streaming

data to the classification results.

The proposed IDS system identifies DoS attacks in IoT

home network scenarios. The reason for selecting a DoS

attack, is because it generates huge traffic which may shut-

down or overwhelm the classifier before it could categorize

14274 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 2. System model.

the attack and notify the attack detection. It is considered to be

themost vulnerable attack in IoT devices due to their resource

constraints, and especially for IoT health devices, it can be

devastating if the device is shutdown. So, we have targeted

DoS and its categories. As our model is incremental, it can

be re-trained for many other attack identification tasks. In the

following subsections, we provide a detailed explanation of

the tasks of each network.

1) GENERATIVE NETWORK

In this network, massive traffic (either normal or malicious)

events are captured from different IoT devices. We build a

layer of sparse autoencoders (AEs) on each IoT device to

analyze traffic within the device. The collected raw data from

each IoT device is recorded and pre-processed for unique

feature identification. All AEs pre-process independently and

unique features are extracted from the incoming traffic from

each of the IoT devices simultaneously. Here, the unique

features mean the features without redundancies and simi-

larities. Similar features are merged based on the heuristics

proposed. Once unique features are extracted on each IoT

device, the useful features are sent to the Bridge network for

further analysis and recording of incremental features. The

Bridge network is separated from the classifier network, but

both are deployed on one Edge device.

The networks and their tasks are illustrated in Figure 2,

which shows 3 networks, Generative, Bridge, and Classifier.

The Generative network takes input from the IoT devices,

which is incoming traffic. Let us assume the incoming traffic

on each IoT device as x1, x2, x3, xn, we refer it

as input set of values F . The input set of values of each

of the IoT device is referred to as F1,F2,F3,Fp,

where ‘p’ is the number of IoT devices in that smart home

health system. Each input set of values are pre-processed

to extract unique features. The input set of values

F1 = x1, x2, x3, xn on IoT device 1 are converted

to G1 = x̂1, x̂2, x̂3, x̂m, which are the unique

extracted features. Likewise, G1,G2,Gp are all sent

to the Bridge network.

We propose a novel algorithm for feature extraction from

the streaming IoT data and automatically compare features

for duplicity and fuse it into informative deep features which

is elaborated in the next subsection in Algorithm 1.

2) BRIDGE NETWORK

The bridge network receives unique feature sets (G1,G2, . . .

Gp) from all IoT devices. It forwards those values to the

classifier network for results. Apart from this, it analyzes

the received feature sets by comparing them to the exist-

ing features on which our classifier model is trained. After

which, it records any new feature and forms a new filter in

the network. The working of this network is explained in

Algorithm 2 in the next section. Bridge network construction

is similar to the AE layers on the IoT devices. This network

can be either placed on a sub-edge node such as IoT Hub or

the same node as the classifier. In our case, we have placed

it on the same device as that of the Classifier. From Figure 2,

G1,G2,Gp are sent to the classifier for results, where

the classification results are given as Anomaly or Normal.

Besides, G1,G2,Gp are processed through the filters

of the Bridge network to know if any new features are

recorded from the incoming traffic and is named as a new

feature set ‘H’. This is used for re-training purposes.

3) CLASSIFIER NETWORK

Inspecting every packet is time-consuming and computa-

tionally expensive in streaming data to identify intrusions.

We pre-process packets diligently to send only useful data

to the classifier. We used a deep learning CNN model to

detect the intrusions over the network, which has higher

accuracy and bigger data handling capability [6]. CNN helps

to reduce false alarms and unnecessary service visits. It has

multiple levels of abstraction that discriminate features easily

without overfitting the model. In this network, classification

is executed with faster response time to alleviate the latency

between IoT devices and IDS decision making. The classifier

network gives results after processing the feature sets from

the Bridge network. The activations are connected to small

regions of the neurons and not in a fully connected manner.

IV. DETAILED DESIGN

The intrusion classification process is carried out in 3 phases

in the distributed deep networks as shown in Figure 3 and as

explained below.

A. GENERATIVE NETWORK: PRE-PROCESSING PHASE

We train a deep sparse AutoEncoder network on IoT

devices for feature extraction using ReLU activation function.

We used AutoEncoders as it detects rare events (outliers)

and extracts high-level features which are helpful to identify

newer attacks. We perform the following steps in the prepro-

cessing phase. Initially, the data is adjusted in one format and

normalized so that we get improved results with our classifier.

This is applied in both cases, Training and Testing.

VOLUME 9, 2021 14275

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 3. Process flow.

1) FEATURE TRANSFORMATION AND NORMALIZATION

The incoming traffic is transformed into one format such as

the text values are converted into numbers. Then, the trans-

formed features are normalized using the Z-score function.

Z (i) =
(v(i) − µ)

σ
(1)

where µ is the mean of the n values for a given feature

(v(i) (i ∈ 1, 2, 3, . . . n)) and σ is the standard deviation.

