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ABSTRACT
User privacy in location-based services has attracted great inter-
est in the research community. We introduce a novel framework
based on a decentralized architecture for privacy preserving group
nearest neighbor queries. A group nearest neighbor (GNN) query
returns the location of a meeting place that minimizes the aggregate
distance from a spread out group of users; for example, a group of
users can ask for a restaurant that minimizes the total travel dis-
tance from them. We identify the challenges in preserving user pri-
vacy for GNN queries and provide a comprehensive solution to this
problem. In our approach, users provide their locations as regions
instead of exact points to a location service provider (LSP) to pre-
serve their privacy. The LSP returns a set of candidate answers that
includes the actual group nearest neighbor. We develop a private
filter that determines the actual group nearest neighbor from the re-
trieved candidate answers without revealing user locations to any
involved party, including the LSP. We also propose an efficient al-
gorithm to evaluate GNN queries with respect to the provided set of
regions (the users’ imprecise locations). An extensive experimental
study shows the effectiveness of our proposed technique.
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1. INTRODUCTION
Location-based services (LBSs) have been originally tailored for

requests of a single user, for example, asking for the closest gas
station or the positions of traffic jams along a route. The advance-
ment of LBSs has led to a new range of real-time services such
as location-based social networking [1] (e.g., Loopt [2], Friend
Finder [25]) that enable a group of users to be involved in a sin-
gle location-based query, for example, a group of users may want
to meet at a place that minimizes the total travel distance for them.

However, frequent and continuous access to these services ex-
poses users to privacy risks: a location service provider (LSP) might
be able to derive sensitive and private information about a user’s
health, habits, and preferences from the user’s locations. For exam-
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ple, if a user requests a LBS from a health center then the user’s
health condition could be inferred. Due to an increasing awareness
of privacy risks, users might refrain from accessing LBSs, which
would hinder the proliferation of these services [3, 20].

Current research focuses on developing techniques that preserve
user privacy during the access of LBSs. Although there is a range of
privacy preserving techniques (e.g., [5, 14, 19, 27]) for answering a
nearest neighbor (NN) query, processing a group nearest neighbor
(GNN) query in a privacy preserving manner has not been explored.
In a GNN query, a group of users provide their current locations,
and the LSP returns the location (e.g., a meeting place) that mini-
mizes an aggregate distance for the group. The aggregate distance
could be the total distance of all group members or the maximum
distance of any group member to the meeting location. This paper
is the first work to address the problem of answering GNN queries
while preserving user privacy for all members, which we call the
private GNN query.

To preserve a user’s privacy while accessing LBSs, a number
of approaches have been proposed that provide an LSP with an
imprecise instead of an exact location (e.g., [8, 12, 14]). In a privacy
preserving or simply private NN query [9], the LSP returns a set of
candidate NNs with respect to the imprecise location (typically a
region). A user who knows her exact location can easily determine
the actual NN from the returned candidate answer set.

In our proposed solution for a private GNN query, an LSP returns
a set of candidate GNNs with respect to a set of regions. However,
finding the actual GNN from the candidate answer set is more dif-
ficult than it is for a private NN query; a user who knows her exact
location cannot determine the actual GNN from the returned can-
didate answer set because the actual GNN depends on the exact
locations of all users involved in the GNN query. Not only the LSP,
but even a group member may invade the privacy of other mem-
bers. There are occasions where group members may wish to hide
their current locations from other members for personal reasons.
For example, a user who is at a job interview may wish to hide
this location if a group of colleagues includes superiors. To ensure
a user’s privacy, no one should have access to locations of others.
The key challenge in a private GNN query is to determine the actual
GNN without enabling the LSP or other members to infer locations
of users in the group. In this paper, we propose a system that allows
users to request private GNN queries.

We will show in Section 5.1 that a straightforward technique to
determine the actual GNN that does not share the users’ actual lo-
cations with others, is prone to the so called distance intersection
attack. In this technique, each user updates the distance for the re-
trieved candidate answers with respect to the user’s actual location.
However, from these updates it is possible to identify the distance
of users to the candidate answers. The distance intersection attack



uses the identified distances to the locations of the candidate an-
swers to triangulate the user’s location. We propose the private
filter technique to address this attack. Our private filter technique
passes the retrieved candidate GNN answers in an aggregated form
to each user in the group. Based on each user’s location, the an-
swers are modified in such a way that no group member can derive
other member locations but the actual GNN can still be computed.

The computation of the candidate answers for the private fil-
ter requires an algorithm for the LSP to evaluate the GNN query
with respect to a set of regions (the users’ imprecise locations).
A straightforward application of algorithms for answering a point-
based GNN query [18, 21, 22, 23] to a set of regions would have to
consider every point configuration, where each configuration con-
sists of one point location from each region. This would incur a
high computational and I/O overhead. In this paper, we extend the
existing GNN algorithm [23] for point locations to evaluate GNN
queries with respect to a set of regions, which is an important part
of our overall solution. Our proposed algorithm does not need a
separate computation for each point set removing major overheads.

In this paper, we identify how the privacy of group members
can be invaded for GNN queries and develop a novel approach to
preserve their privacy. In summary, our contributions are:

• We propose a framework to preserve each group member’s
privacy during the access of LBSs as a group. The advan-
tage of our framework is its decentralized architecture, which
does not require any intermediary trusted server.

• We provide novel filtering techniques that find the actual
GNN from a set of candidate GNNs without disclosing a
member’s location to others. Our techniques prevent the dis-
tance intersection attack.

• We extend the existing GNN algorithm [23] for point loca-
tions to regions, which is a necessary component to provide
the candidate GNNs efficiently while preserving the privacy
of group members.

• We evaluate our techniques in extensive experiments.

Section 2 presents the problem setup. In Section 3, we discuss re-
lated privacy approaches and GNN techniques. Section 4 presents
our framework and overviews our system. The private filter tech-
niques and the algorithm to evaluate a GNN query for a set of
regions are described in Section 5 and 6, respectively. Section 7
reports experimental results and Section 8 concludes the paper.

2. PROBLEM SETUP
We assume a system architecture where the users and the LSP

are connected through a network (e.g., the cellular network or the
Internet). The problem of privacy preserving GNN queries (pri-
vate GNN queries) is described as follows. Given a group of n
users u1,u2, . . . ,un located at points l1, l2, . . . , ln, respectively, is-
sue a query for the group nearest data point (GNN). The formal
definition of the GNN query is given below:

DEFINITION 2.1. (GNN Query). Let D be a set of data points in
a 2-dimensional space, Q be a set of n query points {q1,q2, . . . ,qn}
and f be an aggregate function. The GNN query finds a data point
p from D, such that for any p′ ∈ D−{p}, f (Q, p)≤ f (Q, p′).

In private GNN queries, the users in the group do not reveal
their exact locations to the LSP; instead they provide regions
R1,R2, . . . ,Rn that contain l1, l2, . . . , ln, respectively. Thus the LSP
needs to return a set of candidate data points A with respect to the

provided regions that include the GNN for the actual user locations.
Afterwards the actual GNN has to be computed from A without re-
vealing the location of any user to any group member, not even
in the imprecise format. In general, a group may be interested in
finding k data points that have the k smallest aggregate distances,
known as k group nearest neighbor (kGNN) query.

As we have seen in Section 1, the problem of privacy preserving
kGNN queries has two parts: (i) The group of users use a technique,
called private filter, to find the actual k GNNs from the retrieved
set of candidate answers without compromising their privacy, and
(ii) The LSP evaluates the kGNN query with respect to a set of
regions to provide the candidate answers for the private filter while
preserving user privacy. We formally define the private filter and
the kGNN query w.r.t. regions as follows.

