
University of Huddersfield Repository

Qi, Lianyong, Xiang, Haolong, Dou, Wanchun, Bhuiyan, Md Zakirul Alam, Qin, Yongrui and

Zhang, Xuyun

Privacy-preserving distributed service recommendation based on locality-sensitive hashing

Original Citation

Qi, Lianyong, Xiang, Haolong, Dou, Wanchun, Bhuiyan, Md Zakirul Alam, Qin, Yongrui and

Zhang, Xuyun (2017) Privacy-preserving distributed service recommendation based on locality-

sensitive hashing. In: The 24th IEEE International Conference on Web Services (ICWS), June 25 -

June 30, 2017, Honolulu, Hawaii, USA. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/31929/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Privacy-preserving Distributed Service Recommendation based on Locality-
Sensitive Hashing

Lianyong Qi
School of

Information
Science and
Engineering
Qufu Normal

University
Email:

lianyongqi@gmail
.com

Haolong Xiang
State Key

Laboratory for
Novel Software

Technology
Nanjing

University
Email:

hlx6700@gmail.c
om

Wanchun Dou
State Key

Laboratory for
Novel Software

Technology
Nanjing

University
Email:

douwc@nju.edu.c
n

Md Zakirul
Alam Bhuiyan

Fordham
University

Email:
mbhuiyan3@fordh

am.edu

Yongrui Qin
University of
Huddersfield

Email:
y.qin2@hud.ac.uk

Xuyun Zhang
Department of

Electrical
& Computer
Engineering
University of

Auckland
Email:

xuyun.zhang@auc
kland.ac.nz

Abstract—With the advent of IoT (Internet of Things) age,
considerable web services are emerging rapidly in service
communities, which places a heavy burden on the target users’
service selection decisions. In this situation, various techniques,
e.g., collaborative filtering (i.e., CF) is introduced in service
recommendation to alleviate the service selection burden.
However, traditional CF-based service recommendation
approaches often assume that the historical user-service
quality data is centralized, while neglect the distributed
recommendation situation. Generally, distributed service
recommendation involves inevitable message communication
among different parties and hence, brings challenging
efficiency and privacy concerns. In view of this challenge, a
novel privacy-preserving distributed service recommendation
approach based on Locality-Sensitive Hashing (LSH), i.e.,
DistSRLSH is put forward in this paper. Through LSH,
DistSRLSH can achieve a good tradeoff among service
recommendation accuracy, privacy-preservation and efficiency
in distributed environment. Finally, through a set of experiments
deployed on WS-DREAM dataset, we validate the feasibility of
our proposal in handling distributed service recommendation
problems.

Keywords-distributed service recommendation; privacy;
efficiency; locality-sensitive hashing; collaborative filtering

I. INTRODUCTION
With the advent of IoT (Internet of Things) age, a great

number of web services are emerging rapidly in service
communities [1]. The ever-increasing services available on
the web, on one hand, provide abundant alternatives for
target users’ various service requirements, on the other hand,
place a heavy burden on the target users’ service selection
decisions especially when many service candidates share
same or similar functionalities [2-3].

In order to alleviate the service selection burden of target
users, various service recommendation techniques are
brought forth in the last decade, e.g., widely adopted
collaborative filtering (i.e., CF)-based recommendation [4-7].
Through considering the historical user-service quality data,
traditional CF-based recommendation approaches (including
memory-based CF, model-based CF and hybrid CF) can

predict target users’ personalized preferences and further
make accurate service recommendation.

However, existing CF-based service recommendation
approaches often assume that the historical user-service
quality data is centralized. Thus, the overall quality data
generated from historical user-service invocations could be
regarded as known already for subsequent service
recommendation. While actually, the historical user-service
quality data is sometimes not centralized, but distributed. For
example, user A invoked web service WS from Amazon,
while user B invoked WS from IBM.

In this distributed situation, two major challenges are
raised. First, due to the privacy concern, neither Amazon nor
IBM is willing to reveal the inner user-service quality data to
each other, which makes it a difficult task to calculate the
user similarity between A and B so as to make further
recommendation. Second, due to the inevitable message
communication between two distributed parties, i.e.,
Amazon and IBM, the service recommendation process if
often time-consuming and cannot satisfy the target users’
quick response requirements.

