
Privacy-Preserving Multi-Keyword Fuzzy Search
over Encrypted Data in the Cloud

Bing Wang∗ Shucheng Yu† Wenjing Lou∗ Y. Thomas Hou∗
∗Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

†University of Arkansas, Little Rock, AR, USA

Abstract—Enabling keyword search directly over encrypted
data is a desirable technique for effective utilization of encrypted
data outsourced to the cloud. Existing solutions provide multi-
keyword exact search that does not tolerate keyword spelling
error, or single keyword fuzzy search that tolerates typos to
certain extent. The current fuzzy search schemes rely on building
an expanded index that covers possible keyword misspelling,
which lead to significantly larger index file size and higher
search complexity. In this paper, we propose a novel multi-
keyword fuzzy search scheme by exploiting the locality-sensitive
hashing technique. Our proposed scheme achieves fuzzy matching
through algorithmic design rather than expanding the index
file. It also eliminates the need of a predefined dictionary
and effectively supports multiple keyword fuzzy search without
increasing the index or search complexity. Extensive analysis and
experiments on real-world data show that our proposed scheme
is secure, efficient and accurate. To the best of our knowledge,
this is the first work that achieves multi-keyword fuzzy search
over encrypted cloud data.

I. INTRODUCTION

In cloud computing, scalable and elastic storage and compu-

tation resources are provisioned as measured services through

the Internet. Outsourcing data services to the cloud allows

organizations to enjoy not only monetary savings, but also

simplified local IT management since cloud infrastructures

are physically hosted and maintained by the cloud providers.

To minimize the risk of data leakage to the cloud service

providers, data owners opt to encrypt their sensitive data, e.g.,

health records, financial transactions, before outsourcing to the

cloud, while retaining the decryption keys to themselves and

other authorized users. This in turn renders data utilization

a challenging problem. For example, in order to search some

relevant documents amongst an encrypted data set stored in the

cloud, one may have to download and decrypt the entire data

set. This is apparently impractical when the data volume is

large. Thus, mechanisms that allow users to search directly on

the encrypted data are of great interest in the cloud computing

era.

Since Song et al’s seminal work on searchable encryption

[1], much effort has been made to design effective and efficient

mechanisms to enable search over encrypted data [1]–[14].

Instead of a word-by-word linear scan in the full text search

[1], early works [3], [10], [11] built various types of secure

index and corresponding index-based keyword matching al-

gorithms to improve search efficiency. All these works only

support the search of single keyword. Subsequent works [2],

[4]–[7] extended the search capability to multiple, conjunctive

or disjunctive, keywords search. However, they support only

exact keyword matching. Misspelled keywords in the query

will result in wrong or no matching. Very recently, a few

works [12]–[14] extended the search capability to approximate

keyword matching (also known as fuzzy search). These are all

for single keyword search, with a common approach involving

expanding the index file by covering possible combinations

of keyword misspelling so that a certain degree of spelling

error, measured by edit distance, can be tolerated. Although a

wild-card approach is adopted to minimize the expansion of

the resulting index file, for a l-letter long keyword to tolerate

an error up to an edit distance of d, the index has to be

expanded by O(ld) times. Thus, it is not scalable as the storage

complexity increases exponentially with the increase of the

error tolerance. To support multi-keyword search, the search

algorithm will have to run multiple rounds.

To date, efficient multi-keyword fuzzy search over encrypted

data remains a challenging problem. We want to point out that

the efforts on search over encrypted data involve not only in-

formation retrieval techniques such as advanced data structures

used to represent the searchable index, and efficient search

algorithms that run over the corresponding data structure, but

also the proper design of cryptographic protocols to ensure the

security and privacy of the overall system. Although multi-

keyword search and fuzzy search have been implemented

separately, a combination of the two does not lead to a secure

and efficient multi-keyword fuzzy search scheme. In this paper,

we propose a brand new idea for achieving multi-keyword

(conjunctive keywords) fuzzy search. Different from existing

multi-keyword search schemes, our scheme eliminates the

requirement of a predefined keyword dictionary. The fuzziness

of the keyword is captured by an innovative data structure and

algorithmic design without expanding the keyword index, and

hence exhibits a high efficiency in terms of computation and

storage. We achieve this by several novel designs based on

locality-sensitive hashing (LSH) [15] and Bloom filters [16].

We convert each keyword to its bigram vector representation

and utilize Euclidean distance to capture keywords similarity.