DEFINITION 2.2. (Private Filter). Let A be a set of candidate
data points, {u1,u2, . . . ,un} be a group of n users, f be an aggre-
gate function, and k be a positive integer. The precise location li of
a user ui is only known to ui. A private filter is a mechanism that
computes the k GNNs from A for the set {l1, l2, . . . , ln} with respect
to f without allowing others to identify any point location li.

DEFINITION 2.3. (kGNN Query w.r.t. Regions). Let D be a set
of data points in a 2-dimensional space, {R1,R2, . . . ,Rn} be a set
of n query regions, ri be any point in Ri for 1≤ i≤ n, and f be an
aggregate function. The kGNN query w.r.t. regions returns the set
of candidate data points A that includes all data points having the
jth smallest (1 ≤ j ≤ k) value for f with respect to every point set
{r1,r2, . . . ,rn}.

In this paper, we focus on two aggregate functions SUM and
MAX, which return the total distance and the maximum distance
from the users to a data point, respectively.

3. RELATED WORK
Section 3.1 discusses state-of-the-art techniques for preserving

user privacy in LBSs, and Section 3.2 reviews existing methods to
evaluate GNN queries for a set of query points.

3.1 User Privacy in LBSs
Most research (e.g., [8, 12, 19]) to preserve user privacy in

LBSs is based on a centralized architecture, where an intermedi-
ary trusted server acts as a privacy protector for the users. How-
ever, such a centralized architecture has a single point of failure,
incurs bottlenecks due to communication overheads, and faces pri-
vacy threats as the intermediary server stores all information in a
single place. Therefore, a few decentralized approaches (e.g., [7,
11, 14]) eliminate the role of an intermediary trusted server and
preserve a user’s privacy in cooperation with her peers. All ap-
proaches, centralized or decentralized are developed for a single
user accessing LBSs.

Similarly for a private GNN query, in a centralized architecture
each user in the group can send her exact location to the interme-
diary server, which forwards the GNN query with regions instead
of the exact user locations to the LSP. The LSP returns the candi-
date answers with respect to the set of regions to the intermediary
server. Since the intermediary server knows the exact locations of
all users, it can compute the actual GNN and forward the actual
answer to the group. To overcome the mentioned limitations of a
centralized architecture, we propose a framework based on a de-
centralized architecture to access LBSs for a private GNN query.

Several techniques for hiding a user’s location from the LSP
without an intermediary server have been studied in the literature.



Most of these techniques (e.g., [7, 11, 10, 16, 14]) exploit P2P net-
work (e.g., Bluetooth, WiFi), where an imprecise location of the
user is computed as a rectangle or circle that includes K− 1 other
users’ locations in addition to the location of the user requesting the
query so that the user’s location becomes K-anonymous. In [7, 11,
10], the users need to trust their peers with their locations in order
to compute their imprecise locations.

In [16], a user who requires a service forms a group with K− 1
other users through their proximity information and then the group
progressively finds a bounding box as their rectangle that covers
all users’ locations. To compute the rectangle, in this technique the
users do not need to share their actual locations with anyone, not
even their peers. However, we do not use this technique to compute
the user’s rectangle to request a private kGNN query, because our
proposed private filter requires that the user’s rectangle sent to the
LSP are not revealed to anyone, whereas in this technique a group
of users needs to use the same rectangle (i.e., the user’s rectangle is
revealed to others).

In [14], each user computes her local imprecise location with a
rectangle that includes her exact location, where the rectangle area
is considered as privacy metric. When a user requires to access
a LBS, she collects her peers’ local imprecise locations and then
computes her global imprecise location for the LSP as a minimum
bounding rectangle that includes K− 1 others’ local imprecise lo-
cations (i.e., rectangles) and her exact location. Since neither the
user’s actual location nor the rectangle sent to the LSP are revealed
to others, we use this technique to request a private GNN query.

Besides K-anonymity and imprecision, space transforma-
tion [17] and private information retrieval techniques [9] are also
used to preserve the privacy of users. However, the architecture for
both of these techniques require an encrypted database. In this pa-
per, we assume that the users in a group disclose their imprecise
locations to the LSP, which evaluates the queries based on these
imprecise locations on a non-encrypted database.

We note that our system assumes that each user collaborates with
others. If users are malicious, our approach can be complemented
with secure multi-party protocols (e.g., [6]).

3.2 Group Nearest Neighbor Queries
kGNN queries are introduced by Papadias et al. [22]. kGNN

queries are also known as aggregate nearest neighbor queries [23,
21]. In [22], the authors have developed three different methods,
MQM (multiple query method), SPM (single point method) and
MBM (minimum bounding method), to evaluate a GNN query that
minimizes the total distance from a set of query points to a data
point. In [23], Papadias et al. have extended these methods to min-
imize the minimum and maximum distance in addition to the total
distance with respect to a set of query points. All these methods as-
sume that the data points are indexed using an R-tree [13] and can
be implemented using both depth first search (DFS) [24] and best
first search (BFS) [15] algorithms.

The basic idea of MQM is to continue an incremental search for
the nearest data point of each query point in the set and compute
the aggregate distance from all query points for each retrieved data
point. The search ends when it is ensured that the aggregate dis-
tance of any non-retrieved data point in the database is greater than
the current kth minimum aggregate distance, i.e, when the k GNNs
are already found. The disadvantage of MQM is that it traverses
the R-tree multiple times and may access the same data point more
than once.

SPM and MBM, on the other hand, find the k GNNs in a sin-
gle traversal of the R-tree. SPM approximates the centroid of the
query distribution area and continues the search with respect to the

centroid until the actual k GNNs are determined. MBM searches in
order of the minimum aggregate distance of R-tree nodes from the
set of query points. In SPM and MBM, the authors have proposed
strategies to prune the R-tree nodes/data points while traversing the
R-tree using the centroid and the minimum bounding box of the set
of query points, respectively. They have also shown the conditions
to terminate the search when k GNNs are found. Experimental re-
sults [22, 23] show that the performance of MBM is better than
those of SPM and MQM as it traverses the R-tree once and takes
the query distribution area into account.

In [18], Li et al. have approximated the query distribution area
using an ellipse and used a distance or a minimum bounding box
derived from the ellipse to prune the R-tree nodes/data points for
processing kGNN queries. In [26], Luo et al. have proposed an al-
gorithm to evaluate a GNN query only for non-indexed data points
using projection-based pruning strategies and in [21], Namnandorj
et al. have developed algorithms for both indexed and non-indexed
data points by estimating a search space using a vector property.

This paper is the first study to propose an algorithm for process-
ing a kGNN query with respect to a set of regions instead of a set
of points in order to preserve user privacy.

4. FRAMEWORK BASED ON A DECEN-
TRALIZED ARCHITECTURE

In this section, we first present a framework for processing a pri-
vate GNN query based on a decentralized architecture, which elim-
inates the need for any intermediary trusted server. Then, we give
an overview of our proposed system.

In our proposed framework a coordinator for the group is se-
lected randomly before a query request. The coordinator assists in
processing the private kGNN query and can be a group member
or anyone outside the group who does not participate in the query.
Note that the coordinator differs from an intermediary server in a
centralized architecture because the coordinator can be different for
every GNN query. Moreover, the coordinator only knows the user
identities in the group and the type of query requested but has no
knowledge about the user locations. The total process of access-
ing a private kGNN query is performed in three steps: (i) sending
the query, (ii) evaluating the query, and (iii) finding the answer. We
detail these components in the following subsections.

