
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2017

Privacy-preserving k-time authenticated secret handshakes Privacy-preserving k-time authenticated secret handshakes

Yangguang Tian
University of Wollongong, yt412@uowmail.edu.au

Shiwei Zhang
University of Wollongong, sz653@uowmail.edu.au

Guomin Yang
University of Wollongong, gyang@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Yong Yu
Shaanxi Normal University, yyong@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Tian, Yangguang; Zhang, Shiwei; Yang, Guomin; Mu, Yi; and Yu, Yong, "Privacy-preserving k-time
authenticated secret handshakes" (2017). Faculty of Engineering and Information Sciences - Papers: Part
B. 422.
https://ro.uow.edu.au/eispapers1/422

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/422?utm_source=ro.uow.edu.au%2Feispapers1%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages

Privacy-preserving k-time authenticated secret handshakes Privacy-preserving k-time authenticated secret handshakes

Abstract Abstract
Secret handshake allows a group of authorized users to establish a shared secret key and at the same
time authenticate each other anonymously. A straightforward approach to design an unlinkable secret
handshake protocol is to use either long-term certificate or one-time certificate provided by a trusted
authority. However, how to detect the misusing of certificates by an insider adversary is a challenging
security issue when using those approaches for unlinkable secret handshake. In this paper, we propose a
novel k-time authenticated secret handshake (k-ASH) protocol where each authorized user is only allowed
to use the credential for k times. We formalize security models, including session key security and
anonymity, for k-ASH, and prove the security of the proposed protocol under some computational
problems which are proved hard in the generic bilinear group model. The proposed protocol also achieved
public traceability property if a user misuses the k-time credential.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Tian, Y., Zhang, S., Yang, G., Mu, Y. & Yu, Y. (2017). Privacy-preserving k-time authenticated secret
handshakes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 10343 281-300. Auckland, New Zealand 22nd
Australasian Conference (ACISP 2017)

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/422

https://ro.uow.edu.au/eispapers1/422

Privacy-Preserving k-time Authenticated Secret
Handshakes

1Yangguang Tian, 1Shiwei Zhang, 1Guomin Yang, 1Yi Mu and 2Yong Yu

1Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,
University of Wollongong, NSW 2522, Australia

2School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
1{yt412,sz653,gyang,ymu}@uow.edu.au, 2yuyong@snnu.edu.cn

Abstract. Secret handshake allows a group of authorized users to es-
tablish a shared secret key and at the same time authenticate each other
anonymously. A straightforward approach to design an unlinkable secret
handshake protocol is to use either long-term certificate or one-time cer-
tificate provided by a trusted authority. However, how to detect the mis-
using of certificates by an insider adversary is a challenging security issue
when using those approaches for unlinkable secret handshake. In this pa-
per, we propose a novel k-time authenticated secret handshake (k-ASH)
protocol where each authorized user is only allowed to use the credential
for k times. We formalize security models, including session key secu-
rity and anonymity, for k-ASH, and prove the security of the proposed
protocol under some computational problems which are proved hard in
the generic bilinear group model. The proposed protocol also achieved
public traceability property if a user misuses the k-time credential.

Keywords: Unlinkable Secret Handshake, Insider Adversary, k-time Au-
thentication, Public Traceability, Generic Bilinear Group Model

1 Introduction

Secret handshake is a useful cryptographic primitive and has been extensively
studied in the literature. It allows an authorized user to share a secret key with
others without revealing their real identities. The following scenario can clarify
its practicality. A FBI agent wants to contact with another agent, and both
of them do not want to disclose their identity information during interaction.
The only information they need to know is the peer belongs to the same agent
system. There have been two types of unlinkable secret handshake system in the
literature: one is based on the long-term certificate (e.g., [14, 15]), and the other
is based on one-time certificate (e.g., [16]). In the former type, the authorized
user generates the shared secret value using the secret long-term certificate given
by a trusted authority (TA) of the organization. In the latter type, the long-term
secret value will be replaced by a set of one-time certificates and the authorized
user will use one of them for unlinkable secret handshake in each session.

For the long-term certificate, an authorized user is allowed to reuse the given
certificate when establishing a secret value with another authorized user. For
example, the given secret certificate is blended with Diffie-Hellman key exchange,
in order to generate a secret key with forward secrecy (e.g., [14, 15]). Since the
same certificate is used everytime, how to ensure the unlinkability is the major
challenge in the protocol design. On the other hand, the one-time certificate
approach (e.g., [16]) can address the unlinkability easily since each certificate is
supposed to be used only once. Nevertheless, none of the previous approaches
has considered the issue of misusing of certificates. We should note that for the
one-time certificate schemes, the user is supposed to use each certificate once.
However, reusing the given one-time certificates is a security issue that has not
been formally considered in the previous works.

We give an example where misusing of the certificates (or credentials) should
be prevented in secret handshake in some scenarios. Suppose there are n players
subscribed to a real-time gaming system. Each user will obtain a set of k creden-
tials from the game server after paying a subscription fee that is proportional
to k. The players can form ad-hoc groups to play the game and a player can
join a gaming session using one credential at a time. In order to ensure that
only registered players are eligible to communicate with the peers, the players
should generate a common session key to protect the communication. Also, it is
desirable that the players cannot recognize each other except the fact that they
are all legitimate subscribers of the system. Therefore, we may use a multi-party
secret handshake protocol to achieve the security and privacy goals. However,
in this example, a malicious player may try to reuse his credentials to continue
playing the game without topping up extra money after all the credentials are
used up. Therefore, it is important to identify such cheating players who reuse
their one-time credentials. However, we found that the misusing of credentials
has not been formally addressed in the previous secret handshake schemes. In
this paper, we focus on addressing the credential misusing problem under the
one-time certificate setting, and leave the task of designing such a scheme under
the long-term certificate setting as our future work.

1.1 This work

In this paper, we introduce the notion of k-time authenticated secret handshake
(k-ASH), allowing all authorized users in a system to agree on a common se-
cret value anonymously while preventing them from misusing their credentials
issued by a trusted party of the system. Our contributions can be summarized
as follows:

1. We present the formal security definition for k-time ASH protocol. In par-
ticular, we extend the eCK model [21] to define session key security and a
variant of Juels-Weis privacy model [17] to define user anonymity.

2. We present a new unlinkable k-time ASH using anonymized Schnorr signature
[22] and tag bases [25] to trace the cheating users who reuse their one-time
credentials.

3. We prove a variant of the Computational Diffie-Hellman problem (VoCDH)
and an extension of Decisional Combined Bilinear Diffie-Hellman problem
(EVoDCBDH) [27] in the generic bilinear group model, and prove the security
of the new k-time ASH protocol under these assumptions.

