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Abstract
We tackle the problem of buildingprivacy-preserving

device-tracking systems— or private methods to assist in
the recovery of lost or stolen Internet-connected mobile
devices. The main goals of such systems are seemingly
contradictory: to hide the device’s legitimately-visited
locations from third-party services and other parties (lo-
cation privacy) while simultaneously using those same
services to help recover the device’s location(s) after it
goes missing (device-tracking). We propose a system,
named Adeona, that nevertheless meets both goals. It
provides strong guarantees of location privacy while pre-
serving the ability to efficiently track missing devices.
We build a version of Adeona that uses OpenDHT as the
third party service, resulting in an immediately deploy-
able system that does not rely on any single trusted third
party. We describe numerous extensions for the basic de-
sign that increase Adeona’s suitability for particular de-
ployment environments.

1 Introduction

The growing ubiquity of mobile computing devices, and
our reliance upon them, means that losing them is simul-
taneously more likely and more damaging. For example,
the annual CSI/FBI Computer Crime and Security Sur-
vey ranks laptop and mobile device theft as a prevalent
and expensive problem for corporations [16]. To help
combat this growing problem, corporations and individ-
uals are deploying commercialdevice-trackingsoftware
— like “LoJack for Laptops” [1] — on their mobile de-
vices. These systems typically send the identity of the
device and its current network location (e.g., its IP ad-
dress) over the Internet to a central server run by the
device-tracking service. After losing a device, the ser-
vice can determine the location of the device and, subse-
quently, can work with the owner and legal authorities to
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recover the device itself. The number of companies of-
fering such services, e.g., [1, 9, 21, 29, 34, 37, 38], attests
to the large and growing market for device tracking.

Unfortunately, these systems are incompatible with
the oft-cited goal oflocation privacy[17, 22, 23] since
the device-tracking services can always monitor the lo-
cation of an Internet-enabled device — even while the
device is in its owner’s possession. This presents a signif-
icant barrier to the psychological acceptability of track-
ing services. To paraphrase one industry representative:
companies will deploy these systems in order to track
their devices, but they won’t like it. The current situation
leaves users of mobile devices in the awkward position of
eitherusing tracking servicesor protecting their location
privacy.

We offer an alternative:privacy-preserving device-
tracking systems. Such a system should provide strong
guarantees of location privacy for the device owner’s le-
gitimately visited locations while nevertheless enabling
tracking of the device after it goes missing. It should do
so even while relying on untrusted third party services to
store tracking updates.

The utility of device tracking systems. Before div-
ing into technical details, we first step back to reevalu-
ate whether device tracking, let alone privacy-preserving
device tracking, even makes sense as a legitimate secu-
rity tool for mobile device users. A motivated and suf-
ficiently equipped or knowledgeable thief (i.e., the mali-
cious entity assumed in possession of a missing device)
can alwaysprevent Internet device tracking: he or she
can erase software on the device, deny Internet access,
or even destroy the device. One might even be tempted
to conclude that the products of [1, 9, 21, 29, 34, 37, 38]
are just security “snake oil”.

We purport that this extreme view of security is in-
appropriate for device tracking. While device tracking
will not always work, these systemscanwork, and ven-
dors (who may be admittedly biased) claim high recov-



ery rates [1]. The common-case thief is, after all, often
opportunistic and unsophisticated, and it is against such
thieves that tracking systems can clearly add significant
value. Our work aims to retain this value while simulta-
neously addressing the considerable threats to user loca-
tion privacy.

System goals. A device tracking system consists of:
client hardware or software logic installed on the device;
(sometimes) cryptographic key material stored on the de-
vice; (sometimes) cryptographic key material maintained
separately by the device owner; and a remote storage fa-
cility. The client sendslocation updatesover the Inter-
net to the remote storage. Once a device goes missing,
the owner or authorized agent searches the remote stor-
age for location updates pertaining to the device’s current
whereabouts.

To understand the goals of a privacy-preserving track-
ing system, we begin with an exploration of existing or
hypothetical tracking systems in scenarios that are de-
rived from real situations (Section 2). This reveals a re-
strictive set of deployment constraints (e.g., supporting
both efficient hardware and software clients) and an intri-
cate threat model for location privacy where the remote
storage provider is untrusted, the thief may try to learn
past locations of the device, and other outsiders might
attempt to glean private data from the system or “piggy-
back” on it to easily track a device. We extract the fol-
lowing main system goals.
(1) Updates sent by the client must beanonymousand

unlinkable. This means that no adversary should
be able to either associate an update to a particular
device, or even associate two updates to the same
(unknown) device.

(2) The tracking client must ensureforward-privacy,
meaning a thief, even after seeing all of the inter-
nal state of the client, cannot learn past locations of
the device.

(3) The client should protect againsttiming attacksby
ensuring that the periodicity of updates cannot be
easily used to identify a device.

(4) The owner should be able to efficiently search the
remote storage in a privacy-preserving manner.

(5) The system must match closely the efficiency, de-
ployability, and functionality of existing solutions
that have little or no privacy guarantees.

These goals are not satisfied by straightforward or exist-
ing solutions. For example, simply encrypting location
updates before sending to the remote storage does not
allow for efficient retrieval. As another example, mecha-
nisms for generating secure audit logs [32], while seem-
ingly applicable, in fact violate our anonymity and un-
linkability requirements by design.

We emphasize that one non-goal of our system isim-

proveddevice tracking. As discussed above, all tracking
systems in this category have fundamental limitations.
Indeed, our overarching goal is to show that, in any set-
ting where deploying a device tracking system makes
sense, one can do so effectivelywithout compromising
privacy.

Adeona. Our system, named Adeona after the Roman
goddess of “safe returns,” meets the aggressive goals
outlined above. The client consists of two modules: a
location-finding module and a cryptographic core. With
a small amount of state, the core utilizes a forward-secure
pseudorandom generator (FSPRG) to efficiently and
deterministically encapsulate updates, rendering them
anonymous and unlinkable, while also scheduling them
to be sent to the remote storage at pseudorandomly deter-
mined times (to help mitigate timing attacks). The core
ensures forward-privacy: a thief, after determining all of
the internal state of the client and even with access to all
data on the remote storage, cannot use Adeona to reveal
past locations of the device. The owner, with a copy of
the initial state of the client, can efficiently search the
remote storage for the updates. The cryptographic core
uses only a sparing number of calls toAES per update.

The cryptographic techniques in the Adeona core have
wide applicability, straightforwardly composing with
any location-finding technique or remote storage instan-
tiation. We showcase this by implementing Adeona as
a fully functional tracking system using a public dis-
tributed storage infrastructure, OpenDHT [30]. We could
also have potentially used other distributed hash table in-
frastructures such as the Azureus BitTorrent DHT. Using
a DHT for remote storage means that there is no sin-
gle trusted infrastructural component and that deploy-
ment can proceed immediately in a community-based
way. End users need simply install a software client to
enable private tracking service. Our system provides the
first device tracking system not tied to a particular ser-
vice provider. Moreover, to the best of our knowledge,
we are also the first to explore replacing a centralized
trusted third-party service with a decentralized DHT.

Extensions. Adeona does make slight trade-offs be-
tween simplicity, privacy, and device tracking. We ad-
dress these trade-offs with several extensions to the ba-
sic Adeona system. These extensions serve two pur-
poses: they highlight the versatility of our basic privacy-
enhancing techniques and they can be used to better pro-
tect the tracking client against technically sophisticated
thieves (at the cost of slight increases in complexity).
In particular, we discuss several additions to the basic
functionality of Adeona. For example, we design a novel
cryptographic primitive, a tamper-evident FSPRG, to al-
low detection of adversarial modifications to the client’s
state.



Implementation and field testing. We have imple-
mented the Adeona system and some of its extensions
as user applications for Linux and Mac OS X. Moreover,
we conducted a short trial in which the system was de-
ployed on real users’ systems, including a number of lap-
tops. Our experience suggests that the Adeona system
provides an immediate solution for privacy-preserving
device tracking. The code is currently being readied for
an open-source public release to be available athttp://
adeona.cs.washington.edu/, and we encourage the
further use of this system for research purposes.