2) UNIQUE FEATURE EXTRACTION AND FUSION

Extracting the right features is often complex and difficult

task which can be solved by using deep neural networks [33].

In this process, we use some heuristics that cluster and merge

features by agglomerative clustering and reduction of hidden

layer size. The most popular type of clustering techniques

are agglomerative hierarchical and K-means [34], among

which hierarchical clustering is better except in terms of time

complexity. In our technique, we aim to utilize the benefits

of agglomerative clustering and also reduce the time it takes

for this process. The two major tasks: feature extraction and

merging are explained below:

• To extract a high-level unique feature set, we try to

reduce the number of filters in the sparse autoen-

coder network while preserving the sparsity. To elim-

inate redundant features from the network, we add a

non-negative weights constraint to the network. The

separation capability and sparsity of hidden layers is

increased by utilizing RELU activation function and a

penalty factor. Traditional Autoencoders fail to consider

the relationships between data samples. In our network,

we consider reconstruction loss of relationships by eval-

uating correlation and similarity between data features

and by filtering weak and trivial relationships, which

helps in identifying similar features for the merging

process.

• For feature fusion, the filters/ nodes of the Sparse AE

network that are identical/ similar are merged using

Agglomerative clustering. Average similarity threshold

is calculated before the merging decision using mini-

mal distance between two data features, and those are

merged based on Agglomerative clustering. This deep

neural network approximates the input vector with the

minimum possible error. The minimal distance between

two features is calculated using Equation (2), where W

is the weight of that feature.

M̂ = argmin{xi, xi+1}d(Wxi ,Wxi+1
) (2)

The following algorithm illustrates the process of feature

extraction and fusion.

Algorithm 1: Feature Extraction and Fusion

Result: Unique useful feature set =

x̂1, x̂2, x̂3, x̂m
1 Input: x1, x2, x3, x4, , xn;

2 while corr (xi, xi+1) ≤ 90 do

3 initialize W and b;

4 initialize minRL;

5 while RL ≤ minRL do

6 W, b = Train_AE (dataset, W, b, iterations);

7 RL = reconstruction loss (dataset, W, b);

8 L1 + KL;

9 minRL = RL;

10 Control penalty term;

11 Add non-negative weight constraint;

12 Initialize threshold T ;

13 T = argmin{xi, xi+1} d (Wxi ,Wxi+1
)

14 if function(xi, xi+1) ≤ T then

15 Add x̂i & ˆxi+1 to feature set;

16 else

17 Merge (xi, xi+1) as x̂i;

18 end if

19 end while

20 end while

We begin with the original filters (nodes of the SAE

network). Let us assume it as Ci. Likewise, we have n

number of nodes C1,C2,C3,Cn. Each node on the

SAE collects some incoming traffic, which we assume as

x1, x2, x3, xn. At the beginning step, we check for its

correlation and then initialize the weight and biases of the

network (W,b). We model the SAE network in such a way

that it extracts high-level features with the least loss of infor-

mation by minimizing the reconstruction error. We calculate

the reconstruction loss every time by back-propagation until

we reach the least value. Next, we add non-negative weight

constraint to the network to eliminate redundant features,

which also guarantees: less reconstruction error, extraction

of distinct features and an increased sparsity. Then, we apply

14276 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

agglomerative clustering on the two most similar nodes Ci
and Cj until the similarity is greater than the chosen threshold

of distancing measure. We regularize the network to avoid

over-fitting the data. The nodes Ci to Cn takes input val-

ues from xi to xn on each of the IoT device and applies

Algorithm 1 to convert those values into unique values x̂i to

x̂m. Each hidden layer computation is defined as [hli(x) =

f (wTi .X+bi)]. The RELU activation function that is designed

to obtain a better representation of the input features is

represented as: [hli(X ,W , b) = RELU (wTi .X + bi)]. The

following 3 components control the network which are the

3 major components in the objective function of the sparse

autoencoder:

1) Reconstruction error over the entire dataset (that has to

be minimized). The reconstruction error is formulated

as below for Sparse Autoencoders.

L(W , b)

=
1

m

m∑

k=1

|| σ (W (2)σ (W (1)x(k) + bx) + bh) − x(k) ||22

(3)

2) Regularizer to prevent overfitting by reducing the mag-

nitude of the weights (make sure that they are close to

zero and non-negative). We incorporate L1 Regulariza-

tion in our loss function, which is shown as follows:

L(x, x̂) + λ
∑

i

| a
(h)
i | (4)

3) Kullback Leibler Divergence: It defines relative

entropy, which is a standard measure of the differ-

ence between the two distributions used to regularize

the encoder. We add this as an extra penalty term to

increase sparsity between the nodes.

L(x, x̂) +
∑

j

KL(ρ | ρ̂j) (5)

ρ is a sparsity parameter that denotes the average acti-

vation of a neuron over a collection of samples, which

is calculated as:

ρ̂j =
1

m

∑

i

[a
(h)
i (x)] (6)

The sparsity parameter is used to make some of the

hidden nodes inactive in turn increasing the sparsity

between the nodes of the hidden layer.

