
ARTICLE IN PRESS
Information Systems 29 (2004) 343–364
$Recommen

*Correspond

E-mail add

srikant@almad

ibm.com (R. A

0306-4379/$ - se

doi:10.1016/j.is
Privacy preserving mining of association rules$

Alexandre Evfimievskia, Ramakrishnan Srikantb, Rakesh Agrawalb,
Johannes Gehrkea,*

aDepartment of Computer Science, Cornell University, Ithaca, NY 14853, USA
b IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
Abstract

We present a framework for mining association rules from transactions consisting of categorical items where the data

has been randomized to preserve privacy of individual transactions. While it is feasible to recover association rules and

preserve privacy using a straightforward ‘‘uniform’’ randomization, the discovered rules can unfortunately be exploited

to find privacy breaches. We analyze the nature of privacy breaches and propose a class of randomization operators

that are much more effective than uniform randomization in limiting the breaches. We derive formulae for an unbiased

support estimator and its variance, which allow us to recover itemset supports from randomized datasets, and show

how to incorporate these formulae into mining algorithms. Finally, we present experimental results that validate the

algorithm by applying it on real datasets.

r 2003 Published by Elsevier Ltd.
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1. Introduction

The explosive progress in networking, storage,
and processor technologies is resulting in an
unprecedented amount of digitization of informa-
tion. It is estimated that the amount of informa-
tion in the world is doubling every 20 months [1].
In concert with this dramatic and escalating
increase in digital data, concerns about privacy
of personal information have emerged globally
[1–4]. Privacy issues are further exacerbated now
that the internet makes it easy for the new data to
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be automatically collected and added to databases
[5–10]. The concerns over massive collection of
data are naturally extending to analytic tools
applied to data. Data mining, with its promise to
efficiently discover valuable, nonobvious informa-
tion from large databases, is particularly vulner-
able to misuse [1,11–13].
An interesting new direction for data mining

research is the development of techniques that
incorporate privacy concerns [14]. The following
question was raised in [15]: since the primary task
in data mining is the development of models about
aggregated data, can we develop accurate models
without access to precise information in individual
data records? Specifically, they studied the techni-
cal feasibility of building accurate classification
models using training data in which the sensitive
numeric values in a user’s record have been
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randomized so that the true values cannot be
estimated with sufficient precision. Randomization
is done using the statistical method of value
distortion [16] that returns a value xi þ r instead
of xi where r is a random value drawn from some
distribution. They proposed a Bayesian procedure
for correcting perturbed distributions and pre-
sented three algorithms for building accurate
decision trees [17,18] that rely on reconstructed
distributions.1 In [20], the authors derived an
Expectation Maximization (EM) algorithm for
reconstructing distributions and proved that the
EM algorithm converged to the maximum like-
lihood estimate of the original distribution based
on the perturbed data. They also pointed out that
the EM algorithm was in fact identical to the
Bayesian reconstruction procedure in [15], except
for an approximation (partitioning values into
intervals) that was made by the latter.

1.1. Contributions of this paper

We continue the investigation of the use of
randomization in developing privacy preserving
data mining techniques, and extend this line of
inquiry along two dimensions:

* categorical data instead of numerical data, and
* association rule mining [21] instead of classifi-

cation.

We will focus on the task of finding frequent
itemsets in association rule mining, which we
briefly review next.

Definition 1. Suppose we have a set I of n items:
I ¼ fa1; a2;y; ang: Let T be a sequence of N

transactions T ¼ ðt1; t2;y; tNÞ where each trans-
action ti is a subset of I : Given an itemset ACI ;
its support suppT ðAÞ is defined as

suppT ðAÞ :¼
#ftAT j ADtg

N
: ð1Þ

An itemset ACI is called frequent in T if
suppT ðAÞXt; where t is a user-defined parameter.
1Once we have reconstructed distributions, it is straightfor-

ward to build classifiers that assume independence between

attributes, such as Naive Bayes [19].
We consider the following setting. Suppose we
have a server and many clients. Each client has a
set of items (e.g., books or web pages or TV
programs). The clients want the server to gather
statistical information about associations among
items, perhaps in order to provide recommenda-
tions to the clients. However, the clients do not
want the server to know with certainty who has
got which items. When a client sends its set of
items to the server, it modifies the set according to
some specific randomization policy. The server
then gathers statistical information from the
modified sets of items (transactions) and recovers
from it the actual associations.
The following are the important results con-

tained in this paper:

* In Section 2, we show that a straightforward
uniform randomization leads to privacy
breaches.

* We formally model and define privacy breaches
in Section 3.

* We present a class of randomization operators
in Section 4 that can be tuned for different
tradeoffs between discoverability and privacy
breaches. We derive formulae for the effect of
randomization on support, and show how to
recover the original support of an association
from the randomized data.

* An estimator for the confidence of association
rules is given as well, and its precision evaluated
(see Section 4.6).

* We present experimental results on two real
datasets in Section 5, as well as graphs showing
the relationship between discoverability, priv-
acy, and data characteristics.

1.2. Related work

There has been extensive research in the area of
statistical databases motivated by the desire to
provide statistical information (sum, count, aver-
age, maximum, minimum, pth percentile, etc.)
without compromising sensitive information about
individuals (see surveys in [22,23]). The proposed
techniques can be broadly classified into query
restriction and data perturbation. The query
restriction family includes restricting the size of
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query result, controlling the overlap amongst
successive queries, keeping audit trail of all
answered queries and constantly checking for
possible compromise, suppression of data cells of
small size, and clustering entities into mutually
exclusive atomic populations. The perturbation
family includes swapping values between records,
replacing the original database by a sample from
the same distribution, adding noise to the values in
the database, adding noise to the results of a
query, and sampling the result of a query. There
are negative results showing that the proposed
techniques cannot satisfy the conflicting objectives
of providing high quality statistics and at the same
time prevent exact or partial disclosure of indivi-
dual information [22].
The most relevant work from the statistical

database literature is the work by Warner [24],
where he developed the ‘‘randomized response’’
method for survey results. The method deals with
a single boolean attribute (e.g., drug addiction).
The value of the attribute is retained with
probability p and flipped with probability 1� p:
Warner then derived equations for estimating the
true value of queries such as COUNT (Age = 42
& Drug Addiction = Yes). The approach we
present in Section 2 can be viewed as a general-
ization of Warner’s idea.
Another related work is [25], where they

consider the problem of mining association rules
over data that is vertically partitioned across two
sources, i.e., for each transaction, some of the
items are in one source, and the rest in the other
source. They use multi-party computation techni-
ques for scalar products to be able to compute the
support of an itemset (when the two subsets that
together form the itemset are in different sources),
without either source revealing exactly which
transactions support a subset of the itemset. In
contrast, we focus on preserving privacy when the
data is horizontally partitioned, i.e., we want to
preserve privacy for individual transactions, rather
than between two data sources that each have a
vertical slice.
Related, but not directly relevant to our current

work, is the problem of inducing decision trees
over horizontally partitioned training data origi-
nating from sources who do not trust each other.
In [12], each source first builds a local decision tree
over its true data, and then swaps values amongst
records in a leaf node of the tree to generate
randomized training data. Another approach,
presented in [26], does not use randomization,
but makes use of cryptographic oblivious func-
tions during tree construction to preserve privacy
of two data sources.
This publication extends our conference paper

[27]. At the same time, independently from our
work, there was a paper [28] that considered
another algorithm for randomizing transactions
for privacy preserving mining of association rules.
Some additional research in the framework of this
paper is published in [29].
2. Uniform randomization

