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Machine learning algorithms based on neural networks have achieved remarkable 

results and are being extensively used in different domains. However, the machine learning 

algorithms requires access to raw data which is often privacy sensitive. To address this 

issue, we develop new techniques to provide solutions for running deep neural networks 

over encrypted data. In this paper, we develop new techniques to adopt deep neural 

networks within the practical limitation of current homomorphic encryption schemes. We 

focus on training and classification of the well-known neural networks and convolutional 

neural networks. First, we design methods for approximation of the activation functions 

commonly used in CNNs (i.e. ReLU, Sigmoid, and Tanh) with low degree polynomials 

which is essential for efficient homomorphic encryption schemes. Then, we train neural 

networks with the approximation polynomials instead of original activation functions and 

analyze the performance of the models. Finally, we implement neural networks and 

convolutional neural networks over encrypted data and measure performance of the 

models. 
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CHAPTER 1

INTRODUCTION

Machine learning algorithms based on Deep Neural Networks (DNNs) have attracted

attention as a breakthrough in the advance of Artificial Intelligence (AI) and are the main-

stream in current AI research. These techniques are achieving remarkable results and are

extensively used for analyzing big data in a variety of domains such as spam detection, traffic

analysis, intrusion detection, medical or genomics predictions, face recognition, and financial

predictions [47, 51, 39]. However, training the models and classifying new instances requires

access to the raw data which is often privacy sensitive and can create potential privacy risks.

Furthermore, with increasing growth of cloud services, machine learning algorithms

can be run on the cloud providers’ infrastructure where training and deploying machine

learning models are performed on cloud servers. Once the models are deployed, users can use

these models to make predictions without having to worry about maintaining the models

and the service. In a nutshell, this is Machine Learning as a Service (MLaaS), and several

such services are currently offered include Microsoft Azure Machine Learning [63], Google

Prediction API [29], GraphLab [87], and Ersatz Labs [48]. Machine learning algorithms

typically consist of two phases as shown in Figure 1.1:

(1) The training phase during which the algorithm A learns a model w from a data set

D of labeled examples, A(D) = C.

(2) The classification phase that runs a classifier C over a previously unseen feature

vector i, using the model w to output prediction p, C(w, i) = p.

Either or both of these steps could be outsourced to the cloud. In applications that handle

sensitive data, it is important that the training data D, the algorithm A, the model w, and

the feature vector x remain secret to one or some of the parties involved. The privacy of

different components of a machine learning algorithm should be considered such as feature

values, instance labels, final model, prediction results etc. Feature values contain sensitive

information about the client, for example, Health information of a patient.
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Figure 1.1. General model of a Machine Learning algorithm

The machine learning algorithm processing the data is one of assets and the owner

of the model does not reveal information about it. The algorithm includes the method for

building the model, the optimization method, and the architecture of the algorithm. Final

model is also another component that counts as a sensitive asset from the server’s perspective.

While the server provides the service for the client, it also wants to preserve the privacy of

the final model’s parameters against clients. The classification result is another sensitive

component from the client’s prospective. We explore the privacy of these components in

details, Chapter 4.

Besides the privacy concerns from client’s prospective, there are also regulations which

needed to follow for preserving privacy of data.

• Health Insurance Portability and Accountability Act (HIPPA) is one of the standards

for preserving the privacy of health data of patients. Companies that provide medical

services need to follow this standard, while processing health information [67].

• General Data Protection Regulation (GDPR) was introduced by EU for general data

purposes [18].

Different techniques have been introduced in the literature to address this problem.

To the best of our knowledge, proposed solutions are based on three different basic ideas: Dif-

ferential Privacy (DP), Homomorphic Encryption (HE), and Secure Multiparty Computation

(SMC).

This dissertation is presented towards the fulfillment of the University of North

Texas, Computer Science and Engineering Department PhD program requirements. In this
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dissertation, the goal is developing new techniques for preserving the privacy of data in deep

neural network algorithms based on homomorphic encryption.

The aim of this research is providing a client-server solution to apply deep neural

network algorithms on the encrypted data and allow the server or the client to provide/receive

the service without having to reveal their sensitive data to each other. The main components

of the proposed solution are homomorphic encryption and neural networks.

For designing the protocol, we aim to develop the theoretical foundation for adopting

deep neural network within the limitations of current homomorphic encryption schemes and

implementing them in the encrypted domain.

We consider a client-server model where the client owns the data and the server uses

this data to build a model and provide prediction services to the client. In the training phase,

the server gets the training dataset from the client in an encrypted format and can train a

model on that data without learning anything about the training dataset. Since training is

performed on the encrypted data, the server does not learn the parameters of the trained

model or the final model.

The trained model is encrypted under the client’s public key, and only this client can

use the final model for classification of new instances, see Figure 1.2. Server cannot access the

Figure 1.2. Training phase in a Machine Learning algorithm

input data or the prediction, and also the client cannot get information about the structure

of the model and its parameters, see Figure 1.3.
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Figure 1.3. Classification phase in a Machine Learning algorithm

The original fully homomorphic encryption (FHE) scheme presented in Gentry’s

seminal paper [26] was highly inefficient; since then, significantly more practical schemes have

been developed. In order to have efficient and practical solutions for computations in the

encrypted domain, we typically use somewhat homomorphic schemes or leveled homomorphic

schemes instead of fully homomorphic encryption.

The most notable shortcoming of practical homomorphic encryption schemes is that

the operations in practical schemes are limited to addition and multiplication. Another

shortcoming is the limited number of operations on the encrypted data. We can only operate

an algorithm to a specific depth on the encrypted data. Consequently, we need to adopt

neural network algorithms within these limitations.

The computation performed over sensitive data by neural network algorithms is very

complex and neural networks cannot simply be translated to encrypted versions without

modification. For example, activation functions in neural networks are a sigmoid function

( 1
1+e−x ) and Rectified Linear Unit (ReLU, f(x) = max(x, 0)) and they should be replaced by

a function that only uses addition and multiplication such as polynomials.

However, a solution that builds upon homomorphic encryption schemes should be

restricted to compute low degree polynomials in order to be practical [92]. Hence, presenting

the desired computation as low-degree polynomials is an important task in making practical

use of homomorphic encryption schemes for applying neural network algorithms to the

4



encrypted data. Polynomials of degree 2 are used to substitute the sigmoid function in neural

networks [22] and polynomials of degree 3 are used to estimate the natural logarithm function

[83].

Once the polynomial approximations are generated, we design and evaluate privacy-

preserving training and classification of neural networks by replacing the activation functions

with these polynomial approximations. The goal is to adopt neural networks within the

practical limitations of homomorphic encryption, while keeping accuracy as close as possible

to the original model.

1.1. Research Questions

The research questions that the dissertation is exploring are as follows:

(1) How should we solve the issue about the plain-text domain (integers) in HE schemes?

How much does using integer values impact on the performance of the model?

(2) How should we generate low degree polynomials with high performance for a general

case with a deterministic algorithm?

(3) How should we train a model based on a polynomial with integer coefficients?

(4) What is the performance of the proposed solution for benchmark datasets such as

the MNIST or CIFAR-10 for training and classification?

(5) How can we generalize our solution for training and classifying data that is distributed

among clients?

1.2. Significance of the Research

In this dissertation, the aim is to study and address challenges in HE based solutions.

The first step is comparing two main cryptographic tools for preserving the privacy of data:

Homomorphic Encryption (HE) and Secure Multiparty Computation (SMC).

The basic idea in SMC is based on distributing the computation among entities by

using cryptographic techniques. In other words, SMC is a secure function evaluation over

data for preserving the privacy of data. Oblivious Transfer (OT) and Garbled Circuits (GC)

are two types techniques used in SMC protocols.
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Our research approach in has several advantages over SMC-based approaches. Unlike

SMC-based approaches, the structure of the client does not need to be changed in our

approach when the architecture of the neural network is changed. The only operations on

the client side are encryption and decryption and the server can perform different machine

learning algorithms with the same client. Another advantage of our approach is that it

preserves the privacy of the model’s architecture compared with the SMC-based solutions. In

SMC-based solutions, the client participates in the computations and information about the

model could possibly leak to the client.

For example, the client can learn information such as the number of layers in the

neural network, the structure of each layer, and activation functions. Although there are

some solutions such as adding more dummy layers to the model to mitigate this issue, these

will add to the already large computation cost. In our approach, the only operations on the

client side are encryption and decryption. Hence, the client cannot learn any information

about the structure of the neural network.

In SMC protocols, interactions are needed between the client and the server for each

operation, whereas in our approach the server does not need to communicate with the client

unless the amount of noise reaches a threshold. In the training case, if the same neural

network is implemented using SMC protocols, the number of communications is much higher

compared with the HE based protocols. Also, as mentioned above, since the client participates

in the computations, information about the model could possibly leak. For example, the

client can learn information such as the number of layers in the Convolutional Neural Network

(CNN), the structure of each layer and the activation functions.

Another significant point of our research is the polynomial approximation method. A

solution that builds upon homomorphic encryption schemes should be restricted to compute

low degree polynomials in order to be practical [92]. Hence, presenting the desired computation

as low-degree polynomials is an important task in making practical use of homomorphic

encryption schemes for applying neural network algorithms to the encrypted data. Polynomials

of degree 2 are used to substitute the sigmoid function in neural networks [22] and polynomials
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of degree 3 are used to estimate the natural logarithm function [83]. These are ad-hoc solutions

which enable us to work around certain problems, but there is no generic solution to the

problem of approximating a function with low degree polynomials. Our goal is to provide

a framework capable of handling general cases. In [65], Mohassel and Zhang used Taylor

Series for approximating the sigmoid function, as they mentioned, for achieving a high

accuracy, the degree of polynomial should be 13 which is high, so that it imposes a significant

communication overhead. Therefore, the authors used a linear piece-wise function which

simulates the structure of the sigmoid function. However, we cannot use this method for

encrypted data, due to the lack of comparison operation over encrypted data.

It is worth noting that polynomials with low degrees are applied not only in HE-based

solutions, but also interested in solutions based on Secure Multiparty Computation. However,

the use of the ReLU (max function) or a sigmoid (exponential function) functions impose a

certain computation and communication cost for SMC based solutions, see [65, 58, 77].

In this chapter, we provided an introduction to privacy-preserving machine learning

as a service. In the following chapter 2, we provide concepts, terms, theories, and ideas that

will be useful for understanding the technical parts of this work. In particular, Homomorphic

Encryption and Deep Neural Networks are the main topics which we focus in the next chapter.

We provide the basic definitions of homomorphic encryption, main functions on an HE scheme,

and also explain the difference between this kind of encryption scheme and other encryption

schemes. Then, we provide more details in Deep Neural Networks and their main components

such as fully connected or convolutional layers.

In Chapter 3, we perform a literature review of the proposed solutions to this prob-

lem. Two main techniques considered in chapter 3: Secure Multiparty Computation and

Homomorphic Encryption. We also have one more section, 3.3, that includes other techniques

including differential privacy.

Chapter 4 focuses on the main challenges in privacy-preserving computation on data

by using homomorphic encryption. Besides the advantages of HE schemes, such as running

operations over encrypted data, there are some shortcomings of using this kind of encryption
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schemes, for instance lack of division operation. These shortcomings force us to revise the

structure of the network architectures to adopt them within the limitations of HE schemes.

In Chapter 5, we propose our solution for addressing challenges from Chapter 4. We

consider the limitations of HE schemes such as limited number of multiplications or lack of

division and provide solutions for replacing or changing each module. We convert a Deep

Neural Network to its adopted version while keeping the performance of the algorithm close

to that of original one.

In Chapter 6, we provide the performance of our solution for the training and the

classification of Deep Neural Network (DNN) over encrypted data and compare our results

with similar solutions. We consider a wide variety of architectures and implement some of

them over encrypted data and measure the performance by calculating the accuracy of the

model and comparing it with the original architecture. The final chapter 7 discusses possible

future research directions..
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CHAPTER 2

BACKGROUND

In this chapter, we briefly describe HE schemes, their strengths and weaknesses which

should be considered while using them for secure computation protocols.1 We also give a

brief description of neural networks and convolutional neural networks.

2.1. Homomorphic Encryption Schemes

Homomorphic encryption (HE) schemes preserve the structure of the message space

such that we can perform operations such as addition and multiplication over the ciphertext

space. Like other types of encryption schemes, an HE scheme has three main functions,

Gen, Enc, and Dec, for key generation, encryption, and decryption, respectively. However,

an HE scheme also has an evaluation function, Eval. Suppose we have a set of plaintext

messages {mi} and relative ciphertexts {ci} for i = {1, · · · , n}. Now, consider a circuit C.

The evaluation function processes the public key pk, a set of ciphertexts {ci} and a circuit C

such that (see [26])

Dec(sk, Eval(pk, C, c1, · · · , cn)) = C(m1, · · · ,mn)(2.1)

Homomorphic encryption (HE) was first introduced in 1978 by Rivest et al. [78]. Other

researchers introduced several other HE schemes [24, 28, 71]. However, most of these encryp-

tion schemes have some constraints. Some of them, such as the Paillier encryption scheme [71],

only support one operation (addition). If the encryption scheme only supports one operation,

it is called Partially Homomorphic Encryption (PHE). In some work, researchers used the

term Somewhat Homomorphic Encryption instead of Partially Homomorphic Encryption.

This question was answered in 2009 when first Fully Homomorphic Encryption scheme

was designed by Gentry [26]. A Fully Homomorphic Encryption (FHE) scheme is a homo-

morphic encryption scheme that supports circuits with arbitrary depth. The idea behind

1This section partially reproduced from Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi, CryptoDL:

Deep neural networks over encrypted data, CoRR abs/1711.05189 (2017).
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the encryption function in Enc is to add a small value, called noise, to the plaintext m

for encrypting. Therefore, each ciphertext has a small amount of noise. When we add two

ciphertexts c1 and c2, the result is also a ciphertext, but with noise that has increased. The

Dec function works correctly if this amount is less than a threshold. If we add or multiply

two ciphertext c1 and c2, the level of the noise increases in the result of the computation.

This threshold leads to a bound on the number of computations that can be performed over

encrypted data. If an entity wants to decrease the noise, it should decrypt the ciphertext

and encrypt it again. For decryption, it needs the secret key, sk. For years, the community

has been trying to find out if there is a way to decrease the noise without having the secret

key. In [26] a technique introduced for handling an arbitrary depth of computations, called

bootstrapping. In the bootstrapping technique, the amount of noise is decreased without

needing to access sk. However, it has a huge computational cost and is a very slow process.

This limitation makes FHE impractical for actual use.

Recent advances in homomorphic encryption have led to a faster HE scheme: Leveled

Homomorphic Encryption (LHE), see [26]. LHE schemes do not support the bootstrapping

function, so they only allow circuits with depths less than a specific threshold. If the number

of operations is known before starting the computations, we can use LHE instead of FHE. The

performance of LHE schemes is further improved using a Single-Instruction-Multiple-Data

(SIMD) technique [31]. Halevi et al. in [31] use this technique to create a batch of ciphertexts.

So, one single ciphertext has been replaced with an array of ciphertexts in computations. By

using this functionality, we can improve the performance of the service by feeding more than

one instance in each round of running the algorithm.

Despite the advantages of using HE schemes, they have some limitations. The first one

is message space. Almost all HE schemes work with integers. Therefore, before encrypting

data items, we need to convert them to integers; if this conversion is not done properly, it

could lead to accuracy loss. The second limitation is ciphertext size. The size of the message

increases considerably after encryption. Another important limitation is related to noise.

After each operation, the amount of noise in the ciphertext increases. Multiplication increases
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noise much more than addition. For HE schemes to work properly, the amount of noise

should remain less than a predefined threshold. The last and most important limitation is

lack of support for the division operation. See Chapter 4 for more details.

In summary, only a limited number of additions and multiplications could efficiently

be performed over the encrypted data and complex functions such as sigmoid functions used

in neural networks are not compatible with the current HE schemes.

2.2. Neural Networks

At a high level of abstraction, a neural network is a combination of neurons arranged

in ordered layers. Each neuron gets an input, runs a function on it and outputs the result

of the function. The structure of this function depends on the layer to which the neuron

belongs. We have three different types of layers and neurons in each layer have different

structures, input layer, hidden layer and output layer.

The first type is the input layer and only one layer of this type exists in each neural

network. Instances are fed for this layer, neurons in this layer have a simple structure.

Neurons in the input layer only get the input and their outputs are the input values without

any change. The second type is the hidden layer. Each neuron in the hidden layer has a

vector of input (x0, . . . , xn) (the size of this vector is the number of neurons in the previous

layer plus one for the bias neuron in the input layer), a vector of weights (w0, . . . , wn) (the

size of this vector is equal to the size of the input vector), and an output y. The output is

computed with this formula

(2.2) y = f(
n

∑

i=0

xi ∗ wi).

Here, f is a function which is called an activation (or transfer) function. Several functions

could be used as an activation function. Step, hyperbolic, or sigmoid functions are examples

of activation functions. We use the sigmoid function as the activation function:

(2.3) σ(x) =
1

1 + e−x

Another example of an activation function is Tanh (2σ(2x)− 1 or ex−e−x

ex+e−x ).
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The last layer is the output layer. Neurons in this layer are sometimes simple neurons

(such as those in the input layer) and in some cases, they have complex structure (as those in

the hidden layers). All layers have a bias neuron which is connected to all neurons in the

next layer.

We consider fully connected feed-forward neural network and use such kind of structure

for implementation. In this type of neural networks, all neurons in each layer are connected

to all neurons in the next layer.

A dataset has a structure like a matrix, the number of rows in this matrix is the

number of instances and the number of columns is equal to the number of features. We

consider labeled data, the dataset also has another vector which holds labels. If we want to

train a model based on an m × n matrix with c labels, our neural network has n neurons

in the input layer and c neurons in the output layer. The number of neurons in the hidden

layer depends on the problem and the dataset.

In the training phase, we have two main functions. The first function is feed-forward

and the second is back-propagation. We initialize the algorithm by assigning random values

to weights in our neural network. During the training process, we update these weights by

running the back-propagation function.