B. BRIDGE NETWORK: COMPARISON PHASE

The bridge network is made up of filters on which our model

is trained using sparse autoencoders. The bridge network

takes input from the generative network (from all IoT devices)

and transfers the same input to the classifier network. At the

same time, it compares that input with the filters of the

autoencoder network that we formed initially. If ever the

incoming features from the Generative network do not match

any of these filters then a new filter is added to this network.

It means a new feature has been added to our feature set on

which we can categorize attacks. After which, we use this

new set of features for re-training. The output of generative

network sparse autoencoders is fed as input to the autoen-

coder of the Bridge network. Assume that the model is trained

initially on a set of features x1, x2, x3, . . . , xm, then we form

filters f1, f2, . . . , fm based on these features on which the

model is trained. Let us consider the features arriving from

various IoT devices after extraction are x̂1, x̂2, x̂3, x̂4, . . . , x̂n.

The following algorithm explains the working of the bridge

network.

Algorithm 2: Incremental Retraining Module

Result: Decision: Yes / No

1 x(1)1, x(2)2, x(3)3, , x(n)n ;

2 while corr (x̂i, yj) ≤ 90 do

3 FILTER (x̂1, x̂2, x̂3, x̂4, , x̂n)

4 if (newFeature! = 0) then

5 Retrain = 1;

6 else

7 Retrain = 0;

8 end if

9 end while

10 −−−−−−−−−−−−−−−−−−−−−−−−−−

11 function FILTER (x̂1, x̂2, , x̂n)

12 while i ≤ n & j ≤ m do

13 if argmin(x̂i, f [j]) then

14 return 0;

15 else

16 return 1;

17 end if

18 end while

In the testing phase, this algorithm takes input values from

all IoT devices and the input values are checked by passing

through the filters of the sparse autoencoder network. The

FILTER function, which is called in Algorithm2, describes

the task of new filter addition in the Bridge network. A min-

imum distance is calculated for each of the features based

on each filter. If that minimum distance is satisfied then the

feature characteristics are similar to the filter. So we will

not consider that feature as new and the value returned to

the Algorithm is 0. We set the minimum distance by cosine

distance measure, which is used to identify the similarities

of feature characteristics by calculating the normalized inner

product [32]. If ever the cosine distance is higher than the

minimum value calculated, then it is considered as a new

feature and added as a new filter to the network. That gives a

new set of features, which are used for re-training purpose.

C. CLASSIFIER NETWORK: CLASSIFICATION MODULE

In the training process, we apply a distributed training strat-

egy on three different networkswhile the testing process is the

VOLUME 9, 2021 14277

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

same.When all the networks training is completed for the first

time, the CNNmodel is fine-tuned with a small learning rate.

We apply the drop-out before the output layer to avoid over-

fitting. We model the network traffic patterns as time-series

data. The input structure of the first layer in our network

depends on the number of inputs received. We convert the 1-

dimensional feature vector in to aXb two-dimensional feature

matrix. The network is composed of a 2D convolution layer,

a 2D pooling layer and a fully connected layer with a 3 × 3

matrix of the convolutional kernel.

The specifications of the CNN used in the experiment are

as follows:

• The 1-dimensional input (xm) is converted into a matrix

axb (in the case of NSL KDD, after the pre-processing

phase, 24 features are converted into 3 × 8 matrix).

• The first convolutional layer consists of a kernel size

= 3 × 3, step size = 1 and 32 convolutional kernels.

Followed by a 2 × 2 pooling layer and RelU activation

function. Two fully connected layers and one drop out

layer for regularization. The final output layer is built

using softmax activation to give out 2 classes: anomaly

or normal.

• The average classification loss is determined between

the predicted label ŷ and the actual label y by the

cross-entropy function. The output label is a binary vec-

tor with softmax activation to get one label out.

V. EXPERIMENTAL RESULTS

In this section, we discuss the performance of the proposed

method in reducing the complexity of preprocessing and

classification tasks. We also describe the datasets used to test

our model. Then, we compare the proposed methods with

some existing approaches. Besides, we evaluate the model

by varying the hyper-parameters. Initially, we focused on

feature extraction and later on detection accuracies of the

CNN classifier for different datasets. All experiments were

performed on the devices acting as the Generative, Bridge,

and Classifier networks with the following configurations:

Intel(r) Core i7 CPU @ 3.40 GHz and a 64 GB of RAM

running 64-bit windows connected in a home network of

various smart IoT devices. We have used standard datasets

and also real-time data generated from the various devices

connected in the smart home IoT health system. The data

of each IoT device was preprocessed separately and then

sent to the second network (Bridge) for comparison and

recording the future incremental features. Then, the same data

values are transferred to network 3 for the classification. The

time duration is the time elapsed for various tasks which is

recorded in seconds and milliseconds. The time duration is

measured for the preprocessing task and also for the entire

training of the deep neural network.