By constructing file indexes using LSH in Bloom filter, our

scheme finds documents with matching keywords efficiently.

For ease of presentation, we first present a basic scheme that

fulfills the functionality of multi-keyword fuzzy search but

has some security vulnerabilities. Based on our basic scheme,

we design our enhanced solution by incorporating another978-1-4799-3360-0/14/$31.00 c© 2014 IEEE

2

layer of security protection. Extensive analysis shows that our

scheme is secure, efficient and accurate. Experimental results

on real-world data validate our claim. Our contributions can

be summarized as follows:

1) To the best of our knowledge, this is the first work

that addresses the multi-keyword fuzzy search over en-

crypted data problem with user data privacy protection.

2) In contrast to previous fuzzy keyword search solutions

[12]–[14], which require expanded storage for wild-card

based fuzzy keyword set, our scheme exploits locality-

sensitive hashing to provide efficient fuzzy search with

constant size index regardless the number of keywords

associated with the file.

3) In contrast to previous solutions on multiple keywords

search [2], [4], our scheme eliminates the need of a

predefined dictionary, and hence enables efficient file

update. Our search process is very efficient - it performs

multiple keyword matching in one round by calculating

the inner product of two vectors.

4) We implemented our scheme and performed an evalua-

tion using a real-world data set. The results demonstrate

that our scheme is accurate and efficient.

The rest of the paper is organized as follows. Section II

presents the formulation of our problem as well as the pre-

liminaries. Section III describes our basic privacy-preserving

multi-keyword fuzzy search scheme in detail. Based on our

basic scheme, we present our enhanced solution in section

IV. Section V evaluates our schemes through experimental

studies. Section VI discusses the related works. We conclude

our paper in section VII.

II. PROBLEM FORMULATION

We formulate the privacy preserving problem of multiple

keyword fuzzy search over encrypted data in this section. We

denote a keyword collection of a document as an index and

an encrypted index as secure index. Similarly, a query is a

keyword collection of a search and a trapdoor is an encrypted

version of a query.

A. System Model

Fig. 1 shows the overall system architecture. To outsource

a set of files to the cloud, the data owner builds a secure

searchable index for the file set and then uploads the encrypted

files, together with the secure index, to the cloud server. To

search over the encrypted files, an authorized user first obtains

the trapdoor, i.e, the “encrypted” version of search keyword(s),

from the data owner, then submits the trapdoor to the cloud

server. Upon receiving the trapdoor, the cloud server executes

the search algorithm over the secure indexes and returns the

matched files to the user as the search result.

B. Security Model

We adopt the “honest-but-curious” model for the cloud

server as in [12]–[14]. It assumes that the cloud server would

honestly follow the designated protocols and procedures to

fulfill its service provider’s role, while it may analyze the

Fig. 1. System architecture of search over encrypted data in cloud computing

information stored and processed on the server in order to learn

additional information about its customers. In terms of level of

privacy protection, we consider two threat models depending

on the information available to the cloud server, which are

also used in other related works [8], [17].

• Known Ciphertext Model: The cloud server can only

access the encrypted files, the secure indexes and the

submitted trapdoors. The cloud server can also know and

record the search results. The semantic meaning of this

threat scenario is captured by the non-adaptive attack

model [10].

• Known Background Model: The cloud server knows

additional background information in this model. The

background refers to the information which can be

learned from a comparable dataset. For example, the

keywords and their statistical information, such as the

frequency, obtained from previous years’ proceedings of

a computer security conference can be very similar with

this year’s.

We assume users are trusted entities. They have pre-existing

mutual trust with the data owner. The obtaining of the trap-

doors can be done through regular authentication and secure

channel establishment protocols based on the prior security

context shared between each user and the data owner. The

encryption of the individual files and the distribution of the

decryption keys to authorized users are separated issues which

have been discussed in other publications [18], [19].

The objective of this scheme is to preserve user data privacy,

which includes: 1). file content privacy; 2). index privacy;

and 3). user query privacy. While file content privacy can

be achieved by encryption-before-outsourcing schemes [18],

[19], this paper focuses on preserving the data privacy due

to the search functionality and possible information leakage

associated with it, as follows,

• Keyword privacy: Besides the search result, the cloud

server should not deduce any keyword information of the

file set from secure indexes and trapdoors. Keyword pri-

vacy requires indexes and queries be properly represented

and securely encrypted.