A straightforward approach for randomizing
transactions would be to generalize Warner’s
‘‘randomized response’’ method, described in
Section 1.2. Before sending a transaction to the
server, the client takes each item and with
probability p replaces it by a new item not
originally present in this transaction. Let us call
this process uniform randomization.
Estimating true (nonrandomized) support of an

itemset is nontrivial even for uniform randomiza-
tion. Randomized support of, say, a 3-itemset
depends not only on its true support, but also on
the supports of its subsets. Indeed, it is much more
likely that only one or two of the items are inserted
by chance than all three. So, almost all ‘‘false’’
occurrences of the itemset are due to (and depend
on) high subset supports. This requires estimating
the supports of all subsets simultaneously. (The
algorithm is similar to the algorithm presented in
Section 4 for select-a-size randomization, and the
formulae from Statements 1, 3 and 4 apply here as
well.) For large values of p; most of the items in
most randomized transactions will be ‘‘false’’, so
we seem to have obtained a reasonable privacy
protection. Also, if there are enough clients and
transactions, then frequent itemsets will still be
‘‘visible’’, though less frequent than originally.
For instance, after uniform randomization with
p ¼ 80%; an itemset of 3 items that originally
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occurred in 1% transactions will occur in about
1% 	 ð0:2Þ3 ¼ 0:008% transactions, which is about
80 transactions per each million. The opposite
effect of ‘‘false’’ itemsets becoming more frequent
is comparatively negligible if there are many
possible items: for 10,000 items, the probability
that, say, 10 randomly inserted items contain a
given 3-itemset is less than 10�7%:
Unfortunately, this randomization has a pro-

blem. If we know that our 3-itemset escapes
randomization in 80 per million transactions, and
that it is unlikely to occur even once because of
randomization, then every time we see it in a
randomized transaction we know with near
certainty of its presence in the nonrandomized
transaction. With even more certainty we will
know that at least one item from this itemset is
‘‘true’’: as we have mentioned, a chance
insertion of only one or two of the items is much
more likely than of all three. In this case we can
say that a privacy breach has occurred. Although
privacy is preserved on average, personal informa-
tion leaks through uniform randomization for
some fraction of transactions, despite the high
value of p:
The rest of the paper is devoted to defining a

framework for studying privacy breaches and
developing techniques for finding frequent itemsets
while avoiding breaches.
3. Privacy breaches

Definition 2. Let ðO;F ;PÞ be a probability space

of elementary events over some set O and s-
algebra F : A randomization operator is a measur-
able function

R : O
 fall possible Tg-fall possible Tg

that randomly transforms a sequence of N

transactions into a (usually) different sequence of
N transactions. Given a sequence of N transac-
tions T ; we shall write T 0 ¼ RðTÞ; where T is
constant and RðTÞ is a random variable.

Definition 3. Suppose that a nonrandomized
sequence T is drawn from some known distribu-
tion, and tiAT is the ith transaction in T : A
general privacy breach of level r with respect to a
property PðtiÞ occurs if

(T 0 : P½PðtiÞ j RðTÞ ¼ T 0
Xr:

We say that a property QðT 0Þ causes a privacy

breach of level r with respect to PðtiÞ if

P½PðtiÞ j QðRðTÞÞ
Xr:

When we define privacy breaches, we think of

the prior distribution of transactions as known, so
that it makes sense to speak about a posterior
probability of a property PðtiÞ versus prior. In
practice, however, we do not know the prior
distribution. In fact, there is no prior distribution;
the transactions are not randomly generated.
However, modeling transactions as being ran-
domly generated from a prior distribution allows
us to cleanly define privacy breaches.
Consider a situation when, for some transaction

tiAT ; an itemset ADI and an item aAA; the
property ‘‘ADt0iAT 0’’ causes a privacy breach
w.r.t. the property ‘‘aAti:’’ In other words, the
presence of A in a randomized transaction makes
it likely that item a is present in the corresponding
nonrandomized transaction.

Definition 4. We say that itemset A causes a

privacy breach of level r if for some item aAA

and some iA1yN we have P½aAti j ADt0i
Xr:

We will focus on controlling the class of privacy
breaches given by Definition 4. Thus we ignore the
effect of other information the server obtains from
a randomized transaction, such as which items the
randomized transaction does not contain, or the
randomized transaction size. We also do not
attempt to control breaches that occur because
the server knows other randomized transactions,
or some other information about items and clients
besides the transactions. For example, the server
may know some geographical or demographic
data about the clients. Finally, in Definition 4, we
only considered positive breaches, i.e., we know
with high probability that an item was present in
the original transaction. In some scenarios, being
confident that an item was not present in the
original transaction may also be considered a
privacy breach.
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4. Algorithm

‘‘Where does a wise man hide a leaf? In the
forest. But what does he do if there is no
forest?’’ ... ‘‘He grows a forest to hide it in.’’—
G.K. Chesterton, ‘‘The Sign of the Broken
Sword’’

The intuition of breach control is quite simple:
in addition to replacing some of the items, we shall
insert so many ‘‘false’’ items into a transaction that
one is as likely to see a ‘‘false’’ itemset as a ‘‘true’’
one.
4.1. Randomization operators

Definition 5. We call randomization R a per-

transaction randomization if, for T ¼

ðt1; t2;y; tNÞ; we can represent RðTÞ as

Rðt1; t2;y; tN Þ ¼ ðRð1; t1Þ;Rð2; t2Þ;y;RðN; tN ÞÞ;

where Rði; tÞ are independent random variables
whose distributions depend only on t (and not on
i). We shall write t0i ¼ Rði; tiÞ ¼ RðtiÞ:

Definition 6. A randomization operator R is called
item-invariant if, for every transaction sequence T

and for every permutation p : I-I of items, the
distribution of p�1RðpTÞ is the same as of RðTÞ:
Here pT means the application of p to all items in
all transactions of T at once.

Definition 7. A select-a-size randomization opera-
tor has the following parameters, for each possible
input transaction size m:

* Default probability of an item (also called
randomization level) rmAð0; 1Þ;

* Transaction subset size selection probabilities
pm½0
; pm½1
;y; pm½m
; such that every pm½ j
X0
and

pm½0
 þ pm½1
 þ?þ pm½m
 ¼ 1:
Given a sequence of transactions T ¼
ðt1; t2;y; tNÞ; the operator takes each transaction
ti independently and proceeds as follows to obtain
transaction t0i ðm ¼ jti jÞ:
(1)
 The operator selects an integer j at random
from the set f0; 1;y;mg so that
P½ j is selected
 ¼ pm½ j
:
(2)
 It selects j items from ti; uniformly at random
(without replacement). These items, and no
other items of ti; are placed into t0i:
(3)
 It considers each item aeti in turn and tosses
a coin with probability rm of ‘‘heads’’ and 1�
rm of ‘‘tails’’. All those items for which the
coin faces ‘‘heads’’ are added to t0i:
Remark 4.1. Both uniform (Section 2) and
select-a-size operators are per-transaction because
they apply the same randomization algorithm to
each transaction independently. They are also
item-invariant since they do not use any item-
specific information (if we rename or reorder
the items, the outcome probabilities will not be
affected).

Definition 8. A cut-and-paste randomization op-
erator is a special case of a select-a-size operator
(and which we shall actually test on datasets). For
each possible input transaction size m; it has two
parameters: rmAð0; 1Þ (randomization level) and
an integer Km > 0 (the cutoff). The operator takes
each input transaction ti independently and
proceeds as follows to obtain transaction t0i (here
m ¼ jti jÞ:
(1)
 It chooses an integer j uniformly at random
between 0 and Km; if j > m; it sets j ¼ m:
(2)
 The operator selects j items out of ti uniformly
at random (without replacement). These items
are placed into t0i:
(3)
 Each other item (including the rest of ti) is
placed into t0i with probability rm; indepen-
dently.
Remark 4.2. For any m; a cut-and-paste operator
has only two parameters, rm and Km; to play with;
moreover, Km is an integer. Because it is easy to
find optimal values for these parameters (Section
4.4), we chose to test this operator, leaving open
the problem of optimizing the m parameters of the
‘‘unabridged’’ select-a-size. To see that cut-and-
paste is a case of select-a-size, let us write down the
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formulae for the pm½ j
’s:

pm½ j
 ¼
XminfK ;jg

i¼0

m � i

j � i

 !
r j�ið1� rÞm�j



1� m=ðK þ 1Þ if i ¼ m and ioK ;

1=ðK þ 1Þ otherwise:

(

Now let us give one example of a randomization
operator that is not a per-transaction randomiza-
tion, because it uses the knowledge of several
transactions per each randomized transaction.