A. DATASET

1) KDD 99 CUP is the most widely used dataset for intru-

sion detection training and testing purposes. Although

many criticize this dataset for having redundant records

that result in biased classification, we have used this

dataset for evaluating our model [35] to ensure that

our preprocessing technique is efficient in eliminating

redundancies and also to record the time that our model

takes for different datasets.

2) NSL KDD dataset was proposed to overcome issues

of KDD 99 [35] and is considered as a benchmark

dataset for intrusion detection. Experimental results

using NSL- KDD dataset demonstrate that our method

achieves higher accuracy than the other incremental

models mentioned in the literature for DoS attack iden-

tification.

3) We collected the realistic traffic generated using smart

IoT devices. We have collected 2 GB of data by passing

normal traffic and also by performing the attacks. The

data collected is a combination of benign andmalicious

traffic. The performed attacks are DoS, Ping of the

Death, and Smurf attacks. These attacks were launched

one after the other to test if our incremental model

is efficient in recording newer features from different

types of attacks.

We evaluate three of the significant areas of our proposed

methodology; pre-processing task, classification task and

incremental learning.

B. PREPROCESSING TASK

The first input vector of the Autoencoder is the incoming

traffic from the real-time IoT networking or the standard

datasets described above. For each dataset, we divided it

into 3 parts: training, validation, and testing with 60%, 20%,

20% data samples in each part respectively. Because our

proposed model is distributed, we pre-process the input data

on different autoencoder networks (IoT devices) in the train-

ing and testing phase. In the case of NSL KDD dataset,

we used 30,000 training examples for DoS attack detection

with 41 features, which consisted of normal and DoS attack

samples in a balanced ratio. The next step is to split this

dataset into training testing and validation parts. After which,

we divided the input (41 features) on 3 different autoencoder

pre-processing networks, with 15, 15, and 11 features on each

of the networks. Likewise, we split the feature sets of KDD

99 and the real-time IoT dataset on 3 different AE networks.

1) NETWORK PERFORMANCE WITH DIFFERENT

CONSTRAINTS

We plot the Root Mean Square Error (RMSE) of the pre-

processing network (Sparse autoencoder network) to record

the loss of information after the initial task of learning fea-

tures. The values shown in Figures 4, 5, 6 describe that for

a change in each parameter of the network, the results are

different. In these three Figures, SAE represents a normal

sparse AutoEncoder using sigmoid activation function, while

NSAE and T-P-NSAE represent sparse autoencoder with

ReLU activation by incorporating Non-negativity, threshold,

and penalty constraints in the network.We have tested RMSE

14278 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 4. RMSE scores of the features on real-time dataset.

FIGURE 5. RMSE scores of the features on NSL KDD dataset.

FIGURE 6. RMSE scores of the features on KDD 99 dataset.

score in a step by step procedure by applying each of our

constraints that we used in Algorithm 1. It is understood

that RMSE score without any constraints for each iteration

is very high, whereas it is decreased when we included the

non-negativity constraint and it is reached at its lowest that we

could achieve by incorporating similarity threshold measure

using Agglomerative clustering and penalty factor.With three

of the datasets, we achieved fewer scores after the application

of all of the constraints discussed previously.

2) RECONSTRUCTION LOSS OF NETWORK WITH A CHANGE

OF THRESHOLD

Now we look at the features learned from our preprocessing

scheme on 3 different datasets (NSL KDD, KDD99, and

real-time IoT traffic). We plot reconstruction error VS sim-

ilarity threshold so that we understand the performance of

our model in extracting unique features. We begin the sim-

FIGURE 7. Sparse auto encoders reconstruction loss vs threshold.

TABLE 1. Similarities of the features reconstructed.

ilarity threshold from 15 (calculated from the heuristic from

Algorithm1) and altered it until we reached the lowest recon-

struction loss on the data. This comparison is a deciding

factor for the value of the threshold that we determined for

our algorithm using the Agglomerative clustering technique.

Figure 7 shows the initial value of the reconstruction loss

of the network that we obtained when we used 15 as the

Threshold. For simplicity purposes, we converted the thresh-

old value into natural numbers. Later, we tested by increasing

and decreasing the threshold value to know how good the

network is performing in extracting features. In three of the

cases, increasing the threshold worked for us and we fixed at

value 20 for the threshold limit while training the model.

3) FEATURES DISSIMILARITY

We evaluated the quality of the extracted features by the

distance measure. We chose some random features from dif-

ferent datasets and evaluated their similarity using the cosine

distance. We select a minimum distance as per this article

where the authors used cosine distance for evaluating the

similarity of the features [32]. Table 1 shows the distance

between the reconstructed features is less than the minimal

cosine distance that is defined for evaluating the uniqueness

of the features. From table, we infer that more than 90% of

the features generated are unique with no similarities.