• Trapdoor unlinkability: The cloud server should not be

able to link one trapdoor to another even if they are for

the same query. Trapdoor unlinkability requires an non-

3

deterministic trapdoor generation function.

C. Design Goal

Our design bears the following security and performance

goals.

• Multi-Keyword Fuzzy Search: Our primary goal is

to support multi-keyword fuzzy search. For example,

“network security” related files should be found for a

mis-spelled query “netword security”.

• Privacy Guarantee: Our scheme should provide privacy

guarantees by not leaking the information about the data

files or the query keywords beyond the search results to

the cloud server.

• Result Accuracy: Since this is about fuzzy search, result

accuracy is an important performance metric. Our scheme

should find the results as accurate as possible and keep

the accuracy within an acceptable range.

• No Predefined Dictionary: The need of a pre-defined

dictionary is a limiting factor that makes dynamic data

operations, such as dataset/index update, very difficult. In

our design, we would like to eliminate this requirement

in contrast to many previous solutions [2], [4], [8]–[10],

[12].

D. Preliminaries

Two important techniques are used in our design, i.e. Bloom

filter and locality-sensitive hashing (LSH). Brief introductions

are given below.

1) Bloom filter: A Bloom filter is a bit array of m bits, all of

which are set to 0 initially. Given a set S = {a1, a2, · · · , an},
a Bloom filter uses l independent hash functions from H =
{hi|hi : S → [1,m], 1 ≤ i ≤ l} to insert an element a ∈ S
into the Bloom filter by setting the bits at all the hi(a)-th
positions in the array to 1. To test whether an element q is in

S , feed it to each of the l hash functions to get l array positions.

If the bit at any position is 0, then q /∈ S; otherwise, either

q belongs to S or q yields a false positive. The false positive

rate of a m-bit Bloom filter is approximately (1−e−
ln
m)l. The

optimal false positive rate is (1/2)l when l = m
n · ln 2 [16].

2) Locality-Sensitive Hashing: Given a distance metric d,

e.g. Euclidean distance, a LSH function hashes close items to

the same hash value with higher probability than the items

that are far apart. A hash function family H is (r1, r2, p1, p2)-
sensitive if any two points s, t and h ∈ H satisfy:

if d(s, t) ≤ r1 : Pr[h(s) = h(t)] ≥ p1 (2.1)

if d(s, t) ≥ r2 : Pr[h(s) = h(t)] ≤ p2 (2.2)

where d(s, t) is the distance between the point s and the point

t. We use the p-stable LSH family [20] in our scheme. A p-

stable LSH function has the form ha,b(v) =
⌊

a·v+b
w

⌋

where

a,v are vectors and b, w are real numbers. We show the detail

of the p-stable LSH function in the appendix.

III. BASIC MULTI-KEYWORD FUZZY SEARCH SCHEME

A. Main Idea

To design a secure and well functioning search scheme

over encrypted data, one has to make three important design

choices that are closely inter-related and largely determine the

performance of the resulting search scheme, 1). data structure

used to build secure indexes and trapdoors; 2). effective

search algorithm that can quantify the level of match between

keywords in the query and keywords in the index with high

efficiency, and 3). security and privacy mechanisms that can

be integrated in the above two design choices thus the index

privacy and search privacy can be protected.

In this subsection, we outline the key ideas behind our

design for 1) and 2). We will present key idea of the data

structure and search algorithm in the plaintext format for ease

of understanding. More detailed scheme design with integrated

security and privacy mechanisms will be described in section

III-B.

Our scheme builds index on a per file basis, namely, ID
for file D. The index ID, containing all the keywords in D, is

a m-bit Bloom filter. To support fuzzy and multiple keyword

search, we first convert each keyword into a bigram vector and

then use LSH functions instead of standard hash functions to

insert the keywords into the Bloom filter ID. The main steps

are illustrated in Fig. 2 and explained as follows.

1) Bigram vector representation of keyword: One key step

to build index is the keyword transformation. The LSH func-

tion takes a vector as the input and hash “close” vectors to the

same value with high probability. We use the following method

to transform a string type keyword to its vector representation

so that it can be used in the LSH functions. A keyword is first

transformed to a bigram set, which contains all the contiguous

2 letters appeared in the keyword. For example, the bigram

set of keyword “network” is {ne,et,tw,wo,or,rk}. We use a

262-bit long vector to represent a bigram set. Each element

in the vector represents one of the 262 possible bigrams.