In view of the above two challenges, we introduce the
Locality-Sensitive Hashing (LSH) technique in service
recommendation, and further put forward a novel privacy-
preserving distributed service recommendation approach
based on LSH, i.e., DistSRLSH. With the unique nature of
LSH, DistSRLSH can achieve a good tradeoff among service
recommendation accuracy, privacy-preservation and
efficiency in distributed environment.

Generally, the contributions of our paper are three-fold.
(1) To the best of our knowledge, few existing works

considered the service recommendation problem in
distributed environment. We recognize the substantial
significance of distributed service recommendation and
specify the problem formally.

(2) We employ Locality-Sensitive Hashing technique to
aid the distributed service recommendation, so as to achieve
a good tradeoff among recommendation accuracy, privacy-
preservation and efficiency.

(3) A wide range of experiments are deployed on a real
web service quality dataset WS-DREAM to validate the
feasibility of our proposal. Experiment results indicate that
DistSRLSH achieves near-to-optimal recommendation
accuracy but substantial improvements in privacy-
preservation and efficiency.

The remainder of this paper is organized as follows.
Related works are introduced In Section 2. In Section 3, we
motivate our paper and in Section 4, we formalize the
distributed service recommendation problem. In Section 5,
Locality-Sensitive Hashing technique is introduced briefly,
and afterwards, a novel approach named DistSRLSH is put
forward to deal with the privacy-preserving distributed
service recommendation problem. A set of experiments are
deployed in Section 6 to validate the feasibility of our
proposal. And finally in Section 7, we summarize the paper
and point out the future research directions.

II. RELATED WORKS
Existing research works associated with service

recommendation could be generally divided into the
following two major popular categories: content-based
recommendation approach and CF-based recommendation
approach.

A. Content-based Service Recommendation
As an old but effective service recommendation manner,

content-based recommendation approaches first analyze the
similarity between different services, and then recommend
the services that are similar (in terms of WSDL or tag
description) to the target services (i.e., services invoked by a
target user) to the target user. In [1], the authors study
enhanced syntactical matching of web service descriptions
and make further service recommendation. In [2], semantic
aspect of web service description is discussed. In order to
introduce service semantic into service recommendation
applications, in [3], web service domain ontology is
constructed by analyzing web service descriptions (e.g.,
WSDL and free text descriptors). Similarly, in [4], through
analyzing the tree structure composed of synonyms and
original meaning in semantic dictionaries such as HowNet
and WordNet, the authors calculate the semantic distance
between two services, and further obtain their semantic
similarity for content-based service recommendation. In
order to avoid the possible fake description of service tag, in
[5], the authors leverage mashup descriptions and structures
to discover important word features of services and bridge
the vocabulary gap between mashup developers and service
providers.

However, the above content-based recommendation
methods often suffer from the over-specification problem
[6]. Besides, it becomes a challenging task to automatically
abstract the representative feature tags of web services,
which blocks the automatic service recommendation heavily.

B. CF-based Service Recommendation
Different from the content-based recommendation, CF-

based recommendation works based on the past user-service
invocation records. Generally, two categories are available:
memory-based CF and model-based CF.

(1) memory-based CF
A comprehensive service recommendation approach

WSRec is put forward in [7], which combines user-based
and item-based CF together. As service quality heavily
depends on service invocation time, in order to make
accurate service recommendation, a time-aware
recommendation approach is brought forth in [8]. Similarly,
location-aware service recommendation is performed in
both [9] and [10], as geographically close users often
experience similar service quality when they invoke an
identical web service. Besides, different users hold distinct
preferences, which also play an important role in service
recommendation. Therefore, to make personalized
recommendation, work [11] improves CF-based
recommendation approach by integrating user preferences.
Generally, the above memory-based CF recommendation
approaches are easy-to-explain and effective when there is a
great deal of available historical user-service quality data.
However, memory-based CF approaches suffer from the
scalability problem heavily, which means that the
recommendation efficiency is often low when historical
quality data is updated frequently. Beside, only few works
(e.g., [12]) consider the privacy concern in recommendation.
Third, the above approaches all assume that the historical
user-service quality data is centralized, while neglect the
distributed situations.