Example 4.1. The mixing randomization operator
has one integer parameter KX2 and one real-
valued parameter pAð0; 1Þ: Given a sequence of
transactions T ¼ ðt1; t2;y; tNÞ; the operator takes
each transaction ti independently and proceeds as
follows to obtain transaction t0i:
(1)
 Other than ti; pick K � 1 more transactions
(with replacement) from T and union the K

transactions as sets of items. Let t00i be this
union.
(2)
 Consider each item aAt00i in turn and toss a
coin with probability p of ‘‘heads’’ and 1� p

of ‘‘tails’’.

(3)
 All those items for which the coin faces ‘‘tails’’

are removed from the transaction. The re-
maining items constitute the randomized
transaction.
For the purpose of privacy-preserving data
mining, it is natural to focus mostly on per-
transaction randomizations, since they are the
easiest and safest to implement. Indeed, a per-
transaction randomization does not require the
users (who submit randomized transactions to the
server) to communicate with each other in any way,
nor to exchange random bits. On the contrary,
implementing mixing randomization, for example,
requires to organize an exchange of nonrando-
mized transactions between users, which opens an
opportunity for cheating or eavesdropping.

4.2. Effect of randomization on support

Let T be a sequence of transactions of length N ;
and let A be some subset of items (that is, ADI ).
Suppose we randomize T and get T 0 ¼ RðTÞ: The
support s0 ¼ suppT 0

ðAÞ of A for T 0 is a random
variable that depends on the outcome of
randomization. Here we are going to determine
the distribution of s0; under the assumption of
having a per-transaction and item-invariant ran-
domization.

Definition 9. The fraction of the transactions in T

that have intersection with A of size l among all
transactions in T is called partial support of A for
intersection size l:

suppT
l ðAÞ :¼

#ftAT j #ðA-tÞ ¼ lg
N

: ð2Þ
It is easy to see that suppT ðAÞ ¼ suppT
k ðAÞ for

k ¼ jAj; and thatXk

l¼0

suppT
l ðAÞ ¼ 1

since those transactions in T that do not intersect
A at all are covered in suppT

0 ðAÞ:

Definition 10. Suppose that our randomization
operator is both per-transaction and item-invar-
iant. Consider a transaction t of size m and an
itemset ACI of size k: After randomization,
transaction t becomes t0: We define

pm
k ½l-l0
 ¼ p½l-l0


:¼P½#ðt0-AÞ ¼ l0 j #ðt-AÞ ¼ l 
: ð3Þ

Here both l and l0 must be integers in f0; 1;y; kg:

Remark 4.3. The value of pm
k ½l-l0
 is well-defined

(does not depend on any other information about t

and A; or other transactions in T and T 0 besides t

and t0). Indeed, because we have a per-transaction
randomization, the distribution of t0 depends
neither on other transactions in T besides t; nor
on their randomized outcomes. If there were other
t1 and B with the same ðm; k; lÞ; but a different
probability (3) for the same l0; we could consider a
permutation p of I such that pt ¼ t1 and pA ¼ B;
the application of p or of p�1 would preserve
intersection sizes l and l0: By item-invariance we
have

P½#ðt0-AÞ ¼ l0
 ¼ P½#ðp�1RðptÞ-AÞ ¼ l0
;
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but by the choice of p we also have

P½#ðp�1RðptÞ-AÞ ¼ l0


¼ P½#ðp�1Rðt1Þ-p�1BÞ ¼ l0


¼ P½#ðt01-BÞ ¼ l0
aP½#ðt0-AÞ ¼ l0
;

a contradiction.

Statement 1. Suppose that our randomization

operator is both per-transaction and item-invariant.
Suppose also that all the N transactions in T have

the same size m: Then, for a given subset ADI ;
jAj ¼ k; the random vector

N 	 ðs00; s
0
1;y; s0kÞ; where s0l :¼ suppT 0

l ðAÞ ð4Þ

is a sum of k þ 1 independent random vectors, each

having a multinomial distribution. Its expected value

is given by

Eðs00; s
0
1;y; s0kÞ

T ¼ P 	 ðs0; s1;y; skÞ
T ð5Þ

where P is the ðk þ 1Þ 
 ðk þ 1Þ matrix with

elements Pl0l ¼ p½l-l0
; and the covariance matrix

is given by

Covðs00; s
0
1;y; s0kÞ

T ¼
1

N
	
Xk

l¼0

slD½l 
 ð6Þ

where each D½l
 is a ðk þ 1Þ 
 ðk þ 1Þ matrix with

elements

D½l
ij ¼ p½l-i
 	 di¼j � p½l-i
 	 p½l-j
: ð7Þ

Here sl denotes suppT
l ðAÞ; and the T over vectors

denotes the transpose operation; di¼j is one if i ¼ j

and zero otherwise.

Proof. See Appendix A.1.

Remark 4.4. In Statement 1 we have assumed that
all transactions in T have the same size. If this is
not so, we have to consider each transaction size
separately and then use per-transaction indepen-
dence.

Statement 2. For a select-a-size randomization with

randomization level r and size selection probabilities
fpm½ j
g; we have

pm
k ½l-l0
 ¼

Xm

j¼0

pm½ j
 	
Xminfj;l;l0g

q¼maxf0;jþl�m;lþl0�kg

l
q

� �
m�l
j�q

� �
m
j

� �



k � l

l0 � q

 !
rl0�qð1� rÞk�l�l0þq: ð8Þ

Proof. See Appendix A.2.

4.3. Support recovery

Let us assume that all transactions in T have the
same size m; and let us denote

~ss :¼ ðs0; s1;y; skÞ
T; ~ss0 :¼ ðs0; s1;y; skÞ

T;

then, according to (5), we have

E~ss0 ¼ P 	~ss: ð9Þ

Denote Q ¼ P�1 (assume that it exists) and
multiply both sides of (9) by Q:

~ss ¼ Q 	 E~ss0 ¼ EQ 	~ss0:

We have thus obtained an unbiased estimator for
the original partial supports given randomized
partial supports:

~ssest :¼ Q 	~ss0: ð10Þ

Using (6), we can compute the covariance matrix
of ~ssest:

Cov~ssest ¼CovðQ 	~ss0Þ ¼ QðCov~ss0ÞQT

¼
1

N
	
Xk

l¼0

slQD½l
QT: ð11Þ

If we want to estimate this covariance matrix by
looking only at randomized data, we may use ~ssest
instead of ~ss in (11):

ðCov~ssestÞest ¼
1

N
	
Xk

l¼0

ð~ssestÞlQD½l
QT:

This estimator is also unbiased:

EðCov~ssestÞest ¼
1

N
	
Xk

l¼0

ðE ~ssestÞlQD½l
QT ¼ Cov~ssest:

In practice, we want only the kth coordinate of ~ss;
that is, the support s ¼ suppT ðAÞ of our itemset A
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in T :We denote by *s the kth coordinate of~ssest; and
use *s to estimate s: Let us compute simple formulae
for *s; its variance and the unbiased estimator of its
variance. Denote

q½l’l0
 :¼ Qll 0 :

Statement 3.

*s ¼
Xk

l0¼0

s0l0 	 q½k’l0
;

Var *s ¼
1

N

Xk

l¼0

sl

Xk

l0¼0

p½l-l0
q½k’l0
2 � dl¼k

 !
;

ðVar *sÞest ¼
1

N

Xk

l0¼0

s0l0 ðq½k’l0
2 � q½k’l0
Þ:

Proof. See Appendix A.3.
2Here I denotes all transactions of size m:
We conclude this subsection by giving a linear
coordinate transformation in which the matrix P

from Statement 1 becomes triangular. (We use this
transformation for privacy breach analysis in
Section 4.4.) The coordinates after the transforma-
tion have a combinatorial meaning, as given in the
following definition.

Definition 11. Suppose we have a transaction
sequence T and an itemset ADI : Given an integer
l between 0 and k ¼ jAj; consider all subsets CDA

of size l: The sum of supports of all these subsets is
called the cumulative support for A of order l and is
denoted as follows:

Sl ¼ SlðA;TÞ :¼
X

CDA; jCj¼l

suppT ðCÞ;

~SS :¼ ðS0;S1;y;SkÞ
T: ð12Þ

Statement 4. The vector ~SS of cumulative supports is

a linear transformation of the vector ~ss of partial

supports, namely,

Sl ¼
Xk

j¼l

j

l

 !
sj and sl ¼

Xk

j¼l

ð � 1Þ j�l j

l

 !
Sj;

ð13Þ
in the ~SS and ~SS 0 space (instead of ~ss and ~ss0) matrix P

is lower triangular.