The feed-forward function has the following steps. As mentioned above, an instance is

a vector that consists of values xi, 1 ≤ i ≤ n. Each neuron in the input layer receives one

xi as an input and results yi as an output, and the bias neuron always gets a constant as

an input. The second step is to prepare an input for the hidden layer. Each neuron in the

input layer is connected with wj ’s weights, 1 ≤ j ≤ h+ 1 (h is the number of neurons in the

hidden layer plus one for the bias neuron of input layer). Each neuron in the hidden layer

gets a vector of xi’s and it also has a vector of weights wi’s. The output of each neuron in

the hidden layer is

(2.4) y = f(
n

∑

i=1

xiwi)

where f is the activation function (for example, sigmoid function). All outputs of y’s are
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inputs for the next layer.

Each neuron in the output layer gets a vector of yis and computes its outputs with

this formula:

(2.5) o = g(
h

∑

i=1

yiw
′
i)

where w′
is are the weights between all neurons in the last hidden layer and one neuron in the

output layer.

The value of o is the actual value of the input instance. However, the value o is not

always the same as the label related to this instance. The difference between the value of o

and the label a is the error (different ways proposed for calculating the error); the neural

network tries to minimize this error by updating the weights based on this error. In function

back-propagation, we update all the weights based on the difference between the actual value

and the target value. A common technique for updating weights is called Gradient Descent

which we explain in detail.

For updating weights for each neuron, each neuron has another two values, gradient

and ∆weight. The gradient for neurons in different layers can be computed in different ways.

As mentioned above, for neurons in the input layer the output is the same as the input and

neurons in the input layer have no gradients. For computing gradients, we start backward,

we compute gradients for the neurons in the output layer. The gradient for one neuron g′i in

the output layer is computed with this formula:

(2.6) g′i = (o− a)
d f(o− a)

d x

where f is the activation function. The gradient of a neuron in the hidden layer has a different

formula:

(2.7) gi = (
∑

xiwi)×
d f(

∑

xiwi)

d x

After feeding one instance to the neural net, we update gradient values for all neurons. For

updating gi’s, we need to compute ∆w for each neuron and then use this value to update the
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gi. When we want to update ∆wi for one neuron, we use gi’s of neurons from the next layer.

The formula for ∆wi is:

∆newwi = η × oi × gj + α×∆oldwi(2.8)

∆wi = ∆newwi(2.9)

wi = wi +∆wi(2.10)

where gj is the gradient of neurons in the next layer, oi is the output value of the current

neuron, and ∆oldwi is the last value of ∆wi and ∆newwi is the new value. The integer j

changes through all neurons in the next layer, and wi is the weight of the current neuron.

The values η and α are some technical parameters, we will omit their explanation for the

sake of simplicity of this presentation.

Running one feed-forward and one back-propagation is called one iteration. In practice,

we partition the dataset into smaller parts, each called are batches. In each iteration, we

train the model based on one batch and update weights. Going through all instances in a

dataset and running one iteration for each batch is called one epoch. We run more than one

epoch for training the model. Two common methods are used for choosing the number of

epochs and stop training phase: a threshold for error or a constant number of epochs. In the

first case, we stop when the error is below a threshold or the performance of the model is not

improved. In the second case, we run the training phase up to a constant number of epochs

and then stop the training calculations and save the model for predictions.

There are two methods for feeding instances to the neural networks: online learning

and batch learning. In the online training, the weights are updated after feeding one instance

of the network whereas in batch training a batch of instances is fed to the network to update

the weights in each step.

In the following section, we explain Convolutional Neural Networks, a generalized

form of neural networks.
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2.3. Convolutional Neural Networks (CNNs / ConvNets)

Convolutional Neural Networks (CNNs / ConvNets) are a specific type of feed-forward

neural network. CNNs have proven to be very effective in areas such as image recognition

and classification.2

CNNs commonly use several distinct kinds of layers as shown in Figure 2.134

Figure 2.1. Convolutional Layer

The first layer in a CNN is a convolutional layer. A convolutional layer is a set of

filters that operates on the input points. For the first layer, the input is the raw image. The

idea behind using convolutional layers is learning features from the data. Each filter is a

n×n square (for example, n = 3 or 5) with a stride. We convolve the pixels in the image and

calculate the dot product of the filter values and related values in the neighbor of the pixel.

This step only includes addition and multiplication and we can use the same computation

over the encrypted data. The stride is a pair of two numbers, for example (2, 2), in each step

we slide the filter two units to the left or down. See Figure 2.2.

After each convolutional layer, we use an activation layer which is a non-linear

function. Every activation function takes a single number and performs a certain fixed

2Parts of this chapter have been previously published, either in part or in full, from Ehsan Hesamifard, Hassan
Takabi, and Mehdi Ghasemi, CryptoDL: Deep neural networks over encrypted data, CoRR abs/1711.05189
(2017).

3Reproduced from http://cs231n.github.io/convolutional-networks

4Figure 2.2 reproduced from https://developer.apple.com and Figures 2.3, 2.4, 2.5 and 2.6 reproduced from
http://cs231n.github.io/convolutional-networks/.
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Figure 2.2. Convolutional Layer

mathematical operation on it. There are several activation functions we may encounter in

practice, including Rectified Linear Unit (ReLU), sigmoid, and tanh functions. We cannot

calculate these functions over encrypted values and we should find replacements for these

functions that only include addition and multiplication operations. See Figure 2.3.

Figure 2.3. Activation Layer

After an activation layer, there is a pooling layer (or sub-sampling). This layer is for
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sub-sampling of the data, it reduces the size of the data. Different kinds of pooling layer

are introduced in the literature, two of the most popular ones are max pooling and average

pooling. We cannot use max pooling because of the lack of the max operation over encrypted

data. In the case of integer domain for the plaintexts, we use a scaled-up version of the

average pooling (proposed in [22]), and calculate the summation of values without dividing

it by the number of values. We implement average pooling with addition only, and it does

not have an impact on the depth of the algorithm because the addition is cheap and almost

noise-free. See Figure 2.4.

Figure 2.4. Max Pooling Layer

The last layer in a CNN is the fully connected layer. The fully connected layer has

the same structure as hidden layers in classic neural networks. We call this layer fully

connected because each neuron in this layer is connected to all neurons in the earlier layer,

each connection is represented by a value which is called weight. The output of each neuron

is the dot product of two vectors: output of neurons in the earlier layers and the related

weight for each neuron. See Figure 2.5.

When we train a model over a training set, it is possible that the final model will be

biased to the training set, and we will get high error over the test set. This issue is called

over-fitting. For avoiding over-fitting during the training process, we use this specific type of

layer in the CNN. In this layer, we drop out a random set of connections and set them to

zero in each iteration. This dropping of values preventing over-fitting happen. We need this
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Figure 2.5. Fully Connected Layer

layer only for the training step and we can remove it in the classification step. See 2.6.

Figure 2.6. Dropout Layer

There are different ways to use the above-mentioned layers in a CNN for training

a model. However, there is a common pattern for creating a CNN. The first layer is the

convolutional layer; after a convolutional layer, we add an activation layer. One block of

a CNN is [Convolutional → Activation] and we can use this block more than one time,

[Convolutional → Activation]n. After this series of block, we use an average pooling layer.

This is the second block which is a combination of the first block plus an average pooling layer,

[[Convolutional → Activation]n → AveragePooling]n. As in the case of the first block, we

can use the second block more than one time. Then, we have one or more fully connected

layers after the second block and the CNN ends with an output layer. The output of this
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layer is the number of classes in the dataset. This is a common pattern for creating a CNN.

Figure 2.7 is an example of a CNN.

Figure 2.7. CNN Model 1 (AveP stands for Average Pooling).
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CHAPTER 3

RELATED WORK

In this chapter, we review the literature on the privacy preserving machine learning

as a service. Although a variety of techniques was used for addressing this problem, we focus

on two main ones; Secure Multiparty Computation and Homomorphic Encryption and briefly

review other techniques such as Differential Privacy.

3.1. Homomorphic Encryption

Graepel et al. [30] used a Somewhat HE scheme to train two machine learning

classifiers: Linear Mean and Fisher’s Linear Discriminate (FLD). They proposed division-free

algorithms to adapt within the limitations of HE algorithms. They focus on simple classifiers

such as the linear means classifier, and do not consider more complex algorithms. Also, in

their approach, the client can learn the model, and they consider a weak security model.

Bost et al. [11] used a combination of three homomorphic systems (Quadratic

Residuosity, Piallier, and BGV schemes), and garbled circuits to provide privacy-preserving

classification for three different machine learning algorithms, namely Hyper-plane Decision,

Naive Bayes, and Decision trees. Their approach is based on SMC, considers only classical

machine learning algorithms and is only efficient for small data sets.

Xie et al. [92] discuss theoretical aspects of using polynomial approximation for

implementing neural network in the encrypted domain. Building on this work, Dowlin et

al. [22] present CryptoNets, a neural network classifier on the encrypted data. They use a

leveled homomorphic encryption scheme which supports SIMD; Simple Encrypted Arithmetic

Library (SEAL) 1. The authors replace max pooling with scaled mean-pooling for solving the

issue of having no division operation available for encrypted values. Since HE schemes do

not support exp function, they replace the sigmoid function with f(z) := z2 as the activation

function. They build the model using plain data and then use this model for classifying

1Available at http://sealcrypto.codeplex.com
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encrypted data and can achieve accuracy of about 98.95% on MNIST dataset. The protocol

reached a throughput of 48068 instances per hour.

Chabanne et al. improved accuracy of CryptoNets by combining the original ideas

of CryptoNets’ solution with the batch normalization principle [15]. They used ReLU as

activation function and applied combination of Taylor series and batch normalization to

approximate this function.

Kim et al. [44] proposed a solution for training over the encrypted data by using logistic

regression and homomorphic encryption. They implement the least squares approximation

of logistic regression by using a novel homomorphic encryption which is optimized for real

numbers. The encryption scheme supports approximate arithmetic of ciphertexts which is

more efficient, because the size of parameters do not grow too large during computation. Two

main methods are used for training in logistic regression: Newton Raphson and the gradient

descent. The first method includes matrix inversion which is complex over encrypted data.

The authors use the second method for updating weights while training. The next part of the

protocol is replacing the sigmoid function with an adopted one, the authors proposed their

own method for approximating the sigmoid function instead of using Taylor series. As they

mention, the Taylor series is not a good choice, because a high accuracy regression model

needs a high degree polynomial which is not efficient over encrypted data.

Kim et al. [42] also proposed a solution for secure logistic regression based on HE

schemes; this work is similar to [44] and optimizes the performance and running time of the

learning algorithm. The proposed solution is the winner of iDASH 2017, task three . The

proposed solution in [44] is dependent on the size of dataset (number of features) and for large

scale data, it is not practical. The solution proposed in [42] has better performance and lower

storage costs as compared to [44]. For decreasing the number of iteration, the authors adopted

Nesterov’s accelerated gradient within limitation of HE to speed up the convergence speed.

The computation overhead of using this method, which is similar to a momentum method, is

sending an extra ciphertext from the client to the server. The polynomial approximation

method for approximating the sigmoid function over interval [−8, 8] is similar to that of
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[44]. This polynomial is chosen based on the input values to the activation function which

is a weakness of the polynomial approximation method. Three different degrees used for

approximation: three, five and seven.

3.2. Secure Multiparty Computation

Based on the number of entities participate in running the protocol, the efficiency of

the protocol is different. If two entities run the protocol, we call it two-party computation.

Yao’s garbled circuits [94] and Goldreich-Micali-Wigderson [27] (GMW) protocol are two

common methods for a 2-party computation. Another technique in SMC is Oblivious Transfer,

which is a two-party protocol [66]. The sender has a set, M = (m1,m2, · · · ,mn), the receiver

aims to choose one (or more) elements of these message, without revealing which elements of

M were chosen by receiver. In 1-out-of-n protocol, the receiver only choose one of n messages.

Yao’s Garbled Circuits [94] is a cryptographic protocol for secure evaluation of func-

tion f over two inputs, x1, x2. Running this protocol has five main steps: Garbling the

algorithm, data transfer, oblivious transfer, evaluating and merging final results. Clearly,

interaction between two parties is an essential part of running this protocol. For reducing

this communication overhead, some optimizations were introduced in literature. For a brief

description of this protocol and related optimization methods, see section 2.3 from [77]. For a

series of work for computing deep neural network over encrypted data, see [65, 58, 79, 77, 38].

Mohassel and Zhang [65] proposed a solution for privacy preserving machine learning

based on SMC and SMC/HE techniques. The idea is to run a protocol on the clients’ data

(which could vertically or horizontally distributed among them without any limitations)

for training and classification steps. Client(s) secret-share their data with two non-trusted

non-colluded servers to run a 2PC protocol. These servers could be seen as a Evaluator

and Cryptography Service Provider (CSP) in real scenarios. Three different algorithms are

considered in this paper: linear regression, logistic regression and neural network. The protocol

is partitioned into two phases: online (data independent) and offline (data-dependent). The

training step in the online phase and calculating multiplication triplets run in the offline

phase. The security of the protocol is shown in the semi-honest model (where the parties are
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expected to follow the protocol), however, for improving the efficiency, the authors reduce

the security of model to an admissible adversary. In this weaker security model, we assume

that servers do not collude with clients. In the new structure, because of the large number of

cryptographic operations in offline phase, clients compute the multiplication triplets to reduce

the running time. Implementing the sigmoid function by using 2PC has some challenges, the

authors choose different approaches, polynomial approximation (with numerical methods)

and a secure computation friendly form of the activation function. Low degree polynomials

(of degree 2 or 3) has low accuracy and low computation cost, and high degree polynomials (of

degree ten) has high accuracy and high computation cost due to the number of multiplication.

The second approach consists of a piece-wise linear activation function which is has high

accuracy and low computation cost. However, for back-propagation step, instead of using the

derivative of the new activation function, the authors suggest using the derivative of ReLU.

Rouhani et al. [79] proposed a solution for privacy preserving in the classification

phase based on Yao’s Garbled Circuit. Based on their protocol, the privacy of both model

and input data is preserved while classifying a new instance. The proposed approach is

suitable for low rate classification requests from clients, when one client needs to dynamically

analyze the data. These are the main steps of the proposed protocol:

• Pre-processing of the model: The server (model’s owner) processes the model and

sends a netlist of the publicly known network architecture.

• The client generates the garbled tables of the network architecture.

• The server evaluates the client’s instance by executing garbled circuit and sends the

encrypted result to the client.

• The client decrypts the result and inference the prediction.

Different activation functions and their error analyzed in the proposed solution, like sigmoid,

tanh and ReLU functions. Different approximation methods analyzed for these activation

functions by calculating the error and the computation overhead for each method.

Liu et al. [58] proposed a method for transferring a neural network to an oblivious

neural network, the new structure preserves the privacy of the client’s data and the server’s
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model. They consider a client-server model; the client owns the data and the server owns the

model. MiniONN transforms any ”common” neural network model into an oblivious neural

network, this transformation does not affect the training phase and is applicable only for

classification step. Their adversary model is based on the semi-honest model. The threat

model is based on the assumption that the server S tries to learn information about the

client’s instance, X, and client C tries to learn about W and B values. The size of X, W , B

and activation function is not protected here and both client and server have access to them.

Riazi et al. addressed the privacy-preserving classification in machine learning [77].

They design a framework based on the SMC, the proposed framework built upon ABY [20]

and improved its performance by adding more features like integrating sequential GCs or

fixed-point arithmetic. As a part of improvement, the offline computation is a three-party

computation by using a Semi-honest Third Party (STP). STP is used for generating correlated

randomness for two parties, the online phase only includes two parties and does not include

STP. As the authors proposed, each layer implemented with a different method, therefore,

they need to convert from one method like GC to GMW. The results show the running time

and communication cost is more efficient compare to a design which is only based on one

these techniques.

Juvekar et al. [38] addressed the secure inference for the neural network with a hybrid

solution, a mixed of HE and SMC. They design GAZELLE, a framework that equipped with

fast homomorphic encryption operations which supports SIMD. Their framework enhance the

performance by switching from HE to GC or vice versa to reach low latency for preserving

the privacy of data while classifying client’s instance. GAZELLE supports packed additively

homomorphic encryption (PAHE), using this HE scheme, speeds up the matrix-vector

multiplication. Their solution is based on the 2-party computation without any need to

a third party. They explore a trade-off between computation and communication cost by

breaking an ML algorithm into sub-modules, and implementing each module by the technique

with highest performance. The GAZELLE has three main components:

• Gazelle Homomorphic Layer. This component includes three basic operations,
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namely: SIMD addition, SIMD scalar multiplication and automorphisms.

• Gazelle Linear Algebra kernel. This component includes homomorphic matrix-vector

multiplications and homomorphic convolutions.

• Gazelle Network Inference. This component includes combination of GCs with linear

algebra kernel for implementing preservation of the data privacy during classification

in the neural network. Prepossessing of the network, creating the GC circuits,

and implementing each layer with the efficient module are two main steps of this

component.

As the authors mentioned, using HE schemes for implementing convolutional and fully-

connected layers is more efficient than using GC because of the number of multiplications,

this approach speeds up the performance of the protocol compare to similar solutions.

The privacy of weights values in fully-connected and convolutional layers, the size of

filters and strides in convolutional layers are preserved while running the protocol. However,

the number of layers and the size of layers are revealed to the other party. The size of the

image is also revealed to the server during the protocol run.

Chandran et al. [16] designed a framework for transferring a code to an optimized

mixed protocol of arithmetic or Boolean circuits. The new structure preserves the privacy

of data during classification phase. By using this framework, programmers do not need

to involve in details of 2PC computations and design, the developed code fed to EzPC

and 2PC will use for privacy preserving classification. The framework built on top of the

ABY, a popular framework for implementing SMC scenarios. EzPC considers the cost of

cryptographic operations and generates efficient and scalable 2PC protocols from the target

program. The program needs to be written in EzPC syntax which is similar to C++ or JAVA

syntax. The output of the EzPC is based on C++ language.

3.3. Other Related Work

Aslett et al. [4] proposed methods for implementing statistical machine learning over

encrypted data and implement extremely random forests and Naive Bayes classifiers over

20 datasets. In these algorithms, the majority of operations are addition and multiplication
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and they show that performing algorithms over encrypted data without any multi-party

computation or communication is practical. They also analyze HE tools for use in statistical

machine learning [3]. Several methods have been proposed for statistical analysis over

encrypted data, specifically for secure computation of a χ2-test on genome data [60, 97, 43].