1.2 Related work

Key Exchange. Bellare and Rogaway [6] introduced the first complexity-
theoretic security model for key exchange under the symmetric-key setting. The
model was later extended and enhanced under different contexts [7, 2, 5]. Canetti
and Krawczyk [11] later refined the previous models and proposed a new model,
known as the CK model, which is widely used in the analysis of many well-known
key exchange protocols. Some variants [20, 21] of CK model were also proposed
to allow an adversary to obtain either long-term secret key or ephemeral se-
cret key of the challenge session. Burmester and Desmedt [10] (BD) introduced
several key exchange protocols in the multi-party setting, including star-based,
broadcast-based, tree-based, and cyclic-based protocols. Later, a few generic
transformations [19, 18, 8] were proposed to convert passive-secure group key
exchange protocols into active-secure ones.

Secret Handshakes. Balfanz et al [1] introduced the concept of secret hand-
shake that allows any users in the same group to generate a shared value secretly
using the long-term certificate approach. Afterwards, Castelluccia et al [12] con-
structed a more efficient scheme than [1] under the standard Computational
Diffie-Hellman Assumption. But both schemes did not provide the unlinkability
property. In [26], Xu and Yung provided an unlinkable scheme but with weaker
anonymity, named k-unlinkability, which means in the worst case, an adversary
can infer that a participant is one out of certain k users. For achieving the full
anonymity, Jarecki et al [16] proposed two group secret handshake protocols us-
ing the BD group key agreement protocol (e.g., [10]). In particular, the second
construction in [16] used one-time certificate to achieve full anonymity under
the Gap Diffie-Hellman Assumption. Meanwhile, several secret handshake pro-
tocols have been proposed in the literature (e.g., [14, 15]) which achieved full
anonymity without using one-time certificate. The protocol in [15] and the im-
provement protocol in [14] are long-time certificate based, and both of them are
allowed to reuse the given certificate with unlimited number of times.

2 Security Model

In this section, we present the security models for k-ASH. As mentioned in the
introduction, a secure k-ASH protocol should achieve both session key security
and anonymity. Below we present the corresponding security models to capture
the above requirements. Specifically, the session key security model is a modified
version of eCK model [21], which is an extension of CK model [11] in the secret

handshake setting, while the anonymity model is extended from the privacy
models ([17, 24]) for RFID authentication protocols.

States. We define a system user set U with n users, i.e. |U| = n. We say an
oracle Πi

U may be used or unused. The oracle is considered as unused if it has
never been initialized. Each unused oracle Πi

U can be initialized with a secret
key x. The oracle is initialized as soon as it becomes part of a group. After
the initialization the oracle is marked as used and turns into the stand-by state
where it waits for an invocation to execute a protocol operation. Upon receiving
such invocation the oracle Πi

U learns its partner identifier pidiU and turns into
a processing state where it sends, receives and processes messages according to
the description of the protocol. During that stage, the internal state information
stateiU is maintained by the oracle. The oracle Πi

U remains in the processing state
until it collects enough information to compute the session key Ki

U . As soon as
Ki
U is computed Πi

U accepts and terminates the protocol execution meaning
that it would not send or receive further messages. If the protocol execution fails
then Πi

U terminates without having accepted.

Partnering. We denote the i-th session established by a user U by Πi
U , and

identities of all the users recognized by Πi
U during the execution of that session

by pidiU . We define sidiU as the unique session identifier belonging to the session
i established by the user U . Specifically, sidiU = {mj}nj=1, where mj ∈ {0, 1}∗ is

the message transcript among users. We say two instance oracles Πi
U and Πj

U ′

are partners if and only if pidiU = pidjU ′ and sidiU = sidjU ′ .

2.1 System Model

We define a k-time authenticated secret handshake protocol consists of the fol-
lowing algorithms:

– Setup: The algorithm takes the security parameter λ as input, outputs the
master public parameters mpk (including the k-time tag bases) and the master
secret keys msk.

– KeyGen: The algorithm takes the master public key mpk as input, outputs a
public/secret key pair (X,x).

– Register: This is an interactive algorithm that executed between the user and
the TA. TA takes the master secret key msk and a public key X of one user
as input, outputs a set of credentials {si}ki=1 on X. The user will become a
registered user after interaction with TA.

– Handshake: This is an interactive algorithm that executed by registered users.
Each user takes his/her secret key x, one of his/her credentials {si}ki=1 and
mpk as input, outputs a shared secret key K if and only if his/her counterparts
are registered users.

– Tracing: The algorithm takes two handshake transcripts of one user and one
of tag bases as input, outputs the user’s public key X.

2.2 Session Key Security

We define the session key security model for k-ASH protocols, in which each user
obtains a set of credentials associated with his/her public key from the TA, and
establishes a session key using one of the given secret credentials in one session.
The model is defined via a game between a probabilistic polynomial time (PPT)
adversary A and a simulator S. A is an active attacker with full control of the
communication channel among all the users.

– Setup: S first generates master public/secret key pair (mpk,msk) for the TA
and long-term secret keys {xi}ni=1 for n users by running the corresponding
KeyGen algorithms, where xi denotes the secret key of user i. In addition, S
generates a set of secret credentials {si,j}kj=1 for user i by running the Register
algorithm. S also tosses a random coin b which will be used later in the game.
Let U denote all the registered users.

– Training: A can make the following queries in arbitrary sequence to simulator
S.
• Establish: A is allowed to register a user U ′ with public key X ′i. If a user is

registered by A, then we call this user dishonest ; Otherwise, it is honest.
• Send: If A issues send query in the form of (U, i,m) to simulate a network

message for the i-th session of user U , then S would simulate the reaction
of instance oracle Πi

U upon receiving message m, and returns to A the
response that Πi

U would generate; If A issues send query in the form of
(U,′ start′), then S creates a new instance oracle Πi

U and returns to A the
first protocol message.

• Session key reveal: A can issue reveal query to an accepted instance oracle
Πi
U . If the session is accepted, then S will return the session key to A;

Otherwise, a special symbol ‘⊥’ is returned to A.
• Ephemeral secret key reveal: If A issues an ephemeral secret key reveal

query to (possibly unaccepted) instance oracle Πi
U , then S will return all

ephemeral secret values contained in Πi
U at the moment the query is asked.

• long term secret key reveal: If A issues a long term secret key reveal (or
corrupt, for short) query to user i, then S will return both the long term
secret key and the secret credential set (xi, {si,j}kj=1) to A.
• Master secret key reveal: If A issues a master secret key reveal query to TA,

then S will return the master secret keys msk to A.
• Test: This query can only be made to an accepted and fresh (as defined

below) session i of a user U . Then S does the following:
∗ If the coin b = 1, S returns the real session key to the adversary;
∗ Otherwise, a random session key is drawn from the session key space and

returned to the adversary.
Note that A can generate a set of secret credentials {si,j}kj=1 of user i after
issuing Master secret key reveal query to TA. It is also worth noting that A
can continue to issue other queries after the Test query. However, the test
session must maintain fresh throughout the entire game.