Proof. See Appendix A.4.

4.4. Limiting privacy breaches

Here we determine how privacy depends on
randomization. We shall use Definition 4 and
assume a per-transaction and item-invariant ran-
domization.
Consider some itemset ADI and some item

aAA; fix a transaction size m:We shall assume that
m is known to the server, so that we do not have to
combine probabilities for different nonrandomized
sizes. Assume also that a partial support sl ¼
suppT

l ðAÞ approximates the corresponding prior
probability P½#ðt-AÞ ¼ l
:2 Suppose we know the
following prior probabilities:

sþl :¼ P½#ðt-AÞ ¼ l; aAt
;

s�l :¼ P½#ðt-AÞ ¼ l; aet
:

Notice that sl ¼ sþl þ s�l simply because

#ðt-AÞ ¼ l 3
aAt & #ðt-AÞ ¼ l; or

aet & #ðt-AÞ ¼ l:

"

Let us use these priors and compute the posterior
probability of aAt given ADt0:

P½aAt j ADt0
 ¼
P½aAt;ADt0


P½ADt0


¼
Pk

l¼1 P½#ðt-AÞ ¼ l; aAt;ADt0
Pk
l¼0 sl 	 p½l-k


¼
Pk

l¼1 P½#ðt-AÞ ¼ l; aAt
 	 p½l-k
Pk
l¼0 sl 	 p½l-k


¼

Pk
l¼1 sþl 	 p½l-k
Pk
l¼0 sl 	 p½l-k


:

Thus, in order to prevent privacy breaches of level
50% as defined in Definition 4, we need to ensure
that alwaysXk

l¼1

sþl 	 p½l-k
o0:5 	
Xk

l¼0

sl 	 p½l-k
: ð14Þ
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The problem is that we have to randomize the data
before we know any supports. Also, we may not
have the luxury of setting ‘‘oversafe’’ randomiza-
tion parameters because then we may not have
enough data to perform a reasonably accurate
support recovery. One way to achieve a compro-
mise is to:
(1)
 Estimate maximum possible support
smaxðk;mÞ of a k-itemset in the transactions
of given size m; for different k and m;
(2)
 Given the maximum supports, find values for
sl and sþl that are most likely to cause a
privacy breach;
(3)
 Make randomization just strong enough to
prevent such a privacy breach.
3The main class of algorithms where this would not apply are

those that find only maximal frequent itemsets, e.g., [31].

However, randomization precludes finding very long itemsets,

so this is a moot point.
Since sþ0 ¼ 0; the most privacy-challenging situa-
tions occur when s0 is small, that is, when our
itemset A and its subsets are frequent.
In our experiments we consider a privacy-

challenging k-itemset A such that, for every l > 0;
all its subsets of size l have the maximum possible
support smaxðl;mÞ: The partial supports for such a
test-itemset are computed from the cumulative
supports Sl using Statement 4. By it and by (12),
we have ðl > 0Þ

sl ¼
Xk

j¼l

ð�1Þ j�l j

l

 !
Sj ; Sj ¼

k

j

 !
smaxðj;mÞ

ð15Þ

since there are k
j

� �
j-subsets in A: The values of sþl

follow if we note that all l-subsets of A; with a and
without, appear equally frequently as t-A:

sþl :¼P½#ðt-AÞ ¼ l; aAt


¼P½aAt j #ðt-AÞ ¼ l 
 	 sl ¼ l=k 	 sl :

While one can construct cases that are even more
privacy-challenging (for example, if aAA occurs in
a transaction every time any nonempty subset of A

does), we found the above model (15) and (16) to
be sufficiently pessimistic on our datasets.
We can now use these formulae to obtain cut-

and-paste randomization parameters rm and Km as
follows. Given m; consider all cutoffs from Km ¼ 3
to some Kmax (usually this Kmax equals the
maximum transaction size) and determine the
smallest randomization levels rmðKmÞ that satisfy
(14). Then select ðKm;rmÞ that gives the best
discoverability (by computing the lowest discover-
able supports, see Section 5.1).

4.5. Discovering associations

We show how to discover itemsets with high
true support given a set of randomized transac-
tions. Although we use the Apriori algorithm [30]
to make the ideas concrete, the modifications
directly apply to any algorithm that uses Apriori
candidate generation, i.e., to most current associa-
tion discovery algorithms.3 The key lattice prop-

erty of supports used by Apriori is that, for any
two itemsets ADB; the true support of A is equal
to or larger than the true support of B: A
simplified version of Apriori, given a (nonrando-
mized) transactions file and a minimum support
smin; works as follows:

(1) Let k ¼ 1; let ‘‘candidate sets’’ be all single
items. Repeat the following until no candidate sets
are left:
(a)
 Read the data file and compute the supports
of all candidate sets;
(b)
 Discard all candidate sets whose support is
below smin;
(c)
 Save the remaining candidate sets for output;

(d)
 Form all possible ðk þ 1Þ-itemsets such that all

their k-subsets are among the remaining
candidates. Let these itemsets be the new
candidate sets.
(e)
 Let k ¼ k þ 1:
(2) Output all the saved itemsets.

It is (conceptually) straightforward to modify
this algorithm so that now it reads the randomized
dataset, computes partial supports of all candidate
sets (for all nonrandomized transaction sizes) and
recovers their predicted supports and sigmas using
the formulae from Statement 3. However, for the
predicted supports the lattice property is no longer
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true. It is quite likely that for an itemset that is
slightly above minimum support and whose
predicted support is also above minimum support,
that one of its subsets will have predicted support
below minimum support. So if we discard all
candidates below minimum support for the
purpose of candidate generation, we will miss
many (perhaps even the majority) of the longer
frequent itemsets. Hence, for candidate genera-
tion, we discard only those candidates whose
predicted support is ‘‘significantly’’ smaller than
smin; where significance is measured by means of
predicted sigmas. Here is the modified version of
Apriori:

(1) Let k ¼ 1; let ‘‘candidate sets’’ be all single-
item sets. Repeat the following until k is too large
for support recovery (or until no candidate sets are
left):
(a)
4 I

alwa

trans
Read the randomized data file and compute
the partial supports of all candidate sets,
separately for each nonrandomized transac-
tion size4;
(b)
 Recover the predicted supports and sigmas for
the candidate sets;
(c)
 Discard every candidate set whose support is
below its candidate limit;
(d)
 Save for output only those candidate sets
whose predicted support is at least smin;
(e)
 Form all possible ðk þ 1Þ-itemsets such that all
their k-subsets are among the remaining
candidates. Let these itemsets be the new
candidate sets.
(f)
 Let k ¼ k þ 1:
(2) Output all the saved itemsets.

We tried smin � s and smin � 2s as the candidate
limit, and found that the former does a little better
than the latter. It prunes more itemsets and
therefore makes the algorithm work faster, and,
when it discards a subset of an itemset with high
predicted support, it usually turns out that the true
support of this itemset is not as high.
n our experiments, the nonrandomized transaction size is

ys known and included as a field into every randomized

action.
4.6. Estimating confidence of association rules

Now we would like to see what happens if the
support estimators from a randomized dataset are
used for the computation of confidence for
association rules.