Outline. In the next section we provide a detailed dis-
cussion of tracking scenarios that help motivate our (in-
volved) design constraints and threat models. Readers
eager for technical details might skip ahead to Section 3,
which describes the Adeona core. The full system based
on OpenDHT is given in Section 4. We provide a se-
curity analysis in Section 5. Our implementations, their
evaluation, and the results of the field trial appear in
Section 6. We discuss Adeona’s suitability for further de-
ployment settings in Section 7 and extensions to Adeona
are detailed in Section 8. We conclude in Section 9.

2 Problem Formulation

To explore existing and potential tracking system de-
signs and understand the variety of adversarial threats,
we first study a sequence of hypothetical tracking sce-
narios. While fictional, the scenarios are based on real
stories and products. These scenarios uncover issues that
will affect our goals and designs for private device track-
ing.

Scenario 1.Vance, an avid consumer of mobile devices,
recently heard about the idea of “LoJack for Laptops.”
He searches the Internet, finds the EmailMe device track-
ing system, and installs it on his laptop.1 The EmailMe
tracking client software sends an email (like the example
shown in Figure 1) to his webmail account every time
the laptop connects to the Internet. Months later, Vance
is distracted while working at his favorite coffee shop,
and a thief takes his laptop. Now Vance’s foresight ap-
pears to pay off: he uses a friend’s computer to access
the tracking emails sent by his missing laptop. Work-
ing with the authorities, they are able to determine that
the laptop last connected to the Internet from a public
wireless access point in his home city. Unfortunately the
physical location was hard to pinpoint from just the IP
addresses. A month after the theft Vance stops receiving
tracking emails. An investigation eventually reveals that
the thief sold the laptop at a flea market to an unsuspect-
ing customer.2 That customer later resold the laptop at a
pawn shop. The pawnbroker, before further reselling the
laptop, must have refurbished the laptop by wiping its

hard drive and installing a fresh version of the operating
system.

Discussion:The theft of Vance’s laptop highlights a few
issues regarding limitations on the functionality of de-
vice tracking systems. First, a client without hardware-
support can provide network location data only when
faced by such aflea-market attack: these occur when a
technically unsophisticated thief steals a device to use it
or sell it (with its software intact) as quickly as possible.
Second, network location information will not always be
sufficient for precisely determining thephysical location
of a device. Third, all clients (even those with hardware
support) can be disabled from sending location updates
(simply by disallowing all Internet access or by filtering
out just the location updates if they can be isolated).

The principal goal of this paper is not to achieve bet-
ter Internet tracking functionality than can be offered by
existing solutions. Instead, we address privacy concerns
while maintaining device tracking functionality equiva-
lent to solutions with no or limited privacy guarantees.
The next scenarios highlight the types of privacy con-
cerns inherent to tracking systems.

Scenario 2. A few weeks before the theft of Vance’s
laptop, Vance was the target of a different kind of at-
tack. His favorite coffee shop had been targeted by crack-
ers because the shop is in a rich neighborhood and their
routers are not configured to use WPA [19]. The crackers
recorded all the coffee shop’s traffic, including Vance’s
location-update emails, which were not encrypted. (The
webmail service did not use TLS, nor does the EmailMe
client encrypt the outgoing emails.) The crackers sell the
data garnered from Vance’s tracking emails to identity
thieves, who then use Vance’s identity to obtain several
credit cards.

Discussion: The content of location updates should al-
ways be sent viaencrypted channels, lest they reveal
private information to passive eavesdroppers. This is of
particular importance for mobile computing devices, be-
cause of their almost universal use of wireless communi-
cation, which may or may not use encryption.

Scenario 3. Vance works as a salesman for a small
distributor of coffee-related products, called Very Good
Coffee (VGC). He recently went on a trip abroad for
VGC to investigate purchasing a supplier of coffee beans.
On his return trip, he was stopped at customs and
his laptop was temporarily confiscated for an “inspec-
tion” [28, 33]. Vance, with his ever-present foresight, had
predicted this would happen: he encrypted all his sensi-
tive work-related files and removed any information that
might leak what he had been doing while in country. The
laptop was shortly returned with files apparently unmod-
ified.

Unknown to Vance, the EmailMe client had cached



From: tech@brigadoonsoftware.com
To: tech@brigadoonsoftware.com
BCC: tomrist@gmail.com
Subject: Information

PCPH Pro For Win 95/98/ME/NT/2K/XP - Version 3.0 (Eval)

Date: 16-08-2007
Time: 11:14:05
Computer Name : TOM-8F760D01401
User Name : LOCAL SERVICE
IPAddress :0.0.0.0
IPAddress :128.208.7.80

Mac Address: 00-18-8B-A2-05-E5
Mac Address: 00-18-DE-9B-F0-5A
Serial Number: DC44BF26
Registrants Name: Tom
Organization: Tom
Address: 513 Brooklyn Avenue
City: Seattle
State/Province: WA
Zip/Postal Code: 98105
Country: USA
Work Phone: 2066163997
...

Figure 1:Example tracking email sent (unencrypted) by PC Phone Home [9] from one of the authors’ laptops.

all the recently visited network locations on the laptop.
Included were several IP addresses used by the supplier
that VGC intended to purchase. The customs agents sold
this information to a local competitor of VGC. Using this
tip, the local competitor successfully blocked VGC’s bid
to purchase the supplier.

Discussion: This scenario addresses the need forfor-
ward privacy. A tracking client should not cache previ-
ous locations, lest a thief (or even, as the scenario depicts,
some other untrusted party with temporary access to the
device) easily break the owner’s past location privacy.

Scenario 4.Hearing about Vance’s recent troubles with
property and identity theft, the VGC management chose
to contract with (the optimistically named) All Devices
Recovered (AllDevRec) to provide robust tracking ser-
vices for VGC’s mobile assets. AllDevRec, having made
deals with laptop manufacturers, ensures that VGC’s
new laptops have hardware-supported tracking clients in-
stalled. The clients send updates using a proprietary
protocol over an an encrypted channel to AllDevRec’s
servers each time an Internet connection is made.3

Ian, a recovery-management technician employed by
AllDevRec, has a good friend Eve who happens to work
at a business that competes with VGC. Ian brags to Eve
that his position in AllDevRec allows him to access the
locations from which VGC’s employees access the Inter-
net. This gives Eve an idea, and so she goads Ian into
giving her information on the network locations visited
by VGC sales people. From this Eve can infer the coffee
shops VGC is targeting as potential customers, allowing
her company to precisely undercut VGC’s offerings.

Discussion: Using encrypted channels is insufficient to
guarantee data privacy once the location updates reach
a service provider’s storage systems. The location up-
dates should remainencrypted while stored. This mit-
igates the level of trust device owners must place in a
service provider’s ability to enforce proper data manage-
ment policies (to protect against insider attacks) and se-
curity mechanisms (to protect against outsiders gaining
access).

Scenario 5. Vance, now jobless due to VGC’s recent
bankruptcy, has been staying at Valerie’s place. Va-
lerie works at a large company, with its own in-house IT
staff. The management decided to deploy a comprehen-
sive tracking system for mobile computing asset man-
agement. To ensure employee acceptability of a tracking
system, the management had the IT staff implement a
system with privacy and security issues in mind: each
device is assigned a random identification number and
a public key, secret key pair for a public-key encryption
scheme. The database mapping a device to its identifi-
cation number, public key, and secret key is stored on
a system with several procedural safeguards in place to
ensure no unwarranted accesses. With each new Internet
connection, the tracking client sends an update encrypted
under the public key and indexed under the random iden-
tification number.