4.1 Sending the Query
Each user in the group first registers to the coordinator with their

identities (e.g., IP address, phone number) and receives a query
identity (QID) from the coordinator. Each group user sends her im-
precise location and the QID anonymously to the LSP using either
a pseudonym service [11] in the Internet or through a randomly
selected peer [14, 7] connected in a wireless personal area net-
work (e.g., Bluetooth or 802.11). These techniques hide the users’
identities from the LSP as well as from the cellular infrastructure
provider. The coordinator only sends the kGNN query for the re-
quired service, which includes the QID, the description of the re-
quired service, the value for k and the number of users in the group
to the LSP.

4.2 Evaluating the Query
After receiving the request, the LSP evaluates the kGNN query

with respect to the set of regions. Since the LSP does not know the
exact user locations, it cannot determine the actual k GNNs. There-
fore, it returns a set of candidate answers that include the actual
GNNs to the coordinator.

4.3 Finding the Answer



The final step is to determine the actual k GNNs without reveal-
ing the user locations to anyone. The retrieved answer set has to
go through all users of the group. Each user updates the distance to
the candidate GNN answers with respect to her actual location. The
communication between the users in the group can be done with or
without the coordinator.

In the first case (with the coordinator), the coordinator randomly
selects one of the user identities in the group and sends the answer
set to that user. After receiving the modified answer set, the coordi-
nator marks that user’s identity as visited. The coordinator repeats
this procedure with the remaining unmarked user identities.

In the second case (without the coordinator), the coordinator for-
wards the retrieved answer set together with the list of identities of
all participants to a randomly selected user in the group. The se-
lected user modifies the candidate answers and marks her identity
as visited. Then she randomly selects a user with an unmarked iden-
tity and forwards the updated answer set and the list of identities to
the next selected user.

After the answer set has been modified by all users, the coordi-
nator (in the first case) or the last selected user (in the second case)
sends the actual GNNs to all users in the group.

4.4 Overview of Our System
We propose a system for processing privacy preserving kGNN

queries based on the framework above. We assume that users in
the group compute their imprecise locations as rectangles using the
method in [14] as discussed in Section 3.1. We present an algorithm
to evaluate the kGNN query with respect to the set of rectangles and
develop techniques for a private filter that finds the actual k GNNs
for the aggregate functions SUM and MAX.

For ease of understanding, we first discuss the private filter tech-
niques in Section 5. We show a straightforward method to deter-
mine the actual GNNs from the retrieved answer set where the
users do not disclose their locations to anyone; instead they update
the distance to the candidate GNNs using their actual distances.
However, these updates enable others to use the received distance
updates to the candidate GNNs and compute a user’s actual loca-
tion using 2-dimensional (2D) trilateration. We call this attack a
distance intersection attack on a user’s privacy. We propose pri-
vate filter techniques where the distance of candidate answers are
updated by each user in such a way that no party can identify an
individual’s distance from the candidate answers and thus cannot
apply a distance intersection attack to determine a user’s location.

Then, we present an algorithm to evaluate a kGNN query with
respect to a set of rectangles in Section 6. Since, our algorithm
deals with a set of query rectangles instead of query points, the
measured distance from query rectangles is a range instead of a
fixed value and the search for GNNs is made based on that range.
Our algorithm finds the GNNs in a single search on the database
whereas existing algorithms for a set of query points require mul-
tiple searches for finding the GNNs with respect to a set of query
rectangles.

5. PRIVATE FILTERS

5.1 Minimizing the Total Distance
Without loss of generality, consider an example scenario for a

private kGNN query with a group of five users and k = 2. The users
{u1,u2, . . . ,u5} provide their query rectangles {R1,R2, . . . ,R5}, re-
spectively, to an LSP. The LSP returns the locations of a set of data
points A: {p1, p2, . . . , p8} that includes the 2 GNNs with respect
to the actual locations {l1, l2, . . . , l5} of the users. The locations of

data points in A, the actual and imprecise locations of the users are
shown in Figure 1, and the actual distances of the users to all data
points in A are presented in Table 1.
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Figure 1: An example scenario.

First, we show a straightforward technique to determine the
actual GNNs and the privacy attack associated with this tech-
nique. As mentioned in Section 4, A has to be updated by all
users in the group with respect to their exact locations for find-
ing the actual GNNs from A. Suppose user u1 first receives A from
the coordinator c. Then u1 updates A: {p1, p2, . . . , p8} by insert-
ing a new distance field for each data point in A and initializ-
ing the fields with her actual distances from those data points as
A:{(p1,3),(p2,8.5) . . . ,(p8,14)}. Then, A is forwarded to a ran-
domly selected user u2, either directly or via c. The user u2 adds
her actual distances for all data points in A with those of u1 and for-
wards them to another user. This process continues until all users
have added their actual distances for all data points in A. After all
updates, the final value of the distance field for each data point in A
represents the total distance of that data point to all group members
(see Table 2). Thus, the last user (u5 in this example) or the coordi-
nator c can determine the 1st and 2nd group nearest data points p3
and p1, and sends them to all participant users in the group.

p1 p2 p3 p4 p5 p6 p7 p8

u1 3 8.5 9 3.5 4.5 11.5 13.5 14
u2 2 7.5 8.5 3.5 8.5 7.5 14.5 12
u3 11 5 5.5 15 15.5 9 9 2
u4 6 3.5 2 10 8.5 11 6.5 9
u5 12.5 10.5 8.5 15.5 10 18.5 5 15.5

Table 1: Actual distance from the users to the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

u1 3 8.5 9 3.5 4.5 11.5 13.5 14
u2 5 16 17.5 7 13 19 28 26
u3 16 21 23 22 28.5 28 37 28
u4 22 24.5 25 32 37 39 43.5 37
u5 34.5 35 33.5 47.5 47 57.5 48.5 52.5

Table 2: Updated distances after adding each user’s actual dis-
tance to the data points in A

However, the privacy of users can be violated in this technique
using the distance intersection attack. The distance intersection at-
tack is based on 2D trilateration. If a user’s distance from a known
location is revealed, then the user’s location has to be on the circle
centered at the known location with the radius of the revealed dis-
tance. If a user’s distances from two known locations are revealed,
the user’s location is one of the two intersections of the circles. If a



user’s distances from three or more known locations are revealed,
the user’s exact location is the intersection point of all circles.
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Figure 2: An example of distance intersection attack.

In our example, if u2 receives a message from u1 directly, the
message includes A, the identities of {u1,u2,u3,u4,u5}, and the
identity of u1 marked as visited. Inspecting the visited field, u2
knows that she is the second randomly selected user who receives
A. Since u2 also knows that the distances in A are the actual dis-
tances of u1 to {p1, p2, . . . , p8}, the unknown location l1 of u1 can
be computed from any of the three revealed distances using the
distance intersection attack (Figure 2). In the case that the com-
munication among the group members is done via a coordinator to
hide their identities from each other, u2 can again determine a loca-
tion from the intersection point of the circles. However, u2 does not
know which user is located at that intersection point, because u2
has no access to the list of identities showing that only the identity
u1 is marked as visited. In this case, the coordinator c can compute
the exact locations of all users using the distance intersection at-
tack. The coordinator c monitors A before sending it to ui and after
receiving it from ui and then computes the actual distances of ui for
all data points in A. For example, the actual distance of u4 to p4 is
found by deducting 22 (observed before sending A to u4) from 32
(observed after receiving A from u4) in Table 2.