Shortell and Shokoufandeh [83] focused on secure signal processing. For computing

the natural logarithm, they used the Taylor expansion of ln(x) to estimate this function by a

polynomial with degree 5. Their results showed that for natural logarithms, estimation is

accurate enough if proper values are chosen for parameters.

Shokri and Shmatikov [82] considered a solution for secure training based on the

differential privacy. For a distributed dataset among clients, each client trains a model based

on its data and only shares a part of model’s parameters with a server. Each client before

running an epoch, download a portion of weights, run one round of training and then shares

only a portion of updates values to the server. At the end of protocol, each client has a

model that trained based on not only its own data, but also trained on other clients. The

performance of final model is always higher compare to the model that only trained based on

each individual client’s data (standalone case). By using this method, each client can train a

model by considering its own learning objective and other client’s data without revealing any

information about its own data.

Phong et al. [73] proposed a solution for secure training from distributed data among

clients based on a HE schemes. The basic idea is similar to [82], each client trains its own

model individually, then uploads a part of gradient descent to a server. The solution proposed

by Shokri et al. [82] is not secure against honest-but-curious server, they used a differential

privacy technique against this kind of server, however, the performance of the model dropped.

The main difference between these two solutions is the trade-off criteria, accuracy/privacy

and efficiency/privacy for [82] and [73] respectively.

The solution proposed in [82] is not completely proved about data leakage to the

server. Phong et al. show that in case of sharing even a small portion of gradient descent

(3.89%), one can recover image from the client side [73].
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Abadi et al. [1] proposed a solution for secure training with deep learning for non-

convex objectives . In the proposed solution, the client stores the model on its own device

and use it for future classification, storing model on the client has advantages such as power

efficient, low-latency inference and preserves the privacy of client’s data, because the data is

not transferred to a third party. Because of sharing the model with the client, the concern is

about information leakage about the training data from analyzing the model. The authors

control the influence of data during training the model for avoiding the information leakage.

At each step of gradient descent updating, for a random subset of examples, a clip norm

operated on values and then for protecting privacy a noise is added to gradient descents.

There is another line of research which is not directly related to our problem, but is

worth mentioning here. Liu et al. propose a protocol for computing scalar product, Secure

Scalar Product in MapReduce (S2PM) [56]. They use the BGN homomorphic encryption

scheme.

A line of works studies the problem of adding division to homomorphic encryption

schemes. Veugen [89] considered a semi-honest model where client A has some encrypted

number [x], and the server B has the decryption key K. Party A would like to divide the

integer x by some integer d. Two algorithms are introduced for division in this scenario:

exact division with public divisors and approximate division.

Chen et al. [17] analyzed the performance of integer arithmetics over encrypted data

and propose an algorithm for the division operation. They use HELib for implementation

and their results showed that division for large numbers cannot be supported without using

bootstrapping or even SIMD technique.

Livni et al. [59] analyzed the performance of polynomial as an activation function

in neural networks, . However, their solution cannot be used for our purpose because they

approximate the sigmoid function on the interval [−1, 1] while the message space of HE

schemes is integers.

There are also a few papers in image processing over encrypted images. Rane et al.

[76] used HE schemes to calculate some special distortion functions in a secure way. They
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implemented two different protocols: one for the Hamming distance between binary vectors

and the other for squared error distortion between integer vectors. Their implementation is

based on the Paillier encryption scheme. Puech et al. [75] reviewed challenges on image and

video encryption in face detection and recognition, as well as matching biometric data. Islam

et al. [37] proposed a framework for sharing images between clients based on HE schemes.

They designed a protocol for the secret sharing problem by using homomorphic properties of

RSA and Paillier encryption scheme.

3.4. Classic Machine Learning

Besides solutions for Neural Network, there is a series of works which focus on the

classic machine learning. We briefly survey these works here to exhibit the state-of-the-art in

privacy preserving machine learning as a service.

Beck and Kerschbaum [8] proposed a method for privacy-preserving of string matching.

Their system gives a deterministic approximation instead of exact distance. Their design is

non-interactive with linear complexity without involving any third party. They extend the

protocol which reveals whether there is a match and not the exact distance. Their solution is

based on Pialliar encryption scheme.

Samet et al. [80] proposed a solution for the private clustering (k-means algorithm)

of data for two or more data owners. The data could horizontally or vertically partitioned

among parties.

Brickell and Shmatikov [13] proposed a solution for private distributed learning based

on decision tree algorithm. They consider a client that wants to build a classifier based on

the dataset on the server. Their aim is to preserve the privacy of data and privacy of the

final model, against client and server respectively. The solution is based on oblivious classifier

construction.

Catak [14] proposed a protocol for private learning from vertically partitioned data

among parties by using Extreme Learning Machine (ELM) algorithm (a feed-forward NN

with one hidden layer). The proposed approach preserves the privacy of numerical attributes.
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Their protocol create the classification model without sharing data with other parties. The

final model is built by an independent party constructs and use for private classification.

Lindell and Pinkas [55] discussed using MPC technique in privacy preserving data

mining. They review the definitions and constructions for Secure Multiparty Computation

and address the issues and difficulties in this area. They discuss about the relationship

between SMC and privacy preserving data mining, which problems addresses and which

problem need to be solved in this area. This is one the first attempts in solving the problem

about learning from distributed data by using SMC techniques.

Bogdanov et al. [10] discussed about using SMC for performing a large-scale privacy-

preserving statistical study on real government data. Their solution is based on a combination

of cryptographic secure multi-party computation together with organizational measures and

microdata release controls. They use Sharemind MPC platform and developed it by adding

more features for it like data transformations, new attribute calculation, aggregations, custom

merging procedures and visualization.

Aslett et al. [3] reviewed homomorphic encryption schemes for statistical and machine

learning algorithms. They provide a background for homomorphic encryption and also

explain of Fan and Vercauteren scheme in the paper. They review limitations of homomorphic

limitations like message space and cipher text size.

Page et al. [70] proposed a technique for increasing efficiency and parallelism about

using FHE for some algorithms. Their implementation with HELib leads to 20x speedup.

Their scenario involves comparing sensor data with a threshold on a cloud environment.

Instead of converting an algorithm to a circuit, they convert algorithm to a matrix, the

determinant of the matrix is the output of the algorithm. Based on their implementation,

the matrix form is 20x faster than the naive method of Long QT method.

Du and Zhan [23] addressed private learning from a dataset which is partitioned

vertically between two parties. These two parties want to learn from the dataset by using

decision tree classifier, at the same, each party does not want to share data to other party

or any other third party. For solving this problem, they propose a protocol that based on
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using an untrusted third party. They provide a protocol for scalar product for using in the

proposed protocol and is efficient than any existing solution.

Lagendijk et al. [49] proposed a method for preserving the privacy of user’s data

in signal processing domains. Their solution is based on homomorphic encryption schemes

and SMC. They focus on privacy preserving in these three signal processing problems: face

recognition, user clustering, and content recommendation. There are some key concepts

in signal processing like linear operations, inner products, distance calculation, dimension

reduction, and thresholding which covered by their solution. Their protocol is based on

honest-but-curious security model. They also assume that the client can not submit unlimited

processing request to the server, by this assumption, the privacy of the model is also preserved.

The Paillier encryption scheme used in encryption part of their protocol.

Lu et al. [61] proposed a framework for statistical analysis over encrypted data. They

focused on histogram (count), contingency table (with cell suppression) for categorical data;

k-percentile for ordinal data; and principal component analysis and linear regression for

numerical data. They proposed a modularized design and build blocks for implementing

more complex methods. They consider different types of attributes (categorical, ordinal and

numerical) and proposed for each a method for presenting these types to the system. Their

implementation is based on HELib.

Basilakis et al. [7] focused on applications of homomorphic encryption schemes for

preserving the privacy of patient data. The aim of the proposer solution is analyze the

confidential healthcare information for supporting Clinical Decision Support (CDS). The data

is distributed in a cloud structure. We preserve the privacy of data in healthcare applications

and not the methods for analyzing this data.

Kim et al. [45] proposed a method for matrix factorization based on secure 2-party

computation and fully homomorphic encryption. Their aim is providing an efficiently perform

matrix factorization to compute user and item profiles from the ratings given by users in

a privacy-preserving way with full functionality. They use approximation techniques like

gradient descent for solving this problem. Their proposed structure has three main parts:
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users, Recommendation System (RecSys) and Crypto-Service Provider (CSP). RecSys tunes

parameters for matrix factorization and these parameters considered as private data for

RecSys. Their implementation is based on hash-Elgamal which supports addition operation

and HELib.

Melis et al. [62] proposed a protocol for processing outsourced network functions by

using homomorphic encryption scheme. Outsourcing network functions revealed sensitive

information like firewall rules, preserving the privacy of this information is the aim of [62].

Their security model is honest-but-curious. The inbound traffic passes through a cloud (called

cloud MiddleBox or cloud MB). The cloud MB has the network policies and performs network

functions on them before sending the traffic to the client. The cloud MB processes the traffic

in real-time and also minimum amount of the computations run on the client. Their focus

is on inbound traffic in this paper. They consider two different adversary model, strong

and weak. In the strong case, the adversary has access to the public key, description of

the algorithm and also the network function. In weak case, the system is a black box for

the adversary, the adversary can send a packet to the system and receives the output for

that packet. They use two different HE schemes for preserving the privacy against these

adversarial models. First, Boneh, Goh, and Nissim (BGN) encryption scheme for the strong

case and second, and Public-key Encryption with Keyword Search (PEKS) for the weak case.

Barni et al. [6] proposed a protocol for classifying an Electro Cardio Gram (ECG)

signal without learning any information about the ECG signal in the server side and the

client is prevented from gaining knowledge about the classification algorithm used by the

server. The solution is based on Linear Branching Programs (LBP) and a cryptographic

protocol for secure evaluation of private LBPs. The proposed protocol is a kind of secure

two-party computation. They present a system for privacy privacy-preserving classification

of ECG signals and link the complexity of the system to the classification accuracy. They

also showed the overall complexity of the system can be drastically reduced by tailoring

the ECG classification algorithm to the 2PC scenario. At the end, they implemented the

secure protocol with respect to different parameter sizes and security levels. Their protocol
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only includes the classification step and is similar to Yaos garbled circuit (GC) and also

based on Pialliar encryption scheme. The proposed protocol designed based on two different

techniques: Garbled Circuits (GC) and on a hybrid combination of the homomorphic Paillier

cryptosystem and GCs. They compared these two different designs and concluded that

from communication complexity wise, the Hybrid solution works more efficient. They also

concluded that by increasing the security parameters, the Hybrid protocol is more affected

than the GC protocol.

Kenper et al. [40] introduced a technique -Computing on Masked Data (CMD) - for

computations to be performed on masked data and only authorized recipients can unmask the

data. Their technique is based on combining efficient cryptographic encryption methods with

an associative array representation of big data to enable a low computation cost approach to

both computation and query while revealing only a small amount of information about the

underlying data.

Lindel and Pinkas [54] proposed a protocol for running a data mining algorithm on

a dataset which distributed between two parties. They focus on a popular decision tree

classifiers, ID3. They consider two main issues in their design: rounds of communication and

reasonable bandwidth. The adversary model in their design is semi-honest. Their idea is

based on Oblivious transfer, Oblivious polynomial evaluation and Yao’s two-party protocol.

Aono et al. [2] built a secure system for preserving the privacy of data in logistic

regression by using HE schemes. They show that only having an HE scheme which support

addition operation is enough for preserving the privacy of the data. Their solution preserve the

privacy of data in both training and predicting steps. By using function approximation, the

original logistic regression converted to homomorphic-aware regression. They also show how

to add differential privacy into the system. The solution is based on the honest-but-curious.

Xiao et al. [64] proposed several blocks for constructing an ID3 algorithm over

horizontally partitioned data while preserving the privacy of each part. Their protocol

can preserve the privacy of data in two parties or more. For implementing the algorithm,

their design includes some blocks like Secure multi-party x log x protocol, secure two-party
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multiplication protocol, secure two-party reverse multiplication protocol and secure multi-

party reverse multiplication protocol. Their security model is based on semi-honest security

model. Their protocol preserve the privacy of data for training and classification steps.

Togan et al. [85] proposed a protocol which run on a cloud (an untrusted server) for

finding maximum/minimum of encrypted integers. In their design, running the algorithm

could be done without collaboration with the client (data owner). At the end, the server

does not know the maximum value or its index. They implement the protocol by using BGV

encryption scheme and HElib. They also implement the same protocol by using FHEW

library and the time is at least twice in compare of HELib.

Bent et al. [9] proposed a solution for storing encrypted data in a cloud and performing

arbitrary operations on the encrypted data one behalf of the user. Ideally, coalition partners

would wish to share data that can be used to compute specific results that are only relevant to

a given operation, without revealing all of the shared information. They describe an example

of a service that uses the proposed secure coalition cloud to perform a comparison between

the planned routes of different coalition forces. This service determines if there are common

points of intersection of the planned routes in space and time, without revealing any other

information about the respective routes. They use HELib in their implementation.

Liu et al. [57] proposed a protocol for outsourcing SVM classification to a cloud

environment. In their protocol, the server and users perform collaborative operations on

encrypted and outsourced data while preserving the privacy of each user’s data. The

assumption about security model is honest but curious for both client and server parts. The

only operations on user side are encryption and decryption. In their protocol, the most part

of computation including addition and multiplication is done by the server. The number of

communications is low in their protocol. In their implementation of SVM, the most times

consuming part is kernel matrix generation. From operation wise, the most time-consuming

operation is multiplication (around half of the running time). Their implementation is based

on HELib library.

Suthampan and Maneewongvatana [84] addressed the problem for preserving of data
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which distributed vertically among parties while running a decision tree on it. Their proposed

could generalized to use in an environment with more than two parties. Their solution

includes both training and classification. They considered the ID3 algorithm, however, their

solution can easily adapted to other decision tree algorithm. The number of attributes in

each party’s node, the information gain for each party and the owner and cardinality of each

node revealed to other parties. By completing the protocol, all parties have the final model.

At a high lever description of their algorithm, each node computes the information gain of

its own attributes and compares it to other party’s information gain and decides about the

attribute of the current level.

Hall et al. [32] proposed a protocol for statistical calculation over a data that

distributed between different parties. The focus of their solution is on computing linear

regression and ridge regression estimates. Their method works for horizontally or vertically

distribution of data among parties. Their assumption about security model is semi-honest.

Their protocol is a sequence of steps, each party performs computations, and transmits results

to other parties. Their idea is based on the combination of an extension to Yao’s original

idea and Paillier HE scheme.

Hall et al. [32] proposed a solution for performing statistical calculation on a distributed

database among different parties without combining the datasets of each part. They use

homomorphic encryption for regression analysis. By running their protocol, each part only

shares the final results without sharing any other intermediate values during computations.

They also implement their protocol to analysis the practicability of the proposed solution.

Paillier homomorphic encryption scheme which supports multiplication of two ciphertexts and

computing power of a ciphertext. Their algorithm has two main steps: computing covariance

matrix and inverting the matrix. They implement the algorithm on a database with 51,016

cases and 23 covariates which are distributed between three parties in column-wise fashion.

Each step of the algorithm takes one day for the computations.

Biswas et al. [80] proposed a protocol to build a model based on disjoint datasets

which distributed among parties by using k-means clustering algorithm. Their idea is based
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on SMC and Paillier encryption scheme. The datasets of parties have the same format. All

parties are supposed to be semi-honest in their design. One block of the algorithm is a

Multi-Party Addition function, this function securely adds input from different process (one

process for each party). Increasing number of parties, clusters, size of dataset in each party

and the dimensionality will lead to multiplicative increases the run-time.

Kerschbaum [41] proposed a protocol for computing the intersection of two sets by

using HE schemes. A client and a server have private sets. At the end of the protocol, the

client computes the intersection of two sets without revealing information about its set and

the server learns nothing about the intersection. The client and server submit their sets in a

service provider, the service provider computes the intersection without learning information

about the sets or the inputs. The security model is honest-but-curious. The solution is

based on Goldwasser Micali encryption scheme and Sander Young Yung (SYY) techniques.

SYY describe a technique for one logical-and operation on ciphertexts. For computing the

intersection, the idea is based on Bloom Filter method. This method checks the inclusion of

an element in a set. In their implementation, instead of using GM encryption scheme, Boneh,

Goh, Nissim (BGN) encryption scheme is used.

Baardewijk[88] proposed a solution for comparing biometric encrypted data base on

Hamming distance. The author implement iris biometric by using HELib library, the result

shows the implementation works, however, the encryption, computation and decryption of an

iris scan takes almost 10 minutes which is not practical for real applications.

Lauter et al. proposed a solution for some statistical evaluation over encrypted data

by using HE schemes, [50]. Their implementation is based on a modified Lopez-Alt and

Naehrig encryption scheme which supports addition and multiplication. They provide a

method for encoding genome data and also changes in the structure of the algorithm for

adopting them within the limitations of HE schemes.

The focus in this dissertation is neural network, therefore, we only consider papers

with focus on neural networks or convolutional neural networks. We consider both SMC-based

and HE-based solutions. More specifically, in Chapter 6, we will compare our solutions with
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these papers, [16], [65], [58], [15], [77], [79] and [22]. These papers include more recent results

for privacy preserving machine learning as a service.
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CHAPTER 4

CHALLENGES AND SOLUTIONS

We aim to preserve the privacy of the main components of a Machine Learning as a

Service (MLaaS) framework. We consider two different scenarios.

• First, a client-server model where the client owns the data; the server uses this data

to build a model and provides prediction services to the client. In this scenario, both

training and classification phases operate over encrypted data.

• Second, the server has a trained model and classifies the client’s unseen instances.

In this scenario, the classification phase only operates over encrypted data.

In the first scenario, the server gets the encrypted training dataset from the client and trains

a model on the encrypted data. After building the model, the client sends new encrypted

instances to the server, the server performs an inference on the data, and the client gets the

result of prediction in the encrypted format. We aim to preserve the privacy of feature values,

class labels, number of instances, predictions of unseen instances, and performance of the

model against the server as well as machine learning algorithm and model against the client.