The element is set to 1 if the corresponding bigram exists

in the bigram set of a given keyword. This bigram vector

based keyword representation is not sensitive to the position of

misspelling, nor is it sensitive to which letter it was misspelled

to. “nwtwork”, “nvtwork”, or “netwoyk” will all be mapped

to a vector with two-element difference from the original

vector. By this representation, a keyword can be misspelled

in many different ways but still be represented in a vector that

is very close to the correct one, and this closeness (distance)

is measured by Euclidean distance, the well-known metric for

distance between vector-type data items. This bigram vector

representation is robust and inclusive, and key to enabling the

use of LSH functions.

2) Bloom filter representation of index/query: Bloom filter

has been used to build per document index before [11],

[21], for single keyword exact search scenario. Regular hash

functions were used that take arbitrary input and hash it to a

statistically independent random value as output. With those

hash functions, two similar inputs, even if they are only off by

4

Fig. 2. i).Transform a keyword into a vector. ii).Use two LSH functions
h1, h2 from the same hash family to generate the index and the query. The
word “network” has the same hash value with the misspelled work “netword”
under LSH function h

a,b because the Euclidean distance between their
vector representations is within the pre-defined threshold. iii).The misspelled
query matches exactly with the index contains the keywords “network” and
“security”. (Encryptions are not shown in the example and we use ‘· · · ’ to
represent all the 0s).

one bit, will be hashed to two totally different random values.

Therefore, they can only be used for exact keyword search.

In this paper, we adopt a special class of hash functions -

locality sensitive hash - to build the index. LSH functions will

hash inputs with similarity within certain threshold into the

same output with high probability. Fig. 2 shows the idea that a

misspelled keyword “netword” in the user query is hashed into

the same bucket as the correctly spelled keyword “network” so

that a match can be found during the search process. The use of

LSH functions in building the per-file Bloom filter based index

is the key to implementing fuzzy search. Therefore, indexes

and queries now are represented as vectors instead of words.

To ease the presentation, we still use the terms index,query.

3) Inner product based matching algorithm: As shown in

Fig. 2, the final secure index for each file is a Bloom filter that

contains all the keywords in the file, where the keywords are

first transformed into its bigram vector representation and then

inserted into the Bloom filter by LSH functions. The query can

be generated in the same way by inserting multiple keywords

to be searched into a query Bloom filter. The search can then

be done by qualifying the relevance of the query to each file,

which in our scheme is done through a simple inner product of

the index vector and the query vector. If a document contains

the keyword(s) in the query, the corresponding bits in both

vectors will be 1 thus the inner product will return a high

value. This simple inner product result thus is a good measure

of the number of matching keywords.

B. Scheme Construction

We present more detailed description of the proposed

scheme in this section, with integrated security and privacy

mechanisms. Our scheme is based on symmetric cryptography

and consists of four polynomial-time algorithms:

• KeyGen(m): Given a security parameter m, output the

secret key SK(M1,M2, S), where M1,M2 ∈ R
m×m are

invertible matrices and S ∈ {0, 1}m is a vector.

• Index Enc(SK, I) : Split the index I into two vectors

{I ′, I ′′} following the rule: for each element ij ∈ I,

set i′j = i′′j = ij if sj ∈ S is 1; otherwise i′j = 1
2 ij +

r, i′′j = 1
2 ij−r where r is a random number. Then encrypt

{I ′, I ′′} with (M1,M2) into {MT
1 ·I ′,MT

2 ·I ′′}. Output

EncSK(I) = {MT
1 · I ′,MT

2 · I ′′} as the secure index.

• Query Enc(SK,Q) : Split the query Q into two vectors

{Q′,Q′′} following the rule: q′j = q′′j = qj if sj ∈ S
is 0; otherwise q′j = 1

2qj + r′, q′′j = 1
2qj − r′ where

r′ is another random number. Then encrypt {Q′,Q′′} as

{M−1
1 · Q′,M−1

2 · Q′′}. Output EncSK(Q) = {M−1
1 ·

Q′,M−1
2 · Q′′} as the trapdoor.

• BuildIndex(D, SK, l): Choose l independent LSH func-

tions from the p-stable LSH family H = {h :
{0, 1}262 → {0, 1}m}. Construct a m-bit Bloom filter

ID as the index for each file D.

1) Extract the keywords setWD = {w1, w2, · · · }, wi ∈
{0, 1}262 from D.

2) For each keyword wi, insert it into the index ID
using hj ∈ H, 1 ≤ j ≤ l.