C. CLASSIFICATION TASK

In the classification task, Accuracy, Precision, Recall,

F1 score, and ROC curves of the model are employed as the

evaluation metrics. Precision is the ratio of the number of

correctly identified samples to the total number of identified

samples. It shows how good our model is in identifying

the input samples, while the recall is the ratio of correctly

identified samples to the actual correct samples. These two

metrics are highly beneficial in benchmarking deep learning

VOLUME 9, 2021 14279

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 8. Accuracy of the proposed model.

models. We have divided the dataset into three parts: train,

validation, and test so that we validate the data to avoid

overfitting. We have also regularized the CNN by incorpo-

rating L2 regularization and dropout layers. We evaluate the

performance of our classifier model in the following way.

We plot the classification accuracy of our model in the

training and testing phases. Figure 8 shows the accuracy

and the full classification report is shown in Figure 9 that

we achieved by applying our preprocessing technique and

Convolutional Neural Network (CNN) classifier. It can be

implied that our proposed model performance is better com-

pared to most of the attack detection deep learning models

for all the three datasets, with the highest accuracy of 99 for

NSL KDD and KDD99, and in between 96 - 97 for real-time

IoT traffic for DoS attack detection. The accuracy that we

achieved on real-time traffic is because the incoming IoT raw

data is imbalanced which affects the classification results.

Apart from this, the precision, recall, F1 and AUC scores

are uniform with the accuracy results. Training and Testing

loss is another significant metric that has to be checked to

ensure that our model does not overfit the data and also to

confirm that it has acceptable biases and variances. For our

model, we have obtained less value in the testing phase when

compared to the training phase so we conclude that our model

is not overfitting.

D. INCREMENTAL LEARNING MODULE

Once the data arrives from the first network, network 2

(bridge network) records those data values and checks if it

fits in the filters on which the Bridge network is made. If any

value does not match the filter characteristics based on the

heuristic that we have explained in Algorithm 2, then that new

value is formed as a new filter. The model is then re-trained

based on new and old values. To experimentally check the

heuristic proposed, we launched ping of the death attack

in IoT smart home environment. The data collected during

this attack was passed to the preprocessing networks. After

the preprocessing phase and deep feature extraction by our

FIGURE 9. Full classification report of the proposed model.

FIGURE 10. Accuracy before and after retraining for 2 categories of
attacks.

technique, we finalized 6 unique features for that attack iden-

tification. In the next stage, we have launched Smurf (another

category of DoS) attack. Applying the same pre-processing

technique, we found 11 features that are useful in this cat-

egory of attack identification. When these 11 features were

passed to the Bridge network, it filtered those into 9 features,

which were useful in both attacks identification. The model

accuracy and performance before and after re-training with

the newer features are shown in Figure 10.

Initially, the model that was trained using the NSL KDD

feature set is tested against the data collected for Ping of

the Death attack, for which the classifier gave 85% accu-

racy. While the pre-processing and comparison phase (on

the bridge network) gave a different set of unique features

from the data collected during the ping of the death attack.

This unique set of features are added as new FILTERS in the

Bridge network and the CNN classifier is re-trained using the

new set of final features. After the re-training, the accuracy of

testing was increased to 94.8% for the same attack.Moreover,

the data collected for another attack, Smurf, is also tested

using the initial trained model on NSL KDD which gave

14280 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

FIGURE 11. Time taken for preprocessing task.

TABLE 2. Summary of the results.

78% of accuracy and was increased to 95.5% after re-training

with the features extracted and finalized through generative

and bridge networks. The increase in accuracy of detection

suggests that the incremental model for recording the newer

features is appropriate for identifying the different types of

newer attacks that the model is unaware of.

E. TIME COMPLEXITY

After testing the performance of the improved feature extrac-

tion technique, we also measure the time taken by our tech-

nique in a centralized way and in a distributed way (in parallel

by sharing the input vectors among three Autoencoder net-

works). We record the time during training and testing phases

to ensure it is suitable for real-time scenarios. The training

complexity of autoencoders is determined by the complexity

of the network structure (the type of perceptrons). In our case,

we use the multilayer perceptron with one hidden layer of k

number of nodes, then the encoder and decoder will have time

complexity of O(m. (n+ k)) [36] in the pre-processing phase,

where n is the number of input nodes. We performed experi-

ment on a dual-core CPU machine with 4 logical processors,

at an average speed of 2-3 GHZ. In the NSL KDD dataset,

we used 30,000 training examples of 41 features (divided

into 3 sets). The results are shown in Figures 11, 12 in the

centralized and distributed way (proposed) for pre-processing

and classification tasks.