In the second scenario, the server has access to the training data and builds a model

based on the plain data set, and the final model is in plaintext. The client sends instances to

the server, the server classifies received instances and sends the classification results back

to the client. We aim to preserve the privacy of feature values and prediction of unseen

instances against the server, and machine learning algorithm and model against the client.

Then, we consider a dataset which is distributed among clients. Besides the challenges

for a client-server architecture, we face new challenges for this scenario. The main challenge

is computation on the data that encrypted with different private keys. We explain more

details about this case in the following sections. Our design is based on these three principles:

• Since the original data is possessed by each data owner, no matter how the model is

used, the data should be kept confidential to other entities. This is a learning privacy

problem. Most existing works focus on solving this problem, where the learning data
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is protected, but the learned models are published to everyone.

• The learned model is valuable and private to the learner, it should be kept secret

in the predicting or comparing process. The leakage of a model results in the loss

of interests of data owner or even to a breach of the original data. This is a model

privacy problem. Without any protection, the predicting results can be utilized to

reverse engineering the model and even retrieve the original data in recent adversarial

studies [81] and [86].

• The unseen data is also private and should be protected properly in the predicting

phase. Since the test data are predicted by the learned model, it also belongs to

the model privacy problem. Little work pays attention to this part, but schemes

described are either inefficient or lack practical applications.

4.1. Challenges

In the following section, we provide a list of components in the framework and discuss

the privacy of each component in details.

• Feature values.

• Class labels.

• Number of instances.

• Number of features.

• Machine learning algorithm.

• Model.

• Predictions for unseen instances.

• Performance of the model.

We describe the security issues of each component separately, then explain our proposed

protocol. We also describe, the privacy of each component in our proposed solution.

Feature values are one of the main concerns from the prospective of the data owner.

These values contain sensitive information and revealing them to the server is an important

security flaw in the system. One example of sensitive information which stores as feature
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values are medical records. The Health Insurance Portability and Accountability Act (HIPPA)

and the Health Insurance Technology for Economic Clinical Health (HITECH) Act are two

standards for protecting the privacy of patient’s data. In all proposed scenarios, independent

of the basic idea behind the protocol (like SMC, differential privacy or HE schemes), the

goal is to preserve the privacy of feature values. This component is the main parameter for

analyzing the security of the proposed protocol. Minimum (or no) information about the

feature values should be revealed to a non-authorized party. In our protocol, the feature

values are encrypted by the owner of the data before being transferred to another party or

the cloud. Therefore, no information is leaked to the non-authorized party. Additionally, the

SMC technique can be used to preserve the privacy of this component, however; in differential

privacy we cannot assure that no information is leaked to the third party, because the noise

in the feature values are accessible to non-authorized parties.

The next component is Class label. For classification problems, important information

can be extracted from only having access to the class labels related to instance. For example,

any non-authorized party can extract information regarding the distribution of the classes

and the number of categories in the dataset only by having access to the class labels of the

instances. We mention that, in the case of the training phase considered in the delegation

of computation to a third party, the classes of the instances should be considered in the

security analysis of the system. When the model is built based on a plain-text dataset, the

assumption is that a third party has access to the dataset, the feature values, and the classes

assigned to the instances. During the security analysis of our proposed protocol, we consider

the privacy aspect of the labels of the instances during the training phase. We encrypt the

class labels for all the instances before sending them to the server, so the server doesn’t have

access to the labels and no information is leaked to the non-authorized third party.

Number of instances and number of features are not sensitive in most cases. If we

want to preserve the privacy of the size of the dataset (which can be inferred from these

two values), the protocol will be complex, especially in the training phase. For example,

in a neural network, the model is fed each of the instances (or batch of instances) to run
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the feed-forward step, compute the error of the output, and then update the weights based

on this error. The server needs to have access to the number of instances for running the

algorithm. Another example, in decision trees, information gain is calculated for each feature

in each step and the most informative feature is selected for splitting in each level. The server

needs to have access to the number of features to run this algorithm. In our protocol and all

other proposed protocols these two components are not considered as sensitive information

and non-authorized parties can have access to them.

The algorithm for learning from data is also important if the algorithm is not shared

among parties. In MLaaS scenarios, the privacy of this component is considered, and it

should be taken into consideration during the design phase of the protocol. Let us consider

a company which provides data analysis services for other companies. The method for

processing the data is one of their assets and they do not reveal information about how the

model is built. They only send the result back to the client after the analysis.

Preserving the privacy of this component is important for the server’s privacy. In

our proposed protocol, the privacy of this component is preserved, as the server does not

reveal any information about the steps of analyzing the data to the client. In solutions which

are based on the SMC technique, the client and server take part through a protocol for

building the model or classifying a new instance. The client needs to know the structure of

the algorithm to run the computation. It is difficult in these cases to preserve the privacy

of the learning algorithm. Some techniques, like differential privacy, the structure of the

algorithm might also be revealed to other parties, because of the pattern noise added to the

data is based on the computation which is supposed to run over the data. We note that, even

though the client needs to build the encryption scheme based on the depth of the algorithm,

revealing the depth of the algorithm to the client is not considered a security issue. For

example, in the case of leveled homomorphic encryption, the depth of the algorithm is the

number of multiplications and revealing the number of multiplications to a non-authorized

party is not considered a security flaw of the system.

The privacy of the model is important for both the client and the server. It is important
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for the client because the model contains the patterns of the dataset and knowledge extracted

from instances. Therefore, the model should be kept confidential from the server. From the

server-side perspective, such as the analysis algorithm, it is an asset of the server. As in the

MLaaS scenario, the company provides a service to the client by classifying new instances.

The model should be kept confidential from the client. Therefore, preserving the privacy

of the model is a bit complicated. In our protocol, the server builds the model and doesn’t

transfer it to the client; therefore, the privacy of the model is preserved from the client. The

model is in an encrypted format and the server does not have access to the model in the plain

format, so it can’t infer information of the dataset and the privacy of the model is preserved

from the server.

If the security of the model is not considered for an application, the server sends

the model back to the client, however, for future classifications, the client still needs the

server for computation related to the classification part. Assuming that model is already

trained, if the server has access to the training data and the model, which can be the case

when an algorithm only considers the classification step, the privacy of the classification

step is important, which we discuss in the next part. One recent domain research -General

Adversarial Attack (GAN) see [81, 86, 25]- the attacker gains information about the training

set that model built upon it. An attacker only by sending query and receive the prediction

results can extract pattern from the training set which has sensitive information. Avoiding

this attack is not completely possible, but by preserving the privacy of the model, we can

limit the attacker’s effect on the system.

The next component is predictions for unseen instances. The results from the classifier

is another component and all the private classification protocols consider this component as

private information of the client. For example, the result of analyzing medical records of a

patient has sensitive information about the current health situation. Any party except the

owner of the data should not have access to the results for an unseen data, independent of

whether the privacy of the model has been considered or not. In our protocol, the results

from the classifier are encrypted and the server does not have access to it and its privacy is
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preserved. In solutions based on SMC, depending on which party should have access to the

result, the protocol is different.

The performance of the model is not considered as a threat to privacy in most solutions.

However, in some scenarios, this could lead to an information leakage. For example, if the

server has access to the prediction error for each of the instances, there is some information

leakage of the dataset and the model. As we’ve already discussed about the predictions for

unseen instances in the earlier section, in our protocol, the server does not have access to the

error value, because only the client can access the predictions and calculate the error of the

model.

In conclusion, in our protocol only the number of instances and the number of features

are shared among parties or with the cloud. For other components, based on the application,

the privacy can be preserved. We suppose that the HE scheme does not support bootstrapping

function and we use communication between client and server to overcome noise growth in

the ciphertext during computation. The lack of bootstrapping functionality does not have

any impact on the security of the model and only increases the running time because of the

communication overhead.

4.2. Different Data Distribution Scenarios

In this section, we focus one training over distributed data problem. Consider a set

of clients {c1, c2, · · · , cn}. Each client possesses a dataset, Di. We aim to learn a classifier

from the data set C which is defined as C = {D1 ∪D2 ∪ · · · ∪Dn}. This concept is different

than distributed training which focuses on parallel computation for speeding up training

computation. The aim of that problem is distributing computation among nodes for decreasing

the training time. In the second scenario, the privacy of data is not a concern. The basic

idea is to scale up the stochastic gradient descent method.

Some challenges for distributed training are race conditions, deadlocks, distributed

state, and communication protocols while simultaneously developing mathematically complex

models and algorithms.
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We consider three distribution models for data: Horizontally Distributed Data, Verti-

cally Distributed Data and Hybrid Distributed Data.

• Horizontally Distributed Data: The data is horizontally distributed, examples

corresponding to a particular value of a particular attribute are scattered at different

locations.

• Vertically Distributed Data: In vertically distributed datasets, we assume that

each example has a unique index associated with it and belongs to one of the ci’s.

• Hybrid Distributed Data: A combination of horizontally and vertically dis-

tributed data.

Several solutions proposed for the first two cases. For the third case, limited solutions

are available, such as SecureML, [65]. Solutions based on differential privacy consider the

vertically distributed case, the rows are distributed among and each clients has the same

number of features.

As we said before, in the vertically distributed case, each client has a subset of instances

and the number of features is the same in all instances in each client. In the horizontally

distributed case, the features are distributed among clients. For the second case, we do not

have any efficient solution based on the HE, because the server needs to do the computation in

parallel over ciphertexts, which are encrypted under different keys. We assume that the data

is distributed vertically. Each client has a subset of instances, and the number of instances

might be different in each client, but the number of features is the same in all instances.

The first and the most important challenge is using encrypted data for learning.

The client generates the secret/public keys and shares the public key with the server. The

client and the server use this key for encryption and computation over encrypted data. In

the distributed datasets scenario, the server receives different parts of data from different

clients, each part is encrypted with a different public key. One solution is using Multi-Key

Homomorphic Encryption Schemes. In such encryption schemes, each client generates its

own public/private key and encrypts the data with the public key. The server executes

over received encrypted data (with different public keys). Current Multi-Key Homomorphic
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Encryption implementations are very slow and by increasing the number of clients, the

error increases and the decryption function does not work correctly, therefore, we do not

consider this scheme in our solution. Another theoretical solution for this challenge is using

bootstrapping. In bootstrapping, the server can transfer the ciphertext from one public key

to another without access to the secret key. The secret key of the client is encrypted with

the public key and it sent to the server. The server by using the advantage of homomorphic

encryption properties (running computation over encrypted data), runs an algorithm which

transfers the ciphertext from one public key to the another. The shortcomings of using

bootstrapping is the high computation cost of running the bootstrapping function. To convert

the data from one client to another, the server only needs to run the bootstrapping function

one time. It might be possible given high computation power on the server side. However,

the server should run the bootstrapping several times. More often, the server needs to run

the algorithm for more than one epoch. In each epoch, the server learns from the whole

dataset by using the algorithm. Now, if we want to run n epochs and we have c clients,

the server should run the bootstrapping function at least n× (c− 1). This is the minimum

amount of running bootstrapping, because if the dataset is distributed among clients with the

same pattern, each client has the same amount of data and the distribution of classes is the

same in each client’s data. If the data is not distributed normally, then after each iteration

(batch input) the server should run the bootstrapping. In the worst case, the data needs

to shuffle because of non-uniform distributed data. The server cannot use online learning

and should train from one instance in each iteration, running the bootstrapping function

after training from each instance. The second solution is using the adding noise technique

to the data and using communications between the client and the server for running the

algorithm. The server starts the algorithm by learning from client c1, after feeding the data

to the algorithm and updating the weight. Before learning from client c2’s data, the server

adds noise to the weights, sends them to the client c1, who decrypts the noisy model and

sends it back to the server which removes the noise and continues the algorithm by learning

from the data of client c2. Using this solution reveals the model to the server. We can avoid
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this risk by sharing the public keys among clients. The client c1 after receiving the noisy

model, decrypts it and encrypt with the client c2 public key and sends it back to the server.

Now, the server continues the algorithm by using the encrypted instances from client c2. It

has a computation cost overhead over clients, but, the model is not revealed to the server.

However, it has computation over cost and communication among clients which is not always

available. We consider this solution not to be practical for our problem.

Besides all these challenges and proposed solutions, there is a potential technique for

learning from distributed datasets is ensemble learning. The server can train different models

based on each dataset from each client and then combine the model to build a general model

from all trained model. The way we combine the models is important in the solution, if a

technique like majority voting is used, we can implement it over encrypted data. If more

complex techniques used by the server (e.g. train a strong model based on the weak models)

for combining the models, then the same challenges exist during the calculations. We mention

here this solution does not necessary give a good solution. we do not train a model from the

whole dataset. The models from a part of the datasets have a low accuracy in comparison of

a model, which is trained based on the whole dataset.

In conclusion, by using a solution only based on HE schemes, the training over

distributed datasets is not practical. There is no solution proposed for this scenario. Therefore

we consider this case as a part of future work for the application of an HE scheme in privacy-

preserving MLaaS.
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CHAPTER 5

POLYNOMIAL APPROXIMATION

In this chapter, we discuss the theoretical background of our proposed method for

adopting a network within limitations of HE schemes.1 One of the main challenges is finding

a replacement for the activation functions like ReLU or Sigmoid. In the next section, we

provide the details of theoretical background of approximating an activation function with a

low degree polynomial. This chapter adapted from [36].

5.1. Polynomial Approximation

Among continuous functions, perhaps polynomials are the most well-behaved and

easiest to compute. Thus, it is no surprise that mathematicians tend to approximate other

functions by polynomials. Materials of this section are mainly folklore knowledge in numerical

analysis and Hilbert spaces. For more details on the subject refer to [93, 5].

Let us denote the family of all continuous real valued functions on a non-empty compact

space X by C(X). Suppose that among elements of C(X), a subfamily A of functions are

of particular interest. For simplicity, one can think of X as a closed, bounded interval [a, b]

in R and A as the set of polynomials in a single variable with real coefficients. Since linear

combination and product of polynomials are also polynomials, we assume that A is closed

under addition, scalar multiplication and product and also a non-zero constant function

belongs to A (This actually implies that A contains all constant functions).

We say an element f ∈ C(X) can be approximated by elements of A, if for every

ǫ > 0, there exists p ∈ A such that |f(x)− p(x)| < ǫ for every x ∈ X. The following classical

results guarantee when every f ∈ C(X) can be approximated by elements of A.

Theorem 5.1 (Stone–Weierstrass). Every element of C(X) can be approximated by elements

of A if and only if for every x 6= y ∈ X, there exists p ∈ A such that p(x) 6= p(y).

1Parts of this chapter have been previously published, either in part or in full, from Ehsan Hesamifard, Hassan
Takabi, Mehdi Ghasemi, and Rebecca Wright, Privacy-preserving machine learning as a service, Proceedings
on Privacy Enhancing Technologies 2018 (2018), 123–142.
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Despite the strong and important implications of the Stone-Weierstrass theorem,

it leaves computational details out and does not give a specific algorithm to generate an

estimator for f with elements of A, given an error tolerance ǫ. We address this issue here.

‖f‖∞ (the sup norm of f) of a given function f ∈ C(X) is defined by

(5.2) ‖f‖∞ = sup
x∈X
|f(x)|,

Then the above argument can be read as: For every f ∈ C(X) and every ǫ > 0,

there exists p ∈ A such that ‖f − p‖∞ < ǫ. It is easy to see that ‖0‖∞ = 0, ‖λf + g‖∞ ≤

|λ|‖f‖∞ + ‖g‖∞ (subadditivity) and ‖f × g‖∞ ≤ ‖f‖∞×‖g‖∞. The function ‖ · ‖∞ on C(X)

is an instance of the norm on the function space C(X), which also resembles the structure

of inner product spaces which have nice geometry and one can define and develop intuitive

concepts over them easily. Let V be an R-vector space, an inner product on V is a function

〈·, ·〉 : V × V → R satisfying the following requirements:

(1) 〈f, f〉 ≥ 0;

(2) 〈f, f〉 = 0 if and only if f = 0;

(3) 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 ≥ 0 for every α, β ∈ R;

(4) 〈f, g〉 = 〈g, f〉.

The pair (V, 〈·, ·〉) is called an inner product space and the function ‖v‖ = 〈v, v〉
1
2

induces a norm on V . A basis {vα}α∈I is called an orthonormal basis for V if 〈vα, vβ〉 = δαβ,

where δαβ = 1 if and only if α = β and is equal to 0 otherwise. Every given set of linearly

independent vectors can be turned into a set of orthonormal vectors that spans the same

sub vector space as the original. The following well-known theorem gives us an approach for

producing such orthonormal vectors from a set of linearly independent vectors:

Theorem 5.3 (Gram–Schmidt). Let (V, 〈·, ·〉) be an inner product space. Suppose {vi}
n
i=1

is a set of linearly independent vectors in V . Let u1 := v1
‖v1‖ and (inductively) let wk :=

vk −
∑k−1

i=1 〈vk, ui〉ui and uk :=
wk

‖wk‖ , then {ui}
n
i=1 is an orthonormal collection, and for each
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k,

(5.4) span{u1, u2, · · · , uk} = span{v1, v2, · · · , vk}.

Note that in this theorem, we can even assume that n =∞.

Let B = {v1, v2, . . . } be an ordered basis for (V, 〈·, ·〉). For any given vector w ∈ V

and any initial segment of B, say Bn = {v1, . . . , vn}, there exists a unique v ∈ span(Bn) such

that ‖w − v‖ is the minimum as shown in the below theorem.

Theorem 5.5. Let w ∈ V and B be a finite orthonormal set of vectors (not necessarily a

basis). Then for v =
∑

u∈B〈u, w〉u

(5.6) ‖w − v‖ = min
z∈span(B)

‖w − z‖.

For proof see [93, 5].

Now, let µ be a finite measure on X and for f, g ∈ C(X) define 〈f, g〉 =
∫

X
fgdµ.

This defines an inner product on the space of functions. The norm induced by the inner

product is denoted by ‖ · ‖2,µ. It is evident that

(5.7) ‖f‖2,µ≤‖f‖∞µ(X), ∀f ∈ C(X),

which implies that any good approximation in ‖ · ‖∞ gives a good ‖ · ‖2,µ-approximation. But

generally, our interest is the other way around. Employing Gram–Schmidt procedure, we can

find ‖·‖2,µ within any desired accuracy, but this does not guarantee a good ‖·‖∞-approximation.