When Valerie goes to lunch (which varies in time quite
a bit depending on her work), she heads across the street
to a cafe to get away from the office. She often uses
her company laptop and the cafe’s wireless to peruse the
Internet. Since deployment of the new tracking system,
Valerie has been complaining that no matter when she
takes lunch, Irving (a member of the IT staff who is re-
puted to have an unreciprocated romantic interest in her)
almost always ends up coming by the cafe a few minutes
after she arrives.4

Because the location updates sent by Valerie’s laptop
use a static identifier, it was easy for Irving (even without
access to the protected database) to infer which was hers:
he looked at identifiers with updates originating from the
block of IP addresses used within Valerie’s department
and those used by the cafe. After a few guesses (which he
validated by simply seeing if she was at the cafe), Irving
determined her device’s identification number and from
then on knew whenever she went for lunch.

Discussion: The use of unchanging identifiers (even if
originally anonymized) allowslinking attacks, in which
an adversary observing updates can associate updates
from different locations as being from the same device.



Additionally, the finely-grained timing information re-
vealed by sending updates upon each new Internet con-
nection is a side-channel that can leak information.

Summary. The sequence of scenarios depicts the wide
variety of potential users of tracking systems. Moreover,
they highlight two fundamental security goals.

• Vance was a victim of compromiseddevice tracking.
(Scenario 1.)

• Vance, VGC, and Valerie were all victims of compro-
misedlocation privacy. (Scenarios 2, 3, 4, and 5.)

The threat models related to achieving location privacy
while retaining device tracking capabilities are complex
because there exist numerous adversaries with widely
varied powers and motivation:

• The unscrupulous party in possession of a device,
which we will simply call thethief. The thief might be
unsophisticated, sophisticated and intent on disabling
the tracking device, or sophisticated and wish to reveal
past locations.

• Internet-connectedoutsidersthat might intercept up-
date traffic (e.g., the crackers at the coffee shop).
Such adversaries call for ensuring the use of encrypted
channels.

• The remote storage provider, or the entity control-
ling the system(s) that host location updates, might
be untrustworthy, suggesting the need for location up-
dates that areanonymous, unlinkable, and encrypted,
thereby denying private information even to the re-
mote storage provider.

3 The Adeona Core: Providing Anony-
mous, Unlinkable Updates

The core module is the portion of a client primarily re-
sponsible for preparing, scheduling, and sending location
updates to the remote storage. The Adeona core is, con-
sequently, the foundation of our tracking system’s pri-
vacy properties. We treat its development first, and men-
tion that the core stands by itself as a component that will
work in numerous deployment settings, in addition to the
setting handled by the full Adeona system (described in
the next section).

The discussion in Section 2 illustrates that the Adeona
core must provide mechanisms to
(1) ensure content sent to the remote storage is anony-

mous and unlinkable;

(2) ensure forward-privacy (stored data on the client
should not be sufficient for revealing previous lo-
cations);

(3) mitigate timing attacks; and

(4) allow the owner to efficiently search the remote
storage for updates.

Basic design.A first approach for building a core would
be to just utilize a secure symmetric encryption scheme.
That is, the owner could install on the client a secret key
and also store a copy separately, perhaps printed on a
piece of paper or stored on a secure removable token.
For each new Internet connection, the core would en-
crypt the location data using this secret key and imme-
diately send the ciphertext to the remote storage. Goal
(1) above would be satisfied because (assuming one used
a standard, secure encryption scheme) these ciphertexts
would, indeed, be anonymous and unlinkable. But, the
other three goals arenot met. A thief that gets access
to the device and the secret key could decrypt previous
updates. Sending the ciphertext immediately upon de-
tecting a new Internet connection also leaks fine-grained
timing information. More importantly, since ciphertexts
submitted by all users are anonymous, there is no effi-
cient way for the owner to search the database for his
updates.5

The Adeona core utilizes a more sophisticated ap-
proach to tackle the other goals while preserving the abil-
ity to address goal (1). Instead of a key for an encryp-
tion scheme, the owner initializes the client with ase-
cret cryptographic seedfor a pseudorandom generator
(PRG) [6]. Each time the core is run it uses the PRG and
the seed to deterministically generate two fresh pseudo-
random values: an index and a secret key (for the en-
cryption scheme). The location information is encrypted
using the secret key. The core sends both the index and
the ciphertext to the remote storage. As before the ci-
phertext reveals no information, but the index is pseudo-
random as well, meaning the entire update is anonymous
and unlinkable. Thus goal (1) is satisfied. Goal (4) is
as well: the owner, having a copy of the original crypto-
graphic seed, can recompute all of the indices and keys
used. This allows for efficient search of the remote stor-
age for his or her updates, using the indices. The indices
do not reveal decryption keys nor past or future indices.

This approach does not yet satisfy goal (2), because a
thief — or customs official — can also use the seed to
generate all the past indices and keys. We can rectify
this by using aforward-secure pseudorandom genera-
tor (FSPRG) [5]: instead of using a single cryptographic
seed for the lifetime of the system, the core also evolves
the seed pseudorandomly. When run, the core uses the
FSPRG and the seed to generate an index, secret key, and
a new seed. The old seed is discarded (securely erased).
The properties of the FSPRG ensure that it is computa-
tionally intractable to “go backwards” so that previous
seeds (and the associated indices and keys) remain un-
known even to a thief with access to the current seed.

Finally we can address goal (3) by randomly select-
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scheme.(Right) Close-up of the core’s forward-private location caching, where the cache holds 3 updates and shown are two new
locations being stored.

ing times to send updates. Using the FSPRG as a
source of randomness, we can pseudorandomly gener-
ate exponentially-distributed inter-update times. (This
allows the owner to also recompute the inter-update
times, which will be useful for retrieval as discussed in
Section 4.) Such a distribution is memoryless, meaning
that, from the storage provider’s view, the next update
is equally likely to come from any client. We can tune
the number of updates sent by adjusting the rate of the
exponential distribution used.

Forward-private location caching. Our pseudorandom
update schedule means that we might miss locations that
are visited for only a short amount of time. However, to
provide maximal evidentiary forensic data about the tra-
jectories of a device after theft, we would like the core
to allow reporting all of the recently visited locations.
We could cache recent locations, but this breaks forward-
privacy. We therefore enhance the basic design to include
a forward-private location cache. Having a cache also
provides a simple mechanism for adding temporal redun-
dancy to updates (i.e., location data is sent multiple times
to the remote storage over time), which can increase the
ability to successfully retrieve updates.

Instead of just caching location data in the clear, we
can have the core immediately encrypt new data sent
from the location-finding module. The resulting cipher-
text can then be added to a cache; the least recent ci-
phertext is expelled. However, we cannot just utilize the
encryption key generated by the current state’s FSPRG: a
thief could decrypt any ciphertexts in the cache that were
added since the last time the FSPRG seed was refreshed
(e.g., when the previous update was sent). We therefore
use a distinct FSPRG seed, which we call thecache seed,
as the source for generating encryption keys for each lo-
cation encountered. Each time the cache seed is used to
encrypt new location data, it is also used to generate a
new cache seed and the prior one is securely erased. In

this way we guarantee forward privacy: no data in the
core allows a thief to decrypt previously generated ci-
phertexts. When its time to send an update, the entire
cache is encrypted using the secret key generated by the
FSPRG with the main seed. This (second) encryption
ensures that the data stored at the remote storage cannot
later be correlated with ciphertexts in the cache. Finally,
the core “resets” the cache seed by generating a fresh
one using the FSPRG and the main seed. This associates
a sequences of cache seeds to a particular update state.
We ensure freshness of location data by mandating that
at least one newly generated ciphertext is included with
each update submitted to the remote storage.

The owner can reconstruct all of the cache seeds for
any state (using the prior state’s main seed) and do trial
decryption to recover locations. (The number of ex-
pected trials is the number of locations visited in between
two updates, and so this will be typically small.) Cipher-
texts in the cache that are “leftover” from a prior update
time period can also be decrypted, and this can be ren-
dered efficient if plaintexts include a hint (i.e., the num-
ber of states back) that specifies which state generated
the keys for the next ciphertext entry.