(2) model-based CF
Model-based CF approaches utilize the historical user-

service quality data to build a recommendation model
offline, and then make online recommendation based on the
derived model. There are some classic model-based CF
recommendation approaches, e.g., Matrix Factorization -
based approaches [13], LDA-based approaches [14] and
clustering-based approaches [15]. Generally, the above
model-based CF approaches are efficient as the
recommendation model could be trained offline. However,
few works consider the privacy protection problem in
recommendation process. Besides, similar to the memory-
based CF approaches, the above model-based CF
approaches are inappropriate to handle the distributed
service recommendation.

With the above analyses, we can conclude that existing
research works fall short in handling the distributed and
privacy-preserving service recommendation problems. In
view of the above shortcoming, a novel privacy-preserving
distributed service recommendation approach named
DistSRLSH is put forward in this paper, which will be
specified in more detail in the next section.

III. MOTIVATION

Here, we utilize the example in Fig.1 to motivate our
paper. Concretely, target user u1 invokes web services
{ws1, …, wsn1} from Amazon, user u2 invokes web services
{ws1, …, wsn2} from Microsoft, and user u3 invokes web
services {ws1, …, wsn3} from IBM. Then according to CF-
based recommendation approach (e.g., user-based CF), the
first step is to calculate the user similarity sim(u1, u2) and
sim(u1, u3). However, the above similarity calculation
process faces two major challenges:

(1) As the historical user-service quality data is
distributed on different platforms, Microsoft and IBM are
often not willing to open their observed quality data to
Amazon (here, target user u1 is on Amazon platform), due to
the privacy concern.

(2) When the number of users or the number of services is
large, the similarity calculation process may take a huge
amount of time, as message communication is inevitable
among Amazon, Microsoft and IBM; this means that the
recommendation efficiency is often low and cannot satisfy
the target users’ quick response requirements.

In view of the above two challenges, an efficient and
privacy-preserving distributed recommendation approach
named DistSRLSH is introduced in the next section.

IV. PROBLEM FORMALIZATION

In this paper, we focus on the distributed service
recommendation. To facilitate the following discussions, we
first formalize the distributed service recommendation
problem as a four-tuple DistSR(PF, U, WS, q), where

(1) PF = {pf1, …, pfz}: pfk (1 ≤ k ≤ z) denotes k-th
distributed service platform; e.g., z = 3 holds in Fig.1.

(2) U = {U1, …, Uz}: Uk (1 ≤ k ≤ z) denotes the user set
corresponding to distributed platform pfk. Concretely, Uk
={uk-1, …, uk-m}: uk-i (1 ≤ i ≤ m) denotes i-th user on
platform pfk .

(3) WS = { ws1, …, wsn}: wsj (1 ≤ j ≤ n) denotes the j-th
web service. Here, to ease the following discussions, we
assume that the services on every distributed platform
pf1, …, pfz are the same. For example, n1 = n2 = n3 holds in
Fig.1. Note that if a user did not invoke a service, then the
corresponding user-service quality data is null.

(4) q is a user-concerned quality dimension of web
services, e.g., response time. For simplicity, we only
consider a quality dimension in the following discussions.

V. A PRIVACY-PRESERVING DISTRIBUTED SERVICE
RECOMMENDATION APPROACH: DISTSRLSH

In this section, we introduce the details of our proposed
distributed service recommendation approach DistSRLSH.
Concretely, we introduce the Locality-Sensitive Hashing
technique briefly in subsection 5.A; afterwards, in
subsection 5.B, we introduce the concrete steps of LSH-
based recommendation approach DistSRLSH.

A. Locality-Sensitive Hashing
Locality-Sensitive Hashing, i.e., LSH was put forward by

Alex Andoni in 1999 [16] and has been proven to be an
effective technique to deal with many distributed
applications, e.g., distributed information retrieval. Next, we
introduce the unique property of LSH.

The main idea of LSH is: select a specific hashing
function (or a hashing function family) so that (1) for two
neighboring data points in original data space, they are still
neighbors after hashing with a large probability (2) for two
non-neighboring data points in original data space, they are
still non-neighboring after hashing with a large probability.

A hashing function that satisfies the above two conditions
are called a LSH function. More formally, a hashing
function h() is a LSH function iff the following conditions
(1) and (2) hold, where x and y are two data points in
original data space, d (x, y) denotes the distance between x
and y, h(x) is the hashing value of x after projection based
on hashing function h(), P(X) represents the probability that
condition X holds, {d1, d2, p1, p2} are a set of thresholds. If
condition (1) and (2) hold simultaneously, then hashing
function h(x) is a qualified LSH function and called (d1, d2,
p1, p2)-sensitive.