The situation is favorable in finite dimensional case. Take B = {p1, . . . , pn} ⊂ C(X) and

f ∈ C(X), then there exists Kf > 0 such that for every g ∈ span(B ∪ {f}),

(5.8) Kf‖g‖∞ ≤ ‖g‖2,µ≤‖g‖∞µ(X).

Since X is assumed to be compact, C(X) is separable, i.e., C(X) admits a countable

dimensional dense subvector space (e.g. polynomials for when X is a closed, bounded

interval). Thus for every f ∈ C(X) and every ǫ > 0, one can find a big enough finite B,

such that (5.8) holds. In other words, “good enough ‖ · ‖2,µ-approximations of f give good

‖ · ‖∞-approximations”, as desired. This is particularly useful, since the Gram–Schmidt
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procedure provides a concrete algorithm to compute best ‖ · ‖2-approximations, while just

computing ‖ · ‖∞ in general is an NP-complete task.

Table 5.1. Polynomial approximation for the Sigmoid function on the interval

[−103, 103]. p1(x) generated by method 1 (Equation 5.9) and p2(x) generated

by method 2 (Equation 5.10).

Polynomial Approximations Sigmoid function, p1(x) and p2(x)

p1(x) = −(8.6
−10) ∗ x3 + · · ·+ 0.499

p2(x) = −(4.8
−10) ∗ x3 − · · ·+ 0.500

‖f − p1‖2 = 0.276, ‖f − p2‖2 = 0.270

p1(x) = (2.06−15) ∗ x5 − · · ·+ 0.50

p2(x) = (6.65−16) ∗ x5 + · · ·+ 0.5

‖f − p1‖2 = 0.22, ‖f − p2‖2 = 0.09

p1(x) = −(5.91
−21) ∗ x7 + · · ·+ 0.5

p2(x) = −(1.18
−21) ∗ x7 − · · ·+ 0.5

‖f − p1‖2 = 0.2, ‖f − p2‖2 = 0.03

p1(x) = (1.84−26) ∗ x9 − · · ·+ 0.5

p2(x) = (2−27) ∗ x9 + · · ·+ 0.5

‖f − p1‖2 = 0.17, ‖f − p2‖2 = 0.01

In practice, X = [a, b] and the countable dimensional subspace is the algebra of

polynomials which satisfies the assumption of the Stone–Weierstrass theorem and the set of

monomials is admissible in the Gram–Schmidt process. Different choices of µ, gives different

systems of orthogonal polynomials. Two of the most popular measures are dµ = dx and
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Table 5.2. Polynomial approximation for the Sigmoid function on different

intervals. p1(x) generated by method 1 (Equation 5.9) and p2(x) generated by

method 2 (Equation 5.10).

Polynomial Approximations Sigmoid, p1(x) and p2(x)

Interval = [−10, 10]

p1(x) = 10−5 ∗ x5 − · · ·+ 0.5

p2(x) = (6.37−6) ∗ x5 · · ·+ 0.5

‖f − p1‖2 = 0.06, ‖f − p2‖2 = 0.008

Interval = [−102, 102]

p1(x) = (2.06−10) ∗ x5 + · · ·+ 0.5

p2(x) = (6.65−11) ∗ x5 + · · ·+ 0.5

‖f − p1‖2 = 0.20, ‖f − p2‖2 = 0.03

Interval = [−103, 103]

p1(x) = (2.06−15) ∗ x5 + · · ·+ 0.5

p2(x) = (6.65−16) ∗ x5 + · · ·+ 0.5

‖f − p1‖2 = 0.22, ‖f − p2‖2 = 0.09

Interval = [−104, 104]

p1(x) = (2.06−20) ∗ x5 − · · ·+ 0.5

p2(x) = (6.7−21) ∗ x5 + · · ·+ 0.5

‖f − p1‖2 = 0.23, ‖f − p2‖2 = 0.3

dµ = dx√
1−x2 . By using dµ = dx on [−1, 1], the generated polynomials are called Legendre

polynomials and by using dµ = dx√
1−x2 on [−1, 1] the generated polynomials are called

Chebyshev polynomials.

These two polynomial sets have different applications in approximation theory. For

example, the nodes we use in polynomial interpolation are the roots of the Chebyshev
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polynomials and the Legendre polynomials are the coefficient of the Taylor series. For more

details about these polynomials, see [93, 5].

Now, we experiment with polynomial approximations of the Sigmoid function 1
1+e−x

over a symmetric interval [−l, l] using two different orthogonal system of polynomials. As

the first choice, we consider Chebyshev polynomials on the stretched interval which come

from the measure

(5.9) dµ =
dx

l
√

1− (x/l)2
.

Our second choice comes from the measure.

(5.10) dµ = e−(l/x)2dx.

We note that the measure for Chebyshev polynomials mainly concentrates at the end

points of the interval which causes interpolation at mostly initial and end points with two

singularities at both ends. While the second measure evens out through the whole real line

and puts zero weight at the center. This behavior causes less oscillation in the resulting

approximation and hence more similarities of derivatives with Sigmoid function. Figure 5.1

shows the output of our approximating algorithm with the polynomial form of the activation

function.

5.2. Polynomial Computation over Encrypted Values

There are some challenges related to homomorphic encrypted values. First is that

all values must be integers. We used a vector of integer values as an input for polynomials.

Coefficients in polynomial approximations are small. We truncated coefficients and multiplied

the polynomial with a power of 10 to make all coefficients integer. The output of new

polynomials for large integers like 104 was out of the acceptable range. In our implementation,

we put some small values as coefficients.

We used HELib for implementation. For generating schemes in HELib, we set some

values for input parameters, k = 80, s = 1, w = 64 (for details about these parameters
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Figure 5.1. Ciphertext size and input values for L

Figure 5.2. Time for generating encryption scheme and input values for L

see [31]). The other important value is L. Small values for L decreases the computation

time, however, the degree of polynomial also decreases. Large values of L lead to slower

computations and larger degrees for polynomials. Size of ciphertext increased by increasing

the value for L, see figure 5.1. The time for generating encryption scheme also increases by

increasing the value for L, see figure 5.2.

We used polynomials from degree 2 to 9 and gave integers less than 100 as inputs to

these polynomials. By growing the degree of polynomials, we increased value of L from 5 to

25. All the computations are in mod 1018 + 37 which is a prime number. For each degree,

running time for polynomial computation and the minimum value for L are showed in table
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5.3. Now, we approximated activation function over encrypted data, our algorithm is adapted

Table 5.3. Polynomial computation over encrypted values

Degree Running Times L

2 0.122829 9

3 0.305238 15

4 1.81771 21

5 2.19533 21

6 2.26061 25

7 2.71306 25

8 3.27217 25

9 4.59763 27

within the limitations of HE schemes, in the next chapter, we use our adapted form of the

algorithm over encrypted data and provide experiments’ results.
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CHAPTER 6

RESULTS

In this chapter, we provide our experimental results for private preserving MLaaS. We

compare our results with the state of the art solutions.1 At the first section, we evaluate the

performance of the underlying HE library. In the following, we provide our results for NN

and CNN over encrypted data, both classification and training steps. .

For the training, we use a virtual machine with 48GB RAM, 12 CPU cores and Ubuntu

14.04 for the training and for the classification step, we use a virtual machine with 16GB

RAM, Intel Xeon E5-2640, 2.4GHz and Ubuntu 16.04.

6.1. Homomorphic Encryption Performance

We use the HELib for implementation as the underlying homomorphic encryption

library that implements BGV scheme, see [12]. Before running the protocol for both NN

and CNN, we need to run some operations independent of the learning algorithm. This step

is necessary for all HE-based solutions, Key Generation and Key Sharing. Homomorphic

Encryption scheme that we use as a part of our solution is public/private encryption scheme.

The owner of the data runs the key generation function, this function generates a private key

and a public key. Private key is for decryption and public key is for the encryption. All the

entities in the protocol (for example, Service Provider), have access to the public key.

In our protocol, client needs to generate the public key and the private key, and shares

(sends) the public key to the server. This step is one time computation and need one round

of communication. The client shares the public key with the server, the key is valid until

its expiration date. For having a better estimation of running time of key generation and

1Parts of this chapter have been previously published, either in part or in full, from Ehsan Hesamifard, Hassan
Takabi, Mehdi Ghasemi, and Catherine Jones, Privacy-preserving machine learning in cloud, Proceedings
of the 2017 on Cloud Computing Security Workshop (New York, NY, USA), CCSW 17, Association for
Computing Machinery, 2017, p. 3943, Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca
Wright, Privacy-preserving machine learning as a service, Proceedings on Privacy Enhancing Technologies
2018 (2018), 123–142 and Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi, Deep neural networks

classification over encrypted data, Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy (New York, NY, USA), CODASPY ’19, ACM, 2019, pp. 97–108. Reporduced with
permission from the Association for Computing Machinery.
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sharing, we provide details about the key generation and key transfer in Table 6.1. Now, the

Table 6.1. Key Generation and Key Transfer time

p L Key Generation(s) Key Transfer(s)

1009 5 3.1e-05 2.59

1002263 10 3.1e-05 8.86

10000030013 15 4.1e-05 18.56

1000000034057 10 3.4e-05 10.40

1000000034057 15 3.2e-05 19.34

19900000085257 20 3.5e-05 32.71

19900000083773 20 3.2e-05 32.06

1000000034057 17 3.3e-05 18.82

1000000034057 19 3.4e-05 47.65

1013329 5 3.2e-05 2.48

1013401 10 3.5e-05 10.33

10000030471 15 3e-05 16.26

10000024429 15 4.3e-05 13.40

19900000085753 20 3.3e-05 32.51

client and the server are ready to run the protocol. The next step is running algorithm over

encrypted data.

6.2. Neural Networks over Encrypted Data

In this section, we focus on privacy preserving neural networks. At first, we implement

NN over plaintext by considering HE limitations. Then, we transfer our learning algorithm

over encrypted data and provide the performance of the algorithm, both running time and

accuracy of the final model.

For implementing NN over Encrypted Data in C++, we focus on fully connected

feed-forward back-propagation neural networks. Current implementations which work with
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the plain data, usually have three classes: net, layer and neuron. Each neuron stores input

values, output values, weights and other required parameters. A layer is an array of neurons

and neural network is a combination of these layers in a specific order. During the feed-forward

or back-propagation functions, we go through all layers and in each layer, we process all the

neurons in that layer.

Depending on the method that feeds inputs to the neural network, online learning

or batch learning, we use two different implementations to estimate the running time and

memory. In the following sections, we explain each of them in details.

For the online learning, we can use two different approaches. When we use HELib

or other SIMD-enabled HE libraries, we can assign one ciphertext for w and one ciphertext

for ∆weight, one ciphertext for output, one ciphertext for the input and so on. The size of

ciphertexts in HE is big and this structure is not efficient memory wise. WE implemented this

approach and we concluded it’s not practical, because by increasing the size of the network,

the memory usage increasing drastically.

We designed neural network over encrypted data in a more efficient way for online

learning. Each layer has an input and an output, and a set of weights connects each layer to

the next layer. We keep input and output of each layer in two different ciphertexts, and we

keep set of weights in one ciphertext. We only have two classes, network and layer. We need

some changes in the way that we store values inside vectors which we leave these details for

the implementation. This solution is more efficient compare to the previous one and we use

it in our implementation. However, we need to mention that online learning is not common

compare to the batch learning. As our focus is on deep learning algorithms and almost in

all cases, we use batch learning in those scenarios, our next step is implementing NN over

encrypted data for the batch learning case.

For implementing batch learning, we follow the same structure as the plaintext by

using three classes: net, layer and neuron. Each neuron stores input values, output values,

weights and other required parameters in one ciphertext separately. As all operation on

neurons are the same and our HE scheme supports SIMD, the implementation is similar to
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Figure 6.1. Neural Network

the plaintext format, we do not give details of implementation.

To measure the Performance of Neural Networks with Polynomial Approximations over

plaintext, first, we train the models based on the encrypted data and measure the running

time for the training process. Then, we use the trained model to classify encrypted instances

and measure the accuracy of the model as well as the running time. In all experiments, for

generating encryption schemes in the HELib, we set values for input parameters as k = 80

(security level which is equivalent to AES-128) and s = 0 (number of slots in the ciphertext)

which allows the HELib to automatically pick the best number of slots. Another important

value is L which is set to 20 in our experiments. We report the average running time from

different rounds of algorithms and the standard deviation of running times is less than 3.0%

in all cases.

For our experiments, we choose datasets from [53]. We choose different datasets with

wide range of instances and feature values to have a better estimation of the performance of

our solution. Table 6.2 includes the list of datasets and their specifications. At first step, we

need to run experiments for the performance of our solution over plaintext before running

them on encrypted data.

We trained models by using a polynomial as an activation function in the NN with two

hidden layers, see 6.1. We used NN Toolbox [74] in our implementation for the plaintext format

and datasets from Table 6.2. We compute polynomial approximations for the Sigmoid function
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Table 6.2. Datasets (I, F and C represent Instances, Features and Classes

respectively).

Name #I # F #C

1 Arcene 900 10000 2

2 Banknote Authentication 1372 4 2

3 Blood Transfusion Service Center 748 4 2

4 Breast Tissue 106 9 6

5 Cardiotocography (3 classes) 2126 21 3

6 Cardiotocography (10 classes) 2126 21 10

7 Climate Model Simulation Crashes 540 17 2

8 CNAE-9 1080 857 9

9 Connectionist Bench (Sonar, Mines vs. Rocks) 208 60 2

10 Connectionist Bench (Vowel Recognition) 528 10 2

11 Crab 200 6 2

12 Daphnet Freezing of Gait 1048576 10 2

13 Fertility 100 10 2

14 First-Order Theorem Proving 6118 51 6

15 Ovarian 216 100 2

16 Wine 178 13 3

17 Sensorless Drive Diagnosis 58509 49 11

based on four different parameters: degree, error, intervals and precision of coefficients. We

change the degree of polynomials from 2 to 9. Our approximation method gets an error values

as the input. we consider the following values for the error parameter: {0.1, 0.01, 0.001, 1e−

07, 1e− 11}. We also choose intervals as follows: [−10i, 10i], 0 ≤ i ≤ 5. The coefficients are

small and we have to truncate them. For this reason, we truncate coefficients with different

precisions: 10, 20, 30 and 40 digits. We also calculate the ‖ · ‖2,µ for each polynomial for a

more precise analysis. We generate 1920 polynomials (by assigning all the possible values to
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Table 6.3. Accuracy vs. other parameters for Ovarian Dataset. Blue and red

are polynomials from two different measure functions.

all the parameters) and train the neural network using each polynomial. In Tables 6.3, 6.4

and 6.5, we draw the results for three of the datasets and all these polynomials. Based on

our results, our polynomial approximation performance had the best accuracy in 10 out of 13

datasets. In wine dataset, the accuracy of fx is better than our accuracy and the polynomial

approximation is 96.29%. The average feature values in wine dataset is 5000. We generated
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Table 6.4. Accuracy vs. other parameters for Crab Dataset. Blue and red

are polynomials from two different measure functions.

a set of polynomial approximation on the interval [−5000, 5000]. We got a 100% accuracy by

a polynomial from degree 2, precision 20 digits in 43 iterations. Based on our results, we

concluded these remarks.

Remarks:

• The impact of approximation interval on the accuracy depends on feature values
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Table 6.5. Accuracy vs. other parameters for Wine Dataset. Blue and red

are polynomials from two different measure functions.

in dataset. For example, in crab dataset, the values are less than 100 and we got

the best accuracy on interval [−100, 100] . For other intervals, the accuracy was

reduced. For wine dataset, feature values are less than around 5,000 and we got

the best accuracy for interval [−103, 103]. For ovarian dataset, feature values are

more scattered, from 0 to 104. We got 87.5% accuracy for different intervals from
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[−102, 102] to [−104, 104]. Therefore, we should use a suitable interval based on

feature values.

• The error parameter does not show a direct impact on the accuracy and this parameter

is not a good factor for choosing the polynomial approximation.

• The precision results were interesting. Our results showed that increasing the

precision, in most cases, reduces the accuracy. We should truncate coefficients for a

better accuracy.

• If the value of L2-norm increases, the accuracy decreases. Therefore, if we want a

good accuracy, we should choose a polynomial that approximate the sigmoid function

more accurate based on this norm.

• The degree of polynomial depends on the dataset. For example,in crab dataset and

ovarian dataset the best accuracy was related to degree 5 while for win dataset, the

best accuracy was related to degree 9.

• We also recorded the number of iteration for training the model. It did not show

a reasonable impact on the accuracy; however, the interesting point is that in

some cases, the number of iteration decreases considerably in compare to using

sigmoid function. In crab dataset, the number of iteration was 16 for polynomial

approximation and the number of iteration for sigmoid function was 45.

There is a shortcoming about this method of polynomial approximation. The set of poly-

nomials for choosing the best polynomial is big and it’s time consuming to choose the best

polynomial. Based on mentioned remarks, we optimize the polynomial approximation solution

which is more efficient and polynomial set includes less number of polynomials.

In order to find the interval that gives the best accuracy, we extract three values from

each dataset. We first build a vector for each dataset where each item in the vector is the

mean of the feature values. We train the neural network for each interval and the results

show that the interval [-meanMean, meanMean] has the best accuracy. As it can be seen in

Table 6.6, in our experiments, neural networks with polynomial approximation as activation

function achieve the best accuracy in all cases. Algorithm 1 shows the process of choosing
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the best polynomial approximation based on the dataset and its features. Informally, we

first extract the mean of values from features (meanMean) and then generate the polynomial

approximation in the [-meanMean, meanMean] interval. Based on our extensive experiments,

this approach always lead to the best polynomial approximation [36]. To compare the

Input: Dataset, MaxDegree, ActivationFunction

Output: A set of Polynomials

MeanArray ← {};

Mean = 0;

PolynomialSet← {};

for i← 1 to #Features do

mean← mean of Feature[i];

MeanArray ←MeanArray ∪ {mean};

end

Mean← mean of MeanArray;

for i← 1 to MaxDegree do

poly ← Approximate the ActivationFunction in the interval [−Mean,Mean]

with precision 10 and degree i;

PolynomialSet← PolynomialSet ∪ {poly};

end

return PolynomialSet;

Algorithm 1: Generating Polynomial Approximations

performance of our polynomial approximations with other studies, we use several activation

functions for training: the Sigmoid function f1(x) =
1

1+e−x , another variation of the Sigmoid

function f2(x) =
2

1+e−4x − 1, and the square function f3 = x2 which was proposed in [59] and

[22]. We use these four different activation functions and if we choose the interval properly
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based on the dataset, our model could achieve the best accuracy among all four activation

functions. Our neural networks had two different activation functions in layer 2 and 3. We

trained neural network in two different ways. First we used our four different activation

functions in layer 2. For layer 3, we used softmax as an activation function, table 6.6 shows

results.