3) Encrypt the index ID using Index Enc(SK, ID)
and output EncSK(ID).

• Trapdoor(Q, SK): Generate a m-bit long Bloom filter

for the query Q. For each search keyword qi, insert qi
using the same l LSH functions hj ∈ H, 1 ≤ j ≤ l into

the Bloom filter. Encrypt Q using Query Enc(SK,Q),
and output the EncSK(Q).

• Search(EncSK(Q), EncSK(ID)): Output

MT
1 I ′ ·M−1

1 Q′ +MT
2 I ′′ ·M−1

2 Q′′

as the search result for the query Q and the document

D,which can be shown as equivalent to compute

I ′T · Q′ + I ′′T · Q′′ = IT · Q

Therefore, the inner product of the encrypted index and the

trapdoor is equivalent to the inner product of the original index

and the query. Index Enc(SK, I), Query Enc(SK,Q) are

index and query encryption function respectively, which are

tailored for our design from the secure kNN scheme [17].

Discussion: The inner product of the secure index

EncSK(ID) and the trapdoor EncSK(Q) is the exact number

of the matching bits in the Bloom filter, which shows whether

the query keywords existed in the document. For security

consideration, we follow several rules when choosing the

secret key SK in KenGen and random numbers during the

encryption. First, the security parameter m should be long

enough to prevent brute forcing attack, e.g., 128 bits. Second,

the number of 0s should be approximately equal to the number

of 1s in the split vector S in order to maximize the randomness

introduced by S. Last, r used during the split process should

be picked uniformly from R.

Dataset update A particular advantage of our scheme over

the previous multi-keyword search schemes [2], [4] is that our

scheme can support dataset updates efficiently, due to the facts

5

that our scheme doesn’t require a pre-defined global dictionary

and each document is individually indexed. Therefore, dataset

updates, such as file adding, file deleting and file modifying,

can be done efficiently, involving only the indexes of the files

to be modified, without affecting any other files.

C. Soundness of the Basic Scheme

The search result of our basic scheme reflects whether a

query Q matches with a file D.

1) Our basic scheme returns the correct results for the

exact keyword search. If the query keywords Q ⊂ WD,

the cloud server should include file D in the result

set. Recall that we use the same l hash functions

hj ∈ H, 1 ≤ j ≤ l when building the index and the

query. The positions which are set to 1 in the query Q
are also set to 1 the index ID, which implicates that

the inner product reaches the maximum value that the

query can produce. Therefore, the file D is included in

the result set.

2) Our basic scheme returns the correct results with high

probability for the fuzzy keyword search. Suppose the

keyword w ∈ Q is slightly different from the key-

word w′ ∈ WD, i.e., d(w,w′) ≤ r1 where r1 is

the distance threshold defined in the LSH function. If

hj(w) = hj(w
′), hi ∈ H, 1 ≤ i ≤ l for all the l LSH

functions, the Search returns the maximum value as the

exact keyword search.

If d(w,w′) ≤ r1 but hj(w) 6= hj(w
′), then we call

it a LSH miss, which lowers the inner product. If k
LSH misses happen for w and w′ when d(w,w′) ≤ r1,

the probability is
(

l
k

)

(1 − p1)
kpl−k

1 , where p1 is the

probability defined in the LSH function. Since p1 is

close to 1 in practice,
(

l
k

)

(1− p1)
kpl−k

1 decreases when

k increases.

If d(w,w′) > r1, the probability that the LSH functions

hash them together is very low. Thus, our basic scheme

returns the relatively high inner product with high prob-

ability.

False Positive and False Negative A false positive is that

a keyword w in the index matches with the query keyword

q but d(p, q) > r2, and a false negative is that a keyword

w in the index doesn’t match with the query keyword q but

d(p, q) < r1, where r1, r2 are the parameters defined in the

(r1, r2, p1, p2)-sensitive hash functions.

False Positive: Both the Bloom filter and the LSH functions

generate false positive. The false positive rate of a m-bit

Bloom filter using l hash functions is (1 − 1
m)nl, where n

is the number of the items inserted into the Bloom filter. The

false positive caused by LSH is pl2, which equals p(c) in p-

stable LSH. The false positive rate of our basic scheme is

(1− (1− p2)
n(1− 1

m
)n(l−1))l (3.2)

where n is the number of keywords in the index; m is

the length of the Bloom filter and l is the number of LSH

functions.