We present now our private filter technique that counters the dis-
tance intersection attack on the users’ privacy. Let n be the number
of users in the group, where n > 2, and MaxDist(Ri, ph) be a func-
tion that returns the maximum Euclidean distance between a user’s
rectangle Ri and a data point ph for a positive integer h. In our pri-
vate filter technique, the LSP returns for each data point ph ∈ A
the sum of the maximum distances of ph to the query rectangles
dmax(ph), expressed as:

dmax(ph) = ∑
n
i=1MaxDist(Ri, ph) (1)

On receiving A, a user ui in the group updates dmax for all
data points with respect to her actual position li. Let the function
Dist(li, ph) return the Euclidean distance between a user’s actual
location li and ph. The user ui computes d′max(ph) for a data point
ph using the following equation:

d′max(ph) = dmax(ph)−MaxDist(Ri, ph)+Dist(li, ph) (2)

Then ui updates dmax(ph) by assigning d′max(ph) to dmax(ph) for
a data point ph. After completing the updates for all data points,
ui forwards A to another user, either directly or via the coordinator.
Each user updates dmax for all data points in A using this procedure.

Let X represent a subset of users in the group who have already
updated dmax for all data points in A and Y represent the remaining
users in the group who have not yet received and updated A. In
every step of the private filter technique, dmax(ph) can be in general

expressed by the following equation:

dmax(ph) = ∑
ux∈X

Dist(lx, ph)+ ∑
uy∈Y

MaxDist(Ry, ph) (3)

As a result, when dmax(ph) of a data point ph has been updated
with respect to all users’ exact locations, it represents the aggregate
distance (∑n

i=1Dist(li, ph)) from ph to the group. Table 3 shows
the steps for updating dmax by every user for the given example.
After the updates of u5, dmax(p1),dmax(p2), . . . ,dmax(p8) represent
the actual aggregate distance of {p1, p2, . . . , p8} from the group of
users {u1,u2, . . . ,u5} (see the last row of Table 3). Depending on
the communication method used, u5 or the coordinator c forwards
2 GNNs, p3 and p1, to all users in the group.

p1 p2 p3 p4 p5 p6 p7 p8

LSP 46.5 46 44 60.5 56.5 68.5 62 63
u1 44 43.5 41 60 54.5 66 60 60
u2 42 43.5 41 55 51.5 65 60 60
u3 41 42 40 54 51 64.5 55.5 58.5
u4 39.5 40 38.5 52 50.5 62.5 51.5 57
u5 34.5 35 33.5 47.5 47 57.5 48.5 52.5

Table 3: Updated dmax(ph) with respect to each user’s actual
distance from data points in A

In this technique, the privacy of all users is preserved in both
scenarios: without or with the coordinator c. In the first scenario,
the second randomly selected user u2 cannot compute the actual
distances of the first randomly selected user u1 for data points in A
as the actual distance of ui from the data points are hidden in the
revealed dmaxs as shown in Equation 3. In the second scenario, al-
though c can monitor the change in dmaxs for data points in A before
sending it to ui and after receiving it from ui, c cannot determine
the actual distance of ui from any data point in A because the co-
ordinator does not know the locations of the users’ rectangles. For
example, c monitors the change of dmax(p4) from 54 to 52 before
sending A to u4 and after receiving A from u4, respectively (see
Table 3). However, as the location of R4 is unknown to c, c can-
not determine MaxDist(R4, p4) to compute Dist(l4, p4). Note that
even if the coordinator colludes with the LSP neither the LSP nor
the coordinator can find the one to one mapping between the sets
of users’ rectangles and identities (i.e., which rectangle belongs to
which user). Knowing only the set of rectangles does not allow the
coordinator to compute a Dist(l4, p4).

The private filter technique discussed so far cannot perform any
pruning of data points from A until all users in the group update A
with respect to their actual locations. We call this private filter for
SUM a final pruning private filter (SUM_FPPF). In the next step, we
propose an incremental pruning private filter for SUM (SUM_IPPF)
that allows each user to perform a local pruning of those data points
from the answer set that cannot be the actual GNNs.

In SUM_IPPF, the LSP provides the sum of the minimum dis-
tances from query rectangles dmin in addition to the sum of the
maximum distances from query rectangles dmax for all data points
in A. The addition of dmin allows a user to perform a local pruning
of the data points from A after the update and to send a smaller
answer set to the next user. Let MinDist(Ri, ph) be a function that
returns the maximum Euclidean distance between Ri and ph. The
LSP computes dmin(ph) as follows:

dmin(ph) =
n

∑
i=1

MinDist(Ri, ph) (4)



p1 p2 p3 p4 p5 p6 p7 p8

LSP 21, 46.5 23, 46 23.5, 44 35, 60.5 35, 56.5 40, 68.5 40.5, 62 41.5, 63
u1 22.5, 44 24.5, 43.5 25, 41 36.5, 60 37.5, 54.5 43, 66 41.5, 60 43, 60
u2 24, 42 29, 43.5 28.5, 41 36.5, 55 39, 51.5 46.5, 65 45, 60 48, 60
u3 28, 41 31.5, 42 30.5, 40 41, 54 41.5, 51 X X X
u4 32, 39.5 33.5, 40 32, 38.5 45, 52 X X X X
u5 34.5, 34.5 35, 35 33.5, 33.5 X X X X X

Table 4: Updated dmin(ph) and dmax(ph) with respect to each user’s actual distance from data points in A

On receiving A, each user updates both dmin and dmax for all data
points in A. Similar to d′max(ph), a user computes d′min(ph) for a
data point ph using the following equation:

d′min(ph) = dmin(ph)−MinDist(Ri, ph)+Dist(li, ph) (5)

Afterwards the user updates dmin(ph) by assigning d′min(ph) to
dmin(ph).

Algorithm 1: SUM_IPPF(Ri, li,k,A)
Input : The user’s rectangle Ri and exact point location li, the

number of required data points k, and the answer set
A := ∪h{ph,dmin(ph),dmax(ph)}

Output: Updated answer set A.
for each ph ∈ A do1.1

compute d′min(ph) using Equation 21.2
dmin(ph)← d′min(ph)1.3
compute d′max(ph) using Equation 51.4
dmax(ph)← d′max(ph)1.5

maxdistk ←− kMin(∪h{dmax(ph)})1.6
for each ph ∈ A do1.7

if dmin(ph) > maxdistk then1.8
remove {ph,dmin(ph),dmax(ph)} from A1.9

Algorithm 1 summarizes the steps performed by a user on re-
ceiving A for the aggregate function SUM. After updating dmin and
dmax for all data points in A, the user finds the kth smallest of all
dmax as maxdistk using the function kMin. Then dmin of every data
point in A is compared with maxdistk. If dmin(ph) of a data point
ph is greater than maxdistk, then ph is removed from A as ph can
never be one of the k nearest data point from the group. Table 4
shows the steps for updating dmin and dmax, and the pruning of
data points by every user in our example. From Table 4, we see
that the user u2 determines maxdistk as 42 for k = 2 and removes
p6 (dmin(p6) = 46.5), p7 (dmin(p7) = 45), and p8 (dmin(p8) = 48)
from A. Hence, the next user u3 can process a smaller answer set,
and more importantly, the local pruning reduces the communica-
tion overhead among the users.