Finally, A outputs b′ as its guess for b. If b′ = b, then the simulator outputs
1; Otherwise, the simulator outputs 0.

Freshness. We say an accepted instance oracle Πi
U is fresh if A does not perform

any of the following actions during the game:

– A issues Session key reveal query to Πi
U or its accepted partnered instance

oracle Πj
U ′ ;

– A issues both Long term secret key reveal query to U ′ s.t. U ′ ∈ pidiU and
Ephemeral secret key reveal query for an instance Πj

U ′ partnered with Πi
U ;

– A issues Long term secret key reveal query to user U ′ s.t. U ′ ∈ pidiU prior to the
acceptance of instance Πi

U and there exists no instance oracle Πj
U ′ partnered

with Πi
U .

Note that the Master key reveal query to TA is equivalent to the Long term
secret key reveal to all users in pidiU .

We define the advantage of an adversary A in the above game as

AdvA(λ) = Pr[S → 1]− 1/2. (1)

Definition 1. We say a k-ASH protocol has session key security if for any PPT
A, AdvA(λ) is a negligible function of the security parameter λ.

2.3 Anonymity

Informally, an adversary is not allowed to identify who are the handshake users,
with the condition that honest users authenticate with each other within k times.
We define a game between an insider adversary A and a simulator S as follows:

– Setup: S generates master public/secret key pairs (mpk,msk) for the TA and
long term secret keys {xi}ni=1 for n users by running the corresponding KeyGen
algorithms. In addition, S generates a set of secret credentials {si,j}kj=1 for
user i by running the Register algorithm. S also tosses a random coin b which
will be used later in the game. We denote the original n users set as U .

– Training: A is allowed to issue Establish, Send, Ephemeral secret key reveal,
Session key reveal and at most n-2 Long term secret key reveal queries to S. We
denote the honest (i.e., uncorrupted) user set as U ′.

– Challenge: A randomly selects two users Ui, Uj ∈ U ′ as challenge candidates,
then S remove them from U ′ and simulates U∗b to A by either U∗b = Ui if b = 1
or U∗b = Uj if b = 0.
Let A interact with U∗b . Note that A is allowed to activate at most k sessions
for Ui, Uj throughout the entire game.

A ⇔ U∗b =

{
Ui b = 1
Uj b = 0

Finally, A outputs b′ as its guess for b. If b′ = b, then the simulator outputs
1; Otherwise, the simulator outputs 0.

We define the advantage of A in the above game as

AdvA(λ) = Pr[S → 1]− 1/2. (2)

Definition 2. We say a k-ASH protocol has anonymity if for any PPT A,
AdvA(λ) is a negligible function of the security parameter λ.

3 Our Construction

3.1 Preliminaries

Bilinear Map. The bilinear map ê : G×G→ G1 has the following properties:

1. Bilinearity: ê(gαi , gαj) = ê(g, g)αi·αj : ∀αi, αj ∈ Zq, g ∈ G.
2. Non-degeneracy: ê(g, g) 6= 1.
3. Computable: There exists an efficient algorithm for computing the bilinear

map.

Note that the map ê is symmetric since ê(gαi , gαj) = ê(g, g)αi·αj = ê(gαj , gαi).

3.2 Modified Computational Diffie-Hellman Problem

Definition 3. Computational Diffie-Hellman (CDH) Assumption [20]:
Given g, ga, gb ∈ G where a, b ∈R Zq, we define the advantage of the adversary
in solving the CDH problem as

AdvCDHA (λ) = Pr[A(g, ga, gb) = gab ∈ G]

We say a CDH assumption holds in group G if for any PPT A, AdvA(λ) is a
negligible function of the security parameter λ.

We propose a variant of computational diffie-hellman problem (VoCDH) below.

Definition 4. Given g, ga, g1/a, gb ∈ G where a, b ∈R Zq, we define the advan-
tage of the adversary in solving the VoCDH problem as

AdvV oCDHA (λ) = Pr[A(g, ga, g1/a, gb) = gab ∈ G]

We prove the above VoCDH problem is hard in G with a bilinear map ê : G×G→
G1 in the generic bilinear group model [23, 9].

Theorem 1. Let ε1, ε2 : Fp → {0, 1}∗ be two random encodings (injective func-
tions) where Fp is a prime field and G = {ε1(a)|a ∈ Fp},G1 = {ε2(a)|a ∈ Fp}.
If a, b are uniformly and independently chosen from Fp and encodings ε1, ε2 are
randomly chosen, we then define the advantage of the adversary in solving the
VoCDH with at most q, q1 queries to the group operation oracles O,O1 and qê
queries to the bilinear pairing oracle Oê : ε1 × ε1 → ε2 as

AdvV oCDHA (λ) = Pr[A(ε1(1), ε1(a), ε1(b), ε1(a−1))

= ε1(a · b)] ≤ 4(q + q1 + qê + 4)2

p

Proof. Let S be the simulator to simulate the entire game for A. S maintains
two polynomial sized dynamic lists: L1 = {(pi, ε1,i)}, L2 = {(qi, ε2,i)}, the pi ∈
Fp[X1, X2] are 2-variate polynomials over Fp, such that p0 = 1, p1 = X1, p2 =

X2, p3 = Xp−2
1 , and {ε1,i}3i=0 ∈R {0, 1}∗ are corresponding arbitrary strings, S

then sets those pairs (pi, ε1,i) as L1. Therefore, the two lists are initialised as
L1 = {(pi, ε1,i)}3i=0, L2 = ∅.

At the beginning of the game, S sends {ε1,i}i=0,··· ,3 to A. After this, S
simulates the group operation oracle O,O1 and the bilinear pairing oracle Oê as
follows. We assume that all requested operands are obtained from S.

– O: The group operation involves two operands ε1,i, ε1,j . Based on these
operands, S searches the list L1 for the corresponding polynomials pi and
pj . Then S perform the polynomial addition or subtraction pl = pi ± pj de-
pending on whether multiplication or division is requested. If pl is in the list
L1, then S returns the corresponding εl to A. Otherwise, S uniformly chooses
ε1,l ∈R {0, 1}∗, where ε1,l is unique in the encoding string L1, and appends
the pair (pl, ε1,l) into the list L1. Finally, S returns ε1,l to A as the answer.
Group operation queries in G1 (i.e., O1) is treated similarly.