Definition 12. Consider two disjoint itemsets A

and B; the confidence of the association rule
‘‘A ) B’’ is defined as

confT ðA ) BÞ :¼
suppT ðA,BÞ
suppT ðAÞ

: ð16Þ

Perhaps the simplest way to estimate confT ðA )
BÞ is by replacing the actual supports in 16 with
the predicted supports estimated from a rando-
mized dataset as described in Section 4.3. Denote
by X the unbiased estimator for the support of
A,B; and by Y the unbiased estimator for the
support of A; then the actual confidence
confT ðA ) BÞ equals EX=EY ; and the confidence
estimator ðconfT ðA ) BÞÞest equals X=Y : Mathe-
matical expectation of this estimator does not
behave well, because Y may sometimes fall too
close to zero (though it happens rarely if A is a
frequent itemset). However, one can compute the
probability p ¼ f ðdÞ that the actual confidence is
within a given distance d > 0 from the estimator.
Below we shall give the formulae needed for
computing f ðdÞ:

Let us denote

a :¼
EX

EY
� d; b :¼

EX

EY
þ d:

Then the probability f ðdÞ that our estimator X=Y

gets within d from ðEX=EY Þ is

f ðdÞ :¼P
X

Y
� dp

EX

EY
p

X

Y
þ d

	 

¼P½apX=Ypb


¼P½aYpXpbY ;Y > 0


þ P½bYpXpaY ;Yo0
:

For simplicity, we assume that the distribution of
ðX ;Y Þ is a two-dimensional Gaussian. The
assumption seems justified because both X and
Y are linear combinations of multinomials
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(see Statement 1). In this case,

f ðdÞ ¼
Z þN

�N

Z by

ay

1

2p jSj1=2

������

 e

�1
2

x�EX
y�EY

� �T

S�1 x�EX
y�EY

� �
dx

������ dy;

where S is the 2
 2 matrix

S :¼
Var X CovðX ;Y Þ

CovðX ;Y Þ Var Y

 !
:

The formulae for Var X and Var Y are given in
Statement 3. The computation of CovðX ;Y Þ is a
little more involved; intuitively, it requires to do
Sections 4.2 and 4.3 for two itemsets A and B

simultaneously. Let us start with a notion of ‘‘two-
set partial supports.’’

Definition 13. The two-set partial supports for
disjoint itemsets A and B are defined as follows:

slA;lB ¼ suppT
lA;lB

ðA;BÞ :¼

# tAT :
jt-Aj ¼ lA;

jt-Bj ¼ lB

( )
N

:

Here lA ¼ 0; 1;y; jAj and lB ¼ 0; 1;y; jBj:

The vector of two-set partial supports is denoted
by ~ss0II and has ðjAj þ 1ÞðjBj þ 1Þ coordinates that
sum up to 1. The vector of two-set partial supports
for the randomized dataset is denoted by ~ss0II:
Analogously to (3), there is a two-set version of
p½l-l0
:

pm
jAj;jBj

lA-l0A

lB-l0B

" #
:¼ P

jt0-Aj ¼ l0A

jt0-Bj ¼ l0B
:
jt-Aj ¼ lA

jt-Bj ¼ lB

" #
:

For a per-transaction, item-invariant randomi-
zation operator, this probability depends only on
m; jAj; jBj; lA; lB; l0A; and l0B by the same argument
as for p½l-l0
 (see Remark 4.3). If our randomiza-
tion operator is a select-a-size with parameters r
and pm½i
 (see Definition 7), then

pm
jAj;jBj

lA-l0A

lB-l0B

" #

¼
Xm�lA�lB

i¼0

XjApminflA;l0Ag
jBpminflB;l0Bg

jA¼maxf0;lAþl0
A
�jAjg

jB¼maxf0;lBþl0
B
�jBjg

pm½i þ jA þ jB




m

i þ jA þ jB

 !�1
lA

jA

 !
lB

jB

 !



m � lA � lB

i

 !



jAj � lA

l0A � jA

 !
jBj � lB

l0B � jB

 !


 rl0
A
þl0

B
�jA�jB ð1� rÞjAjþjBj�lA�lB�l0

A
�l0

B
þjAþjB :

We denote the ðjAj þ 1ÞðjBj þ 1Þ 
 ðjAj þ 1ÞðjBj þ
1Þ matrix of these two set probabilities by PII; and
its inverse P�1

II by QII: Then, analogously to
Statement 1, we have

E~ss0II ¼PII~ssII; Cov~ss0II ¼
1

N



X

0plApjAj
0plBpjBj

slA;lB DII½lA; lB
;

where

DII½lA; lB

iA;iB
jA;jB

¼ p
lA-iA

lB-iB

" #
	 diA¼jA

iB¼jB

� p
lA-iA

lB-iB

" #
	 p

lA-jA

lB-jB

" #
:

Now we define the two-set partial support
estimator and compute its covariance matrix:

ð~ssIIÞest ¼ QII~ss
0
II;

Covð~ssIIÞest ¼
1

N
	
X

0plApjAj
0plBpjBj

slA;lB QIIDII½lA; lB
QT
II: ð17Þ

The ‘‘one-set’’ partial support estimators for sets
A,B and A can be obtained from ð~ssIIÞest by linear
combination of its coordinates. In particular,
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X and Y can be computed as follows:

X ¼ ð~ssIIÞest½jAj; jBj
; Y ¼
XjBj
lB¼0

ð~ssIIÞest½jAj; lB
:

ð18Þ

Remark 4.5. These estimators are exactly the
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Fig. 1. Lowest discoverable support for different breach levels.

Transaction size is 5, five million transactions.
same as those computed in Section 4.3. Indeed,
consider for example set A; let an ðjAj þ 1Þ

ðjAj þ 1ÞðjBj þ 1Þ-matrix M be such that M~ssII
equals the ‘‘one-set’’ vector ~ss of partial supports
for A: Since we have

E~ss0 ¼ P~ss; E~ss0II ¼ PII~ssII; ~ss ¼ M~ssII; ~ss0 ¼ M~ss0II

for all possible partial support vectors, hence we
also have

PM ¼ MPII ) MQII ¼ QM;

i.e. both estimators do the same thing.

By combining Eqs. (17) and (18), the formula
for CovðX ;Y Þ is given by

CovðX ;Y Þ ¼
1

N
	
X

0plApjAj
0plBpjBj

slA;lB~qq
T
X DII½lA; lB
~qqY ;

where (the q½y
’s are the coordinates of QII)

~qqX :¼ q
jAj’l0A

jBj’l0B

" #
:

l0A ¼ 0; 1;y; jAj

l0B ¼ 0; 1;y; jBj

 !T

;

~qqY :¼
XjBj
lB¼0

q
jAj’l0A

lB’l0B

" #
:

l0A ¼ 0; 1;y; jAj

l0B ¼ 0; 1;y; jBj

 !T

:

5. Experimental results

Before we come to the experiments with
datasets, we first show in Section 5.1 how our
ability to recover supports depends on the
permitted breach level, as well as other data
characteristics. The same is shown for the con-
fidence of association rules in Section 5.2. We then
describe the real-life datasets in Section 5.3, and
present results for support estimation on these
datasets in Section 5.4.
5.1. Privacy, discoverability and dataset

characteristics

We define the lowest discoverable support as the
support at which the predicted support of an
itemset is four sigmas away from zero, i.e., we can
clearly distinguish the support of this itemset from
zero. In practice, we may achieve reasonably good
results even if the minimum support level is slightly
lower than four sigma (as was the case for 3-
itemsets in the randomized soccer, see below).
However, the lowest discoverable support is a nice
way to illustrate the interaction between discover-
ability, privacy breach levels, and data character-
istics.
In order to compute the cut-and-paste rando-

mization parameters for the graphs, we have to fix
some values for maximum supports smaxðk;mÞ: We
do it as follows:

Itemset size: 1 2 3 4 5 6 7 8 9 10

Support(%): 20.0 10.0 5.0 2.0 1.0 0.5 0.2 0.1 0.05 0.02

We set the cutoff value to 5 (except in Fig. 3,
where it is 7). To set the partial supports of the
itemset being mined, we use independence assump-

tion: all items within the itemset occur indepen-
dently of each other and with the same frequency.
Fig. 1 shows how the lowest discoverable

support changes with the privacy breach level.
For higher privacy breach levels such as 95%
(which could be considered a ‘‘plausible denial’’
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breach level), we can discover 3-itemsets at very
low supports. For more conservative privacy
breach levels such as 50%, the lowest discoverable
support is significantly higher. It is interesting to
note that at higher breach levels (i.e. weaker
randomization) it gets harder to discover 1-itemset
supports than 3-itemset supports. This happens
because the variance of a 3-itemset predictor
depends highly nonlinearly on the amount of false
items added while randomizing. When we add
fewer false items at higher breach levels, we
generate so much fewer false 3-itemset positives
than false 1-itemset positives that 3-itemsets get an
advantage over single items.
Fig. 2 shows that the lowest discoverable

support is roughly inversely proportional to the
square root of the number of transactions. Indeed,
the lowest discoverable support is defined to be
proportional to the standard deviation (square
root of the variance) of this support’s prediction. If
all the partial supports are fixed, the prediction’s
variance is inversely proportional to the number N

of transactions according to Statement 3. In our
case, the partial supports depend on N (because
the lowest discoverable support does), i.e. they are
not fixed; however, this does not appear to affect
the variance very significantly (but justifies the
word ‘‘roughly’’).
Finally, Fig. 3 shows that transaction size has a

significant influence on support discoverability. In
fact, for transactions of size 10 and longer, it is
typically not possible to make them both breach-
safe and simultaneously get useful information for
mining transactions. Intuitively, a long transaction
contains too much personal information to hide,
because it may contain long frequent itemsets
whose appearance in the randomized transaction
could result in a privacy breach. We have to insert
a lot of false items and cut off many true ones to
ensure that such a long itemset in the randomized
transaction is about as likely to be a false positive
as to be a true positive. Such a strong randomiza-
tion causes an exceedingly high variance in the
support predictor for 2- and especially 3-itemsets,
since it drives down their probability to ‘‘tunnel’’
through while raising high the probability of a
false positive. In both our datasets we discard long
transactions. The question of how to safely
randomize and mine long transactions is left open.

5.2. Discoverability of confidence

The formulae from Section 4.6 can be used for
computing the radius d of the interval

½confT ðA ) BÞ � d; confT ðA ) BÞ þ d


around the actual confidence of the rule ‘‘A ) B’’
such that our estimator (confT ðA ) BÞÞest is p%-
likely to fall into this interval, where p is any given
probability. To find the d; we should solve the
equation f ðdÞ ¼ p by means of any suitable
numerical algorithm. The d depends on p; on
transaction size m; on sizes of itemsets jAj and jBj;
on the number N of transactions, and on the
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parameters of the randomization operator. It also
depends on all two-set partial supports for A and
B (see Definition 13).
For our confidence graphs we use the interval

probability value of 95%. Like we did in the case
of support prediction, we define the lowest

discoverable confidence as the smallest confidence
confT ðA ) BÞ that is twice as large as the radius of
the 95%-interval for its predictor.
In order to set the partial supports for our

graphs, we shall use independence assumption: all
items in A,B occur in transactions independently
from each other, all items in A have the same
frequency, and all items in B have the same
frequency. The two frequencies are chosen accord-
ing to the given suppT ðAÞ and confT ðA ) BÞ: We
have also tried maximum dependence assumption:

* All items in A and in B are independent from
other items in their set and have the same
frequency;

* Always if BCt then ACt: Thus,

suppT ðBÞ ¼ suppT ðAÞ 	 confT ðA ) BÞ;

* Transactions t are ‘‘filled’’ with items from B in
the order of decreasing jt-Aj; observing the
above constraints.

Graph in Fig. 5 is computed under maximum
dependence assumption, the other graphs are
computed under independence assumption. As it
turns out, the two assumptions produce similar
results, the maximum dependence assumption
usually giving a little higher values of lowest
discoverable confidence (by several percent or
less).
The default parameter settings for the graphs

are the same as in Section 5.1, including 5 million
transactions, each of size 5 items, and privacy
breach level of 50%. The default value for the
support of A is set to 2%. We plot the results for
four sizes of A and B; as given in the graphs. The
cutoff for cut-and-paste is set to 5, except in
graphs in Figs. 7 and 8, where the cutoff is set to 7
(for Fig. 7) or to the transaction size (for Fig. 8).
Graphs in Figs. 4 and 5 show how the lowest

discoverable confidence depends on the privacy
breach level; graph on Fig. 6 shows its depen-
dence on the support of the set A; graphs on
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5M. Arlitt and T. Jin, ‘‘1998 World Cup Web Site Access

Logs’’, August 1998. Available at http://www.acm.org/
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Figs. 7 and 8 demonstrate its dependence on
transaction size; finally, graph on Fig. 9 shows the
influence of the number of transactions. The
tendencies here are similar to the ones for the
lowest discoverable support, with some additional
sensitivity to the support of A since its predictor
appears in the denominator of the confidence
estimator. The graphs demonstrate that our
estimator can be used, as long as the confidence
being predicted is not low and the support of A is
predicted well above zero.

5.3. The datasets

We experimented with two ‘‘real-life’’ datasets.
The soccer dataset is generated from the click-
stream log of the 1998 World Cup web site, which
is publicly available at ftp://researchsmp2.

cc.vt.edu/pub/worldcup/.5 We scanned the log
and produced a transaction file, where each
transaction is a session of access to the site by a
client. Each item in the transaction is a web
request. Not all web requests were turned into
items; to become an item, the request must satisfy
the following:
(1)
 Client’s request method is GET;

(2)
 Request status is OK;

(3)
 File type is HTML.
A session starts with a request that satisfies the
above properties, and ends when the last click
from this ClientID timeouts. The timeout is set as
30 minutes. All requests in a session have the same
ClientID. The soccer transaction file was then
processed further: we deleted from all transactions
the items corresponding to the French and English
front page frames, and then we deleted all empty
transactions and all transactions of size above 10.
The resulting soccer dataset consists of 6,525,879
transactions, distributed as shown in Fig. 10.
The mailorder dataset is the same as that used

in [32]. The original dataset consisted of around
2.9 million transactions, 15,836 items, and around
2.62 items per transaction. Each transaction was

ftp://researchsmp2.cc.vt.edu/pub/worldcup/
ftp://researchsmp2.cc.vt.edu/pub/worldcup/
http://www.acm.org/sigcomm/ITA/
http://www.acm.org/sigcomm/ITA/
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Fig. 10. Number of transactions for each transaction size in the

soccer and mailorder datasets.

Table 1

Results on real datasets

Itemset

size

True

itemsets

True

positives

False

drops

False

positives

(a) Mailorder, 0.2% minimum support

1 65 65 0 0

2 228 212 16 28

3 22 18 4 5

(b) Soccer, 0.2% minimum support

1 266 254 12 31

2 217 195 22 45

3 48 43 5 26
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the set of items purchased in a single mail order.
However, very few itemsets had reasonably high
supports. For instance, there were only two 2-
itemsets with support X0:2%; only five 3-itemsets
with support X0:05%: Hence we decided to
substitute all items by their parents in the
taxonomy, which had reduced the number of
items from 15836 to 96. It seems that, in general,
moving items up the taxonomy is a natural thing
to do for preserving privacy without losing
aggregate information. We also discarded all
transactions of size X8 (which was less than 1%
of all transactions) and finally obtained a dataset
containing 2,859,314 transactions (Fig. 10).

5.4. The results

We report the results for both datasets at a
minimum support that is close to the lowest
discoverable support, in order to show the resi-
lience of our algorithm even at these very low
support levels. We targeted a conservative breach
level of 50%, so that, given a randomized transac-
tion, for any item in the transaction it is at least as
likely that someone did not buy that item (or access
a web page) as that they did buy that item.
We used cut-and-paste randomization (see

Definition 8) that has only two parameters,
randomization level and cutoff, per each transac-
tion size. We chose a cutoff of 7 for our
experiments as a good compromise between
privacy and discoverability. Given the values of
maximum supports, we then used the methodol-
ogy from Section 4.4 to find the lowest randomiza-
tion level such that the breach probability (for
each itemset size) is still below the desired breach
level. The actual parameters (Km is the cutoff, rm is
the randomization level for transaction size m) for
soccer were:

m 1 2 3 4 5 6 7 8 9 10

K m 7 7 7 7 7 7 7 7 7 7

�m % 4.7 16.8 21.4 32.2 35.3 42.9 46.1 42.0 40.9 39.5

and for mailorder were:

m 1 2 3 4 5 6 7

K m 7 7 7 7 7 7 7

�m % 8.9 20.4 25.0 33.4 43.5 50.5 59.2

Table 1 shows what happens if we mine itemsets
from both randomized and nonrandomized files
and then compare the results. We can see that,
even for a low minimum support of 0.2%, most of
the itemsets are mined correctly from the rando-
mized file. There are comparatively few false
positives (itemsets wrongly included into the out-
put) and even fewer false drops (itemsets wrongly
omitted). The predicted sigma for 3-itemsets
ranges in 0.066–0.07% for soccer and in 0.047–
0.048% for mailorder; for 2- and 1-itemsets
sigmas are even less.
One might be concerned about the true supports

of the false positives. Since we know that there are
many more low-supported itemsets than there are
highly supported, we might wonder whether most
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Table 2