If d (x, y) ≤ d1, then P(h(x) = h(y)) ≥ p1 (1)

If d (x, y) ≥ d2, then P(h(x) = h(y)) ≤ p2 (2)

Then through a LSH function h() (or a LSH function
family, see Fig.2), all the L data points {x1, …, xL} in
original data space could be projected into a set of buckets
b1, …, bt, where each bucket bi (1 ≤ i ≤ t) only contains li (li
<< L) neighboring data points. Thus, if a target user wants
to find the similar neighbors of original input X, we can
calculate h(X) and further find the bucket (assume bi)
corresponding to h(X). Then according to the unique
property of LSH, all the li data points in bucket bi are similar
neighbors of X with a large probability. Thus, the searching

Amazon

target user

ws1 wsn1 ……

u1

Microsoft IBM

(target
user)

ws1 wsn2 ……

u2

ws1 wsn3 ……

u3

sim(u1, u3) sim(u1, u2) privacy privacy

Figure 1. Distributed service recommendation: an example

message communication message communication

space is reduced from L to li; as li << L holds, the searching
efficiency is improved significantly. Besides, through
hashing projection, the privacy information of data points in
original data space is transparent to the target users; for
example, the target user in Fig.2 only know the hashing
value h(x), but does not know the original value x. In this
way, the data privacy is protected. This is the reason why
LSH could be recruited for efficient and privacy-preserving
distributed business applications. To facilitate the
understanding of readers, the symbols recruited in this paper
are specified in Table 1.

B. DistSRLSH: LSH-based Distributed Service
Recommendation

Generally, our proposed distributed web service
recommendation approach DistSRLSH (essentially a kind of
improved user-based CF) consists of three steps (see Fig.2),
each of which is generalized in Fig.3.

Step1: building user index offline. Select a LSH

function family to project the users on distributed
platforms into corresponding buckets (the bucket
No. is the user index) offline, based on the
historical user-service quality data.

Step2: online neighbor finding. According to the
selected LSH function family, target user is
projected into a bucket; then all the users in the
bucket are considered as the target user’s similar
neighbors (with a large probability).

Step3: Top-K service recommendation. According to
the target user’s neighbors derived in Step 2,
predict target user’s quality over never-invoked
services, and return the Top-K services.

symbol specification

z number of distributed service platforms

m number of users in each service platform

n number of web services
(we assume services in different platforms are the same)

q a quality dimension of web services

d (,) distance between two points

P() probability

d1, d2, p1, p2 threshold

h() a LSH function

H() LSH function family

L number of data points (or users); L = z*m holds here

b1, …, bt buckets in a hashing table

li number of data points (or users) in bucket bi

X input or profile of a target user

T number of LSH tables

r number of LSH functions in each LSH table

Step 1: building user index offline.

In this step, we select a LSH function h(u) or a LSH
function family H(u) = { h1(u), …, hr(u)} to build index for
all the users u distributed on different platforms. The
selection of LSH functions depends on the adopted
“distance” (see condition (1)-(2) in subsection 5.A) formula.
As Pearson Correlation Coefficient (PCC) [17] is widely
adopted as the similarity measurement or distance
measurement in service recommendation, we can adopt the
LSH functions corresponding to PCC for index building
here.

Concretely, for a user u, we can specify her/his historical
quality information over n web services ws1, …, wsn with an
n-dimensional vector u


 = (ws1.q, …, wsn.q), where q is a

target user-concerned quality dimension of web services and
wsj.q = 0 if user u did not invoke service wsj before. Then
according to [18], for the above n-dimensional vector u


, its

LSH function h(u


) is represented by (3). Here, v


is an n-
dimensional vector (v1, …, vn) where vj (1 ≤ j ≤ n) is a
random value in range [-1, 1]; symbol “  ” denotes the dot
product between two vectors. To ease the readers’
understanding, we give an intuitive understanding of LSH
as follows: take vector v


as a hyper plane, if two vectors

1u


and 2u


are located on the same side of hyper plane v


(i.e.,
both 1 0u v 

 
 and 2 0u v 

 
 hold, or, both 1 0u v 

 
 and

2 0u v 
 
 hold), then 1u


and 2u


are similar to some extent.

h(u


) =
1 if 0

0 if 0

u v

u v

 




 

 


 (3)