In conclusion, our results show if we choose the interval properly based on our

dataset, our model has the best accuracy among all four activation functions. Error Rate

of Neural Networks with Polynomial Approximations: In the previous section, we

showed that current activation functions in neural networks could be replaced with polynomial

approximation without causing any accuracy loss on the model. To further confirm the

suitability of the polynomial approximations, we also compare the error rate of neural networks

with the original activation function (Sigmoid function) and with polynomial approximations

as replacement. To provide a precise and fair comparison, we calculate the error rate over

the same test set for all activation functions. This approach was previously used in [68]

for comparing performances of different activation functions. We first split the dataset into

training set and test set. We then train the neural network using the training set phase by

phase. We start with the first 10% of the training set to build the model and calculate the

error rate, then add another 10% of the training data and repeat the process until we have

used the entire training data. The test set is kept the same during all the corresponding

phases for all the activation functions. We report the results for four datasets, and as shown

in Figure 6.2, the error rate in the case of the polynomials is almost the same as in the case of

other activation functions. Now, we conclude with higher confidence that approximation of an

activation function with a polynomial using our proposed method is a practical replacement

for the currently used activation functions in neural networks.

For implementing neural network over encrypted data, due to limited operations

over ciphertexts, we should consider the growing noise in ciphertexts during computations.

As mentioned before, one technique to deal with the noise is bootstrapping. However,

bootstrapping comes with heavy computation cost. To address this problem, we use an
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Table 6.6. Performance of the neural network model based on f1(x) = 1
1+e−x ,

f2(x) =
2

1+e−4x − 1, f3 = x2 and the polynomial approximation in layer 2 only. a,

i, d and n represent accuracy, number of iterations, polynomial degree and ‖ · ‖2,µ

respectively. Precision of the polynomial coefficient is 10, except Datasets 3 and

9 which are 20 and 15. We report the polynomial approximation with minimum

degree. Refer to Table 6.2 for the list of datasets.

Nom f1(x) f2(x) f3(x) Polynomial

a(%) i a(%) i a(%) i a(%) d i n

1 86.67 18 56.67 7 30.00 1000 90.00 2 40 0.005

2 100 69 100 85 40.29 6 100 3 34 0.118

3 79.46 15 81.25 25 83.93 13 83.93 3 38 0.005

4 67.00 30 68.75 16 18.75 1000 75.00 2 23 0.001

5 98.58 30 89.34 43 79.31 1000 99.37 2 42 0.001

6 82.45 55 83.07 74 15.67 1000 89.97 2 45 0.001

7 95.37 21 91.36 11 87.65 11 96.30 2 23 0.001

8 96.30 179 66.05 107 7.40 1000 97.53 2 106 0.001

9 77.42 15 83.87 22 54.84 1000 93.55 3 27 0.000

10 86.67 33 75.84 66 12.08 52 96.30 2 23 0.001

11 100 45 100 31 66.66 1000 100 2 30 0.001

12 90.14 448 90.19 243 90.27 49 90.26 3 63 0.000

13 86.67 24 86.67 13 40.00 8 86.67 2 7 0.001

14 100 48 100 51 16.45 1000 100 2 48 0.001

15 93.75 25 96.87 1000 56.25 41 96.87 2 13 0.001

16 96.29 37 96.29 45 44.44 7 96.29 2 20 0.001

17 86.29 359 86.29 368 42.22 1000 89.87 2 373 0.001
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Figure 6.2. Comparing the error rate of the polynomial approximation and the

Sigmoid function.

66



alternative approach where the server checks the level of noise in the ciphertext after each

operation. If the noise level is lower than the threshold (i.e. two), the server sends the

ciphertext to the client. The client decrypts and encrypts it again and sends the fresh

ciphertext back to the server. Therefore, in each round of communication, one cipher

refreshed by the client for reducing the noise.

The number of operations allowed on the ciphertext depends on the input value of L.

If we set a small value for L, we need more communications between the client and the server

whereas for higher values of L, less communications are required. However, by increasing the

value of L, both the size of ciphertexts and the amount of transferred data increase.

We performed experiments for learning from datasets with different numbers of features

and different number of classes. We measured the computation time on the server and the

client. We also recorded the number of interactions and the amount of data transferred

during the process. Based on our results shown in Table 6.7, communication between the

client and the server is the most time consuming part of the process which accounts for about

90% of the training time. Therefore, we should choose our parameters in the encryption

schemes in a way to have fewer communications. Two values that have impact on the number

of interactions between the client and the server are L and p. Our experimental results show

that instead of using large values for L which increases the size of ciphertext and time of

computations, parameter p should be chosen properly. If we choose a proper prime number,

we could use smaller values for L instead of larger values. The next experiment is finding the

relation between number of hidden layers and performance of our solution. We implement

neural networks over encrypted data with different numbers of hidden layers (1, 2, 3, 4 and

5). We implement the neural networks and use three different datasets: Crab, Fertility and

Climate Model to perform the experiments. The results show that if we use batch learning,

the performance of the training phase is acceptable. In the above experiments, we only run

the experiment for one iteration. The HELib supports SIMD feature and the running time

for one instance is the same as the time for a batch of instances. We also train the neural

network with different sizes of batch as an input (282, 576, 1420, 3668 and 6144) and calculate
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Table 6.7. Neural Network over Encrypted Data

Dataset p L Data(s) Training(s) #C Reduce Noise(s)

crab 1009 5 8 276.39s 2198 269

crab 1002263 10 25 652 170 470

crab 10000030013 15 48 1054 170 1011

crab 1000000034057 10 26 676 169 651

crab 1000000034057 15 47 1033 170 988

crab 199 ∗ 1011 + 85257 20 86 4043 1860 3961

crab 19900000083773 20 86 3991 1860 3910

crab 1000000034057 17 55 2527 1860 2476

crab 1000000034057 19 89 4811 1860 4730

crab 19900000085041 20 94 4121 1860 4035

pendigits 1013329 5 8 358 1015 350

pendigits 1013401 10 28 1061 170 1037

pendigits 10000030471 15 57 4411 3550 4358

pendigits 10000024429 15 44 3554 170 3513

pendigits 199 ∗ 1011 + 85257 20 99 9040 3550 8947

the running time for feed-forward, back-propagation and noise reduction for one, two, and

five hidden layers. Figure 6.3 shows the result for one, two and five hidden layers respectively.

As it can be seen, when we increase the size of the batch by 30 times, the running time only

doubles. Our empirical results show that training over encrypted data is efficient when batch

learning is used, and the network performance is acceptable. For example, we reach the

training rate of 0.68 seconds per instance (6 features) for a batch size of 576 and two hidden

layers (see Table 6.8). By increasing the batch size to 6144, the training rate decreases to

0.10 second per instance for a neural network with two hidden layers. It is worth mentioning

that although larger batch sizes lead to faster training, they also increase the size of the

network. Hence, a trade-off between the memory and running time is needed and we should
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Table 6.8. Training Neural Network over Encrypted Data (batch input size

of 576 and L = 20; standard deviation is less than 2.9%). HL, NC, #C and

NR represent Hidden Layer(s), Network Creation, Number of Communications

and the Noise Reduction time.

#HL(s) NC(s) Forward(s) Back(s) #C NR(s) Total Time(s)

Crab Dataset

1 42.33 59.80 109.81 77 149.03 217.07

2 56.97 130.26 202.12 192 312.27 394.38

3 96.22 289.88 412.85 452 682.82 803.95

4 119.22 383.72 548.42 600 912.07 1056.5

5 125.63 407.64 582.13 640 969.58 1120.70

Fertility Dataset

1 55.24s 65.30 121.83 77 160.17 247.89

2 72.42s 138.17 220.69 192 331.60 436.99

3 112.66s 305.51 440.44 452 718.36 864.60

4 131.20s 390.96 562.10 600 926.35 1089.86

5 140.52s 419.80 602.63 640 995.61 1168.47

Climate dataset

1 92.73 86.69 170.85 77 210.98 357.40

2 11.34 161.42 273.74 192 388.69 553.61

3 112.66 333.65 497.64 452 780.07 989.26

4 165.77 416.37 638.44 600 1011.63 1228.38

5 175.25 430.35 843.84 640 1229.50 1456.7

choose a proper batch size based on the size of the dataset.

Now, we consider the classification phase and provide the performance of our solution

for this phase. In the classification phase, we only run the feed-forward step and can

perform the computation in parallel for a batch of unseen instances. Note that we implement
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Figure 6.3. Neural network with one, two and five hidden layers

classification over encrypted data while the model is also encrypted. In this phase, noise

growth is not a big challenge and the run-time is more important. The results are shown in

Table 6.9. For the classification with a batch size of 576, we reach 0.04 second per instance
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Table 6.9. Classification over Encrypted Data (batch size 576 and L = 20;

standard deviation is less than 3%.) #HL, NR and #C represent for number

of hidden layers, Noise Reduction times and number of communications.

#HL(s) Classification(s) #C Noise Reduction(s)

Crab Dataset

1 28.62 0 0

2 61.17 0 0

3 154.20 0 0

4 229.28 10 155.87

5 234.65 21 171.20

Fertility dataset

1 35.94 0 0

2 68.86 0 0

3 160.49 0 0

4 236.72 10 152.34

5 255.70 21 169.84

Climate dataset

1 55.85 0 0

2 61.78 0 0

3 178.25 0 0

4 249.54 10 149.10

5 269.39 21 166.89

for one hidden layer and 0.1 second per instance for two hidden layers. If we choose a batch

of size of 6144, we reach 0.014 second per instance for one hidden layer and 0.036 second

per instance for two hidden layers. The model is encrypted in all training and classification

experiments and also we did not use any parallelization techniques in our implementation.
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6.3. CNN Over Encrypted Data

In this section, we consider Convolutional Neural Network over encrypted data and

preserve the privacy of data for this case. By considering the performance of current HE

schemes, number of epochs for training and size of data, training over encrypted data for

CNN are not practical.

For neural networks, we use the Sigmoid function as the activation function. For

CNNs, ReLU is more popular as the activation function. In the next section, we explain

details of our solution for approximating the ReLU function.

Several methods have been proposed in the literature for polynomial approximation

including Taylor series, Chebyshev polynomials, etc. [93, 5]. We first try these approaches

for finding the best approximation for the ReLU function and then present our proposed

approach that provides better approximation than all these methods. We investigate the

following methods for approximating the ReLU function. We use SAGE for implementing

our polynomials approximation method, [21].

(1) Numerical approximation

(2) Taylor series

(3) Standard Chebyshev polynomials

(4) Modified Chebyshev polynomials

(5) Our approach based on the derivative of ReLU function

The first method is Numerical analysis 1. In this method, we generate a set of

points from ReLU function and give this set of inputs to the approximation function and a

constant degree for the activation function. We experimented with polynomials of degree 3

to 13 and for lower degree polynomials, the accuracy drops considerably. For achieving a

good accuracy, we have to increase the degree which makes it inefficient when we are working

with encrypted data. Our investigation showed that the method 1 is not a good approach for

approximating the ReLU function. Another method is Taylor series 2. In this method, we

use Taylor series [93, 5], a popular method for approximating functions. We use different

degrees for approximating the ReLU function and trained the model using polynomials of
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(a) Approximation of ReLU using different methods

(b) Approximation of ReLU based on our approach

Figure 6.4. Polynomial Approximation of ReLU

different degrees. Two main issues make this method inefficient. The first issue is the high

degree of polynomial approximation and the second and more important issue is the interval

of approximation.

We use another method which we call is Standard Chebyshev polynomials 3.
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Chebyshev polynomials approximate a function in an interval instead of a small neighborhood

of a point. In the standard Chebyshev polynomials, we use dµ = dx√
1−x2 as the standard norm

and approximate the ReLU function. As shown in Table 6.10, the accuracy is still not a good

performance in comparison with the original activation function. We modify the measure

function based on the structure of the ReLU function which is done in the next method.

We adopt method 3 to reach better accuracy and call it Modified Chebyshev

polynomials 4. In order to simulate the structure of ReLU function, we changed the

standard norm used in Chebyshev polynomials to e
( −1

1+e−5+(x)2
)
and were able to achieve much

better results compared to all the previous methods. This measure evens out through the

whole real line and puts zero weight at the center. This behavior causes less oscillation in

the resulting approximation and hence more similarities of derivatives with Sigmoid function.

Since our goal is to approximate the ReLU function, we changed our approach to the problem

and focused on approximating the derivative of the ReLU function instead of approximating

the ReLU function as explained below.

We improve method 4 based on the the derivative of ReLU function 5. In this

method, however, we use another approach and consider the derivative of the activation

function because of its impact on the error calculation and updating the weights. The

derivative of ReLU function is like a Step function and is non-differentiable in point 0.

Sigmoid function is a bounded, continuous and infinitely differentiable function, it also has a

structure like derivative of the ReLU function in the large intervals. We approximate the

Sigmoid function with the polynomial, calculate the integral of the polynomial, and use it as

the activation function. As shown in Table 6.10, this method achieves the best approximation

of the ReLU function and we will use this method for approximation in this dissertation.

Figure 6.4a shows the structure of the functions generated by all the above approx-

imations methods in comparison with the ReLU function whereas Figure 6.4b shows only

the method 5 in comparison with the ReLU function. These two figures show that the last

method simulates the structure of the ReLU function considerably better than other methods.

In Figure 6.4a, for some values less than zero, the structure of the polynomial goes up and
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Table 6.10. Performance of the trained CNN using Different Approximation

Methods

Method Accuracy

Numerical analysis 56.87%

Taylor series 40.28%

Standard Chebyshev 68.98%

Modified Chebyshev 88.53%

Our Approach 98.52%

down. This behavior has impact on the performance of the model that is trained based

on these polynomials. However, in Figure 6.4b, the structure of function is almost same

as the ReLU function, and for this reason, we expect to have a performance close to the

ReLU function. We try to keep the degree of the polynomial as low as possible, therefore,

we only work with degree 2 and degree 3 polynomials. After finding the best polynomial

approximation of ReLU function, we measure the performance of our solution for training

adapted form of CNNs. Before this step, we provide a discussion about tune hyper parameters

and its impact on the performance of our solution.

As we can see, different approximation methods result in widely different accuracy

values and as expected, our proposed method based on the derivative of the ReLU achieves

the best accuracy among all the methods. In the rest of this dissertation, we only use this

method for approximation of the ReLU function, and whenever approximation method is

mentioned, it refers to the last method.

All the above experiment runs without any parameter tuning to analyze the perfor-

mance of the polynomials. In machine learning after finalizing the architecture of the network,

we need to tune the hyper parameters. Different hyper parameters needed to be tuned, in

our experiment, we only tune two parameters: learning rate and momentum. We tune two

different CNNs with two convolutional layers and one fully connected layer (similar to the

CNN proposed in [22]) for training over the MNIST dataset. We approximate the ReLU with
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Table 6.11. Performance of the model for different approaches based on the

model from [22]

ReLU Tuned/ReLU Polynomial Tuned/Polynomial Polynomial/Pretrain

98.87% 98.94% 98.35% 98.94% 98.94%

Table 6.12. Performance of a CNN with one Conv layer for different approaches.

ReLU Tuned/ReLU Polynomial Tuned/Polynomial Polynomial/Pretrain

98.32% 98.83% 98.18% 98.46% 98.82%

our polynomial approximation and replace it in the architecture of the CNN. We use grid

search method for parameter tuning. In this method, we define one set for each parameters

and then, train models for all possible pairs of these two parameters up to a constant number

of epochs. As Table 6.11 shows, tuning parameters impacts on the performance of the model,

specially for polynomial based architectures. Without parameter tuning, the accuracy of

the model is 98.35% whereas the accuracy of the original model is 98.94%. After tuning

parameter, the accuracy of the model based on the polynomial is the same as original model,

98.94%. For a better analysis, we run the same experiment with a different architecture. As

shown in Table 6.12, the accuracy of the model is 98.32% and the tuned polynomial form of

the network is 98.46%. We observe a gap between these two accuracies. The reason of this

gap is related to the weight initialization values which has impact on the accuracy of the

model.

Since we run each experiment different times, we observe that in some cases, the

model does not train and we need to use a different initial weights for training a model. For

avoiding this situation, we proposed to use knowledge transferability technique from machine

learning which we explain in the next section.

Transfer learning is one of the poplu Transfer Learning All the above solutions are

based on training a model from scratch which its architecture is adopted within limitations of

HE or SMC techniques. For preserving the privacy of data during training and classification

steps, the basic approach which introduced in papers is training the network from scratch
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after changes in the structure of the network for adopting the protocol within limitations

of HE or SMC based solutions. However, changing the whole structure has a side effect

which is computation cost. We introduce a more simple and efficient solution which is based

on Knowledge Transferability in machine learning, [72]. The Transfer Learning in machine

learning means that we can use pre-trained features in CNN for building a network for

a different object. For example, suppose that we want to train a network based on the

CIFAR-10, we can use extracted features from a model which is trained based on CIFAR-100

or ImageNet and only train a portion of network’s parameters. We use a similar idea and use

a pre-trained model based on a non-adoptive algorithm and adopt it within the limitations of

HE or SMC for reducing the computation cost which comes from the training.

We can use transfer learning for both steps: training or classification. For the training

problem, consider a client which owns a data set and its learning object is image recognition

like CIFAR-10. Based on the proposed solutions, we need to build a network and trained in

a private manner based on the client’s data. Instead of using this approach, we can train

a network based on a similar problem and extract features by taking advantage of transfer

learning in machine learning. After training the network, we freeze convolutional layers

and only train weights which related to changed layers. This approach has a much lower

computation cost for both techniques: HE and SMC.