False Negative: Bloom filter will not introduce false neg-

ative. Therefore, all the false negatives are generated by the

LSH functions. The false negative rate of our basic scheme is:

1− (1− (1− p1)(1− p2)
n−1(1− 1/m)n(l−1))l (3.3)

Discussions: Our design returns the documents with the

highest inner product score, which works fine when no fuzzy

keyword presents in the query. But when there are fuzzy

keywords in the query, some of the matched files may be

missed from the search result because the inner products may

be lowered due to one or more misses caused by LSH func-

tions. This increases the false negative rate. One alternative

approach is to add documents with relatively high score into

the result to reduce the false negative rate. However, the

alternative will increase the false positive rate. There is a trade-

off between the false positive rate and the false negative rate

of our scheme. The data owner can tune the parameters, i.e.

m, l, to specifically fit his own accuracy requirements.

D. Security and Privacy analysis

According to [10], the cloud server can build up access

patterns by recording the trapdoors and their search results.

Therefore, nothing beyond the access pattern and the search

result should be leaked under the known ciphertext model.

Theorem 1. Our basic scheme is secure under the known

ciphertext model.

Before proving the theorem 1, we introduce some notions

used in [10].

• History is a file set ∆, a index set I built from ∆ and

a set of queries W = (w1, · · · , wk) submited by users,

denoted as H = (∆, I,Wk).
• View is the encrypted form of a H under some se-

cret key sk, denoted as V (H), i.e., the encrypted files

Encsk(∆), the secure indexes Encsk(I(∆)) and the

trapdoors Encsk(Wk). Note that the cloud server can

only see views.

• Trace of a history, denoted as Tr(H), captures the

information which can be learned by the cloud server,

i.e. the access patterns and the search results induced

by H . A trace of the history H is the set of the

trace of queries Tr(H) = {Tr(w1), · · · , T r(wk)}, and

Tr(wi) = {(δj , sj)wi⊂δj , 1 ≤ j ≤ |∆|}, where sj is the

similarity score between the query wi and the file δj .

Intuitively, given two histories with the same trace, if the cloud

server cannot distinguish which of them is generated by the

simulator, he cannot learn additional information about the

index and the dataset beyond the search result and the access

pattern. Now we prove the theorem 1.

Proof: We adopt a similar simulation based proof

used in [10]. Denote S is a simulator that can simulate

a view V ′ indistinguishable from a cloud server’s view

V (Encsk(∆), I, T (Wk)). To achieve this, the simulator S
does the followings:

• S selects a random δ′i ∈ {0, 1}|δi|, δi ∈ ∆, 1 ≤ i ≤ |∆|,
and outputs ∆′ = {δ′i, 1 ≤ i ≤ |∆′|}.

6

• S randomly picks two invertible matrices M ′
1,M

′
2 ∈

R
m×m, one split vector S′ ∈ {0, 1}m and set sk′ =
{M ′

1,M
′
2, S

′}.
• S constructs the W ′

k and the trapdoor Encsk′(W ′
k) as

follow. For each wi ∈Wk, 1 ≤ i ≤ k,

1) Generate a w′
i ∈ {0, 1}m. Ensure that the number

of 1s in w′
i is same as the number of 1s in wi but

their positions are different. This is easy to achieve

because there are at most l 1s in wi and l ≪ m.

Output W ′ = {w′
i, 1 ≤ i ≤ k}.

2) Generate the trapdoor for each w′
i ∈ W ′, i.e.,

Encsk′(w′
i) for 1 ≤ i ≤ k. Then S sets

Encsk′(W ′
k) = {Encsk′(w′

1), · · · , Encsk′(w′
k)}.

• To generate I(∆′), S first generate a m-bit null vector

for each δ′i ∈ ∆′, 1 ≤ i ≤ |∆′| as the index, denoted as

Iδ′
i
. Then S does the following:

1) For each wi ∈Wk, if wi ⊂ δj , 1 ≤ j ≤ |∆|, S sets

Iδ′
j

as Iδ′
j
+ w′

i.

2) S converts each Iδ′
j
, 1 ≤ j ≤ |∆′| into a vector

in {0, 1}m by replacing the elements bigger than 1

with 1.

3) S generates Encsk′(I(∆′)) as Encsk′({Iδ′
j
}, 1 ≤

j ≤ |∆′|).
• S outputs the view V ′ =

(∆′, Encsk′(I(∆′)), Encsk′(W ′
k)).