For SUM_IPPF, a special case may arise if a data point ph over-
laps with all rectangles {R1,R2, . . . ,Rn}. In this case, the retrieved
dmin(ph) (i.e., ∑

n
i=1 MinDist(Ri, ph)) from the LSP is 0 and if the

users communicate via the coordinator, the coordinator learns each
user’s distances to ph. Therefore if any dmin(ph) is 0, users com-
municate directly to avoid the distance intersection attack.

In summary, for any group size n > 2, the discussed private fil-
ter techniques find the actual GNNs without revealing users’ lo-
cations to others. However for a group of two users (i.e., n = 2),
an extra attention is required: if users communicate directly for
n = 2, a user u2 determines herself as the second user by ob-
serving the list of identities with one identity marked as visited.
Then for every data point ph in the answer set, u2 can deter-
mine Dist(l1, ph) by subtracting MaxDist(R2, ph) from dmax(ph)
as shown in Equation 3. Therefore, u2 can apply the distance

intersection attack to find u1’s precise location l1. On the other
hand, if the second user u2 receives the candidate data points from
the coordinator then she does not know that she is the second
user as she does not have the list of identities with one identity
marked as visited. Thus, (MaxDist(R1, ph)+ MaxDist(R2, ph)) or
(Dist(l1, ph) + MaxDist(R2, ph)) could be dmax(ph), and user u2
cannot discover Dist(l1, ph). Hence for n = 2, users need to com-
municate via the coordinator to find the actual GNNs.

The following theorem shows the correctness of our proposed
private filter SUM_FPPF.

THEOREM 5.1. The private filter SUM_FPPF prevents the dis-
tance intersection attack on a user’s location.

PROOF. We know that in order to apply the distance intersection
attack for finding a user’s actual location, the coordinator or other
users involved in the private filter need to know the distance of that
user to the data points in the answer set. It is not possible to de-
termine a user ui’s Dist(li, ph) by the coordinator or any other user
u j for i 6= j from Equations 2 and 3, if there is an unknown vari-
able. For any group size, since the coordinator does not know ui’s
Ri, it cannot determine Dist(li, ph) using Equation 2 after dmax(ph)
has been updated by ui. On the other hand for n > 2, on receiving
dmax(ph), u j cannot determine Dist(li, ph) using Equation 3 be-
cause u j does not know others’ lxs and Rys, where x 6= i and y 6= j.
For n = 2 since users communicate via the coordinator, u j does not
have the list of identities and thus cannot know whether ui is in X or
Y in Equation 3, which prevents u j to determine Dist(li, ph).

Similarly, we can prove the correctness of SUM_IPPF.

5.2 Minimizing the Maximum Distance
In this section, we consider private kGNN queries that minimize

the maximum distance of a group of users from the data points.
Similar to the case of minimizing the total distance, we cannot use
the straightforward technique due to its vulnerability of the distance
intersection attack.

We can use both techniques, FPPF and IPPF proposed in Sec-
tion 5.1, with some modifications for finding the data point that has
the minimum maximum distance from the group of users. In this
case, the LSP uses the aggregate function MAX instead of SUM to
compute dmin(ph) and dmax(ph) for a data point ph as shown in the
following two equations:

dmin(ph) = maxn
i=1MinDist(Ri, ph) (6)

dmax(ph) = maxn
i=1MaxDist(Ri, ph) (7)

Algorithm 2 shows the steps of MAX_IPPF. In case of the aggre-
gate function MAX, a user ui only updates dmin(ph) as Dist(li, ph)
when Dist(li, ph) is larger than the current dmin(ph) for a data point
ph (Lines 2.2-2.3). By construction, there is always at least a user
in the group whose distance from ph is equal to or greater than
dmin(ph).
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Figure 3: Examples scenarios of circles with radii equal to dmins retrieved from the LSP

Algorithm 2: MAX_IPPF(Ri, li,A,maxdistk)
Input : The user’s rectangle Ri and exact point location li, the

answer set A := ∪h{ph,dmin(ph)}, and maxdistk
Output: Updated answer set A.
for each ph ∈ A do2.1

if Dist(li, ph) > dmin(ph) then2.2
dmin(ph)←− Dist(li, ph)2.3

for each ph ∈ A do2.4
if dmin(ph) > maxdistk then2.5

remove {ph,dmin(ph)} from A2.6

On the other hand, a user cannot modify dmax(ph) even if
Dist(li, ph) is smaller than the current dmax(ph) as the other users
in the group can also have distances from ph equal to dmax(ph).
Thus, in contrast to Algorithm 1, maxdistk never needs to be up-
dated and remains constant. Therefore, the LSP computes maxdistk
from dmax of the data points in A and directly sends maxdistk in-
stead of sending dmax for each data point.

If a user updates dmin(ph) in Algorithm 2, it represents the user’s
actual distance from ph (Line 2.3). If the communication among
the users is done via a coordinator c for filtering the retrieved an-
swer set from the LSP, c can observe dmin for each data point in A
before sending A to a user ui and after receiving it back from ui,
and determine which dmins have been updated by ui. The changed
dmin(ph) denotes the actual distance of ui from ph. Thus c can com-
pute the location of ui with the distance intersection attack using
dmins changed by ui. Thus in our proposed private filter for the ag-
gregate function MAX, users avoid the coordinator and communi-
cate directly.

In the direct communication, after performing the update a user
sends A directly to another user in the group whose identity has
not been yet marked as visited. In order to apply the distance in-
tersection attack for revealing a user’s unknown location, we need
to know the user’s distances from known locations. A user who re-
ceives A knows the location of data points in A and the distances in
the form of dmin for each data point in A. The user also knows that a
dmin(ph) represents either the distance of ph from a user’s actual lo-
cation or the distance of ph returned by the LSP. However, the user
does not know which dmin(ph) corresponds to which user’s actual
distance from ph as she has no knowledge about the previous states
of A and the order in which the identities are marked as visited.
Thus, the user who receives A cannot discover others’ locations in
the group using the distance intersection attack.

We know that the second user who receives A can easily identify
the user who has received A before her by inspecting the visited
field. We also know that if a subset of dmins are the actual distances

from the same user, then the circles with radii equal to those dmins
and centers at the corresponding locations of data points must inter-
sect at a single point. Using these observations, one may argue that
if the second user finds from the received dmins that a number of
circles intersect at a single point, then she would be able to identify
the intersection point as the location of the first user. However, it is
not guaranteed that the intersection point is the location of the first
user, because the values of dmins that are assigned by the LSP may
have caused the intersection point and they might not have been
changed by the first user at all.

Figure 3 shows some examples, where dmins computed by the
LSP are shown with dashed lines and the intersection point of all
circles are shown with a black dot. In Figure 3(a), the intersection
point of all circles does not refer to any user’s location, and in Fig-
ure 3(b) and (c), the intersection point is the location of a user’s
provided rectangle which is not ensured to be the actual location of
any user in the group as a user’s actual location can be anywhere
within the rectangle.

In contrast to SUM_FPPF, for MAX_FPPF, the LSP returns dmin
instead of dmax for each data point in A. This is because if the LSP
returns dmax for data points in A and a user ui updates dmax(ph) as
Dist(li, ph) if Dist(li, ph) < dmax(ph), then after the update of A by
the first user u1, each dmax represents Dist(l1, ph). As a result, the
user who receives A as a second user can determine u1’s precise
location l1 using the distance intersection attack. In MAX_FPPF,
the users update dmin for each data point in A as shown in Lines
2.2-2.3 of Algorithm 2 and determine the actual GNN after A has
been updated by all users in the group.