In the classification case, at first, we train a model based on non adoptive architectures

and then replace the activation function, freeze some layers and only train weights related to

changed layers.

We run experiment for evaluating this idea by using pre-trained models based on

MNIST and adopting them within limitations of HE schemes. As shown in Tables 6.11 and

6.12, the performance of the model by using a pre-trined model is higher than training a

model from scratch. For two different CNNs, the original accuracy values are 98.94% and

98.83%, using the same models and only train activation functions layers, the accuracy values

are 98.84% and 98.82% relatively. From computation wise, the number of epochs for reaching

these accuracy values decreases by 65% in compare of training all layers. Therefore, for
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training a network over encrypted data, because of high cost of computations over encrypted

data, using a pre-trained model is more efficient in compare of training from scratch.

Now, we analyze the relation between the approximation interval and approximation

error with the model performance. First, we approximate the ReLU function over different

intervals. We start from [−10, 10] interval and go up to [−590, 590] with a 10 unit increment

in each step, calling it P = {pi}
58
1 . The approximation interval must be symmetric. Then,

we consider these architectures in different experiments:

(1) A CNN with one convolutional layer, a polynomial as the activation function, an

average pooling layer and a fully connected layer with 100 neurons with the ReLU

as the activation function. We increase the number of filters from 1 to 100, calling it

{Arci}
100
1 .

(2) A CNN with one convolutional layer, an average pooling layer, a polynomial as the

activation function, and a fully connected layer with 100 neurons and ReLU as the

activation function. We increase the number of filters in the convolutional layer from

1 to 100, calling it {Arci}
100
1 .

(3) A CNN with one convolutional layer, and activation function, an average pooling

layer and a fully connected layer with 100 neurons and ReLU as the activation

function. We increase the number of filters in the convolutional layer from 1 to 100,

calling it {Arci}
100
1 .

(4) A CNN with one convolutional layer, a polynomial as the activation function, an

average pooling layer and a fully connected layer with 100 neurons and polynomial

as the activation function. We increase the number of filters in the convolutional

layer from 1 to 100, calling it {Arci}
100
1 .

(5) A CNN with two convolutional layers, a polynomial as the activation function, an

average pooling layer and a fully connected layer with 100 neurons and polynomial

as the activation function. We increase the number of filters in convolutional layers

from 1 to 100 (the first convolutional layer has i filters and the second one has 2 ∗ i),

calling it {Arci}
100
1 .
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(6) A CNN with one convolutional layer with 32 filters, a polynomial as the activation

function, a fully connected layer. We increase the number of neurons in the hidden

layer from 1 to 100, calling it {Arci}
100
1 .

(7) A neural network with only one hidden layer, an activation function, and increase

the number of neurons from 1 to 100, calling it {Arci}
100
1 .

Finally, we train a model for each polynomial and each architecture up to 50 epochs. At

first step of experiment, we use different initial weights for each architecture. However, the

standard deviations of accuracy values were high (≥ 12%) due to randomized initial weights.

To solve this problem, we run the experiment again using fixed initial weights. The new

standard deviations are less than ≤ 3% which makes our results more reliable. Running up

to 50 epochs for each architecture is time consuming, for this reason and based on our results

from Section 6.3, we decided to use another method which is more efficient in terms of the

performance and the running time. First, we train a model up to 50 epochs based on the

ReLU function. Then, we use the trained model’s weights as the initial weights and train our

models using polynomials, see Algorithm 2. The accuracy of these new models is higher and

we only need to train up to 5 epochs to reach a stable performance. So, the running time is

much lower compared to the training for 50 epochs.

For each case, we draw three different diagrams which we listed in here:

• Accuracy vs. Architecture. See Figures A.1, A.4, A.7, A.10, A.13, A.16, A.17 for

cases 1 to 7 respectively.

• Accuracy vs. Error. See Figures A.19, A.2, A.5, A.8, A.11, A.14, A.20 for cases 1 to

7 respectively.

• Accuracy vs. Polynomials. See Figures A.3, A.6, A.9, A.12, A.15, A.18, A.21 for

cases 1 to 7 respectively.

We define the error between the polynomial and the ReLU function based on the L2-norm.

We concluded:

• Higher error values do not result in a lower accuracy. The reason is that the structure

of the polynomial is similar to the ReLU function. This gives a good enough accuracy
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Input: P = {pi}
i=58
i=1 , MNIST

Output: A

M← {}, A ← {};

CreateModel CreateModel(nomNeu, actFunc):

m←neural network with nomNeu neurons in the hidden layer and the ReLU

function;

return M ;

for nomNeus← 1 to 100 do

mneurons ← CreateModel(nomNeu, ReLU);

Train model mnomNeu up to 50 epochs;

Save the model mnomNeu;

Add mnomNeu to the ArrayM;

end

for polyIndex← 1 to 58 do

for nomNeu← 1 to 100 do

mReLU ← nomNeuth ofM;

m← CreateModel(nomNeu, ppolyInd);

Initial weights of m← mReLU ;

Train model m up to 5 epochs;

Add Accuracy of m to A;

end

end

return A;

Algorithm 2: Training based on Polynomials

even though the error of the approximation increases.

• The accuracy of the model decreases by increasing the number of filters or neurons

for a fixed interval. To improve the accuracy, we need to approximate the activation

function over a larger interval. Note that for a larger approximation interval, the
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Figure 6.5. CNN Model 1 (AveP and BN stand for Average Pooling and

Batch normalization).

model performance for a small number of neurons is almost the same as the original

form of the activation function. Accuracy vs. error shows a similar trend. It clearly

shows that as the number of neurons increases from 15 to 95, the accuracy over the

smaller intervals is deteriorating.

• For each polynomial which approximates the activation function one a different

intervals, by increasing the number of filters or neurons, the performance of the

trained model increases which shows a similar trend like previous items.

In conclusion, for training the model, we need to choose the initial weights properly in order

to get a higher performance and a lower running time. For choosing the best polynomial, we

need to approximate the activation function over a large interval to cover all feature values

during training the model.

In order to evaluate effectiveness of our polynomial approximation method, we use

a CNN and the MNIST dataset [52] for our experiments. The MNIST dataset consists of

60,000 images of hand written digits. Each image is a 28x28 pixel array, where value of each

pixel is a positive integer in the range [0, 255]. We used the training part of this dataset,

consisting of 50,000 images, to train the CNN and the remaining 10,000 images for testing.

The architecture of the CNN we use includes the following components as shown in Figure

6.5.

(1) Convolutional layer 1 has 20 filters and filter size 5× 5.
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(2) An average pooling layer with window size 2× 2.

(3) Batch normalization layer.

(4) Convolutional layer 2 has 50 filters and filter size 5 × 5 with polynomial as the

activation function.

(5) An average pooling layer with window size 2× 2.

(6) Batch normalization layer.

(7) Fully connected layer with 500 outputs and polynomial as the activation function.

(8) Fully connected layer with 10 outputs

This CNN has similar architecture to the CNN used in [22] and the light CNN used in

[15]. This will allow us to provide direct comparison with those works. We were able to

achieve 98.94% accuracy while their accuracy was 97.95%. The main difference comes from

the polynomial approximation method used; the approach in [15] used Taylor series to

approximate the ReLU function whereas we used our proposed method 5. These results show

that our polynomial approximates the ReLU function better compare to Taylor Series.

However, both results are still far from the state-of-the-art digit recognition problem

(99.77%). This is due to small size and simple architecture of the CNN used here. We use

larger and more complex CNNs with more layers that are able to achieve accuracy much

closer to the state-of-the-art.

In Table 6.13, we provide the results for the accuracy of our method, the method from

[15] and [22]. Our method works better than the method from [15] and close to the accuracy

of [22]. We mention here that the structure of the method in [22] is more complex than our

structure. We intend to train based on more convolutional layers, however before that, we

need more analysis about the performance of our method in compare of ReLU function.

To ensure that the polynomial approximation is independent of the structure of the

CNN and works well with different CNN structures, we change the structure of the CNN and

train models based on the new one. The new CNN structure consists of:

(1) Convolutional layer 1 has 30 filters and filter size 5× 5.

(2) An average pooling layer with window size 2× 2.
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Table 6.13. Comparing Performance of the Polynomial Approximation

Method Papers.

Method Accuracy (%)

Our solution 98.94

[15] 97.95

[22] 98.94

Degree Accuracy

2 98.38%

4 98.32%

6 99.21%

Table 6.14. Performance of the trained CNN with Different Degree Polynomials.

(3) Convolutional layer 2 has 15 filters and filter size 3× 3.

(4) An average pooling layer with window size 2× 2.

(5) Fully connected layer with 128 outputs and polynomial as the activation function.

(6) Batch normalization layer.

(7) Fully connected layer with 10 outputs

The accuracy of the model based on the 6.3 with polynomial of degree 2 as the activation

function is 98.38% and close to the first structure. This shows that the behavior of the

polynomial approximation of the ReLU function is robust against the changes in the structure.

In addition, to analyze the relation between the degree of the polynomial and the performance

of the model, we change the degree of the polynomial from 2 to 8 and calculate the accuracy

of the model. As expected, the higher degree polynomials results in higher performance

and we were able to achieve 99.21% accuracy. The results are shown in Table 6.14, and as

expected, the higher degree polynomials results in higher performance.

Next, we implement several CNNs with more layers and more complex structures to

improve performance of the model and get closer to the state-of-the-art. We start with a
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Figure 6.6. CNN Model 2 (AveP and BN stand for Average Pooling and

Batch normalization).

simpler CNN and gradually add layers to the CNN to check how the performance of the

model changes as the number of layers increases and the model becomes more complex. First,

we implement a CNN with 3 convolutional layers 6.3, the depth of the CNN in this case is 8

(number of multiplication used in implementation of the CNN which is an important limiting

factor when we deal with homomorphic encryption). The accuracy of the trained model is

99.10% which is very close to the same CNN with the ReLU as activation function, 99.15%.

(1) Convolutional layer with 32 filters and filter size 3× 3.

(2) Batch normalization layer.

(3) Convolutional layer with 64 filters and filter size 3× 3.

(4) An average pooling layer.

(5) Batch normalization layer.

(6) Convolutional layer with 128 filters and filter size 3× 3 with polynomial.

(7) An average pooling layer.

(8) Batch normalization layer.

(9) Dropout layer with probability 0.5.

(10) Fully connected layer with 256 outputs with polynomial.

(11) An average pooling layer.

(12) Fully connected layer with 10 outputs.

Next, we add an activation function to the first convolutional layer and the accuracy increases

to 99.16%. We add two more convolutional layers to the CNN and train the new model 6.3.

(1) Convolutional layer with 32 filters and filter size 3× 3.
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(2) Batch normalization layer.

(3) Convolutional layer with 32 filters and filter size 3× 3 with polynomial.

(4) Batch normalization layer.

(5) Convolutional layer with 64 filters and filter size 3× 3.

(6) An average pooling layer.

(7) Batch normalization layer.

(8) Convolutional layer with 64 filters and filter size 3× 3 with polynomial.

(9) An average pooling layer.

(10) Batch normalization layer.

(11) Convolutional layer with 128 filters and filter size 3× 3 with polynomial.

(12) An average pooling layer.

(13) Batch normalization layer.

(14) Dropout layer with probability 0.5.

(15) Fully connected layer with 256 outputs with polynomial.

(16) Fully connected layer with 10 outputs.

The accuracy of the trained model based on 6.3 increases to 99.29%, while the depth goes

up to 14. Then, we add an activation layer after layer 6 and another activation function

after layer 8, the accuracy changes to 99.28%. We go one step further and add an activation

function after each convolutional layer. The accuracy for this CNN is 99.32%. The depth of

the CNN in this case is 19. This number of multiplication is high for HE schemes and makes

the classification over encrypted data inefficient. Finally, we try the same structure as the

deep CNN used in [15] shown in Figure 6.6, to have the same depth as the deep CNN used

in [15].

(1) Convolutional layer with 32 filters and filter size 3× 3.

(2) Batch normalization layer.

(3) Convolutional layer with 32 filters and filter size 3× 3 with polynomial.

(4) An average pooling layer.

(5) Batch normalization layer.
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(6) Convolutional layer with 64 filters and filter size 3× 3 with polynomial.

(7) Batch normalization layer.

(8) Convolutional layer with 64 filters and filter size 3× 3 with polynomial.

(9) Batch normalization layer.

(10) Convolutional layer with 128 filters and filter size 3× 3.

(11) An average pooling layer.

(12) Batch normalization layer.

(13) Convolutional layer with 128 filters and filter size 3× 3 with polynomial.

(14) Fully connected layer with 256 outputs with polynomial.

(15) Fully connected layer with 10 outputs.

The accuracy of this model, shown in Figure 6.6, is 99.52% which is very close to the accuracy

of the same CNN that uses the ReLU function, 99.56%. This is achieved with the depth 14.

Our accuracy is higher than both methods in [22] (98.95%) and [15] (99.30%) over plaintext

for a CNN with the same structure. We also train CNNs with Sigmoid and Tanh as activation

functions. To provide a comparison, we use the CNN model 2 (Figure 6.6) and only change

the activation functions to Sigmoid and Tanh instead of the ReLU function. The results

shown in Table 6.15.

Table 6.15. Performance of the trained CNN using different Activation

Functions and their Replacement Polynomials

Activation Function Original Model Model with Polynomial

ReLU 99.56% 99.52%

Sigmoid 98.85% 98.94%

Tanh 97.27% 98.15%

6.4. Comparison with the State-of-the-Art

In this section, we compare the performance of our solution with previous solutions

based on SMC and HE.
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At first we consider SMB-based technique and evaluate our approximation polynomial

for training and classification scenarios compare to this technique. Our aim is to show that

our approximation method generates low degree polynomials with enough good performance

which make them a good replacement for most common activation functions for both SMC

based and HE based solutions.

Although our approach is based on homomorphic encryption, it does not use bootstrap-

ping due to huge computation cost and instead requires some communications between the

client and the server. One may argue that why not use secure multi-party computation (SMC)

instead of homomorphic encryption. Although our approach requires some communications,

it has several advantages over SMC-based approaches as discussed below.

While privacy-preserving machine learning based on secure multi-party computation

techniques have been studied in the literature, those approaches focus on traditional machine

learning algorithms such as linear regression [91], decision trees [11, 95, 4] and linear classifiers

[30, 11]. There are a few recent works that focus on neural networks and aim to develop

privacy-preserving training [65] and prediction [79, 58, 77].

To the best of our knowledge, secureml [65] is the only work based on SMC techniques

that considers both training and classification phases. The others only focus on classification

phase. In the following, we provide a detail comparison of our proposed approach with these

efforts.

The recent work of secureml and Zhang [65] aims to develop privacy-preserving training

and classification of neural networks using SMC techniques. In their proposed approach

which uses HE as one building block of SMC, a data owner shares the data with two servers

and the two servers run the machine learning algorithm using two-party computation (2PC)

technique. They focus on three different algorithms: linear regression, logistic regression

and neural network. Their protocol is divided into two phases: online and offline. In the

offline phase, they use oblivious transfer (OT) for generating multiplication triplets and in the

online phase, they securely compute the activation function in logistic regression and neural

network training. We only look at their neural network algorithm which is closely related
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Table 6.16. Comparing the number of communications in our approach and

SMC-based approach for different number of hidden layers and different batch

sizes for the input (HL represents for Hidden Layers).

1 HL 2 HLs 3 HLs 4 HLs 5 HLs

Batch Size Ours [65] Ours [65] Ours [65] Ours [65] Ours [65]

282 77 6042 192 12216 452 29940 600 77148 640 129144

576 77 7507 192 15151 452 37095 600 95543 640 159919

1420 77 10452 192 21036 452 51420 600 132348 640 221484

3668 77 12778 192 25714 452 62850 600 161762 640 270706

6144 77 13924 192 28036 452 68548 600 176452 640 295300

to our work. The SMC-based approach of [65] implements two solutions based on linearly

homomorphic encryption (LHE) and oblivious transfer (OT) and results are provided for both

LAN and WAN settings. In their LHE-based solution, the running time for LAN and WAN

is almost the same. However, the accuracy of the model is very low. To improve the accuracy,

higher degree polynomials should be used which will introduce significant computation and

communication overhead. Alternatively, they present an OT-based solution which achieves

better accuracy. However, there is a huge gap between communication overhead of LAN and

WAN settings (e.g., 0.86s for LAN and 43.2s for WAN, see Table 2 from [65]). As mentioned

by the authors, the reason for this gap is the communication overhead since the number of

communications increases drastically as the neural networks become more complex. Since we

assume a client-server model, the WAN setting is more important and we use the number of

communications as one of the metrics for comparison.

To provide a comparison for the number of communications, we look at the approach

proposed in [65]. The number of communications is O(t ·
∑m

i=1(|B| · di−1 + di−1 · di)) where

t, m, |B| and di are the number of iterations, number of layers, size of the batch input

and the number of neurons in layer i relatively (refer to section III-D of [65]). It is not as

straightforward in our approach to calculate the number of communications, because the
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number of communications depends on the level of the noise in the ciphertext. However, it is

possible to estimate the number of communications based on the architecture of the neural

network.

In our approach, when the level of the noise gets close to the threshold, the server

sends the ciphertext to the client and receives the refreshed ciphertext. Therefore, one

communication needed between client and server for reducing noise in each ciphertext. This

ciphertext could be a weight or a variable in the process of the algorithm. Suppose the

network has l layers and di is the number of neurons in layer i. D is the degree of the

polynomial used as the activation function and based on the input parameters for the HE

scheme, the number of allowed multiplication is L. Each iteration (one feed-forward and one

back-propagation) includes (l − 1) + (2D − 1)(l − 2) multiplications (call itM). Therefore,

M
L is the number of communications for each variable to reduce the noise in one iteration.

On the other hand, the number of weights in a network is
∑l−1

i=1 di · di+1 (call it W). We can

estimate the total number of communications for t iterations with this equation: t · ML · W .

In our solution, the number of communications is independent of the batch size whereas in

[65], the size of the batch contributes to the number of communications. Table 6.16 shows

the number of communications for one iteration of our approach and SMC-based approach

for different number of hidden layers and different batch sizes. As shown, there is a huge

difference in the number of communications in our solution and the proposed solution in [65].