– Oê: The group operation involves two operands ε1,i, ε1,j . Based on these
operands, S searches the list L1 for the corresponding polynomials pi and
pj . Then S perform the polynomial multiplication pl = pi · pj . If pl is in the
list L2, then S returns the corresponding ε2,l to A. Otherwise, S uniformly
chooses ε2,l ∈R {0, 1}∗, where ε2,l is unique in the encoding string L2, and
appends the pair (pl, ε2,l) into the list L2. Finally, S returns ε2,l to A as the
answer.

After querying at most q, q1, qe times of corresponding oracles, A terminates
and outputs ε1(x1 · x2). At this point, S chooses random a, b ∈R Fp and sets
X1 = a,X2 = b. The simulation by S is perfect unless the abort event happens.
Thus, we bound the probability of event abort by analyzing the following cases:

1. pi(a, b) = pj(a, b): Since pi 6= pj as the method of L1 is generated, pi − pj
is a non-zero polynomial of degree 0, 1, or p− 2 where p− 2 is produced by
Xp−2

1 . Since X1 ·Xp−2
1 = Xp−1

1 ≡ 1 (mod p), we have X1(pi−pj) is a non-zero
polynomial of degree 0, 1, or 2. Therefore, the maximum degree of X1(pi−pj)
is 2. By using lemma 1 in [23], we have Pr[(X1(pi − pj))(a, b) = 0] ≤ 2

p and

thus Pr[pi(a, b) = pj(a, b)] ≤ 2
p . As there are

(
q+4

2

)
pairs of (pi, pj), we have

the abort probability is Pr[abort1] ≤
(
q+4

2

)
· 2
p .

2. qi(a, b) = qj(a, b): Since qi 6= qj as the method of L2 is generated and qi, qj
are in the form of

∑
ak,lpkpj for some constants ak,l, qi − qj is a non-zero

polynomial of degree 0, 1, 2, p−1, p−2, or 2p−4. Similar to above case, we have
X2

1 ·X
p−1
1 ≡ X2

1 , X2
1 ·X

p−2
1 ≡ X1, and X2

1 ·X
2p−4
1 = (Xp−1

1)2 ≡ 1 (mod p).
Therefore, X2

1 (qi−qj) is a non-zero polynomial of degree ranging from 0 to 4.
Since the maximum degree of X2

1 (qi−qj) is 4, we have Pr[(X2
1 (qi−qj))(a, b) =

0] ≤ 4
p and thus Pr[qi(a, b) = qj(a, b)] ≤ 4

p . As there are
(
q1+qê

2

)
pairs of

(qi, qj), we have the abort probability is Pr[abort2] ≤
(
q1+qê

2

)
· 4
p .

3. pi(a, b) = ab: Since the degree of p1 is 0, 1, or p− 2, and the degree of X1X2

is 2, we have that pi −X1X2 is a non-zero polynomial of degree 2 or p − 2.
Similar to the case 1, we have X1(pi − X1X2) is a non-zero polynomial of
maximum degree of 3. Therefore, we have Pr[(X1(pi−X1X2))(a, b) = 0] ≤ 3

p

and thus Pr[pi(a, b) = ab] ≤ 3
p . As there are q+ 4 polynomials in L1, we have

the abort probability is Pr[abort3] ≤ 3(q+4)
p .

By combining all above cases, we have the abort probability is

Pr[abort] = Pr[abort1] + Pr[abort2] + Pr[abort3]

≤
(
q + 4

2

)
· 2

p
+

(
q1 + qê

2

)
· 4

p
+

3(q + 4)

p

<
(q + 4)2 + 2(q1 + qê)

2 + 3(q + 4)

p

<
4(q + q1 + qê + 4)2

p

3.3 Modified Decisional Combined Bilinear Diffie-Hellman Problem

Definition 5. Variant of Decisional Combined Bilinear Diffie-Hellman
Problem: Given g, ga, gb, hc, hd, h1/d ∈ G where a, b, c, d ∈R Zq and h = ge, we
define the advantage of the adversary in solving the VoDCBDH problem as

AdvVoDCBDH
A (λ) = Pr[w = A(g, ga, gb, gec, ged, ge/d,

T0, T1, w ∈R {0, 1}) : Tw = gab+ecd, Tw−1 = Z].

The VoDCBDH problem is a variant of Decisional Combined Bilinear Diffie-
Hellman Problem [27]. We prove the VoDCBDH problem is hard in G with a
bilinear map ê : G×G→ G1 in the generic bilinear group model [23, 9].

Theorem 2. The lower bound of the complexity of the VoDCBDH problem is
stated as follows, querying the group operations and bilinear pairing operations
at most q times.

AdvVoDCBDH
A (λ) ≤ 3(q + 9)2

p
.

To prove this theorem, we introduce an intermediate problem (see Lemma 2),
and we prove that the hardness of intermediate problem implies the hardness
of the VoDCBDH problem. After that, we prove the intermediate problem is
intractable (see Lemma 1) and then the theorem follows.

Definition 6. Given g, gd, gcd, gd
2

, ge, gae, gbe ∈ G where a, b, c, d, e ∈R Zp and

g ∈R G, the modified problem is to distinguish gabe+cd
2

from a random element
Z ∈R G. The advantage of an adversary A to solve the modified problem is
defined as

Adv
Modified
A (λ) = Pr[w = A(g, gd, gcd, gd

2

, ge, gae, gbe,

T0, T1, w ∈R {0, 1}) : Tw = gabe+cd
2

, Tw−1 = Z]

Lemma 1. If an algorithm A can solve the VoDCBDH problem with the ad-
vantage AdvVoDCBDH

A (λ), then we can built an algorithm S to solve the modified

problem with the advantage Adv
Modified
S (λ) such that

AdvVoDCBDH
A (λ) ≤ Adv

Modified
S (λ).

Proof. The simulator S obtains an instance θ̂ = (ĝ, ĝd̂, ĝĉd̂, ĝd̂
2

, ĝê, ĝâê, ĝb̂ê, T0, T1).

Then S checks whether ĝd̂ = 1 or not. If ĝd̂ = 1, that is d̂ = 0, the simulator

S returns w = 0 if e(ĝâê, ĝb̂ê) = e(T0, ĝ
ê) or returns w = 1 otherwise, and

solves θ̂ with the probability of 1. If ĝd̂ 6= 1, the simulator S continues and sets

θ = (g, ga, gb, h, hc, hd, h
1
d , T0, T1) = (ĝê, ĝâê, ĝb̂ê, ĝd̂, ĝĉd̂, ĝd̂

2

, ĝ, T0, T1), it implic-

itly sets g = ĝê, h = ĝd̂, a = â, b = b̂, c = ĉ, and d = d̂. After that, S sends θ
to A. At some point, the adversary A outputs a bit w, indicating Tw = gabhcd.