Figure 3. Three steps of distributed service recommendation
approach DistSRLSH

{x1, …, xL}

L

S

H

b1

h(x1) h(xli)

bi

bt

…

…

h() …

X

Step 3

Step 2

Step 1

h(X)

target user

Figure 2. LSH-based service recommendation process

original data

Table 1. Symbol specifications

Thus through LSH function in (3), user u is hashed into a
binary value of 0 or 1. As indicated in (1) and (2), LSH is
essentially a probability-based approach; therefore, the more
hashing functions or hashing tables are recruited, the more
accurate similarity is obtained. So in order to make accurate
service recommendation, multiple LSH functions or tables
are necessary. Concretely, assume there are T LSH tables,
each of which consists of r LSH functions. Then for each
LSH table, an r-dimensional vector (i.e., user index in the
table) H(u


) = (h1(u


), …, hr(u


)) is obtained for user u after

LSH, and each element in H(u


) is equal to 0 or 1.
Furthermore, two users u1 and u2 are hashed into an
identical bucket after LSH, iff condition in (4) holds.
Namely, if there is at least one LSH table (totally T tables)
where the indexes of u1 and u2 are equal, then u1 and u2
could be regarded as similar neighbors. In this way, we can
build index for any user distributed on different platforms,
in an offline manner.

 x, satisfy Hx(1u


) = Hx(2u


) (x∈{1, …, T}) (4)

Step 2: online neighbor finding.
In Step 1, we have built index for each user offline based

on LSH. Next, for a target user utarget, we can find his/her
approximate neighbors online, whose major process is as
follows: first, calculate index for utarget based on the adopted
LSH function family; second, find the bucket corresponding
to the index for utarget ; third, all the users in the bucket are
regarded as similar neighbors of utarget with a large
probability.

Step 3: Top-K service recommendation.
Next, we utilize the similar neighbors (derived in Step 2)

of target user utarget to make service recommendation.
Concretely, for each service ws never invoked by utarget , we
predict its quality q by utarget, i.e., ws.qtarget based on (5),
where set NB denotes utarget’s neighbors derived in Step 2,
ws.qi denotes ws’ quality over q observed by ui. Finally, we
rank all the services (never invoked by utarget) by the
predicted quality in (5) and select the Top-K services as the
final recommendation results.

ws.qtarget = 1 * .
| |

i

i
u NB

ws q
NB 

 (5)

Through the above three steps, we can finish the
distributed service recommendation process and finally
recommend K services to the target user. More formally, our
proposal could be specified by pseudo code as below.

VI. EXPERIMENT
In this section, a set of experiments are conducted to

validate the feasibility of our proposed DistSRLSH approach,
when dealing with the privacy-preserving distributed web
service recommendation problems. The experiments are
based on a real web service quality dataset WS-DREAM [19]
which describes real-world QoS evaluation results from 339
users on 5825 Web services. We randomly divide the 339

Algorithm: DistSRLSH

Inputs: PF = {pf1, …, pfz}: distributed platforms
UI = {uI-1, …, uI-m}: user set for platform pfI
WS = { ws1, …, wsn}: web service set
q: a quality dimension of web services
utarget: target user requesting recommended services

Output: Rec_Ser_Set: service set recommended to utarget

/* Step 1: building user index offline*/
1 for i = 1 to T do // T LSH tables
2 for I = 1 to z do
3 for J = 1 to m do
4 Hi(uI-J) = (hi-1(I Ju 


), …, hi-r (I Ju 


))

5 for j = 1 to r do // r LSH functions
6 for k = 1 to n do //n-dimensional hashing vector
7 hijk = random [-1, 1]
8 end for
9 if I Ju 


 ijh


> 0 // dot product
10 then hi-j (I Ju 


) = 1

11 else hi-j (I Ju 


) = 0

12 end if
13 end for
14 end for
15 end for

/* Step 2: online neighbor finding */
16 set NB =  // neighbor set of utarget
17 for i = 1 to T do
18 Hi(utarget) = (hi-1(targetu


), …, hi-r (targetu


))

19 for j = 1 to r do
20 if targetu


 ijh


> 0
21 then hi-j (targetu


) = 1

22 else hi-j (targetu


) = 0
23 end if
24 end for
25 find bucket with index Hi(utarget) and put its users in NB
26 end for