A single training epoch involving the pre-processing

steps takes on average 1.4 seconds with NSL-KDD in the

distributed setting, where as for KDD99, it takes 1.59 seconds

FIGURE 12. Time taken for the classification task.

and for the real-time traffic, it takes 0.8 seconds. The input

units of the autoencoder are as per the input values of

the dataset and real-time values collected from the IoT

devices. We also compared the performance against the

pre-processing technique in the centralized way. The bar

graph in Figure 11 illustrates that the time taken for training

and testing phases by centralized (traditional) preprocessing

is higher for all the datasets (either standard or real-time IoT

traffic). Confirming that the distributed/ parallel (proposed)

preprocessing method is more suitable as it takes less time

and computations.

We record the time taken for our whole classification task

in the training and testing phases. For the classification task,

we tested the time elapsed for the whole processes in a

centralized way and in a distributed way. Figure 11 shows

that the distributed model of the preprocessing and classi-

fication tasks takes less time than the conventional central-

ized way. Finally, we compared the time complexity of our

model with those of the existing models. One such CNN

based model is developed using Accelerated DNN structure,

which was trained on quad-core processors with 8 threads

in a parallel mode which makes the execution much faster.

According to their proposed mechanism, their model gave

3 times faster performance by training the DNN model in a

parallel mode on a quad-core processor. In our case, we have

used a dual-core CPU without any accelerator [37]. The time

duration recorded suggests that the time taken for our model

is less when compared to that model, without modifications

to the hardware. Sending properly preprocessed informative

data to the classifier saves a lot of time and computations in

the training and testing phases. The summary of the results is

provided in Table 2.

VI. CONCLUSION

Existing auto-encoder techniques for feature extraction and

incremental learning produce duplicate features. In our pre-

processing technique, we show that these redundancies can

be eliminated and unique features can be extracted by

VOLUME 9, 2021 14281

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

following proper extraction techniques. We use autoencoders

with non-negativity constraints, which help us extract less

redundant features. Besides, the distributed intrusion detec-

tion model reduces the burden on the classifier and distributes

the load between IoT and edge devices. Extensive experi-

ments of the proposed model with standard data sets and

real-time IoT traffic gives encouraging results. Theoretical

analysis and numerical experiments have shown lower space

and time costs than the state of the art techniques, with

comparable classification accuracy. In the future, we aim to

retrain our incremental model with newer types of attack to

make it suitable for multi-class attack scenarios.

REFERENCES

[1] H. Fotouhi, A. Causevic, K. Lundqvist, and M. Bjorkman, ‘‘Communi-

cation and security in health monitoring systems—A review,’’ in Proc.

IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016,

pp. 545–554.

[2] A. S. Ashoor and S. Gore, ‘‘Importance of intrusion detection system

(IDS),’’ Int. J. Sci. Eng. Res., vol. 2, no. 1, pp. 1–4, 2011.

[3] H. Cavusoglu, B. Mishra, and S. Raghunathan, ‘‘The value of intrusion

detection systems in information technology security architecture,’’ Inf.

Syst. Res., vol. 16, no. 1, pp. 28–46, Mar. 2005.

[4] A. Tabassum, A. Erbad, and M. Guizani, ‘‘A survey on recent approaches

in intrusion detection system in IoTs,’’ in Proc. 15th Int. Wireless Commun.

Mobile Comput. Conf. (IWCMC), Jun. 2019, pp. 1190–1197.

[5] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi,

P. Yogesh, and A. Kannan, ‘‘Intelligent feature selection and classification

techniques for intrusion detection in networks: A survey,’’ EURASIP J.

Wireless Commun. Netw., vol. 2013, no. 1, p. 271, Dec. 2013.

[6] K. Wu, Z. Chen, and W. Li, ‘‘A novel intrusion detection model for

a massive network using convolutional neural networks,’’ IEEE Access,

vol. 6, pp. 50850–50859, 2018.

[7] K. Lee, K. Lee, H. Lee, and J. Shin, ‘‘A simple unified framework for

detecting out-of-distribution samples and adversarial attacks,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2018, pp. 7167–7177.

[8] Y. Wang, X. Fan, Z. Luo, T. Wang, M. Min, and J. Luo, ‘‘Fast online

incremental learning on mixture streaming data,’’ in Proc. 31st AAAI Conf.

Artif. Intell., 2017, pp. 2739–2745.

[9] Y. Yi, J. Wu, and W. Xu, ‘‘Incremental SVM based on reserved set

for network intrusion detection,’’ Expert Syst. Appl., vol. 38, no. 6,

pp. 7698–7707, Jun. 2011.

[10] F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, ‘‘An incre-

mental intrusion detection system using a new semi-supervised stream

classification method,’’ Int. J. Commun. Syst., vol. 30, no. 4, Mar. 2017,

Art. no. e3002.

[11] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, ‘‘Survey

on incremental approaches for network anomaly detection,’’ 2012,

arXiv:1211.4493. [Online]. Available: http://arxiv.org/abs/1211.4493

[12] F. Lin, Y. Zhou, X. An, I. You, and K.-K.-R. Choo, ‘‘Fair resource allo-

cation in an intrusion-detection system for edge computing: Ensuring the

security of Internet of Things devices,’’ IEEE Consum. Electron. Mag.,

vol. 7, no. 6, pp. 45–50, Nov. 2018.