Since Tw = gabhcd = (ĝê)âb̂(ĝd̂)ĉd̂ = ĝâb̂ê+ĉd̂
2

, the simulator S wins with the
probability AdvVoDCBDH

A (λ). Therefore, we have

AdvModified
S (λ) ≥ Pr[ĝd̂ = 1] + Pr[ĝd̂ 6= 1] · AdvVoDCBDH

A (λ)

≥ 1

p
+
p− 1

p
AdvVoDCBDH
A (λ) ≥ AdvVoDCBDH

A (λ).

Lemma 2. The lower bound of the complexity of the modified problem is stated
as follows, querying the group operations and bilinear pairing operations at most
q times.

Adv
Modified
S (λ) ≤ 3(q + 9)2

p
.

Proof. The modified problem is an instance of Decisional Bilinear (P, f)-Diffie-
Hellman problem family [27] where P = (p1, . . . , p7) = (1, d, cd, d2, e, ae, be) and
f = abe+ cd2. We show that f is not dependent on P by contradiction.

Assume f is dependent on P that by definition in [27] there exists 57 con-
stants ai,j , bk, and c that

Q = cf2 +

7∑
k=1

bkpkf +

7∑
i=1

7∑
j=1

ai,jpipj = 0

where at least one of bk or c is non-zero. We analyze the above equation in two
cases.

1. c 6= 0: In this case, there is a term f2 = a2b2e2 + 2abcd2e + c2d4 in Q.
Furthermore, the term a2b2e2 is not in any combination of pkf or pipj , then
f2 cannot be canceled out. Hence, we have Q 6= 0 if c 6= 0.

2. c = 0: In this case, we have Q = cf2 +
∑7
k=1 bkpkf +

∑7
i=1

∑7
j=1 ai,jpipj

where at least one of bk is non-zero. In other words, Q has at least a term
pkf = pk(abe + cd2) = pkabe + pkcd

2. As Q = 0, both two terms pkabe and
pkcd

2 should be canceled out. In the first step, we focus on the term pkabe.
There are two methods to cancel the term pkabe.

(a) To cancel with pk′f = pkabe + pk′cd
2 where k 6= k′, we have pkabe =

pk′cd
2, that is, pk = θcd2 and pk′ = θabe for some polynomial θ. Since

no such pair of pk and pk′ in P , we cannot cancel pkabe via pk′f .
(b) To cancel with pipj , we have pkabe = pipj . By observing P , the only

polynomial which has a is p6 = ae. Thus we have pkabe = p6pj ⇐⇒
pkb = pj . By observing P again, the only polynomial which has b is
p7 = be. Thus we have pk = e = p5.

Therefore, pkabe can be canceled out when k = 5. To further cancel out
p5f , the term p5cd

2 = cd2e has to be canceled out. As before, there are two
methods to cancel the term cd2e.

(a) To cancel with pkf = pkabe+ pkcd
2 where k 6= 5, we have pkabe = cd2e.

Since the term cd2

ab is not in P , we cannot cancel out the term cd2e.
(b) To cancel with pipj , we have pipj = cd2e. By observing P , the only

polynomial, which has c is p3 = cd. Thus we have pip3 = cd2e ⇐⇒
pi = de. Since the term de is not in P , we cannot cancel out the term
cd2e.

Since it is impossible to cancel out any term pkf , we have Q 6= 0 if c = 0.

To sum up, it is impossible to make Q = 0, which contradicts the assumption.
Therefore, we have f is not dependent on P . By the theorem 1 in [27], we directly
have the lemma.

By combining the Lemma 1 and Lemma 2, we have

AdvVoDCBDH
A (λ) ≤ AdvModified

S (λ) ≤ 3(q + 9)2

p
.

3.4 Extended Decisional Combined Bilinear Diffie-Hellman
Problem

We propose an extension of variant of Decisional Combined Bilinear Diffie-
Hellman Problem below.

Definition 7. Extended variant of Decisional Combined Bilinear Diffie-
Hellman (EVoDCBDH) Assumption: Given g, ga, gb, ge, gf , hc, hd, h1/d, hl ∈
G where a, b, c, d, e, f, l ∈R Zq and h = ge, we define the advantage of the adver-
sary in solving the EVoDCBDH problem as

AdvEVoDCBDH
A (λ) = Pr[w = A(g, ga, gb, gf , hc, hd, h1/d,

hl, T0, T1, w ∈R {0, 1}) : Tw = gab+ecd, Tw−1 = gbf+edl]

Theorem 3. We say a EVoDCBDH assumption holds in group G if for any
PPT A, AdvA(λ) is a negligible function of the security parameter λ.

Proof. Let S denote the VoDCBDH problem solver, who is given (ga, gb, ge,
gf , hc, hd, h1/d, hl), and aims to distinguish T = gab · hcd from another value
gbf · hdl. S simulates the game for A as follows.

– Setup: S chooses f, l ∈R Zq and computes gf , hl, then generates other public
parameters using the given instances and sends them to A. S also tosses a
random coin w which will be used later in the game.

– Challenge stage: S returns the challenge T if b = 0; Otherwise, returns the
value gbf · hdl to A. Note that the value T comes from his own challenger.
Finally, A outputs w′ as its guess for w. If w′ = w, then S outputs 1; Other-
wise, S outputs 0.
Probability analysis: Since the value T from its challenger can be either gab·hcd
or R, thus we have

AdvV oDCBDHS = Pr[A → 1 | T = gab · hcd]− Pr[A → 1 | T = R]

= [AdvEV oDCBDHA + 1/2]− [AdvV oDCBDHS + 1/2]

= AdvEV oDCBDHA − AdvV oDCBDHS

⇒ AdvEV oDCBDHA = 2 · AdvV oDCBDHS .

3.5 Exponent Challenge Response Signature

We firstly review the Exponent Challenge-Response signature, which will be used
in our k-ASH protocol.

Definition 8. The Exponential Challenge-Response (XCR) signature
scheme [20]. The signer possess a public/secret key pair (ga, a) (a ∈ Zq). A

verifier provides a message m together with a challenge gw
′

(w′ ∈ Zq is chosen

by verifier). The signature produced by signer using challenge gw
′

is defined as
(gw, gw

′(w+a·H(gw||m))) (w ∈ Zq is chosen by signer). Then the verifier accepts a

signature pair (gw, σ) as valid iff gw 6= 0 and σ = (gw · ga·H(gw||m))w
′
.

3.6 Our k-ASH protocol

Now we present our proposed unlinkable secret handshake with k-time authen-
tication protocol in the two party setting (without loss of generality, we use user

Â and user B̂ here). It works as follows:

– Setup: TA takes the security parameter λ and the number of handshakes k as
input, outputs the master public key mpk = (g, h, {gti}i=ki=1 , h

α, h1/α), and the
master secret key msk = ({ti}i=ki=1 , α). TA also generates four hash functions
H1 : G × G1 → Zq, H2 : {0, 1}∗ → Zq, H3 : G → Zq, H4 : G → Zq and denotes
the bilinear pairing ê : G×G→ G1.