/* Step 3: Top-K service recommendation */
27 for j = 1 to n do
28 if wsj.qtarget = 0 // utarget never invoked wsj before
29 then count = 0
30 for i = 1 to |NB| do // all neighbors of utarget
31 if wsj.qi ≠ 0 // i-th neighbor invoked wsj
32 then count ++
33 wsj.qtarget = wsj.qtarget + wsj.qi
34 end if
35 end for
36 wsj.qtarget = wsj.qtarget / count
37 end if
38 end for
39 put Top-K services with highest q into set Rec_Ser_Set
40 return Rec_Ser_Set to utarget

users into 10 parts so as to simulate the distributed service
recommendation scenario (in this paper, we mainly focus on
the service recommendation efficiency and privacy concerns,
so the user division manner does not affect the final
experiment results). Besides, we consider the user-service
response-time dimension, and 90% of the existing response-
time data in WS-DREAM is removed so that we can predict
the missing response-time data and make further
recommendation. In each recommendation process, only
Top-3 services are generated.

In order to validate the feasibility of our proposal in terms
of distributed recommendation efficiency, accuracy and
privacy-preservation, we test the following three criteria,
respectively:

(1) time cost: consumed time for generating service
recommendation results.

(2) MAE (Mean Absolute Error): average difference
between predicted quality and real quality of recommended
services.

(3) privacy-preservation: confusion degree between real
user-service quality and its index after LSH hashing.

Besides, we compare our proposed DistSRLSH approach
with four related approaches: UPCC [20], IPCC [21],
TLACF [9] (clustering-based approach, parameter flag = 0
and d = 0) and WSWalker [22] (random walk-based
approach, parameter ε = 0.0001, max-depth = 6). The
experiments were conducted on a Dell laptop with 2.80 GHz
processors and 2.0 GB RAM. The machine is running under
Windows XP and JAVA 1.5. Each experiment was carried
out 10 times and the average experiment results were
adopted finally.

A. Experiment Results and Analyses
Concretely, the following five profiles are tested and

compared in our experiments. Here, as Table 1 indicates, L
and n denote the number of users and number of web
services, respectively, T and r denote the number of LSH
tables and number of hashing functions in each LSH table,
respectively.

Profile1: efficiency comparison among five approaches
In this profile, we test the recommendation efficiency of

five approaches. The recruited parameters are set as below:
L is varied from 50 to 300, n is varied from 1000 to 5000, T
= r = 10 holds. The concrete experiment results are
demonstrated in Fig.4.

In Fig.4(a), n = 5000 holds. The experiment results
indicate that the time costs of five approaches all increase
with the growth of m, while our proposed DistSRLSH
approach outperforms the other four ones as most work (i.e.,
user index building) in DistSRLSH could be done offline, and
the candidate space for similar neighbors of a target user is
reduced significantly with the help of unique nature of LSH.
Thus, the recommendation efficiency is improved
significantly. Similar results could be observed from
Fig.4(b), which is not explained repeatedly.

(a) n = 5000

(b) m = 300

Figure 4. Recommendation efficiency comparison

Figure 5. Recommendation accuracy comparison

(a) n = 5000

(b) m = 300

Profile2: accuracy comparison among five approaches
In this profile, we test the accuracy (i.e., MAE, the

smaller the better) of five recommendation approaches. The
experiment parameters are set as follows: L is varied from
50 to 300, n is varied from 1000 to 5000, and T = r = 10
holds. The experiment results are shown in Fig.5.

Concretely, in Fig.5(a), n = 5000 holds; and the
experiment results demonstrate that the recommendation
accuracies of five approaches do not change significantly
with the growth of m (except for IPCC approach), as only
Top-3 services are recommended to the target user in each
recommendation approach; besides, our proposed DistSRLSH
approach outperforms the rest four ones in terms of
recommendation accuracy, which is due to the inherent
nature of our adopted LSH technique (i.e., two neighboring
users are projected into the same bucket after LSH hashing
with a large probability).

In Fig.5(b), m = 300 holds; and the experiment results
show that the recommendation accuracy of our DistSRLSH
approach sometimes outperforms the other four ones (e.g.,
when n = 3000 or 5000); while when n = 1000, 2000 or
4000, DistSRLSH does not perform very well in terms of
recommendation accuracy, which is due to the fact that our
adopted LSH technique is actually a probability-based
technique and hence, cannot always guarantee to achieve an
optimal service recommendation result. However, as Fig.5(b)
shows, the accuracy of DistSRLSH approach is still
acceptable in most cases.