There is a limitation of our proposed private filter techniques for
the aggregate function MAX. It does not work for n = 2, which
we leave for further investigation in our future research. For n =
2, after the update by the first user u1 each dmin(ph) represents
either Dist(l1, ph) or MinDist(R2, ph), where R2 is the rectangle
of the second user u2. When u2 receives A she can determine that
she is the second user by observing the visited field in the list of
identities and determine whether dmin(ph) represents Dist(l1, ph)
as she knows MinDist(R2, ph). This allows u2 to apply the distance
intersection attack if dmin(ph) has been modified by u1.

From the above discussion, we summarize that FPPF and IPPF
enable users to request kGNN queries without revealing their loca-
tions to anyone with any group size for SUM and with a group size
greater than two for MAX.

6. KGNN QUERIES W.R.T. REGIONS
In this section, we propose an algorithm for the LSP to process

kGNN queries with respect to a set of rectangles (i.e, regions). Our
algorithm uses a modified best first search (BFS) to find the candi-



date answers that include the k GNNs for any position of the users
in their provided rectangles. We assume that the data points are in-
dexed using an R∗-tree [4] in the database. Since the query is based
on a set of rectangles instead of a set of points, the distance between
a data point or an R∗-tree node and a query rectangle is defined with
a range bounded by the minimum and maximum values.

We summarize the notation used in this section as follows:

• M: the minimum bounding box that encloses the given set of
n query rectangles {R1,R2, . . . ,Rn}.

• MinDist(q, p) (MaxDist(q, p)): the minimum (maximum)
Euclidean distance between q and p, where q represents Ri
or M and p represents a data point or a minimum bounding
rectangle of an R∗-tree node.

• dmin(p) (dmax(p)): the aggregate distance (i.e., the total or
maximum distance) of p computed from the minimum (max-
imum) distances between p and all query rectangles, where
p again represents a data point or a minimum bounding rect-
angle of an R∗-tree node.

• maxdist[k]: the kth smallest distance of already computed
dmax(p)s.

The basic idea of our proposed algorithm is as follows. The
algorithm starts the search from the root of the R∗-tree and in-
serts the root together with its dmin(root) and dmax(root) into
a priority queue Qp, where dmin(root) = 0 and dmax(root) =
f n
i=1(MaxDist(Ri,root)), f being SUM or MAX. The elements of

Qp are stored in order of their minimum dmin. Then the algorithm
removes an element p from Qp and checks whether p is an R∗-
tree node or a data point. If p represents an R∗-tree node, then it
retrieves its child nodes and enqueues them into Qp if they might
contain one of the candidate answers with respect to the set of rect-
angles. On the other hand, if p is a data point it is added to A until
all data points have been found that are candidates for one of the k
GNNs with respect to the set of rectangles. Algorithm 3 shows the
steps of REGION_kGNN for evaluating kGNN queries with respect
to a set of rectangular regions.

In the case of kGNN queries for a set of points, the algorithm
terminates as soon as k data points have been dequeued from Qp.
However, for a set of rectangles the termination is not as simple, be-
cause the total or maximum distance of a data point from the query
rectangles is a range [dmin,dmax] instead of a fixed value. We know
that the elements removed from Qp are in order of minimum dmin,
but we also need to maintain the order of already computed dmaxs to
check the termination condition of the algorithm. For this purpose
an array maxdist with k entries is maintained and initialized to ∞

(Line 3.3). The array maxdist is sorted in order of minimum dmaxs
found so far. Each time p is inserted to Qp, maxdist is updated with
respect to dmax(p) (Line 3.22). The following heuristic describes
the termination condition of the algorithm as no other data point
can further qualify as a candidate answer once the condition is true.

HEURISTIC 6.1. Let p be a data point or an R∗-tree node de-
queued from Qp. The algorithm terminates if dmin(p) > maxdist[k].

In REGION_kGNN, we use the variable end, initialized to 0, to
terminate the algorithm. When the condition of Heuristic 6.1 is sat-
isfied, end becomes 1 (Lines 3.7-3.8) and the algorithm terminates
(Line 3.5). Figure 4 shows an intermediate state of running RE-
GION_kGNN with k = 2 and f = MAX, where the current A in-
cludes {p2,9,15.7}, {p3,9,13.5}, {p1,10,17.5}, {p7,13.5,15.5},
{p4,13,20}, {p5,13,16}, and {p10,14,20.5}. Hence, at this stage

Algorithm 3: REGION_kGNN(R1,R2, . . . ,Rn,k, f )
Input : A set of rectangles {R1,R2, . . . ,Rn}, the number of

required data points k, and an aggregate function f (SUM
or MAX).

Output: A, a set of data points with their dmin and dmax.
A← /03.1
end← 03.2
maxdist[1..k]←{∞}3.3
Enqueue(Qp,root,0, f n

i=1(MaxDist(Ri,root))3.4
while Qp is not empty and end = 0 do3.5
{p,dmin(p),dmax(p)}← Dequeue(Qp)3.6
if dmin(p) > maxdist[k] then3.7

end← 13.8
else if p is a data point then3.9

A← A∪{p,dmin(p),dmax(p)}3.10
else3.11

for each child node pc of p do3.12
if f = SUM then3.13

d(pc)← n×MinDist(M, pc)3.14
else3.15

d(pc)←MinDist(M, pc)3.16

if d(pc)≤ maxdist[k] then3.17
dmin(pc)← f n

i=1MinDist(Ri, pc)3.18
if dmin(pc)≤ maxdist[k] then3.19

dmax(pc)← f n
i=1MaxDist(Ri, pc)3.20

Enqueue(Qp, pc,dmin(pc),dmax(pc))3.21
U pdate(maxdist,dmax(pc))3.22

return A;3.23

maxdist[1] = dmax(p3) = 13.5 and maxdist[2] = dmax(p7) = 15.5.
Let the next three elements in Qp be {p8,14,20}, {p6,16.5,23.5},
and {p9,17.5,21.5}. When {p8,14,20} is dequeued from Qp,
then dmin(p8) < maxdist[2]. Therefore {p8,14,20} is added to A
and maxdist remains unchanged as dmax(p8) is greater than both
maxdist[1] and maxdist[2]. Next, {p6,16.5,23.5} is dequeued from
Qp and as dmin(p6) > maxdist[2], the algorithm terminates.
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Figure 4: An intermediate state of running REGION_kGNN.

Note that not all visited data points or R∗-tree nodes are inserted
to Qp. Before inserting p into Qp, the algorithm checks if p can
be pruned with respect to the current maxdist[k]. As dmin and dmax
involve a large number of distance computations, similar to [22,
23], REGION_kGNN tests in Line 3.17 if p can be pruned according
to the following heuristic.

HEURISTIC 6.2. A data point or an R∗-tree node p can be
pruned if n×MinDist(M, p) > maxdist[k] for f = SUM and if
MinDist(M, p) > maxdist[k] for f = MAX.

If p is not pruned using Heuristic 6.2, then Algorithm 3 uses the
tighter condition dmin(p) > maxdist[k] of Heuristic 6.1 to check



if p can be discarded before inserting it into Qp as shown in
Line 3.19. Since n×MinDist(M, p) ≤ dmin(p) for f = SUM and
MinDist(M, p)≤ dmin(p) for f = MAX, it may happen that p is not
pruned using the condition of Heuristic 6.2 but satisfies the condi-
tion of Heuristic 6.1 and is pruned.