[13] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li, ‘‘A training-integrity

privacy-preserving federated learning scheme with trusted execution envi-

ronment,’’ Inf. Sci., vol. 522, pp. 69–79, Jun. 2020.

[14] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ.

Press, 1957.

[15] E. Lahner, M. Intraligi, M. Buscema, M. Centanni, L. Vannella, E. Grossi,

and B. Annibale, ‘‘Artificial neural networks in the recognition of the

presence of thyroid disease in patients with atrophic body gastritis,’’World

J. Gastroenterology, vol. 14, no. 4, p. 563, 2008.

[16] C. Xing, L. Ma, and X. Yang, ‘‘Stacked denoise autoencoder based fea-

ture extraction and classification for hyperspectral images,’’ J. Sensors,

vol. 2016, pp. 1–10, Jun. 2016.

[17] J. An and S. Cho, ‘‘Variational autoencoder based anomaly detection

using reconstruction probability,’’ Special Lecture IE, vol. 2, pp. 1–18,

Dec. 2015.

[18] K. Nandhakumar and D. S. Sukumaran, ‘‘A hybrid feature extraction

method for network intrusion detection system,’’ IOSR J. Comput. Eng.,

vol. 21, 2019.

[19] A. Coates, A. Ng, and H. Lee, ‘‘An analysis of single-layer networks in

unsupervised feature learning,’’ inProc. 14th Int. Conf. Artif. Intell. Statist.,

pp. 215–223, 2011.

[20] C. Shi, B. Luo, S. He, K. Li, H. Liu, and B. Li, ‘‘Tool wear prediction via

multidimensional stacked sparse autoencoders with feature fusion,’’ IEEE

Trans. Ind. Informat., vol. 16, no. 8, pp. 5150–5159, Aug. 2020.

[21] C. Zhang, X. Cheng, J. Liu, J. He, and G. Liu, ‘‘Deep sparse autoencoder

for feature extraction and diagnosis of locomotive adhesion status,’’ J. Con-

trol Sci. Eng., vol. 2018, pp. 1–9, Jul. 2018.

[22] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, ‘‘Incremental learning for

robust visual tracking,’’ Int. J. Comput. Vis., vol. 77, nos. 1–3, pp. 125–141,

May 2008.

[23] A. Argyriou, T. Evgeniou, and M. Pontil, ‘‘Multi-task feature learning,’’ in

Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 41–48.

[24] G. Chechik, U. Shalit, V. Sharma, and S. Bengio, ‘‘An online algorithm for

large scale image similarity learning,’’ in Proc. Adv. Neural Inf. Process.

Syst., 2009, pp. 306–314.

[25] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, and

E. Ilie-Zudor, ‘‘Chained anomaly detection models for federated learning:

An intrusion detection case study,’’ Appl. Sci., vol. 8, no. 12, p. 2663,

Dec. 2018.

[26] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, ‘‘Learn++: An incremen-

tal learning algorithm for supervised neural networks,’’ IEEE Trans. Syst.,

Man, Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497–508, Nov. 2001.

[27] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, ‘‘Fast kernel classi-

fiers with online and active learning,’’ J. Mach. Learn. Res., vol. 6,

pp. 1579–1619, Oct. 2005.

[28] J. Li, G. Han, J. Wen, and X. Gao, ‘‘Robust tensor subspace learning for

anomaly detection,’’ Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 89–98,

Jun. 2011.

[29] D. Kulić, W. Takano, and Y. Nakamura, ‘‘Incremental learning, clustering

and hierarchy formation of whole body motion patterns using adaptive

hidden Markov chains,’’ Int. J. Robot. Res., vol. 27, no. 7, pp. 761–784,

Jul. 2008.

[30] W.-F. Hsiao and T.-M. Chang, ‘‘An incremental cluster-based approach

to spam filtering,’’ Expert Syst. Appl., vol. 34, no. 3, pp. 1599–1608,

Apr. 2008.

[31] C. Alippi andM. Roveri, ‘‘The (Not) far-away path to smart cyber-physical

systems: An information-centric framework,’’ Computer, vol. 50, no. 4,

pp. 38–47, Apr. 2017.

[32] Y. Li, Y. Wang, Q. Liu, C. Bi, X. Jiang, and S. Sun, ‘‘Incremental

semi-supervised learning on streaming data,’’ Pattern Recognit., vol. 88,

pp. 383–396, Apr. 2019.

[33] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm for

deep belief nets,’’Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[34] M. S. G. Karypis, V. Kumar, and M. Steinbach, ‘‘A comparison of

document clustering techniques,’’ in Proc. TextMining Workshop KDD,

May 2000, pp. 1–20.

[35] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis

of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.

Defense Appl., Jul. 2009, pp. 1–6.