Profile3: privacy-preservation of DistSRLSH w.r.t. T and r
The four related recommendation approaches, i.e., UPCC,

IPCC, TLACF and WSWalker do not consider the privacy
protection; therefore, in this profile, we only test the privacy-
preservation effect of our proposed DistSRLSH approach.
According to DistSRLSH, the original user-service quality data
are hashed into different buckets based on the calculated
LSH index. Therefore, in this profile, we utilize the bucket
density (i.e., the number of derived similar neighbors) to
approximately represent the privacy-preservation effect (a
larger density often means better privacy-preservation effect).
The experiment parameters are set as follows: L = 300, n =
5000, T is varied from 10 to 20, r is varied from 2 to 12. The
experiment results are shown in Fig.6.

As Fig.6 shows, when the number of hashing functions
in each LSH table, i.e., r is small, many users are projected
into the same bucket as the target user, namely many
candidate neighbors are obtained. While with the growth of
r, the number of neighbors is reduced significantly, as the
neighbor “criteria” becomes stricter.

Profile4: accuracy of DistSRLSH w.r.t. T and r
In this profile, we test the service recommendation

accuracy of DistSRLSH with respect to T and r. The
experiment parameters are set as follows: L = 300, n = 5000,
T is varied from 10 to 20, r is varied from 2 to 12. The
experiment results are shown in Fig.7.

As Fig.7 shows, the MAE values of DistSRLSH decrease
approximately with the growth of r; this is because a larger r
means stricter filtering condition for similar neighbors and
hence, those “really similar” neighbors of a target user could
be obtained finally.

Profile5: efficiency of DistSRLSH w.r.t. T and r
In this profile, we test the efficiency of DistSRLSH with

respect to T and r. Here, L = 300, n = 5000, T is varied from
10 to 20, r is varied from 2 to 12. The experiment results are
shown in Fig.8. As Fig.8 shows, the time costs of DistSRLSH
decrease with the growth of r; this is because when r grows,
the filtering condition becomes stricter and only a few
“really similar” neighbors are returned and hence, the
recommendation efficiency is improved.

Figure 6. Privacy-preservation w.r.t. T and r (DistSRLSH)

Figure 7. MAE w.r.t. T and r (DistSRLSH)

Figure 8. Time cost w.r.t. T and r (DistSRLSH)

VII. CONCLUSIONS
In this paper, we put forward a novel privacy-preserving

service recommendation approach based on Locality-
Sensitive Hashing, i.e., DistSRLSH, to handle the distributed
recommendation problem. Through Locality-Sensitive
Hashing, candidate space of similar neighbors of a target
user could be reduced significantly, so that the
recommendation efficiency is improved. Besides, for
distributed users, their invoked service quality information is
transparent to the target users through hashing technique,
which protects user privacy very well. Finally, we validate
the feasibility of our proposal through a set of experiments
deployed on well-known WS-DREAM dataset. The
experiment results demonstrate that our proposed DistSRLSH
approach can achieve a good tradeoff among service
recommendation accuracy, privacy-preservation and
efficiency in distributed environment.

In the future, we will investigate the distributed service
recommendation problems with multiple quality dimensions.
Besides, service quality is not stable, but dynamic; therefore,
we will study the dynamic quality-aware distributed service
recommendation problems in the future.

ACKNOWLEDGMENT
This paper is partially supported by Natural Science

Foundation of China (No. 61402258, No. 61672276), Open
Project of State Key Laboratory for Novel Software
Technology (No. KFKT2016B22).

REFERENCES
[1] M. Brian Blake, Iman Saleh, Yi Wei, Ian D. Schlesinger,

Alexander Yale-Loehr, and Xuanzhe Liu. Shared Service
Recommendations from Requirement Specifications: A
Hybrid Syntactic and Semantic Toolkit. Information and
Software Technology, 57: 392-404, 2015.

[2] Malak Al-Hassan, Haiyan Lu, and Jie Lu. A Semantic
Enhanced Hybrid Recommendation Approach: A Case Study
of E-Government Tourism Service Recommendation
System. Decision Support Systems, 72: 97-109, 2015.

[3] Aviv Segev, and Quanzheng Sheng. Bootstrapping Ontologies
for Web Services. IEEE Transactions on Services Computing,
5(1): 33-44, 2012.