Implementing the design. Implementing the Adeona
core is straightforward, given a block cipher6 such as
AES. A standard and provably secure FSPRG implemen-
tation based onAES works as follows [5]. A crypto-
graphic seed is just anAES key (16 bytes). To generate a
string of pseudorandom bits, one iteratively appliesAES,
under key a seeds, to a counter:AES(s,1), AES(s,2),
etc. For Adeona, we have an initial main seeds1 and ini-
tial cache seedc1,1 (both randomly generated). The main
seeds1 is used to generate a new seeds2 = AES(s1,0),
the next state’s cache seedc2,1 = AES(s1,1), and so on
for the encryption key, index, and time offset. (The ex-
ponentially distributed time offset is generated from a
pseudorandom input using the well known method of



inverse-transform sampling [13].) A seed, after it is used,
must be securely erased. The cache seed forms a sepa-
rate branch of the FSPRG and is used to generate a se-
quence of cache seeds and intermediate encryption keys
for use within the cache. Figure 2 provides a diagram
of the core module’s operation between two successive
updates at timesTi−1 andTi .

The encryption scheme can also be built using just
AES, via an efficient block cipher mode such as
GCM [26]. Such a mode also provides authenticity. Of
added benefit is that the mode can be rendered determin-
istic (i.e., no randomness needed) since we only encrypt
a single message with each key. This means that the core
(once initialized) does not require a source of true ran-
domness.

Summary. To summarize, the core uses a sequence of
secret seedss1,s2, . . . to provide

• a sequenceI1, I2, . . . of pseudorandom indicesto store
ciphertexts under,

• sequencesci,1,ci,2, . . . of secret cache seedsfor each
statei that are then used to encrypt data about each
location visited,

• a sequenceK1,K2, . . . of secret keysfor encrypting the
cache before submission to the remote storage, and

• a sequenceδ1,δ2, . . . of pseudorandom inter-update
timesfor scheduling updates

while providing the following assurances. Given anyIi ,
K j , or δl , no adversary can (under reasonable assump-
tions) compute any of the other output values above. Ad-
ditionally, even if the thief views the entire internal state
of the core, it still cannot compute any of the core’s pre-
viously used indices, cache seeds, encryption keys, or
inter-update times.

4 The Adeona System: Private Tracking
using OpenDHT

A (privacy-preserving) tracking system consists of three
main components: the device, the remote storage; and
an owner. The device component itself consists of a
location-finding component and a core component; other
components — such as a camera image capture function-
ality — can easily be incorporated. A system works in
three phases: initialization, active use, and retrieval. We
have already seen the Adeona core. In this section we
show how to construct a complete privacy-preserving de-
vice tracking system using it.

Our target is to develop an open-source, immediately
deployable system. This will allow evaluation of our
techniques during real usage (see Section 6), not to men-
tion providing to individual users an immediate (and, to
our knowledge, first) alternative to the plethora of exist-

ing, proprietary tracking systems, none of which achieve
the level of privacy that we target and that we believe will
be important to many users. Along these lines, this sec-
tion focuses on a model for a open source software-only
client. We use the public distributed storage infrastruc-
ture OpenDHT [30] for the remote storage facility. Not
only does this obviate the need to setup dedicated remote
storage facilities, enabling immediate deployability, but
it effectively removes our system’s reliance on any single
trusted third party. This adds significantly to the practical
privacy guarantees of the system.

We now flesh out the design of the complete Adeona
system. The client consists of the Adeona core of the pre-
vious section (with a few slight modifications described
below) plus a location-finding module, described below.
First, however, we describe the other components: us-
ing OpenDHT for remote storage and how to perform
privacy-preserving retrieval. We conclude the section
with a summary of the whole system.

OpenDHT as remote storage. A distributed hash ta-
ble (DHT) allows insertion and retrieval of data values
based on hash keys. OpenDHT is an implementation of
a distributed hash table (DHT) whose nodes run on Plan-
etLab [11]. We use the indices generated by the Adeona
core as the hash keys and store the ciphertext data un-
der them. There are several benefits to using a public,
open-source distributed hash table (DHT) as remote stor-
age. First, existing DHT’s such as OpenDHT are already
deployed and usable, meaning deployment of the track-
ing system only requires distribution of software for the
client and for retrieval. Second, a DHT can naturally
provide strengthened privacy and security guarantees be-
cause of the fact that updates will be stored uniformly
across all the nodes of the DHT. In decentralized DHTs,
an attacker would have to corrupt a significant fraction of
DHT nodes in order to mount Denial-of-Service or pri-
vacy attacks as the storage provider.

On the other hand, DHT’s also have limitations. The
most fundamental is a lack of persistence guarantee:
the DHT itself provides no assurance that inserted data
can always be retrieved. Fortunately, OpenDHT ensures
that inserted data is retained for at least a week.7 An-
other limitation is temporary connectivity problems. Of-
ten nodes, even in OpenDHT, can be difficult to access,
meaning our client will not be able to send an update suc-
cessfully. The traditional approaches for handling such
issues is to use client-side replication. This means that
the client submits the same data to multiple, widely dis-
tributed nodes in the DHT.

We can enhance the Adeona core to include such a
replication mechanism easily: have the core generate
several indices (as opposed to just one) for each update.
These indices, being pseudorandom already, will be dis-
tributed uniformly across the the space of all DHT nodes.



The update can then be submitted under all of these in-
dices.

Scheduling location updates. The Adeona core pro-
vides a method to search for update ciphertexts via the
deterministically generated indices. As noted, querying
the remote storage for a set of indices does not reveal
decryption keys or past or future indices. However, just
the fact that a set of indices are queried for might al-
low the remote storage provider to trivially associated
them to the same device. While the distributed nature
of OpenDHT mitigates this threat, defense-in-depth asks
that we do better. We therefore want a mechanism that
ensures the owner can precisely determine which indices
to search for when performing queries, and in particu-
lar allow him to avoid querying indices used before the
device was lost or stolen.

To enable this functionality, we have the system pre-
cisely (but still pseudorandomly) schedule updates rela-
tive to some clock. The clock could be provided, for ex-
ample, by a remote time server that the client and owner
can synchronize against. Then, when the owner initial-
izes the client, in addition to picking the cryptographic
seed it also stores the current time as the initial time
stampT1. Each subsequent state also has a time stamp
associated with it:T2, T3, etc. These indicate the state’s
scheduled send time, andTi+1 is computed by addingTi

andδi (the pseudorandom inter-update delay). When the
client is run, it reads the current time from the clock and
iterates past states whose scheduled send time have al-
ready past. (In this way the core will “catch up” the state
to the schedule.) With access to a clock loosely synchro-
nized against the client’s, the owner can accurately re-
trieve updates sent at various times (e.g., last week’s up-
dates, all the updates after the device went missing, etc.).
We discuss the assumption of a clock more in our secu-
rity analysis in Section 5.

Location-finding module. Our system works modu-
larly with any known location finding technique (e.g.,
determining external IP address, trace routes to nearby
routers, GPS, nearby 802.11 or GSM beacons, etc.).
We implemented three different location-finding mech-
anisms: light, medium, and full. Thelight mechanism
just determines the internal IP address and the externally-
facing IP address. (The latter being the IP as reported by
an external server.) Themedium mechanismaddition-
ally performs traceroutes to 8 randomly-chosen Planet-
Lab nodes. These traceroutes provide additional infor-
mation about the device’s current surrounding network
topology. Thefull mechanismemploys a protocol that
adapts state-of-the-art geolocationing techniques to our
setting. Here, geolocationing refers to determining (ap-
proximate) physical locations from network data. Tradi-
tional approaches utilize a distributed set of landmarks

to actively probe a target [18]. These probes, combined
with the knowledge of the physical locations of the land-
marks, allows approximate geolocationing of the target.
We flip this approach around, using the active-client na-
ture of our setting to have the client itself find nearby
passive landmarks.