The correctness of the construction is easy to demonstrate. The

secure index Encsk′(I(∆′)) and the trapdoor Encsk′(W ′
k)

generate the same trace as the one that the cloud server has. We

claim that no probabilistic polynomial-time (P.P.T.) adversary

can distinguish between the view V ′ and V (H). Particularly,

due to the semantic security of the symmetric encryption, no

P.P.T adversary can distinguish between Encsk(∆),∆′. And

the indistinguishability of indexes and trapdoors is based on

the indistinguishability of the secure kNN encryption and the

random number introduced in the split processes.

While our basic scheme is secure under the known cipher-

text model, it is vulnerable under known background model.

Under known background model, the cloud server may obtain

the background information, i.e., the keyword frequency and

distribution among the dataset [2]. And these information can

be used to infer some keyword w to its trapdoor Encsk(w).
Because the secure kNN method is vulnerable to linear

analysis [22], cloud server can launch the linear analysis

using the keyword and its trapdoor pair if the number of

keyword-trapdoor pairs is large enough. So the index might be

partially or entirely recovered. To address the potential privacy

violation problem under known background attack, we propose

an enhanced scheme to strengthen our basic scheme.

IV. ENHANCED MULTIPLE KEYWORDS FUZZY SEARCH

SCHEME

In this section, we present our enhanced scheme, which

improves the security under known background model.

A. Enhanced Scheme

As showed in section 3, under known background model,

the adversary potentially can recover the encrypted indexes

through linear analysis and further infer the keywords in the

index. To secure the linkage between the keywords and the

Bloom filter, we introduce an extra security layer, i.e., a

pseudo-random function f .

Our enhanced scheme contains the following four processes:

• KeyGen(m, s): Given a parameter m, generate the

secret key SK(M1,M2, S), where M1,M2 ∈ R
m×m

are invertible matrices while S ∈ {0, 1}m is a vector.

Given another parameter s, generate the hash key pool

HK = {ki|ki R←− {0, 1}s, 1 ≤ i ≤ l}.
• BuildIndex(D, SK, l) : Choose l independent LSH func-

tions from the p-stable LSH family H and one pseudo-

random function f : {0, 1}∗ × {0, 1}s → {0, 1}∗. For

each file D,

1) Extract the keywords set W = {w1, w2, · · · } from

D.

2) Generate a m-bit Bloom filter ID. Insert W into

ID using the hash functions {gi|gi = fki
◦ hi, hi ∈

H, 1 ≤ i ≤ l}.
3) Encrypt the ID with SK and return EncSK(ID)

as the index.

• Trapdoor(Q, SK): Generate a m-bit long Bloom filter.

Insert the Q using the same hash functions gi, i.e., gi =
fki
◦ hi, hi ∈ H, 1 ≤ i ≤ l into the Bloom filter. Encrypt

theQ with SK and return the EncSK(Q) as the trapdoor.

• Search(EncSK(Q), EncSK(ID)): Output the inner

product < EncSK(Q), EncSK(ID) > as the search

result for the query Q and the document D.

Note that the extra security layer in the enhanced scheme

doesn’t affect the search result because pseudo-random func-

tions are collision free. However, in practice, we can use

HMAC-SHA1, since the collision rate of HMAC-SHA1 is very

low.

B. Security Analysis of Enhanced Scheme

Under known background model, we assume the cloud

server obtains not only the trace of a history, but also a certain

number of the keyword and trapdoor pairs, denoted as (wi, Ti).
Intuitively, the adversary with the keyword and trapdoor pairs

should not be able to distinguish the view generated by the

simulator from the view he owns. We use a simulation based

approach to prove the security of our enhanced scheme.

Theorem 2. Our enhanced scheme is secure under the known

background model.

Proof: Denote S is a simulator that can simulate a view

V ′ indistinguishable from the view the cloud server has. Then

we construct the simulator as follows:

• To generate ∆′, S selects a random δ′i ∈ {0, 1}|δi|, δi ∈
∆, 1 ≤ i ≤ |∆|, and outputs ∆′ = {δ′i, 1 ≤ i ≤ |∆′|}.