– KeyGen: User Â chooses xa ∈ Zq and computes gxa as his/her public key.

– Register: User Â submits his/her public key gxa to TA. TA then chooses wai ∈
Zq and computes sai = wai +α ·H1(hwai ||ê(gxa , hα)ti) and returns a credential

set {hwai}i=ki=1 , {sai}i=ki=1 to user Â. While user Â can verify them using the

following equations: {hsai ?
=hwai · hα·H1(hwai ||ê(hα,gti)xa)}i=ki=1 .

– Handshake:

Â B̂
Ra−−−−−−−−−−−−−−−−−−−−→

Rb, g
ti , hwbi , Cbi , Ĉbi , eb←−−−−−−−−−−−−−−−−−−−−−−

gti , hwai , Cai , Ĉai , ea−−−−−−−−−−−−−−−−−−−−→

Fig. 1. Handshake

• User Â chooses the ephemeral secret key ra ∈R Zq, computes Ra = hr
′
a =

hH2(ra||xa||sai) and sends it to user B̂;

• User B̂ performs the following.

∗ Choose the ephemeral secret key rb ∈R Zq, computes Rb = hr
′
b =

hH2(rb||xb||sbi);
∗ Compute Cbi = ê(hα, gti)xb ;

∗ Compute Ĉbi = gti·xb · hsbi ·eb/α, where eb = H3(R
r′b
a);

∗ Send Rb, g
ti , hwbi , Cbi , Ĉbi , eb to user Â.

• User Â receives the incoming message from user B̂, then performs the fol-
lowing.

∗ Verify ea = H3(R
r′a
b)

?
=eb. If verification fails, reject the session; Otherwise,

proceeds;

∗ Verify ê(Ĉbi , h
α)

?
=Cbi · ê(hwbi · hα·ebi , hea), where ebi = H1(hwbi ||Cbi). If

verification fails, reject the session; Otherwise, proceed to the next step;
∗ Compute the session key K = H4((hsbi ·e

∗
b ·Rb)s

∗
a), where e∗b = H3(Rb||ebi),

s∗a = sai · e∗a + r′a, e
∗
a = H3(Ra||eai), eai = H1(hwai ||Cai);

∗ Send gti , hwai , Cai , Ĉai , ea to user B̂. Note that the computation of Cai , Ĉai
by user Â follows the same procedures as above.

• User B̂ verifies the received message using the same method as user Â, and
computes the session key K = H4((hsai ·e

∗
a ·Ra)s

∗
b), where e∗a = H3(Ra||eai),

s∗b = sbi · e∗b + r′b, e
∗
b = H3(Rb||ebi).

Note that the computation of session key used the XCR signature from [20].

– Tracing

If user Â used the same credential twice, e.g., (Ĉai , eai) and (Ĉ ′ai , e
′
ai), then

anyone can compute gti·xa = [(gti·xa · hsai ·eai/α)e
′
ai/

(gti·xa · hsai ·e
′
ai
/α)eai]1/(e

′
ai
−eai), where eai = H3(Rra), e′ai = H3(R′ra). That

means if user Â reused a credential, then user Â’ identity can be revealed
since ê(gti·xa , g) = ê(gti , gxa) for public key gxa .

4 Security Analysis

4.1 Session Key Security

Theorem 4. The proposed k-ASH protocol achieves session key security (Def-
inition 1) in the random oracle model if the VoCDH assumption is held in the
underlying group G.

Proof. We define a sequence of games Gi, i = 0, · · · , 3 and let Advk−ASHi denote
the advantage of the adversary in game Gi. Assume that A activates at most m
(perhaps m ≥ k) sessions in each game.

– G0 This is original game for session key security.
– G1 This game is identical to game G0 except that S will output a random bit

if the nonce Ri is used twice by two different instance oracles. Therefore, we
have: ∣∣Advk−ASH0 − Advk−ASH1

∣∣ ≤ m2/2λ (3)

– G2 This game is identical to game G1 except that S will output a ran-
dom bit if Forge event happens where A made a send query in the form
of (hr0 , gti , hw0 , ê(hα, gti)xi , gti·xi · hs0·H3(R∗r0)/α, H3(R∗·r0)) and an H4 query

with a valid forgery σ = R∗s
∗
0 = R∗[s0·H3(hr0 ||H1(hw0 ||ê(hα,gti)xi))+r0] for chal-

lenge R∗, such that user i is not corrupted (i.e., no Long term secret key reveal
query to user i or Master secret key reveal query to TA) when the hash query
is made. Then we have:∣∣Advk−ASH1 − Advk−ASH2

∣∣ ≤ Pr[Forge] (4)

Lemma 3. The Forge event happens only with a negligible probability when
the VoCDH assumption is held in G.

Let S denote the VoCDH problem solver, who is given ha, h1/a, hb, and aims
to compute hab. S simulates the game for A as follows:

• Setup stage: F sets up the game for A by creating n users (set U) with
the corresponding public/secret key pairs {Xi, xi}ni=1. F randomly selects
an index i and guesses that the Forge event will happen with regard to
user i and session i. S then sets the mpk as hα = ha, h1/α = h1/a and
generates other public parameters honestly. In addition, S sets the challenge
as R∗ = hb in the guessed session i, S simulates the game for A as follows.
• S answers A’s queries as follows:

∗ If A issues establish query in the form of (U ′, X ′), such that U ′ /∈ U , then
user U ′ with public key X ′ will be added to the system.

∗ If A issues a send query in the form of (hr
′
, gti , hw

′
, ê(ha, gti)x

′
, gti·x

′ ·
h(s′·e′)/a) to user i, then S verifies it successfully (notice that A may
corrupt a user with secret key x′ and secret signature pair (hw

′
, s′)), and

next to generating the signatures (hwi , si) as follows:

1. Chooses si, ei ∈R Zq;

2. Sets hwi = hsi/ha·ei ;
3. Sets H1(hwi ||Ci) = ei, where Ci = ê(ha, gti)xi .

Then, S chooses r′i ∈ Zq and computes e = H3(hr
′·r′i). Eventually, S

generates the message (hr
′
i , gti , hwi , Ci, g

ti·xi · h(si·e)/a, e) and sends it to
A.

∗ If A issues an ephemeral secret key reveal query to instance oracle Πi
Ui

,
then S returns the ephemeral value ri (r′i = H2(ri||xi||si)) to A.