Concretely, we utilize Akamai [2] nodes as landmarks:
they are numerous, widespread, and often co-located
within ISPs (ensuring some node is usually very close
to the device). Akamai is purported to have about 25 000
hosts distributed across 69 countries [2]. In a one-time
pre-processing step, we can enumerate as many of their
nodes as possible and then apply an existing virtual net-
work coordinate system, Vivaldi [12], to assign them co-
ordinates. The location-finding module chooses several
nodes randomly out of this set, probes them to obtain
round-trip times, then uses these values and the nodes’
pre-computed virtual coordinates to determine the de-
vice’s own virtual coordinates. Based on this, the module
determines an additional set of landmarks that are close
to it in virtual coordinate space and issues network mea-
surements (pings and traceroutes) to these close land-
marks. These measurements, in addition to the device’s
current internal- and external-facing IP addresses, are
submitted to the core module as the current location in-
formation. After retrieval, this information can be used
to geolocate the device, by potentially contacting the ISP
hosting the edge routers.

Putting it all together. We describe the Adeona system
in its entirety. A state of the client consists of the main
cryptographic seed, the cache and its seed, and a time
stamp. The main seed is used with an FSPRG to gener-
ate values associated to each state: the DHT indices, an
encryption key, and an inter-update time. It also gener-
ates the next state’s main seed and the next state’s cache
seed. The time stamp represents the time at which the
current state should be used to send location information
to the remote storage.

• (Initialization) The owner initializes the client by
choosing random seeds and recording the time of ini-
tialization as the first state’s time stamp. The cache is
filled with random bits.

• (Active use) The main loop of the client proceeds as
follows. The client, when executed, reads the current
state and retrieves the current time (from, for example,
the system clock). The client then transitions forward
to the state that should be used to send the next update,
based on the current time and the states’ scheduled
send times. The location cache uses its seed to ap-
propriately encrypt each new location update received
from the location module. At the scheduled send time,
the main seed is used to generate several indices and
an encryption key. The latter is used to encrypt the en-



tire cache. The result is inserted into OpenDHT under
each index. The client then transitions to the next state.
This means generating the next state’s seed, the next
state’s cache seed, and the scheduled update time (the
sum of the current update time and the inter-update
delay). The old state data, except the cache, is erased.

• (Retrieval) To perform retrieval, the owner can use his
or her copy of the initial state to recompute the se-
quence of states, their scheduled send times, and their
associated indices and keys. From this information,
he or she can determine the appropriate indices to
search the remote storage (being careful to avoid in-
dices from before the device went missing). After re-
trieving the caches, the owner can decrypt as described
in Section 3.

5 Security Analysis

The Adeona system is designed to ensure location pri-
vacy, while retaining as much as possible the tracking
abilities of solutions that provide weaker or no privacy
properties. While we discuss other security evaluations
and challenges inline in other sections, we treat here sev-
eral key issues.

Location privacy. We discuss privacy first. We assume
a privacy set of at least two participating devices, and
do not consider omniscient adversaries that, in particu-
lar, can observe traffic at all locations visited by the de-
vice. (Such a powerful adversary can trivially compro-
mise location privacy, assuming the device uses a persis-
tent hardware MAC address.) The goal of adversaries is
to use the Adeona system to learn more than their a pri-
ori knowledge about some device’s visited locations. Be-
cause updates are anonymous and unlinkable, outsiders
that see update traffic and the storage provider will not
be able to associate the update to a device. The storage
provider might associate updates that are later retrieved
by the owner. This does not reveal anything about other
updates sent by the owner’s device. The randomized
schedule obscures timing-related information that might
otherwise reveal which device is communicating an up-
date. Note also that the landmarks probed in our geolo-
cationing module only learn that some device is prob-
ing them from an IP address. The thief cannot break the
owner’s location privacy due to our forward privacy guar-
antees.

Outsiders and the storage provider do learn that some
device is at a certain location at a specific time (but not
which device). Also, the number of devices currently us-
ing the system can be approximately determined (based
on the rate of updates received), which could, for ex-
ample, reveal a rough estimate of the number of de-
vices behind a shared IP address. Moreover, these adver-

saries might attempt active attacks. For example, upon
seeing an incoming update, the provider could immedi-
ately try to finger-print the source IP address [24]. Dis-
tributing the remote storage as with OpenDHT naturally
makes such an attack more difficult to mount. There
are also known preventative measures that mitigate a de-
vice’s vulnerability to such attacks [24]. Finally, all of
this could be protected against by sending updates via a
system like Tor [14] (in deployment settings that would
allow its use), which obfuscates the source IP address.
See Section 8.4.

We remark that custom settings for Adeona’s various
parameters might reduce a device’s privacy set. For ex-
ample, if a client utilizes a cache size distinct from oth-
ers, then this will serve to differentiate that client’s up-
dates. Likewise if a client submits more (or less) copies
of each update to the remote storage, then the storage
provider or outsiders might be able to differentiate its up-
dates from those of other devices. Finally, a rate parame-
ter significantly different from other clients’ could allow
tracking of the device.

Device tracking. We now discuss the goal of device
tracking, which just means a system’s ability to en-
sure updates about a missing device are retrieved by the
owner. As mentioned previously, the goal here is for
Adeona to engender the same tracking functionality as
systems with weaker (or no) privacy guarantees. We
therefore do not consider attacks which would also dis-
able a normal tracking system: disabling the client, cut-
ting off Internet access, destroying the device, etc. (Ex-
isting approaches to mitigating these attacks, like clever
software engineering and/or hardware or BIOS support,
are also applicable to our designs.) Nevertheless, Adeona
as described in the previous section does have some lim-
itations in this regard.

• OpenDHT does not provide everlasting persistence.
This means that tracking fails for location updates
more than a week old. Note that the location cache
mechanism can be used to extend this time period.
An alternate remote storage facility could also be used
(see Section 7).

• Adeona schedules its updates at random times. If the
device has Internet access for only a short time, this
means that Adeona could miss a chance to send its
update. We can trivially mitigate this by increasing
the rate of our exponentially-distributed inter-update
times (i.e., increase the frequency of updates), but at
the cost of efficiency since this would mean sending
more updates.

• The absolute privacy of retrieval relies on the device
having a clock that the owner is loosely synchro-
nized against. The client relies on the system clock
to schedule updates. The thief could abuse this by,



for example, forcing the device’s system clock to not
progress. In the current implementation this would
disrupt sending updates. Solutions for this are dis-
cussed in Section 8.1.

• Adeona relies on a stored state, and a thief could dis-
able Adeona by tampering with it. For example, flip-
ping even a single bit of the state will make all future
updates unrecoverable. To ensure that the thief has to
disable the client itself (and not just modify its state)
we can use a tamper-evident FSPRG in conjunction
with a “panic” mode of operation. See Sections 8.2
and 8.3.

For some of these bullets, we recall that many thieves
will be unsophisticated. Therefore, in the common case
the likelihood of the above attacks are small. (And, in-
deed, a sophisticated attacker could also compromise the
tracking functionality of existing commercial, central-
ized alternatives.)

We also briefly mention that Adeona, like existing
tracking systems, might not compose with some other
mobile device security tools. For example, using a secure
full-disk encryption system could render all software on
the system unusable, including tracking software. We
leave the question of how to securely combine tracking
with other security mechanisms to future work.

Finally, while not a primary goal of our design, it turns
out that Adeona’s privacy mechanisms can actuallyim-
provetracking functionality. For one, the authentication
of updates provided by our encryption mode means the
owner knows that any received update was sent using
the keys on the device, preventing in-transit tampering
by outsiders or the storage provider. That updates are
anonymous makes targeted Denial-of-Service attacks —
in which the storage provider or an outsider attempts to
selectively block or destroy an individual’s updates —
exceedingly difficult, if not impossible.

6 Implementation and Evaluation

To investigate the efficiency and practicality of our
system, we have implemented several versions of the
Adeona system as user-land applications for both Linux
and Mac OS X. In all the versions, we usedAES to im-
plement the FSPRG. Encryption was performed using
AES in counter mode and HMAC-SHA1 [3] in a stan-
dard Encrypt-then-MAC mode [4]. The OpenSSL crypto
library8 provided implementations of these primitives.
We note that HMAC was used for convenience only;
an implementation usingAES for message authentica-
tion would also be straightforward. Therpcgen compiler
was used to generate the client-side stubs for OpenDHT’s
put-get interface over the Sun RPC protocol. We also
used Perl scripts to facilitate installation. We focus on

three main versions.