Analysis of false drops

Size Itemsets Predicted support

o0:1 0.1–0.15 0.15–0.2 X0:2

(a) Mailorder, X0:2% true support

1 65 0 0 0 65

2 228 0 1 15 212

3 22 0 1 3 18

(b) Soccer, X0:2% true support

1 266 0 2 10 254

2 217 0 5 17 195

3 48 0 1 4 43

Table 3

Analysis of false positives

Size Itemsets True support

o0:1 0.1–0.15 0.15–0.2 X0:2

(a) Mailorder, X0:2% predicted support

1 65 0 0 0 65

2 240 0 0 28 212

3 23 1 2 2 18

(b) Soccer, X0:2% predicted support

1 285 0 7 24 254

2 240 7 10 28 195

3 69 5 13 8 43

6 If there are no frequent itemsets of certain size, we pick the

itemsets with the highest support.
7 ‘‘Mersenne Twister’’, http://www.math.keio.ac.jp/

matumoto/emt.html

A. Evfimievski et al. / Information Systems 29 (2004) 343–364 359
of the false positives are outliers, that is, have true
support near zero. We have indeed seen outliers;
however, it turns out that most of the false
positives are not so far off. Tables 2 and 3 show
that usually the true supports of false positives, as
well as the predicted supports of false drops, are
closer to 0.2% than to zero. This good news
demonstrates the promise of randomization as a
practical privacy-preserving approach.

Privacy analysis: We evaluate privacy breaches,
i.e., the conditional probabilities from Definition
4, as follows. We count the occurrences of an
itemset in a randomized transaction and its sub-
items in the corresponding nonrandomized trans-
action. For example, assume an itemset fa; b; cg
occurs 100 times in the randomized data among
transactions of length 5. Out of these 100
occurrences, 60 of the corresponding original
transactions had the item b: We then say that this
itemset caused a 60% privacy breach for transac-
tions of length 5, since for these 100 randomized
transactions, we estimate with 60% confidence
that the item b was present in the original
transaction.
Out of all sub-items of an itemset, we choose the

item that causes the worst privacy breach. Then,
for each combination of transaction size and
itemset size, we compute over all frequent6 item-
sets the worst and the average value of this breach
level. Finally, we pick the itemset size that gave the
worst value for each of these two values.
Table 4 shows the results of the above analysis.

To the left of the semicolon is the itemset size that
was the worst. For instance, for all transactions of
length 5 for soccer, the worst average breach was
with 4-itemsets (43.9% breach), and the worst
breach was with a 5-itemset (49.7% breach). We
can see that, apart from fluctuations, the 50% level
is observed everywhere except of a little ‘‘slip’’ for
9- and 10-item transactions of soccer. The ‘‘slip’’
resulted from our decision to use the correspond-
ing maximal support information only for itemset
sizes up to 7 (while computing randomization
parameters). In another experiment, when we used
the maximal supports for itemset sizes up to 10, we
compensated for the increased privacy require-
ments with the following cut-and-paste para-
meters:

m 1 2 3 4 5 6 7 8 9 10

K m 7 7 7 7 7 7 7 10 10 10

�m % 4.7 16.8 21.4 32.2 35.3 42.9 46.1 52.5 57.8 59.7

Also, for this experiment we have used a
different (better quality) pseudorandom number
generator.7 The results of this soccer dataset
experiment are given in Table 5. Some details on
false drops are in Table 6, on false positives are in
Table 7. Privacy analysis is given in Table 8. We
can see that the ‘‘slip’’ for 9- and 10-item
transactions is no longer observed.

http://www.math.keio.ac.jp/matumoto/emt.html
http://www.math.keio.ac.jp/matumoto/emt.html
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Table 4

Actual privacy breaches

Transaction size

1 2 3 4 5 6 7 8 9 10

Soccer

Worst average: 1: 4.4% 2: 20.2% 3: 39.2% 4: 44.5% 4: 43.9% 4: 37.5% 4: 36.2% 4: 38.7% 8: 51.0% 10: 49.4%

Worst of the worst: 1: 45.5% 2: 45.4% 3: 53.2% 4: 49.8% 5: 49.7% 5: 42.7% 5: 41.8% 5: 44.5% 9: 66.2% 10: 65.6%

Mailorder

Worst average: 1: 12.0% 2: 27.5% 3: 48.4% 4: 51.5% 5: 51.7% 5: 51.9% 6: 49.8%

Worst of the worst: 1: 47.6% 2: 51.9% 3: 53.6% 4: 53.1% 5: 53.6% 6: 55.4% 7: 51.9%

Table 5

Soccer results, ‘‘no-slip’’ experiment. Soccer, 0.2% minimum

support

Itemset size True

itemsets

True

positives

False drops False

positives

1 266 250 16 33

2 217 197 20 38

3 48 39 9 27

Table 6

Analysis of false drops, ‘‘no-slip’’ experiment. Soccer, X0:2%
true support

Size Itemsets Predicted support

o0:1 0.1–0.15 0.15–0.2 X0:2

1 266 0 1 15 250

2 217 0 4 16 197

3 48 0 0 9 39

Table 7

Analysis of false positives, ‘‘no-slip’’ experiment. Soccer,

X0:2% Predicted support

Size Itemsets True support

o0:1 0.1–0.15 0.15–0.2 X0:2

1 283 0 7 26 250

2 235 4 7 27 197

3 66 6 11 10 39
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Summary: Despite choosing a conservative
privacy breach level of 50%, and further choosing
a minimum support around the lowest discover-
able support, we were able to successfully find
most of the frequent itemsets, with relatively small
numbers of false drops and false positives.
6. Conclusions

In this paper, we have presented three key
contributions toward mining association rules
while preserving privacy. First, we pointed out
the problem of privacy breaches, presented their
formal definitions and proposed a natural solu-
tion. Second, we gave a sound mathematical
treatment for a class of randomization algorithms
and derived formulae for support and variance
prediction, and showed how to incorporate these
formulae into mining algorithms. Finally, we
presented experimental results that validated the
algorithm in practice by applying it to two real
datasets from different domains.
We conclude by raising three interesting ques-

tions for future research. Our approach deals with
a restricted (albeit important) class of privacy
breaches; can we extend it to cover other kinds of
breaches and other assumptions on the dataset?
Second, what are the theoretical limits on dis-
coverability for a given level of privacy (and vice
versa)? Finally, can we combine randomization
and cryptographic protocols to get the strengths of
both without the weaknesses of either?
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Table 8

Actual privacy breaches, ‘‘no-slip’’ experiment. Soccer

Transaction size

1 2 3 4 5 6 7 8 9 10

Worst Average: 1: 4.4% 2: 20.2% 3: 39.0% 4: 35.8% 4: 36.0% 4: 31.3% 3: 30.6% 3: 31.6% 3: 30.1% 3: 30.5%

Worst of the Worst: 1: 45.6% 2: 45.6% 3: 52.5% 4: 49.9% 5: 50.4% 5: 44.0% 7: 44.3% 7: 45.4% 9: 40.4% 10: 42.3%
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Appendix A. Proofs

A.1. Proof of Statement 1

Each coordinate N 	 s0l0 of the vector in (4) is, by
definition of partial supports, just the number of
transactions in the randomized sequence T 0 that
have intersections with A of size l0: Each rando-
mized transaction t0 contributes to one and only
one coordinate N 	 s0l0 ; namely to the one with l0 ¼
#ðt0-AÞ: Since we are dealing with a per-transac-
tion randomization, different randomized transac-
tions contribute independently to one of the
coordinates. Moreover, by item-invariance as-
sumption, the probability that a given randomized
transaction contributes to the coordinate number
l0 depends only on the size of the original
transaction t (which equals m) and the size l of
intersection t-A: This probability equals p½l-l0
:
So, for all transactions in T that have intersec-

tions with A of the same size l (and there are N 	 sl

such transactions) the probabilities of contributing
to various coordinates N 	 s0l0 are the same. We can
split all N transactions into k þ 1 groups accord-
ing to their intersection size with A: Each group
contributes to the vector in (4) as a multinomial
distribution with probabilities