[4] Gaofeng Cao, and Li Kuang. Identifying Core Users based on
Trust Relationships and Interest Similarity in Recommender
System, IEEE International Conference on Web Services, pp.
284-291, 2016.

[5] Yang Zhong, Yushun Fan, Wei Tan, and Jia Zhang. Web
Service Recommendation With Reconstructed Profile From
Mashup Descriptions. IEEE Transactions on Automation
Science and Engineering, 2016.

[6] Ibrahim Mashal, Tein-Yaw Chung, and Alsaryrah Osama.
Toward Service Recommendation in Internet of Things. IEEE
International Conference on Ubiquitous and Future Networks,
pp. 328-331, 2015.

[7] Zibin Zheng, Ma Hao, R. Lyu Michael, and Irwin King. Qos-
aware Web Service Recommendation by Collaborative
Filtering. IEEE Transactions on Services Computing, 4(2):
140-152, 2011.

[8] Xinyu Wang, Jianke Zhu, Zibin Zheng, Wenjie Song,

Yuanhong Shen, and Michael R. Lyu. A Spatial-Temporal
QoS Prediction Approach for Time-aware Web Service
Recommendation, ACM Transactions on the Web, 10(1): 7,
2016.

[9] Chengyuan Yu, and Linpeng Huang. A Web Service QoS
Prediction Approach based on Time- and Location-aware
Collaborative Filtering. Service Oriented Computing and
Applications, 10(2): 135-149, 2016.

[10] Mingdong Tang, Yechun Jiang, Jianxun Liu, and Xiaoqing
Liu. Location-aware Collaborative Filtering for QoS-based
Service Recommendation, IEEE International Conference on
Web Services, pp. 202-209, 2012.

[11] Kenneth K. Fletcher, and Xiaoqing Frank Liu. A
Collaborative Filtering Method for Personalized Preference-
based Service Recommendation. IEEE International
Conference on Web Services, pp. 400-407, 2015.

[12] Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R. Lyu. A
Privacy-preserving QoS Prediction Framework for Web
Service Recommendation. IEEE International Conference on
Web Services, pp. 241-248, 2015.

[13] Yao, Lina, Quan Z. Sheng, Yongrui Qin, Xianzhi Wang, Ali
Shemshadi, and Qi He. Context-aware Point-of-Interest
Recommendation Using Tensor Factorization with Social
Regularization, International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp.
1007-1010, 2015.

[14] Yang Zhong, Yushun Fan, Keman Huang, Wei Tan, and Jia
Zhang. Time-aware Service Recommendation for Mashup
Creation in An Evolving Service Ecosystem. IEEE
International Conference on Web Services, pp. 25-32, 2014.

[15] Chen Wu, Weiwei Qiu, Zibin Zheng, Xinyu Wang, and
Xiaohu Yang. QoS Prediction of Web Services based on
Two-phase K-means Clustering. IEEE International
Conference on Web Services, pp. 161-168, 2015.

[16] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
Search in High Dimensions via Hashing. VLDB, 99(6): 518-
529, 1999.

[17] Lee Rodgers, Joseph, and W. Alan Nicewander. Thirteen
Ways to Look at the Correlation Coefficient. The American
Statistician, 42(1): 59-66, 1988.

[18] Data Mining and Query Log Analysis for Scalable Temporal
and Continuous Query Answering, http://www.optique-
project.eu/, 2015.

[19] Z. Zheng, Y. Zhang, and M. R. Lyu. Investigating QoS of
Real World Web Services. IEEE Transactions on Services
Computing, 7(1): 32–39, 2014.

[20] Breese JS, Heckerman D, Kadie C. Empirical Analysis of
Predictive Algorithms for Collaborative Filtering, 1998. John
S. Breese, David Heckerman, and Carl Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative Filtering.
International Conference on Uncertainty in Artificial
Intelligence, pp. 43-52, 1998.

[21] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter
Bergstrom, and John Riedl. GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. ACM
conference on Computer Supported Cooperative Work, pp.
175-186, 1994.

[22] Mingdong Tang, Xiaoling Dai, Buqing Cao, and Jianxun Liu.
WSWalker: A Random Walk Method for QoS-aware Web
Service Recommendation. IEEE International Conference on
Web Services, pp. 591-598, 2015.