Table 6.16 shows the number of communications for one iteration of our approach

and SMC-based approach for different number of hidden layers and different batch sizes. As

shown, there is a huge difference in the number of communications in our solution and the

proposed solution in [65].

In addition to the the number of communications, we compare the amount of data

transferred between the client and the server. When we have simpler neural networks,

SMC-based approach has smaller communication overhead but our approach is much better

when the neural network becomes more complex. For example, for a neural network with 2

hidden layers and batch size of 512, the amount of data transferred in [65] is 12MB whereas
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for our approach, it is 33MB. However, for a neural network with 5 hidden layers and batch

size of 512, the amount of data in [65] is 159MB while in our solution, it is 155MB. If we

use larger batch sizes (i.e., 3668), our approach outperforms [65] in neural networks with

4 hidden layers and higher (151 MB for our approach v.s. 161 MB for [65]). These results

show that [65] has much higher communication overhead compared to our approach and the

main reason is that the number of communications in [65] grows significantly as the neural

networks become more complex.

We implemented a neural network similar to the one used in [65] and performed

experiment using the encrypted MNIST dataset. The results shown in Table 6.17 for one

iteration of training and indicate that the communication has a huge overhead on the

running time. Besides the number of communications, the size of data transferred in each

communication impacts the running time. The size of data in each communication is the same

as the size of a ciphertext. Although we can decrease the size of the ciphertext by decreasing

the value of L, decreasing the value of L results in higher number of communications. Table

6.18 shows the result for L = {5, 10, 20} and different topologies of the neural network for one

iteration of training. As it can be seen, although we have higher number of communications

for L = 5, the whole run time is less than L = 10. The reason is that the size of the ciphertext

is larger when L = 10. To improve the run time, we can run the code in parallel or using

Graphics Processing Unit (GPU) which is part of our future work. Note that we did not use

any parallelization techniques and the performance can be further improved if we we use

parallel implementation.

The main advantage of our approach over SMC-based solutions is the communication

overhead which consists of the number of communications between the client and the server

and the amount of data transferred in the communications. In SMC protocols, we need a

number of communications between the client and the server for each operation whereas in

our approach, the server does not need to communicate with the client unless the amount of

noise reaches a threshold. If the same neural network is implemented using SMC protocols,

the number of communications is much higher compared with the HE based protocols.
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Table 6.17. Training Neural Network over the Encrypted MNIST Data (batch

input size of 192 and L = 20).

#HL(s) Forward(s) Back(s) #C Noise Reduction(s) Total Time(s)

2 2884.31 6301.26 6740 8939.40 10476.29

Table 6.18. Training different Neural Network architectures over the En-

crypted Data (L = {5, 10, 20}).

Topology L Forward(s) Back(s) N/R(s) #C Total Time(s)

[6 1 1 10] 5 9 24 34 164 37

[12 2 2 10] 5 17 46 63 314 67

[24 4 4 10] 5 44 113 157 788 165

[48 8 8 10] 5 134 331 465 2432 488

[93 16 16 10] 5 654 1357 2012 8504 2086

[6 1 1 10] 10 23 40 63 106 71

[12 2 2 10] 10 42 71 113 190 125

[24 4 4 10] 10 105 160 265 448 289

[48 8 8 10] 10 315 464 779 1324 842

[93 16 16 10] 10 1157 1631 2788 4516 2999

[6 1 1 10] 20 28 60 86 34 118

[12 2 2 10] 20 58 105 158 62 204

[24 4 4 10] 20 127 214 322 130 419

[48 8 8 10] 20 608 882 1339 314 1860

[93 16 16 10] 20 1527 1927 3020 874 4469

In terms of the accuracy, the model trained by our proposed approach can reach

95.15% using polynomial as the activation function over plain-text MNIST dataset while the

model trained by the protocol in [65] can only reach 93.4% accuracy. The running time for

privacy preserving prediction in our model is better compared with the solution in [65].
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Another advantage of our approach is the polynomial approximation method we used

for approximating the Sigmoid function. In our approach, the degree of polynomial is 2 or 3

in all cases which allows the implementation to be efficient. However, in [65], the performance

of the model drops considerably when low degree polynomials are used and it requires a

high degree polynomial (i.e. 10) to achieve a reasonable accuracy (refer to Table 1 in [65]).

As discussed before, computing the high degree polynomial over encrypted data is very

inefficient.

The approach in [65] needs two different servers in addition to the client and assumes

that the servers do not collude with each other. This is a weaker security assumption

compared to ours and if the servers collude with each other, the privacy of the client’s data

is not preserved anymore. In addition, to improve the performance of their model, they

proposed a client aided approach where the client operates part of the computation. In this

scenario, if a subset of clients collude with one of the servers, their approach leaks information

about the data from honest clients (see [65], Section V).

Darvish et al. [79] present DeepSecure that enables distributed clients (data owners)

and cloud servers to jointly evaluate a deep learning network on their private assets. It

uses Yao’s Garbled Circuit (GC) protocol to securely perform deep learning. Liu et al. [58]

propose a privacy-preserving classification protocol based on the Oblivious Transfer (OT)

and HE schemes. Riazi et al. [77] propose a solution based on Garbled Circuits (GC) and

Aditive Secret Sharing (SS). They all perform experiments on the MNIST dataset and report

the results.

The accuracy of the models trained with the MNIST dataset in these approaches

is 98.95%, 98.95%, and 99% respectively whereas in our approach, the accuracy is 98.95%.

Table 6.22 shows details of comparison between our solution and previous solutions.

In addition to having a much better performance, our approach has several advantages

over SMC-based approaches. Unlike SMC-based approaches, the structure of the client

does not need to be changed in our approach when the architecture of the neural network

is changed. The only operations in the client side are encryption and decryption and the
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server can perform different machine learning algorithms with the same client. Another

advantage of our approach is that it preserves the privacy of the model compared with the

SMC-based solutions. In SMC-based solutions, the client participates in the computations

and information about the model could possibly leak to the client. For example, the client

can learn information such as the number of layers in the neural network, the structure

of each layer and the activation functions. Although there are some solutions like adding

more dummy layers to the model to mitigate this issue, these will add to the already large

computation cost. On the other hand, in our approach, the only operations in the client

side are encryption and decryption (and possibly division in the case of networks with high

number of layers). Hence, the client cannot learn any information about the structure of the

neural network.

Now, we compare our results with the state-of-the-art privacy-preserving neural

networks based on homomorphic encryption. CryptoNets [22] is the closest work to ours

where it aims to implement neural networks classification using HE.

The main difference between our approach and CryptoNets is that our approach

performs both training and classification phases over encrypted data whereas CryptoNets

only considers the classification phase which is much simpler compared to the training. The

authors of CryptoNets assume that the model is trained based on plain data and then use

this model for classifying encrypted instances. In our approach, the model is built using

encrypted data and the final model is encrypted. When the model is trained using plain data,

the final model is also in plain format and works much faster than an encrypted model.

In order to provide a fair comparison, we change our implementation discussed earlier

and follow the same process as the CryptoNets: train a model based on the plain data and

then classify encrypted instances. In CryptoNets, the authors implement a Convolutional

Neural Network (CNN) with two convolutional layers and two fully connected layers. They

replace the Max Pooling layer with Average Pooling layer and replace the activation function

(i.e., Sigmoid function) with the square function. We design a CNN with the same depth (the

number of multiplication required) and similar structure. we use an average pooling layer
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similar to CryptoNets.

We train the same model with ReLU as the activation function instead of the Sigmoid

function. In this case, the accuracy of the trained model is 99.02% and when we replace

the activation function (i.e., RELU) with polynomial approximation, the accuracy is 98.94%

whereas the accuracy of the similar model in CryptoNets is 98.94%. When we used more

complex neural network, we were able to achieve 99.25% accuracy which is close to the accuracy

of the same model that uses the ReLU function (99.56%) and significant improvement over

CryptoNets. The accuracy of this model with the Sigmoid function as activation function

is 99.10% and when we replace the Sigmoid function with the polynomial approximation,

we achieve 99.15% accuracy. For the Tanh function as the activation function, the original

accuracy is 97.27% and the accuracy with polynomial approximation is 98.15%.

In terms of throughput, our approach significantly outperforms CryptoNets. When

we classify ciphertext with the batch size of 8192 (the same batch size used in CryptoNets),

our approach can make 163840 predictions per hour whereas CryptoNets makes only 51739

predictions per hour. The running time for classifying this batch input size is 570 for

CryptoNets whereas in our approach, the running time is 320 seconds. The size of the data

transferred from the client to the server in CryptoNets is 570Mb and in our approach is

336.7MB. Note that to provide a fair comparison, we use machines with similar configuration

(Intel Xeon E5-1620 CPU running at 3.5GHz with 16GB of RAM in CryptoNets and Intel

Xeon E5-2640, 2.4GHz with 16GB RAM in our case) for the experiments.

To further show applicability of our proposed approach for more complicated network

architectures, we use the CIFAR-10 [46] which is one of the widely used benchmark datasets

for deep learning, to train a neural network and implement it over encrypted data. The

CIFAR-10 dataset consists of 60000 32× 32 colour images categorized in 10 classes, with 6000

images per class. There are 50000 training and 10000 test images. We trained convolutional

neural networks using the CIFAR-10 dataset and achieved 91.5% accuracy with polynomials

as the activation functions whereas the accuracy with the original activation function (ReLU)

is 94.2%. As expected, the CIFAR-10 is much slower compared to the MNIST since both
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Table 6.19. Breakdown of Running Time of CNN Model 6.5) over Encrypted

MNIST Dataset.

Layer Time (seconds)

Conv layer(20 filters) 13.078

Average Pooling Layer 7.630

Conv layer (50 filters) 77.642

Activation layer 9.763

Average Pooling Layer 6.543

2 Fully Connected (500 and 10 neurons) 34.32

Table 6.20. The performance of our solution(s) compare to [22]

Layer Our Approach CrytoNets [22]

Encryption 62.8 122

Communication 320 570

Decryption 3.9 5

the dataset and the CNN are much more complex. We need to note that for CIFAR-10, the

depth of algorithm is high and we cannot implement it over encrypted data.

6.5. Conclusion

Table 6.21 shows the comparison all proposed solutions from privacy wise. We provide

details about each solution addresses the privacy of which component.

Table 6.22 provides details of all solutions, the learning algorithm used in each one,

communication and computation cost, accuracy and the methodology used.
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Solution

[65,
90]

[79,
58,

16]

[77] [38]

[22,
34]

[42,
19]

[96] [69] [1] [82] [73]

Privacy Training X ✗ ✗ ✗ ✗ X X X X X X

Privacy Testing X X X X X X X X X X X

Privacy Network Parameters X X X X X X X X X X X

Privacy Network Architecture ✗ ✗ ✗ ✗ X X ✗ ✗ ✗ ✗ ✗

Privacy Training Data ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Privacy Test Data X X X X X X X X X X X

Batch Input X ✗ X ✗ X X X X X X X

Distributed Data X X X ✗ ✗ ✗ ✗ ✗ X X ✗

Client update X X X X ✗ ✗ ✗ X X X X

Server update X X X X ✗ ✗ ✗ X ✗ ✗ ✗

Client/Server ✗ ✗ ✗ ✗ X X X X X ✗ ✗

Table 6.21. Proposed solutions vs. Privacy concerns.

Table 6.22. Comparison with the state-of-the-art Solutions

Dataset Criteria Ours [22] [79]∗ [65]∗ [16]∗ [58]∗ [77]∗

MNIST

Accuracy 99.25% 99% 99% 93.4% 99% 99% 99%

Time (s) 320 570 6328 759 41779 76349 12095

Data Transfer 436.7MB 595.5MB 6479GB N/A 4104GB 5386GB 86GB

# of P/H 163840 51739 379 738 706 386 1333

*: The values are extrapolated.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter, we wrap up this dissertation via two sections. In first section, we briefly

review this dissertation. In the second section, we suggest future work for privacy preserving MLaaS.

7.1. Conclusion

This dissertation includes these phases:

• Review current solutions for data privacy in machine learning:

In this step we reviewed the current solution for preserving the privacy of data in machine

learning as a service. As we mentioned, three main ideas introduced: differential privacy,

secure multiparty computation and homomorphic encryption. Each solution has pros and

cons. By analyzing each solution and the security model for each solution, we decided to

use HE schemes for solving this problem.

• Analyzing the limitations of HE schemes:

In this phase we analyzed the limitations of HE schemes. For running an algorithm, there

are some challenges that we should solve, for example, lack of division operation and

complex functions such as exponential function. Basically, HE schemes support only two

operations: addition and multiplication, see [12].

• Polynomial approximation for approximating infinite deferentiable functions like sigmoid

function:

we need to approximate such the activation function with polynomials. We developed an

approximation method based on Chebyshev polynomials and adopted it to improve the

approximation method.

• Adopting neural network within limitation of HE schemes:

In this phase we considered all limitations of HE schemes and designed an adopted form of

neural networks over encrypted data.

• Implementing Neural Networks within limitations of HE schemes:

we implement neural networks over encrypted data in a client-server architecture. We

measured the performance of implementation and compared it with similar solution based

on SMC technique.
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• Polynomial approximation for approximating not infinitely differentiable functions like

ReLU function:

In this phase we changed the approach for approximating the ReLU function. our primary

results show that approximating ReLU function with polynomials does not have high

performance.

• Adopting Convolutional Neural Networks within limitations of HE schemes:

In this phase we considered all limitations of HE schemes and used the approximation of

ReLU with high performance.

• Implementing Convolutional Neural Network within limitations of HE schemes:

we implemented CNN over encrypted data and run it for the MNIST dataset. Our results

show that the performance of the model is acceptable, however, there are some new

challenges that we found, for example, running a deep CNN over encrypted data is not

practical with HELib.

• Improving the performance of CNN over encrypted data:

In this phase we found techniques from machine learning to improve the performance of

the algorithm over encrypted data.

At the end, we concluded that training Deep Neural Networks over encrypted data based on the

performance of current HE libraries is not practical. Although, our experiments over plaintext show

that we can train a model which is adapted within the limitations of HE schemes, due to noise

growth during computation, we cannot train models based on the encrypted data. However, for

shallower networks, such the training is possible.

Regarding the classification of encrypted data, our results show that we are able to do it

for enough deep neural networks and convolutional neural networks. Our results also show that

solutions based on HE schemes are more efficient compared to SMC-based solutions in terms of

communication cost.

7.2. Future Work

The first problem is finding the best polynomial with a deterministic algorithm. Current

methods employ heuristic algorithms for finding the best polynomial (with the highest accuracy)

from a set of polynomials. We implemented the code for the MNIST and extracted the results. The

final algorithm gets architecture of the network, error of the polynomials and some other parameters
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and outputs the best polynomial without need for training. The second problem is about training

based on polynomials as the activation functions. The question is Which problems are covered

with polynomials in ML domain? Using polynomials as the activation proposed in papers, see

[59], however, they are no not as general as current activation functions and using them has some

limitations.

The next step is supporting distributed data (vertically/horizontally). The current solution

is for one client and one server. For training based on distributed data among clients, we need

to change the HE scheme. We need a Multi-Key homomorphic encryption. Theoretically, all HE

schemes are Multi-Key HE schemes, however, no implementation has yet been developed (to the best

of our knowledge) for this kind of HE schemes and only theoretical background has been explored.

The last proposed future work is about Hybrid solution based on HE/SMC and HE/DP. Such a

hybrid solution would be an alternative to solution to our approach. It is out scope of this work,

however, it is an interesting approach which has already been explored in some papers, c.f. [38] and

[77].

Finally, let us discuss the design of a framework for adopting a Machine Learning algorithm

within the limitations of HE schemes. Such the framework should have some extra features that

enhance usability.. We list these features and propose our architecture for it. The first function

is that the framework should be independent of the HE library. We suppose that the HE scheme

supports basic functions: key generation, encryption, decryption, noise estimation, addition, and

multiplication over encrypted data. We consider the basic module in the machine learning algorithms

and develop a separate function for each one. For example, basic modules in a neural network are

weighted sum, activation function, measure for calculating error, etc. We consider CPU hardware

in our implementation and develop the framework to support the CPU, however, our framework

should also support Graphical Processing Unit (GPU) and Field-Programmable Gate Array if it is

supported by the HE library. The framework should also support client-server functionality. Figure

7.1 shows a high-level description of our framework.
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Figure 7.1. High Level Architecture of the Framework
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APPENDIX

TRAINING BASED ON POLYNOMIALS AS ACTIVATION FUNCTIONS
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Figure A.1. Case 1 from 6.3, Accuracy vs. Architecture

102



Figure A.2. Case 1 from 6.3, Accuracy vs. Error
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Figure A.3. Case 1 from 6.3, Accuracy vs. Polynomials
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Figure A.4. Case 2 from 6.3, Accuracy vs. Architecture
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Figure A.5. Case 2 from 6.3, Accuracy vs. Error
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Figure A.6. Case 2 from 6.3, Accuracy vs. Plynomials
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Figure A.7. Case 3 from 6.3, Accuracy vs. Architecture
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Figure A.8. Case 3 from 6.3, Accuracy vs. Error
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Figure A.9. Case 3 from 6.3, Accuracy vs. Polynomials
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Figure A.10. Case 4 from 6.3, Accuracy vs. Architecture
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Figure A.11. Case 4 from 6.3, Accuracy vs. Error
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Figure A.12. Case 4 from 6.3, Accuracy vs. Polynomials
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Figure A.13. Case 5 from 6.3, Accuracy vs. Architecture
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Figure A.14. Case 5 from 6.3, Accuracy vs. Error
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Figure A.15. Case 5 from 6.3, Accuracy vs. Polynomials
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Figure A.16. Case 6 from 6.3, Accuracy vs. Architecture
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Figure A.17. Case 6 from 6.3, Accuracy vs. Error
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Figure A.18. Case 6 from 6.3, Accuracy vs. Polynomials
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Figure A.19. Case 7 from 6.3, Accuracy vs. Architecture
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Figure A.20. Case 7 from 6.3, Accuracy vs. Error

121



Figure A.21. Case 7 from 6.3, Accuracy vs. Polynomials
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