[36] O. Irsoy and E. Alpaydın, ‘‘Unsupervised feature extraction with autoen-

coder trees,’’ Neurocomputing, vol. 258, pp. 63–73, Oct. 2017.

[37] S. Potluri and C. Diedrich, ‘‘Accelerated deep neural networks for

enhanced intrusion detection system,’’ inProc. IEEE 21st Int. Conf. Emerg.

Technol. Factory Autom. (ETFA), Sep. 2016, pp. 1–8.

ALIYA TABASSUM (Student Member, IEEE) received the integrated dual

degree (IDP) (B.Tech. and M.Tech.) in computer science and engineering

from Jawaharlal Nehru Technological University, Hyderabad, India, in 2015.

She is currently pursuing the Ph.D. degree with the Department of Com-

puter Science and Engineering, Qatar University. She worked as a Graduate

Teaching and Research Assistant with Qatar University from 2017 to 2020.

Her research interests include IoT security, wireless communication security,

machine learning, and deep learning.

14282 VOLUME 9, 2021

A. Tabassum et al.: Privacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems

AIMAN ERBAD (Senior Member, IEEE)

received the B.Sc. degree in computer engineer-

ing from the University of Washington, in 2004,

the master of computer science (MCS) degree in

embedded systems and robotics from the Univer-

sity of Essex, U.K., in 2005, and the Ph.D. degree

in computer science fromTheUniversity of British

Columbia, Canada, in 2012. He is currently an

Associate Professor with the College of Science

and Engineering, Hamad Bin Khalifa University

(HBKU). His research interests include cloud computing, edge computing,

the IoT, private and secure networks, and multimedia systems. He received

the Platinum Award from H.H. the Emir Sheikh Tamim Bin Hamad Al Thani

at the Education Excellence Day 2013 (Ph.D. category). He also received

the 2020 Best Research Paper Award from Computer Communications,

the IWCMC 2019 Best Paper Award, and the IEEE CCWC 2017 Best

Paper Award. He serves as an Editor for the KSII Transactions on Internet

and Information Systems and the International Journal of Sensor Networks

(IJSNet). He has served as a Guest Editor for IEEE Network.

AMR MOHAMED (Senior Member, IEEE)

received the M.S. and Ph.D. degrees in electri-

cal and computer engineering from The Univer-

sity of British Columbia, Vancouver, BC, Canada,

in 2001 and 2006, respectively. He worked as an

Advisory IT Specialist with the IBM Innovation

Center in Vancouver from 1998 to 2007, taking a

leadership role in systems development for vertical

industries. He is currently a Professor with the

College of Engineering, Qatar University. He has

over 25 years of experience in wireless networking research and industrial

systems development. He has authored or coauthored over 200 refereed

journal and conference papers, textbooks, and book chapters in reputable

international journals and conferences. His research interests include wire-

less networking, and the edge computing for IoT applications. He holds

three awards from IBM Canada for his achievements and leadership, and

four best paper awards from IEEE conferences. He is serving as a technical

editor for two international journals and has served as a technical program

committee (TPC) co-chair for many IEEE conferences and workshops.

MOHSEN GUIZANI (Fellow, IEEE) received the
B.S. (Hons.) and M.S. degrees in electrical engi-

neering and the M.S. and Ph.D. degrees in com-

puter engineering from Syracuse University, Syra-

cuse, NY, USA, in 1984, 1986, 1987, and 1990,

respectively. He is currently a Professor with the

Department of Computer Science and Engineer-

ing, Qatar University, Qatar. Previously, he has

served in different academic and administrative

positions for the University of Idaho, Western

Michigan University, the University of West Florida, the University of

Missouri-Kansas City, the University of Colorado-Boulder, and Syracuse

University. He is the author of nine books and more than 600 publications in

refereed journals and conferences. He guest edited a number of special issues

in IEEE journals and magazines. His research interests include wireless

communications and mobile computing, computer networks, mobile cloud

computing, security, and smart grid. He is also a Senior Member of ACM.

Throughout his career, he received three teaching awards and four research

awards. He was a recipient of the 2017 IEEE Communications Society

Wireless Technical Committee (WTC) Recognition Award, the 2018 AdHoc

Technical Committee Recognition Award for his contribution to outstanding

research in wireless communications and Ad-Hoc Sensor networks, and the

2019 IEEE Communications and Information Security Technical Recog-

nition (CISTC) Award for outstanding contributions to the technological

advancement of security. He was the Chair of the IEEE Communications

Society Wireless Technical Committee and the Chair of the TAOS Technical

Committee. He has served as a member, the chair, and the general chair of

a number of international conferences. He is also the Editor-in-Chief of the

IEEE Network. He serves on the editorial boards for several international

technical journals. He also serves the Founder and the Editor-in-Chief for

Wireless Communications and Mobile Computing journal (Wiley). He has

also served as the IEEE Computer Society Distinguished Speaker. He is also

the IEEE ComSoc Distinguished Lecturer.

VOLUME 9, 2021 14283