∗ If A issues a long term secret key reveal query to user j (6= i), then S
returns xj and secret signatures {sj}kj=1 to A. Note that S can simulate
secret signatures (hwj , sj) of user j (6= i) using the same method that
described above. If A issues a long term secret key reveal key query to
user i or a master secret key reveal key query to TA, then abort.

∗ Session key reveal query and Test query: S answers the session key reveal
query and the test query by using the session key it has derived during
the protocol simulation described above.

• When Forge event occurs (i.e., A outputs: hr0 , gti , hw0 , ê(ha, gti)xi ,

gti·xi · h(s0·H3(hb·r0))/a, H3(hb·r0)), S checks whether:

1. The Forge event with respect to user i on challenge hb;
2. Verifies:

ê(gti·xi · h(s0·H3(hb·r0))/a, ha)
?
= ê(ha, gti)xi · ê(hs0 , he

∗
)

Note that hs0 = hw0 · ha·e1 , s0 = w0 + a · e1, e1 = H1(hw0 ||ê(ha, gti)xi),
e∗ = H3(hb·r0).

3. Verifies:

ê(D,h) = ê((hsi·H3(hb||ei) · hb)s0·H3(hr0 ||e1)+r0 , h)
?
= ê(hsi·H3(hb||ei) · hb, hs0·e0 · hr0)

Note that the value D is used to compute session key K(= H4(D)),
e0 = H3(hr0 ||e1).

If all the above conditions hold, S confirms it as a successful forgery from
H4 and proceeds:

σ1 =
D

(hs0·e0 · hr0)si·H3(hb||ei)

= (hb)s0·e0+r0 = hb[(w0+a·e1)e0+r0]

According to the forking lemma [4], by rewinding the adversary twice, S
would obtain four forgeries from H4, which will be listed below.

σ1 = hb[(w0+a·e1)e0+r0], e0 = H3(hr0 ||e1);

σ2 = hb[(w0+a·e1)e′0+r0], e′0 = H3(hr0 ||e1);

σ3 = hb[(w0+a·e′1)ê0+r′0], ê0 = H3(hr
′
0 ||e′1);

σ4 = hb[(w0+a·e′1)ê′0+r′0], ê′0 = H3(hr
′
0 ||e′1);

Therefore, S can perform the computation below to obtain a solution to
VoCDH.

D1 = (
σ1

σ2
)1/(e0−e′0) = hb·w0 · hab·e1

D2 = (
σ3

σ4
)1/(ê0−ê′0) = hb·w0 · hab·e

′
1

hab = (
D1

D2
)1/(e1−e′1).

The simulation performed by S is perfect. Since at most n users and m sessions
in the game, we have:

Pr[Forge] ≤ n ·m · AdvV oCDHS (λ) (5)

– G3: This game is identical to game G2 except that in the test session, we
replace the session key K = H4(hs

∗
i ·s
∗
j) by a random value r ∈ Zq. Since we

model H4 as a random oracle, if the event Forge does not happen, then we
have

Advk−ASH2 = Advk−ASH3 (6)

It is easy to see that in game G3, A has no advantage, i.e.,

Advk−ASH3 = 0 (7)

Combining the above results together, we have

Advk−ASHA (λ) ≤ m2/2λ + n ·m · AdvV oCDHA (λ)

4.2 Anonymity

Theorem 5. The proposed k-ASH protocol achieves anonymity (Definition 2) in
the random oracle model if the EVoDCBDH Assumption is held in the underlying
group G.

Proof. Let S denote a EVoDCBDH problem distinguisher, who is given (g, h, ga,
gb, gf , hc, hd, H1/d, hl), and aims to distinguish gab ·hcd and gbf ·hdl. S simulates
the game for A as follows.

– Setup: S sets up the game for A by creating n users. S sets hα = h1/d, h1/α =
hd (the msk = (α, 1/α) are implicitly set as (1/d, d) respectively), and ran-
domly selects one tag base gt

∗
= gb and generates other tag bases honestly

(i.e., gti , ti ∈ Zq is chosen by S). In addition, S randomly chooses users i, j
from user set U and sets gxi = ga, gxj = gf (the secret keys (xi, xj) are implic-
itly set as (a, f) respectively), and generates public/secret key pair for other
users honestly.

– If A issues a send query in the form of (R′, gti , hw
′
, Cb′ , Ĉb′) to user i, then S

performs the simulation as follows.

• S simulates the signature pair (hwi , si) using the same method that de-
scribed in Lemma 3;

• S computes Ĉi = ga·ti · hd·si·e′i , and Ci = ê(h1/d, ga)ti , where e′i = H3(R′ri),
ri ∈ Zq;

• S generates Ri = hri and sets ei = H1(hwi ||Ci);
• S returns (Ri, g

ti , hwi , Ci, Ĉi, e
′
i) to user A as the response.

Note that S can simulate the response of user j using the same method as
above.

– It is easy to see that all queries to other users can be simulated perfectly
using the user secret keys, and S can simulate secret credentials using the
same method as described in Lemma 3.

– Challenge: If A issues a send query in the form of (R, gti , hw
′
, C ′i, Ĉ

′
i) to user i,

then S computes Ĉi = (gba ·hdc)e∗ and Ci = ê(Ĉi, h
1/d)/ê(hc, he

∗
), where e∗ =

H3(Rr
∗
). Eventually, S returns (R∗, gb, hwi , Ci, Ĉi, e

∗) to A as the response.

Similarly, if A issues a send query to user j, then S computes Ĉj = (gbf ·
hdl)e

∗
and Cj = ê(Ĉj , h

1/d)/ê(hl, he
∗
), where e∗ = H3(Rr

∗
). Eventually, S

returns (R∗, gb, hwj , Cj , Ĉj , e
∗) to A as the response. Note that S can perfectly

simulate the value hwi = hc/hei/d, and sets ei = H1(hwi ||Ci) for user i, S also
can simulate the value hwj of user j using the same method.

Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the EVoDCBDH problem. Hence, we have

Advk−ASHA ≤ AdvEV oDCBDHS (λ) (8)

5 Extension

We can extend the above k-time ASH protocol in the two party setting to the
multiple party setting using the classic BD broadcasting protocol [10]. The Setup,
KeyGen, Register and Tracing algorithms are same as the two party setting, except
the Handshake algorithm, which will be described below. Note that we suppose
at most n users in the multiple party setting.

– Round 1: User i computes Ri = hr
′
i = hH2(ri||xi||si), ri ∈R Zq and broad-

casts (Ri, g
ti , hwi , Ci). Note that xi, si denote the secret key and the secret

credential value of user i, and Ci = ê(hα, gti)xi . Also notice that the indices
are taken module n so that user 0 is user n and user i+1 is user 1.