• adeona-0.2.1 implements the core functionality de-
scribed in Sections 3 and 4. It uses the medium
location-finding module of Section 4. The source
code foradeona-0.2.1, not including the libraries men-
tioned above, consists of 7 091 lines of unoptimized C
code. (Count includes comments and blank lines, i.e.
calculated viawc -l *.[ch].) This version is being read-
ied for public release.

• adeona-0.2.0 is a slightly earlier version ofadeona-
0.2.1 that differs in that it uses a simpler version of
the forward-private location cache. Its cache only han-
dles locations observed during scheduled updates (as
opposed to more frequent checks for a change in lo-
cation, meaning that locations could be missed if ill-
timed). The source code foradeona-0.2.0 consists of
5 231 lines of unoptimized C code. This version was
deployed in the field trial described in Section 6.3.

• adeona-0.1 uses the same ciphertext cache mech-
anism asadeona-0.2.0, and additionally includes
the tamper-evident FSPRG that will be described in
Section 8.2, the panic mode that will be described in
Section 8.3, and the full location-finding mechanism
described in Section 4. The tamper-evident FSPRG
is implemented using the signature scheme associated
to the Boneh-Boyen identity-based encryption (IBE)
scheme [7] and the anonymous IBE scheme is imple-
mented using Boneh-Franklin [8] in a hybrid mode
with the Encrypt-then-MAC scheme described above.
The two schemes rely on the same underlying elliptic
curves that admit efficiently computable bilinear pair-
ings. It relies on the Stanford Pairings-Based Crypto
(PBC) library version 0.4.11 [25] and specifically the
“Type F” pairings. Not counting the PBC library, this
version is implemented in 9 723 lines of C code.

The oldest version was mainly for experimenting with
the extensions discussed in Section 8 and the new geolo-
cation technique discussed in Section 4, while the newer
two versions were largely re-writes to prepare for public
use. The source code for any version is directly available
from the authors.

6.1 Performance

We ran several benchmarks to gauge the performance of
our design mechanisms. The system hosting the experi-
ments was a dual-core 3.20 GHz Intel Pentium 4 proces-
sor with 1GB of RAM. It was connected to the Internet
via a university network.

Basic network operations.Table 2 gives the Wall-clock
time in milliseconds (calculated via thegettimeofday sys-
tem call) to perform each basic network operation: an
OpenDHT put of a 1024-byte payload, an OpenDHT



Min Mean Median Max T/O
Put 207 1 021 470 11 463 2
Get 2 240 77 11 238 3

Loc medium 5 642 13 270 15 531 30 381 –
Loc full 17 446 36 802 36 197 63 916 –

Table 1: Wall clock time in milliseconds/operation to per-
form basic network operations: DHT put, DHT get, a medium
location-finding operation, and a full location-finding opera-
tion.

adeona-0.2.1 r = 0 r = 10 r = 100
Owner state 75 75 75

Client state (light) 75 876 8 076
Update (light) 36 400 4000

Client state (medium) 75 27 116 270 476
Update (medium) 1 348 13 520 135 200

adeona-0.1 r = 0 r = 10 r = 100
Owner state 3 544 3 545 3 548

Client state (full) 1 779 30 824 292 184
Update (full) 1 452 14 520 145 200

Table 2:Typical sizes in bytes of state and update data used by
adeona-0.2.1 andadeona-0.1 on a 32-bit system, for different
sizes of the ciphertext cache specified byr.

get of a 1024-byte payload, the time to do the 8 tracer-
outes used in the medium location-finding mechanism,
and the time to do the full location-finding operation (as
described in Section 4). Each operation was performed
100 times; shown is the min/mean/median/max time over
the successful trials. The number of time outs (failures)
for the put trials andget trials are shown in the column
labeled T/O. The time out for OpenDHT RPC calls was
set to 15 seconds in the implementation. For the location
mechanisms, hop timeouts for traceroutes and timeouts
for pings were set to 2 seconds (here an individual probe
time out does not signify failure of the operation).

Space utilization.Table 2 details the space requirements
in bytes ofadeona-0.2.1 (adeona-0.2.0 has equivalent
sizes) with light and medium location mechanisms and
adeona-0.1 with the full location mechanism. Here, and
below, the parameterr specifies the size of the cipher-
text cache used. Whenr = 0 this means that no cache
was used (only the current location is inserted during an
update). For ease-of-use (i.e., so one can print out or
copy down state information) we encoded all persistently
stored data in hex, meaning the sizes of stored state are
roughly twice larger than absolutely necessary. The use
of asymmetric primitives byadeona-0.1 for the tamper-
evident FSPRG functionality and the IBE scheme ac-
count for its larger space utilization.

Microbenchmarks. Space constraints limit the amount
of data we can report, and so our focus here is onadeona-
0.1. It uses more expensive cryptographic primitives (el-
liptic curves supporting bilinear pairings), and we want

to assess whether the extensions relying on them hinder
performance significantly. Table 3 gives running times
in milliseconds/operation for the basic operations used
by adeona-0.1. (We omit the times for non-panic en-
cryption, decryption, update, and retrieve; these times
were at most those of the related panic-mode opera-
tions.) These benchmarks only used the light location-
finding mechanism and each update was inserted to a
single OpenDHT node. Each operation was timed for
100 repetitions both using theclock system call (the CPU
columns) andgettimeofday (the Wall columns); shown is
the min/mean/median/max time over the successful tri-
als. Where applicable, the number of time outs (due to
DHT operations) are shown in the column labeled T/O.
Note that the retrieve operations only include retrieval
for a single update. These benchmarks show that the ex-
tensions are not prohibitive: performance is dependent
almost entirely on the speed of network operations.

6.2 Geolocation accuracy

As mentioned earlier, our system has been designed to
convey various kinds of location information to the stor-
age service. We then rely on previously proposed net-
work measurement analysis techniques and/or database
lookups to process the stored location information and
derive a geographical estimate. The strengths and weak-
nesses of such techniques are well-documented. We
therefore focus our evaluation on the active client-based
measurement technique described in Section 4 that at-
tempts to identify a set of nearby passive landmarks
given a large number of geographically distributed land-
marks.

First, we accumulated about 225 412 open DNS
servers by querying Internet search engines for dictio-
nary words and collecting the DNS servers which re-
sponded to lookups on the resulting hostnames. Next,
we enumerated 8 643 Akamai nodes across the world by
querying the DNS servers for the IP addresses of host-
names known to resolve to Akamai edge servers (e.g.,
www.nba.com). Finally, 50 PlanetLab [11] nodes were
used as stand-ins for lost or stolen devices across the
United States.

Having both targets and landmarks, we obtained
round-trip time (RTT) measurements from the Planet-
Lab nodes to the passive Akamai servers. The PlanetLab
nodes were able to obtain measurements to 6 200 of the
Akamai servers on our list. We could then evaluate our
geolocation technique by running it over these measure-
ments. Figure 3 plots the cumulative distributions of our
results and the RTT to the actual closest Akamai node.
We also plot the cumulative distribution of the RTT to
an Akamai node as given by a simple DNS lookup for
32 of our 50 targets (the other 18 nodes went down at



CPU Wall
Operation Min Mean Median Max Min Mean Median Max T/O

Initialize core 210 329 330 460 215 367 348 1 082 –
Verify FSPRG state 340 456 470 610 351 494 474 1 240 –

Panic encryption 90 95 90 110 93 101 95 207 –
Panic decryption 80 90 90 100 85 104 90 934 –

Panic update
r = 0 440 559 570 700 612 1 653 977 15 347 9
r = 10 440 543 545 680 818 2 289 1 311 20 582 10
r = 100 540 666 690 800 2 953 12 599 7 439 165 950 5

Panic retrieve
r = 0 80 89 90 100 92 499 207 12 003 7
r = 10 80 87 90 100 93 705 335 9 734 12
r = 100 80 87 90 100 116 2 458 1 555 21 734 5

Table 3:Time in milliseconds to perform basic operations inadeona-0.1.

the time of measurement). Our technique performs bet-
ter than Akamai’s own content delivery algorithms for
more than 60% of the the targets we considered. In ad-
dition, we observe that it can find an Akamai server at
most 7 milliseconds away.