Note that for SUM the LSP directly returns A, a set of candidate
answers with their dmins and dmaxs, to the coordinator. On the other
hand, for MAX the LSP removes dmax of each data point from A, and
returns maxdist[k] and A that includes a set of candidate answers
with their dmins to the coordinator.

The following theorem proves the correctness of algorithm RE-
GION_kGNN.

THEOREM 6.1. If k is the number of required data points
for a kGNN query with respect to a set of n query rectangles
{R1,R2, . . . ,Rn} with ri ∈ Ri for 1≤ i≤ n, then A includes all data
points that have the jth smallest (1 ≤ j ≤ k) value for f (SUM or
MAX) with respect to every point set {r1,r2, . . . ,rn}.

PROOF. (By contradiction) Assume that p′ is a data point that is
not in A but has the jth minimum value (1 ≤ j ≤ k) for f (SUM or
MAX) with respect to a group of n points {r1

′,r2
′, . . . ,rn

′}, where
each point ri

′ can be located at any position in Ri. There can be
two cases for p′ /∈ A: (i) the algorithm has terminated before p′ is
included in A, or (ii) p′ or the R∗-tree node containing p′ has been
pruned.

We know that the aggregate distance of a data point p from
{r1,r2, . . . ,rn} is within dmin(p) and dmax(p). maxdist[k] repre-
sents the current kth smallest dmax, and maxdist[k] remains same
or becomes smaller during the execution of the algorithm, because
dmax of a R∗-tree node is greater or equal than those of its child
nodes. According to our assumption, if p′ is one of the k GNNs,
then dmin(p′)≤ maxdist[k].

We consider first case (i). The algorithm terminates when
dmin(p) > maxdist[k], for any p dequeued from Qp and Qp is
ordered by minimum dmin(p). As p′ has not been dequeued be-
fore p, i.e., dmin(p′) > dmin(p), which in turn means dmin(p′) >
maxdist[k]. Therefore, the first case for p′ /∈ A does not apply as
there are already k group nearest data points for {r1

′,r2
′, . . . ,rn

′},
whose dmaxs are less than dmin(p′).

Let us assume case (ii) that p′ is not included in A because
it has been pruned before inserting into Qp. However, p′ is only
pruned if it satisfies the condition of Heuristic 6.1 or Heuristic 6.2,
which again means that dmin(p′) > maxdist[k] and contradicts our
assumption that p′ is one of the k GNN for {r1

′,r2
′, . . . ,rn

′}.

Although we present our algorithm for a set of query rectangles,
our algorithm can evaluate kGNN queries for a set of query regions
with any geometric shape.

7. EXPERIMENTS
In this section, we evaluate the performance of our proposed al-

gorithms through extensive experiments. We vary the group size,
the area of the minimum bounding box M that encloses the set of
query rectangles, the area of a query rectangle, the number of re-
quired data points k, and the data set size in different sets of experi-
ments. We use both real and synthetic data sets in our experiments.
The data space is normalized into a span of 10,000×10,000 square
units. The real data set C contains 62,556 postal addresses from
California. We generate synthetic data sets U and Z using a uni-
form and a Zipfian distribution, respectively, and we vary the size
of U and Z as 5000, 10,000, 15,000, and 20,000 point locations.
Table 5 summarizes the values used for each parameter in our ex-
periments and their default values. We set the range for the area of

the query rectangles as 0.001% to 0.01% of the total data space as
this is a reasonable range of area to preserve a user’s privacy (e.g.,
the range represents about 4 to 40 km2 with respect to the total area
of California).

Parameter Range Default
Group size 4, 16, 64, 256, 1024 64
Area of M 2%, 4%, 8%, 16%, 32% 8%

Query rectangle area 0.001% to 0.01% 0.005%
k 2, 4, 8, 16, 32 8

Synthetic data set size 5K, 10K, 15K, 20K 20K

Table 5: Experiment Setup

We consider 1000 private kGNN queries for each set of exper-
iments, evaluate the proposed algorithms for each of these GNN
queries and determine the average experimental results. We ran-
domly generate 1000 point locations that are uniformly distributed
in the total space. Each point pq corresponds to a private kGNN
query, where M is a rectangle centered at pq. In each experiment
the length and width of M are randomly generated for the given
area of M.

For each private kGNN query, we randomly generate a point lo-
cation within M for each user in the group. Then the query rectan-
gle for each user is also randomly generated in such a way that each
query rectangle resides in M and includes the user’s point location.
While generating query rectangles for a private kGNN query, we
ensure that at least there is one query rectangle that touches each
edge of M.

We run the experiments on a desktop with a Pentium 2.40 GHz
CPU and 2 GByte RAM. We present our experimental results of
the private filter algorithms and kGNN queries with respect to a set
of query rectangles in Section 7.1 and Section 7.2, respectively.

7.1 Comparison of Private Filter Algorithms
We evaluate and compare the final pruning private filter (FPPF)

and the incremental pruning private filter (IPPF) in terms of com-
putational and communication costs. We add the time spent by each
user in the group for the private filter technique and the total time
represents the computational cost for a group to filter the answers
of a private kGNN query. We compare the communication cost
in terms of answer set size; then the total communication cost by
adding the size of the answer set that a coordinator and each user
in the group have to send. In our experiments, since we consider
n > 2, we use the direct communication method, i.e., each user di-
rectly sends the modified answer set to another randomly selected
user in the group.

We present the experimental results in Sections 7.1.1 to 7.1.4 and
then analyze these results in Section 7.1.5.

7.1.1 Effect of group size
Figure 5(a) shows the time required by FPPF and IPPF for dif-

ferent group sizes. For SUM, the time required by IPPF is always
higher than that of FPPF and the ratio of the required time between
IPPF and FPPF decreases from 5.0 to 2.0 for the increase of group
size from 4 to 16 and then remains constant at 2.0. For MAX, the
time required by IPPF is significantly higher than that of FPPF for
a small group size (e.g., 9.0 times higher for the group size of 4),
but with an increase of the group size the time required by FPPF is
higher than that of IPPF.

We observe in Figure 5(b) that the communication cost of IPPF
is always lower than that of FPPF for both SUM and MAX. The
communication cost of IPPF is on average 1.9 and 2.0 times lower
than that of FPPF for SUM and MAX, respectively.
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Figure 5: Effect of group size (data set C)

7.1.2 Effect of the area of M
We see in Figure 6(a) that the time required by IPPF is always

2.0 times higher than that of FPPF for every size of M in case of
SUM. In case of MAX, the time for IPPF is nearly constant for any
area of M, whereas the time required by FPPF first increases and
then decreases with the increase of the area of M. We observe that
IPPF requires more time than that of FPPF only for larger M.

Figure 6(b) shows that for SUM the communication cost of IPPF
is approximately 2.0 times lower than that of FPPF for any area of
M and for MAX the ratio of communication cost between FPPF and
IPPF slightly decreases from 2.3 to 1.9 with the increase of the area
of M.
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Figure 6: Effect of the area of M (data set C)

7.1.3 Effect of query rectangle area
Figure 7(a) shows that for SUM the time required by FPPF and

IPPF for varying the query rectangle area follows a similar trend to
that of varying the area of M, and for MAX the times of IPPF and
FPPF both vary in a random manner with the increase of the query
rectangle area and the time required by IPPF is never greater than
that of FPPF.