ðp½l-0
; p½l-1
;y; p½l-k
Þ;

independently from the other groups. Therefore,
the vector in (4) is a sum of k þ 1 independent
multinomials. Now it is easy to compute both
expectation and covariance.
For a multinomial distribution ðX0;X1;y;XkÞ

with probabilities ðp0; p1;y; pkÞ; where X0 þ X1 þ
?þ Xk ¼ n; we have EXi ¼ n 	 pi and

CovðXi;XjÞ ¼EðXi � npiÞðXj � npjÞ

¼ n 	 ðpidi¼j � pipjÞ:
In our case, Xi ¼ l’s part of N 	 s0i; n ¼ N 	 sl ; and
pi ¼ p½l-i
: For a sum of independent
multinomial distributions, their expectations and
covariances add together:

EðN 	 s0l0 Þ ¼
Xk

l¼0

N 	 sl 	 p½l-l0
;

CovðN 	 s0i;N 	 s0jÞ ¼
Xk

l¼0

N 	 sl 	 ðp½l-i
 	 di¼j

� p½l-i
 	 p½l-j
Þ

Thus, after dividing by an appropriate power of N;
the formulae in the statement are proven. &

A.2. Proof of Statement 2

We are given a transaction tAT and an itemset
ADI ; such that jtj ¼ m; jAj ¼ k; and #ðt-AÞ ¼ l:
In the beginning of randomization, a number j is
selected with distribution fpm½ j
g; and this is what
the first summation takes care of. Now assume
that we retain exactly j items of t; and discard m �
j items.
Suppose there are q items from t-A among the

retained items. How likely is this? Well, there are
m
j

� �
possible ways to choose j items from

transaction t; and there are l
q

� �
m�l
j�q

� �
possible

ways to choose q items from t-A and j � q items
from t\A: Since all choices are equiprobable, we

get l
q

� �
m�l
j�q

� �
= m

j

� �
as the probability that exactly q

A-items are retained.
To make t0 contain exactly l0 items from A; we

have to get additional l0 � q items from A\t: We
know that #ðA\tÞ ¼ k � l; and that any such item
has probability r to get into t0: The last terms in (8)
immediately follow. Summation bounds restrict q
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to its actually possible (=nonzero probability)
values. &

A.3. Proof of Statement 3

Let us denote

~ppl :¼ ðp½l-0
; p½l-1
;y; p½l-k
ÞT;

~qql :¼ ðq½l’0
; q½l’1
;y; q½l’k
ÞT:

Since PQ ¼ QP ¼ I (where I is the identity
matrix), we have

Xk

l¼0

p½l-i
q½l’j
 ¼
Xk

l0¼0

p½i-l0
q½ j’l0
 ¼ di¼j :

Notice also, from (7), that matrix D½l
 can be
written as

D½l
 ¼ diagð~pplÞ �~ppl~pp
T
l ;

where diagð~pplÞ denotes the diagonal matrix with
~ppl-coordinates as its diagonal elements. Now it is
easy to see that

*s ¼ ~qqT
k~ss

0 ¼
Xk

l0¼0

q½k’l0
 	 s0l0 ;

Var *s ¼
1

N

Xk

l¼0

sl~qq
T
k D½l
~qqk

¼
1

N

Xk

l¼0

sl~qq
T
k ðdiagð~pplÞ �~ppl~pp

T
l Þ~qqk

¼
1

N

Xk

l¼0

slð~qqT
kdiagð~pplÞ~qqk � ð~ppT

l ~qqkÞ
2Þ

¼
1

N

Xk

l¼0

sl

Xk

l0¼0

p½l-l0
q½k’l0
2 � dl¼k

 !
;

ðVar *sÞest ¼
1

N

Xk

l¼0

ð~qqT
l ~ss

0Þ
Xk

l0¼0

p½l-l0


 


 q½k’l0
2 � dl¼k

!

¼
1

N

Xk

j¼0

s0j

Xk

l;l0¼0

q½l’j
p½l-l0


 


 q½k’l0
2 �
Xk

l¼0

dl¼kq½l’j


!

¼
1

N

Xk

j¼0

s0j



Xk

l0¼0

dl0¼jq½k’l0
2 � q½k’j


 !

¼
1

N

Xk

j¼0

s0jðq½k’j
2 � q½k’j
Þ:

A.4. Proof of Statement 4

We prove the left formula in (13) first, and then
show that the right one follows from the left one.
Consider N 	 Sl ; it equals

N 	 Sl ¼N 	
X

CDA;jCj¼l

suppTðCÞ

¼
X

CDA;jCj¼l

#ftiAT j CDtig

¼
XN

i¼1

#fCDAj jCj ¼ l;CDtig:

In other words, each transaction ti should be
counted as many times as many different l-sized
subsets CDA it contains. From simple combina-
torics we know that if j ¼ #ðA-tiÞ and jXl; then ti

contains j
l

� �
different l-sized subsets of A: There-

fore,

N 	 Sl ¼
XN

i¼l

#ðA-tiÞ

l

 !

¼
Xk

j¼1

j

l

 !
	 #ftiAT j#ðA-tiÞ ¼ jg

¼
XN

j¼l

j

l

 !
N 	 sj ;

and the left formula is proven. Now we can check
the right formula just by replacing the Sj’s
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according to the left formula. We have
Xk

j¼l

ð�1Þ j�l j

l

 !
Sj ¼

Xk

j¼l

ð�1Þ j�l j

l

 !Xk

q¼j

q

j

 !
sq

¼
X

lpjpqpk

ð�1Þ j�l j

l

 !
q

j

 !
sq

¼
Xk

q¼l

sq

Xq

j¼l

ð�1Þ j�l j

l

 !
q

j

 !

¼
Xk

q¼l

sq

Xq�l

j0¼0

ð�1Þ j0 ðj
0 þ lÞ!
l!j0!

q!

ðj0 þ lÞ!ðq � j0 � lÞ!

¼
Xk

q¼l

sq 	
q!

l!ðq � lÞ!

Xq�l

j0¼0

ð�1Þ j0 ðq � lÞ!
j0!ðq � l � j0Þ!

¼
Xk

q¼l

sq

q

l

 !Xq�l

j0¼0

ð�1Þ j0 q � l

j0

 !
¼ sl ;
since the sum
Pq�l

j0¼0ð�1Þ
j0 q�l

j0

� �
is zero whenever

q � l > 0:
To prove that matrix P becomes lower trian-

gular after the transformation from ~ss and ~ss0 to ~SS
and ~SS0; let us find how E~SS 0 depends on ~SS using the
definition (12).
ES0
l0 ¼

X
CDA;jCj¼l0

E suppT 0
ðCÞ

¼
X

CDA;jCj¼l0

Xl0

l¼0

pm
l0 ½l-l0
 	 suppT

l ðCÞ

¼
X

CDA;jCj¼l0

Xl0

l¼0

pm
l0 ½l-l0




Xl0

j¼l

ð�1Þ j�l j

l

 !
SjðC;TÞ

¼
Xl0

j¼0

Xj

l¼0

ð�1Þ j�l j

l

 !
pm

l0 ½l-l0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cl0 j



X

CDA;jCj¼l0

SjðC;TÞ
¼
Xl

j¼0

cl0j

X
CDA;jCj¼l0

X
BDC;jBj¼j

suppT ðBÞ

¼
Xl0

j¼0

cl0j

X
BDA;jBj¼j

#fC j BDCDA; jCj

¼ l0g 	 suppT ðBÞ

¼
Xl0

j¼0

cl0j

X
BDA;jBj¼j

k � j

l0 � j

 !
suppT ðBÞ

¼
Xl0

j¼0

cl0j

k � j

l0 � j

 !
	 Sj :

Now it is clear that only the lower triangle of the
matrix can have nonzeros. &
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