6.3 Field trial

We conducted a small field trial to gain experience
with our implementation of Adeona, reveal potential is-
sues with our designs, and quantitatively gauge the ef-
ficacy of using OpenDHT as a remote storage facility.
There were 11 participants each running theadeona-
0.2.0 client with the same options: update rate param-
eter of 0.002 (about 7 updates an hour on average), lo-
cation cache of sizer = 4, and spatial replication of 4
(the core tries to insert each update to 4 DHT keys). The
clients were instrumented to locally log all the location
updates submitted over the course of the trial. At the end
of the trial, we collected these client-side log files plus
each owner’s copy of the initial state, and used this data
to attempt to retrieve a week’s worth of updates9 for each
of the participants.

Results are shown in the left table of Figure 3. Here ‘#
Inserts’ refers to the total number of successful insertions
into the DHT by the client in the week period. The ‘In-
sert rate’ column measures the fraction of these inserts
that were retrieved. The ‘# Updates’ column shows the
total number of updates submitted by each client. Note
that our replication mechanism means that each update
causes the client to attempt 4 insertions of the location
cache. The ‘Update rate’ column measures the percent-
age of location caches retrieved. As can be seen, this
fraction is usually larger than the fraction of inserts re-
trieved, suggesting that replication across multiple DHT
keys is beneficial. The ‘Locations Found’ column reports
the number of unique locations (defined as distinct (in-
ternal IP, external IP) pair) found during retrieval versus
reported. The final column measures the time, in min-
utes and seconds, that it took to perform retrieval for the
user’s updates for the whole week (note that we paral-

lelized retrieval for each user).
We observed that OpenDHT may return “no data” for

a key even when, in fact, there is data stored under that
key. (This was detected when doing multiple get requests
for a key.) Indeed, the failure to find two of the user loca-
tions was due to this phenomenon, and in fact repeating
the retrieval operation found these locations as well.

7 Deployment Settings: Hardware Sup-
port and Dedicated Servers

In Section 2, we highlighted several settings for de-
vice tracking: internal corporate systems, third-party
companies offering tracking services, and community-
supported tracking for individuals. Each case differs in
terms of what resources are available to both the tracking
client and the remote storage. In Section 4 we built the
Adeona system targeting a software client and OpenDHT
repository, which works well for the third setting. Here
we describe how our designs can work with other deploy-
ment scenarios.

A hardware-supportedclient can be deployed in sev-
eral ways, including ASICs implementing client logic,
trusted hardware modules (e.g., a TPM [35] or Intel’s
Active Management technology), or worked into exist-
ing system firmware components (e.g., a system BIOS).
Hardware-support can be effectively used to ensure that
the tracking client can only be disabled by the most so-
phisticated thieves and, possibly, that the client has ac-
cess to a private and tamper-free state. However, target-
ing a system for use with a hardware-supported client
adds to system requirements. While we do not work
out all the (important) details of a hardware implemen-
tation of Adeona’s client (leaving this to future work),
we argue here that our techniques are amicable to this
type of deployment. Adeona’s core (Section 3) is partic-
ularly suited for implementation in hardware. It relies on
a single cryptographic primitive,AES, which is highly
optimized for both software and hardware. For example,
recent research shows how to implement AES in only
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to the actual closest Akamai node and Akamai’s own content delivery algorithm. (Right) Field trial retrieval rates and retrieval
times (in minutes and seconds).

3400 gates (on a “grain of sand”) [15]. In its most basic
form (without a location cache), the core only requires
16 bytes of persistent storage.

In settings where a third-party company offers track-
ing services, the design requirements are more relaxed
compared to a community-supported approach. Partic-
ularly, such a company would typically offerdedicated
remote storage servers. This would allow handling per-
sistence issues server-side. Further, this kind of remote
storage service is likely to provide better availability than
DHTs, obviating the need to engineer the client to handle
various kinds of service failures. Adeona is thus slightly
over-engineered for this setting (e.g., we could dispense
with the replication technique of Section 4). An interest-
ing question that is raised in such a deployment setting is
how to perform privacy-preserving access control. For
obvious reasons, these remote storage facilities would
want to restrict the parties able to insert data. If we
use traditional authentication mechanisms, the authen-
tication tag might reveal who is submitting the update.
Thus one might think about using newer cryptographic
primitives such as group or ring signatures [10, 31] that
allow authentication while not revealing what member of
a group is actually communicating the update.

Corporations or other large organizations might opt
to internally host storage facilities, as per Scenario 5 of
Section 2. Again, dedicated storage servers ease design
constraints, meaning Adeona can be simplified for this
setting. But there is again the issue of access control.
(Though in this setting existing corporate VPN’s, if these
do not reveal the client’s identity, might be used.) On the
other hand, this kind of deployment raises other interest-
ing questions. Particularly, the privacy set is necessarily
restricted to only employees of the corporation, and so an
adversary might be able to aggregate information about
overall employee location habits even if the adversary

cannot track individual employees.

8 Extensions

We describe several extensions for the Adeona system
that highlight its versatility and extensibility. These in-
clude: removing the reliance on synchronized clocks,
tamper-evident FSPRGs for untrusted local storage, a
panic mode of operation that does not rely on state, the
use of anonymous channels, and enabling communica-
tion from an owner back to a lost device.

8.1 Avoiding synchronized time

The Adeona system, as described in Section 4, utilizes a
shared clock between the client and owner to ensure safe
retrieval. This is realized straightforwardly if the client is
loosely synchronized against an external clock (e.g., via
NTP [27]). In deployment scenarios where the device
cannot be guaranteed to maintain synchronization or the
thief might maliciously modify the system clock, we can
modify the client and retrieval process as follows.

Whenever the client is executed, it reads the current
state (which is now just the current cryptographic seed
for the FSPRG and the cache) and computes the inter-
update timeδ associated to the state. It then waits that
amount of time before sending the next update and pro-
gressing the state. For retrieval, the owner can still com-
pute all of the inter-update times, and use these to esti-
mate when a state was used to send an update. If the
client runs continuously from initialization, then a state
will be used when predicted by the sum of the inter-
update times of earlier states. If the client is not run
continuously from initialization, then a state might be
used to send an updatelater (relative to absolute time)
than predicted by the inter-update times. It is therefore



privacy-preserving for the owner to retrieve any states es-
timated to be sent after the time at which the device was
lost. The owner might also query prior states to search
for relevant updates, but being careful not to go too far
back (lest he begin querying for updates sent before the
device was lost).

8.2 Detection of client state tampering

The Adeona system relies on the client’s state remain-
ing unmodified. Compared to a (hypothetical) stateless
client, this allows a new avenue for disabling the de-
vice. To rectify this disparity between the ideal (in which
an adversary has to disable/modify the client executable)
and Adeona we design a novel cryptographic primitive,
a tamper-evident FSPRG, that allows cryptographic val-
idation of state. By adding this functionality to Adeona
we remove this avenue for disabling tracking functional-
ity. Moreover, we believe that tamper-evident FSPRGs
are likely of independent interest and might find use in
further contexts where untrusted storage is in use, e.g.,
when the Adeona core is implemented in hardware but
the state is stored in memory accessible to an adversary.