– Round 2: After receiving n-1 messages in Round 1, then user i computes

{Ĉj = gti·xi ·hsi·ej/α, ej = H3(R
r′i
j)}n−1

j=1,j 6=i and {hsj = hwj ·hα·H1(hwj ||Cj)}n−1
j=1,j 6=i.

Eventually, user i computes the intermediate key Ki =
H4(hs

∗
i+1·s

∗
i)

H4(hs
∗
i−1·s∗i)

and

broadcasts (Ki, {Ĉj , ej}n−1
j=1,j 6=i).

Note that s∗i = si · e∗i + r′i, e
∗
i = H3(Ri||H1(hwi ||Ci)),

hs
∗
i+1 = (hwi+1 ·hα·H1(hwi+1 ||Ci+1))e

∗
i+1 ·Ri+1, e

∗
i+1 = H3(Ri+1||H1(hwi+1 ||Ci+1)),

hs
∗
i−1 = (hwi−1 ·hα·H1(hwi−1 ||Ci−1))e

∗
i−1 ·Ri−1, e

∗
i−1 = H3(Ri−1||H1(hwi−1 ||Ci−1)).

– Key Derivation: User i verifies the received messages {Ĉj}j 6=i from n-1
users (it supports batch verification, see below), if either of them fail, then
abort; Otherwise, computes the final session key ski = H4(hs

∗
i−1·s

∗
i)n⊕Kn−1

i ⊕
Kn−2
i+1 · · · ⊕Ki−2).

1. Batch Verification. User i is able to batch verify the received n-1 messages
from n-1 users using the small exponents test in [3, 13].

ê(
n−1∏
j=1

Ĉj
δj
, hα) = ê(

n−1∏
j=1

gti·xj ·δj · hsj ·ej ·δj/α, hα)

=

n−1∏
j=1

ê(gti·xj ·δj , hα) · ê(
n−1∏
j=1

hsj ·ej ·δj , h)

?
=

n−1∏
j=1

C
δj
j · ê(

n−1∏
j=1

hsj ·δj , hej).

Where δj ∈ Zq, ej = H3(R
r′i
j) and j ∈ [1, j 6= i, · · · , n− 1]. If batch verifica-

tion fail, then abort; Otherwise, proceeds.

2. Correctness Check.

ski = H4(hs
∗
i−1·s

∗
i)n ⊕Kn−1

i ⊕Kn−2
i+1 · · · ⊕Ki−2

= H4(hs
∗
i−1·s

∗
i)n ⊕ H4(hs

∗
i+1·s

∗
i)n−1

H4(hs
∗
i−1·s∗i)n−1

⊕ H4(hs
∗
i+2·s

∗
i+1)n−2

H4(hs
∗
i ·s∗i+1)n−2

· · · ⊕ H4(hs
∗
i−1·s

∗
i−2)

H4((hs
∗
i−3·s∗i−2)

= H4(hs
∗
i−1·s

∗
i)⊕ H4((hs

∗
i ·s
∗
i+1) · · · ⊕ H4((hs

∗
i−2⊕s

∗
i−1).

It is easy to see that all users compute the same key.

The k-time ASH protocol in the multiple party setting also achieved session key
security, anonymity and public traceability. In particular, the security analysis
(including session key security and anonymity) in the two party setting can be
extended to the multiple party setting.

6 Conclusion

In this paper, we proposed a k-time authenticated secret handshake protocol
based on the k-time tag bases and anonymized Schnorr signature. We also de-
fined the formal security models for session key security and (full) anonymity,
and proved the security of the proposed k-ASK protocol under our proposed
complexity assumptions which have been proved hard in the generic bilinear
group model.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(61602396,61572303), the Fundamental Research Funds for the Central Univer-
sities under Grant GK201702004.

References

1. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H. Wong.
Secret handshakes from pairing-based key agreements. In 2003 IEEE Symposium
on Security and Privacy (S&P 2003), 11-14 May 2003, Berkeley, CA, USA, pages
180–196, 2003.

2. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract). In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
pages 419–428, 1998.

3. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In EUROCRYPT ’98, pages 236–250, 1998.

4. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In ACM, CCS 2006, pages 390–399, 2006.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, pages 139–155, 2000.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO ’93, pages 232–249, 1993.

7. M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, pages 57–66, 1995.

8. J. Bohli, M. I. G. Vasco, and R. Steinwandt. Secure group key establishment
revisited. Int. J. Inf. Sec., 6(4):243–254, 2007.

9. D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT 2005, pages 440–456, 2005.

10. M. Burmester and Y. Desmedt. Efficient and secure conference-key distribution.
In Security Protocols, International Workshop, Cambridge, United Kingdom, April
10-12, 1996, Proceedings, pages 119–129, 1996.

11. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In EUROCRYPT 2001, pages 453–474, 2001.

12. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious
encryption. In ASIACRYPT 2004, pages 293–307, 2004.

13. A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen. Practical short
signature batch verification. In CT-RSA 2009, pages 309–324, 2009.

14. J. Gu and Z. Xue. An improved efficient secret handshakes scheme with unlinka-
bility. IEEE Communications Letters, 15(2):259–261, 2011.

15. H. Huang and Z. Cao. A novel and efficient unlinkable secret handshakes scheme.
IEEE Communications Letters, 13(5):363–365.

16. S. Jarecki, J. Kim, and G. Tsudik. Group secret handshakes or affiliation-hiding
authenticated group key agreement. In CT-RSA 2007, pages 287–308, 2007.

17. A. Juels and S. A. Weis. Defining strong privacy for RFID. ACM Trans. Inf. Syst.
Secur., 13(1), 2009.

18. J. Katz and J. S. Shin. Modeling insider attacks on group key-exchange protocols.
In ACM, CCS 2005, pages 180–189, 2005.

19. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange.
In CRYPTO 2003, pages 110–125, 2003.

20. H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In
CRYPTO 2005, pages 546–566, 2005.

21. B. A. LaMacchia, K. E. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In Provable Security, 2007, pages 1–16, 2007.

22. C. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPTO ’89, pages 239–252, 1989.

23. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT ’97, pages 256–266, 1997.

24. D. Sun and Z. Cao. On the privacy of khan et al.’s dynamic id-based remote
authentication scheme with user anonymity. Cryptologia, 37(4):345–355, 2013.

25. I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (ex-
tended abstract). In ASIACRYPT 2004, pages 308–322, 2004.

26. S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In
ACM,CCS 2004, pages 158–167, 2004.

27. S. Zhang, G. Yang, and Y. Mu. Linear encryption with keyword search. In ACISP
2016, pages 187–203, 2016.

	Privacy-preserving k-time authenticated secret handshakes
	Recommended Citation

	Privacy-preserving k-time authenticated secret handshakes
	Abstract
	Disciplines
	Publication Details

	tmp.1501223096.pdf.0ylcd