Figure 7(b) shows that the communication cost of IPPF is on
average 2.0 and 2.2 times lower than those of FPPF for SUM and
MAX, respectively.
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Figure 7: Effect of query rectangle area (data set C)

7.1.4 Effect of k
The effect of varying k is not significant for SUM as we see in

Figure 8(a): the times for IPPF and FPPF remain nearly the same
for different k and the required time of IPPF is on average 2.0 times
higher than that of FPPF. For MAX the time required by FPPF is
nearly constant and the time for IPPF slightly increases with the
increase of query rectangle area and is equal to that of FPPF for
k = 32.

We observe in Figure 8(b) that the ratio of the communication
cost between FPPF and IPPF is approximately 2 for any k in case
of SUM, whereas for MAX the ratio slightly decreases from 2.2 to
2.0 for increasing k from 2 to 32.
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Figure 8: Effect of k (data set C)

7.1.5 Comparative Analysis
The experimental results for data sets U and Z also show a sim-

ilar trend as data set C. In all experiments, the communication cost
of IPPF is always lower (at least 1.9 times) than that of FPPF for
both SUM and MAX. For the computational cost, we observe that in
case of SUM, the computational cost of IPPF is always higher than
that of FPPF, whereas for MAX the computational cost of IPPF is
lower than that of FPPF in most of the cases.

The reason behind the higher communication cost of FPPF is
that the answer set size remains constant in FPPF, whereas in IPPF
the answer set size continuously reduces due to local pruning ca-
pability of each user. On the other hand, although in IPPF users
process smaller answer sets and thereby reduce the computational
cost, the local pruning adds extra computational overheads for each
user. Moreover, the computational cost involved in local pruning is
higher for SUM than that of MAX because in MAX, the users do not
need to compute maxdistk (the kth smallest maximum aggregate
distance). From the experimental results we conclude that for SUM
the required time for local pruning is higher than the reduction in
time for processing smaller answer sets. For MAX the required time
for local pruning is lower than the reduction of time for processing
smaller answer sets in most of the cases and the opposite applies
for the remaining cases.

Note that we have designed our experiments independent of
communication links used among the users, and shown the com-
munication cost in terms of communication amount (i.e., answer
set size). This allows us to approximate the communication delay
from the known latency of the used communication link (e.g., wire-
less LANs, cellular link). Our proposed technique requires multiple
rounds of communication, which may cause a delay in the response
time. Nowadays this should not be a problem as the latency of wire-
less links has been significantly reduced, for example HSPA+ offers
as low as 10ms latency. More importantly, a user might be happy to
tolerate a reasonable delay to preserve her privacy.

7.2 Performance of KGNN Queries w.r.t. Rect-
angles



We evaluate the performance of our proposed algorithm RE-
GION_kGNN in terms of the computational cost given by the pro-
cessing time, the number of page accesses, i.e., IOs, and the candi-
date answer set size. In our experiments, the data points are indexed
using an R∗-tree and the page size is set to 1 KB with a node ca-
pacity of 50 entries.

7.2.1 Effect of group size
We observe that the processing time increases with the increase

of the group size (Figures 9(a) and (b)), because the larger the group
size the larger the number of distance computations involved in
computing an aggregated distance. On the other hand, Figures 9(c)-
(f) show that both IOs and the answer set size decrease with an
increase of the group size. The reason is as follows. We know that
both minimum and maximum aggregate distances of a data point,
i.e., dmin and dmax, increase or remain the same with the increase
of the group size. For computing maxdistk, only k data points or
R∗-tree nodes with the minimum dmax are considered, whereas for
dmin each data point or R∗-tree node is considered to test if it can
be pruned. Hence, the probability is high that more dmin becomes
larger than maxdistk with an increased group size.
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Figure 9: Effect of group size

7.2.2 Effect of the area of M
In this experiment we find that with an increasing area of M,

the processing time, IOs, and the answer set size increase for SUM,
and all of them first increase and then decrease for MAX. Due to
space limitations, we only show the results for the required time in
Figure 10.

There are two factors that influence the outcome of these exper-
iments. Both dmin and dmax of data points or R∗-tree nodes that
were outside a smaller M decrease or remain the same with a larger
area of M, and thus these data points or R∗-tree nodes might not be

pruned for a larger M. On the other hand, both dmin and dmax of data
points or R∗-tree nodes that were inside of a smaller M decrease or
remain the same with a larger M and hence these data points or
R∗-tree nodes might be pruned for a larger M. In summary, if the
former factor dominates, it results in an increase of the processing
time, IOs, and the answer set size, and if the latter one dominates,
it results in a decrease.
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Figure 10: Effect of the area of M
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Figure 11: Effect of query rectangle area

7.2.3 Effect of query rectangle area
We find that the processing time, IOs, and the answer set size

increase with larger query rectangles. With the increase of query
rectangle area, for each data point, dmin decreases or remains the
same whereas dmax does not decrease, i.e., less data points or R∗-
tree nodes are pruned for larger query rectangle areas. Again, less
pruning results in more distance computations and increases the
processing time (Figure 11).

7.2.4 Effect of k
We expect that as maxdistk increases with the increase of k, less

R∗-tree nodes or data points will be pruned for a larger value of
k. Experimental results also show that the processing time (Fig-
ure 12), IOs, and the answer set size slightly increase with the in-
crease of k.
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7.2.5 Effect of data set size
We observe that the processing time, IOs, and the answer set

size increase for increasing data set sizes and the rate of increase
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Figure 13: Effect of data set size

decreases for a larger data set. For example, the increase ratio of the
processing time are 1.5 (SUM) and 1.1 (MAX) for increasing data
set size from 5k to 10k whereas the increase ratio of the processing
time are 1.2 (SUM) and 1.1 (MAX) for the increase of data set size
from 15k to 20k (Figure 13).

For each set of experiments, except the experiments in Sec-
tion 7.1.3 and 7.2.3, we also consider the case, where the users of a
group have variable privacy levels, i.e., the area of query rectangles
are different for a group. We find that the experimental results show
similar trends to those for equally-sized query rectangles.

From experimental results, we conclude that our technique for
private kGNN queries is scalable as it can cope with a very large
group size (up to 1024) and we find that the processing cost slightly
increases with the increase of user privacy level, i.e., the area of a
query rectangle.

8. CONCLUSION
In this paper, we proposed a framework for privacy preserving

group nearest neighbor queries. We addressed the problem of pri-
vate kGNN queries in two parts: we developed private filter tech-
niques that ensure privacy while computing the actual GNNs from
a set of candidate answers for any group size (except group size 2
for MAX), and we proposed an algorithm for evaluating a kGNN
query with respect to a set of regions. We considered two aggregate
functions, SUM and MAX, that enable users of LBSs to meet at a
point with the smallest total travel distance or to meet within the
shortest time by minimizing the maximum distance, respectively.

Our experimental results show the performance analysis of our
algorithm for different settings of privacy parameters. We compare
two of our proposed private filter techniques: FPPF and IPPF. We
find that FPPF incurs higher communication overhead than IPPF.
On the other hand, in terms of computational cost, FPPF always
performs better than IPPF for SUM, and IPPF performs better than
FPPF for MAX in most of the cases. We also observe that our algo-
rithm for kGNN queries with respect to a set of rectangles is highly
scalable and ensures high privacy level with less processing over-
heads. To the best of our knowledge, this is the first work to address
the problem of preserving user privacy for GNN queries.

In the future, we intend to investigate the possibility of reducing
the number of candidate answers for kGNN queries with respect
to a set of regions and aim to address the privacy issues for kGNN
queries in road networks. We will also explore to what extent se-
cure multi-party computations (e.g., [6]) can be used to enhance
our approach.
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