A straightforward construction would work as follows.
The owner, during initialization, also generates a signing
key and a verification key for a digital signature scheme.
Then, the initialization routine generates the core’s val-
uessi ,ci,1,Ti for each future statei that could be used by
the client, and signs these values. The verification key
and resulting signatures are placed in the client’s stor-
age, along with the normal initial state. The client, to
validate lack of tampering with FSPRG states, can verify
the state’ssi ,ci,1,Ti values via the digital signature’s ver-
ification algorithm and the (stored) verification key. Un-
fortunately this approach requires a large amount of stor-
age (linear in the number of updates that could be sent).
Moreover, a very sophisticated thief could just mount a
replacement attack: substitute his or her own state, ver-
ification key, and signatures for the owner’s. Note this
attack does not require modifying or otherwise interfer-
ing with the client executable. We can do better on both
accounts.

To stop replacement attacks, we can use a trusted au-
thority to generate a certificate for the owner’s verifica-
tion key (which should also tie it to the device). Then the
trusted authority’s verification key can be hard-coded in
the client executable and be used to validate the owner’s
(stored) verification key. To reduce the storage space
required, we have the owner, during initialization, only
sign thefinal state’s values. To verify, the client can seek
forward with the FSPRG (without yet deleting the cur-
rent state) to the final state and then verify the signature.
(A counter can be used to denote how many states the
client needs to progress to reach the final one.) Under

reasonable assumptions regarding the FSPRG (in partic-
ular, that it’s difficult to find two distinct states that lead
to the same future state) and the assumption that the dig-
ital signature scheme is secure, no adversary will be able
to generate a state that deviates from the normal progres-
sion, yet verifies. A clever thief might try to roll the
FSPRG forward in the normal progression, to cause a
long wait before the next update. This can be defended
against with a straightforward check relative to the cur-
rent time: if the next update is too far away, then assume
adversarial modification. We could also store the signa-
tures of some fraction of the intermediate states in or-
der to operate at different points of a space/computation
trade-off.

8.3 Private updates with tampered state

If the client detects tampering with the state, then it can
enter into a “panic” mode which does not rely on the
stored state to send updates. One might have panic mode
just send updates in the clear (because these locations
are presumably not associated with the owner), but there
can be reasons not to do this. For example, configuration
errors by an owner could mistakenly invoke panic mode.

Panic mode can still provide some protection for up-
dates without relying on shared state, as follows. We as-
sume the client and owner have access to an immutable,
unique identification stringID. In practice thisID could
be the laptop’s MAC address. We also use a cryp-
tographic hash functionH: {0,1}∗ → {0,1}h, such as
SHA-256 for whichh = 256 bits. Then pick a param-
eterb ∈ [0..h]. For each update, the client generates a
sequence of indexes viaI1 = H(1 || T || H(ID)|b), I2 =
H(2 || T || H(ID)|b), etc. HereT is the current date and
H(ID)|b denotes hashingID and then taking the firstb
bits of the result. (Varying the parameterb enables a
simple time-privacy trade off known as “bucketization”.)

Location information can be encrypted using an
anonymous identity-based encryption scheme [8]. Using
a trusted key distribution center, each owner can receive
a secret key associated to their device’sID. (Note that
the center will be able to decrypt updates, also.) Encryp-
tion to the owner only requiresID. This is useful because
then encryption does not require stored per-device state,
under the presumption thatID is always accessible. The
ciphertext can be submitted under the indices. The owner
can retrieve these panic-mode updates by re-computing
the indices usingID and the appropriate dates and then
using trial decryption.

8.4 Anonymous channels

Systems such as Tor [14] implement anonymous chan-
nels, which can be used to effectively obfuscate from re-



cipients the originating IP address of Internet traffic. The
Adeona design can easily compose with any such sys-
tem by transmitting location updates to the remote stor-
age across the anonymous channel. The combination of
Adeona with an anonymous routing system provides sev-
eral nice benefits. It means that the storage provider and
outsiders do not trivially see the originating IP address,
meaning active fingerprinting attacks are prevented. Ad-
ditionally, it merges the anonymity set of Adeona with
that of the anonymous channel system. For example,
even if there exists only a single user of Adeona, that
user might nevertheless achieve some degree of location
privacy using anonymous channels.

On the other hand, attempting to use anonymous chan-
nels without Adeona does not satisfy our system goals.
The now more complex clients would not necessarily
be suitable for some deployment settings (e.g. hardware
implementations). It would force a reliance on a com-
plex, distributed infrastructure in all deployment settings.
This reliance is particularly bad in the corporate setting.
Routing location updates through nodes not controlled
by the company could actually decrease corporate pri-
vacy: outsiders could potentially learn employee loca-
tions (e.g., see [36]). Moreover, when analyzing how to
utilize anonymous channels and meet our tracking and
privacy goals, it is easy to see that even with the anony-
mous channel one still benefits from Adeona’s mecha-
nisms. Imagine a hypothetical system based on anony-
mous channels. Because the storage provider is poten-
tially adversarial, the system would still need to encrypt
location information and so also provide an index to en-
able efficient search of the remote storage. Because the
source IP is hidden, one might utilize a static, anony-
mous identifier. This would allow the storage provider
to, at the very least, link update times to a single device,
which leaks more information than if the indices are un-
linkable.

8.5 Sending commands to the device

In situations where a device is lost, an owner might wish
to not only retrieve updates from it, but also securely
send commands back to it. For example, such a chan-
nel would allow remotely deleting sensitive data. We
can securely instantiate a full duplex channel using the
remote storage as a bulletin board. An owner could post
encrypted and signed messages to the remote storage un-
der indices of future updates. The client, during an up-
date, would first do a retrieve on the indices to be used
for the update, thereby receiving the encrypted and au-
thenticated commands. Standard encryption and authen-
tication tools can be used, including using cryptographic
keys derived from the FSPRG seed in use on the client.
In terms of location privacy, the storage provider would

now additionally learn that two entities are communicat-
ing via the bulletin board, but not which entities.

9 Conclusion

This paper develops mechanisms by which one can build
privacy-preserving device tracking systems. These sys-
tems simultaneously hide a device owner’s legitimately
visited locations from powerful adversaries, while en-
abling tracking of the device after it goes missing. More-
over, we do so while using third party services that are
not trusted in terms of location privacy. Our mecha-
nisms are efficient and practical to deploy. Our client-
side mechanisms are well-suited for hardware implemen-
tations. This illustrates that not only can one circumvent
a trade-off between security and privacy, but one can do
so in practice for real systems.

We implemented Adeona, a full privacy-preserving
tracking system based on OpenDHT that allows for im-
mediate, community-orientated deployment. Its core
module, the cryptographic engine that renders location
updates anonymous and unlinkable, can be easily used in
further deployment settings. To evaluate Adeona, we ran
a field trial to gain experience with a deployment on real
user’s systems. Our conclusion is that our approach is
sound and an immediately viable alternative to tracking
systems that offer less (or no) privacy guarantees. Lastly,
we also presented numerous extensions to Adeona that
address a range of issues: disparate deployment settings,
increased functionality, and improved security. The tech-
niques involved, particularly our tamper-evident FSPRG,
are likely of independent interest.

Notes

1EmailMe is a fictional system, though its functionality is based on
products such as PC Phone Home [9] and Inspice [21].

2A flea market is a type of ad-hoc market where transactions are
typically anonymous and done in cash.

3AllDevRec is a fictional company, though the services it offers are
comparable to those advertised by Absolute Software [1], which has
tracking software pre-installed in the BIOS of some Dell laptops.

4A real example of such insider abuse is found in [20].
5The owner could download the entire database and do trial decryp-

tion, but with many users this would be prohibitively expensive.
6One could also utilize as basic primitive a keyed hash function.
7To be precise, the guarantee is that OpenDHT guarantees not to ex-

pire a key-value pair before its time-to-live passes, barring some catas-
trophic failure of the DHT service [30].

8Systems we built on had version 0.9.7l or later. We used SHA1,
instead of the more secure SHA-256, due to its lack of implementation
in OpenSSL 0.9.7l (the most recent version available for OSX).

9To be precise, the search was for any update potentially sentover
the course of 6 days and 23 hours. The final hour was omitted for sim-
plicity since it avoided retrieving updates being expired by OpenDHT.
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