7

• S randomly picks two invertible matrices M ′
1,M

′
2 ∈

R
m×m, one split vector S′ ∈ {0, 1}m and a pseudo-

random permutations F Set sk′ = {M ′
1,M

′
2, S

′}.
• S constructs the query W ′

k and the corresponding trapdoor

as follow. For each wi ∈Wk, 1 ≤ i ≤ k,

1) Generate a w′
i ∈ {0, 1}m. Ensure that the number

of 1s in w′
i is same as the number of 1s in wi but

their positions are different. This is easy to achieve

because there are at most l 1s in wi and l≪ m.

2) Generate the trapdoor for each w′
i ∈ W ′,

i.e., Encsk′(w′
i) = Encsk′(F (w′

i)), 1 ≤
i ≤ k. Then S sets Encsk′(W ′

k) =
{Encsk′(F (w′

1)), · · · , Encsk′(F (w′
k))}.

• To generate I(∆′), S first generate a m-bit null vector

for each δ′i ∈ ∆′, 1 ≤ i ≤ |∆′| as the index, denoted as

I ′δ′
i
, then does the following:

1) For each wi ∈Wk, if wi ⊂ δj , 1 ≤ j ≤ |∆|, S sets

Iδ′
j

as Iδ′
j
+ w′

i.

2) S converts each Iδ′
j
, 1 ≤ j ≤ |∆| into a vector

in {0, 1}m by replacing the elements bigger than 1

with 1.

3) I(∆′) = Encsk′({F (Iδ′
j
)}, 1 ≤ j ≤ |∆|).

• S outputs the view V ′ = (∆′, I(∆′), Encsk′(W ′
k)).

The construction is correct since the search result on I(∆′)
with the trapdoor Encsk′(W ′

k) is same as the trace which

the cloud server has. We claim that no P.P.T. adversary with

the keyword and trapdoor pairs can distinguish the view V ′

from V (H). Particularly, due to the semantic security of

the symmetric encryption, no P.P.T adversary can distinguish

Encsk(∆) from ∆′. And the P.P.T adversary with the keyword

and trapdoor pairs cannot distinguish the output of the linear

analysis from a random string because of the indistinguisha-

bility of the pseudo-random function F .

V. EXPERIMENTAL RESULTS

We use the recent 10 years’ IEEE INFOCOM publication

as our experiment dataset which contains more than 3600

files. We extract 5734 keywords in total, and the average

number of the keywords in a paper is 147 while the min-

imum and the maximum are 112 and 175 respectively. We

use a 2-stable (
√
3, 2, p1, p2)-LSH family to build the in-

dex which supports 1 edit distance difference, where p1 =
P (
√
3) = 0.558864, p2 = P (3/4) = 0.285932 using P (x) =

−

(

1−e−
x2

2

)√
2

π

x + Erf
[

x√
2

]

. We choose k = 10, l = 30, and

set n = 200,m = 8000. We implement our schemes on a

desktop PC equipped with Intel Core i3 processor at 3.3 GHz

and 4 Gb RAM, which has the same computation power with

an Amzaon EC2 M1 Medium instance. To generate a fuzzy

keyword in a query, we randomly choose one letter from a

keyword and replace it with another letter. We allow at most

two fuzzy keywords in a query.

A. Efficiency

1) Index and Trapdoor Generation: The index generation

process is a one-time computation which contains two major

steps: the Bloom filter generation and the encryption. During

the Bloom filter generation, the computation mainly comes

from the hash function calculation. Figure 3.(a) shows the

Bloom filter generation time for the index and the trapdoor

Bloom filter. The generation time increases linearly respect to

the number of the inserted keywords. The trapdoor generation

time is very close to the index generation time due to the

identical procedure. The encryption time which involves the

matrix multiplications is showed in figure 3.(b). The time cost

of encryption increases linearly respect to the number of the

files in the dataset.

2) Search over Encrypted Index: The search operation

executed at the cloud server side consists of computing the

inner product calculation for all the files in the dataset. Figure

3.(c) shows the search time grows linearly with the size of the

file set while the number of keywords in the query has little

impact as showed in figure 3.(d). This is intuitive because the

search process needs to go over all the files in the dataset

before the cloud server can get the final result. The inner

product computation is only related to the length of the index,

so the computation time changes little in figure 3.(d).

B. Result Accuracy

We adopt the definitions of the widely used performance

metrics, precision and recall to measure the search result

accuracy. Denote tp as true positive, fp as false positive and

fn as false negative, then the precision equals to tp
tp+fp while

the recall is tp
tp+fn . To generate the fuzzy queries, we randomly

pick two keywords and modify them into the fuzzy keywords.

Figure 4.(a) shows the performance metrics of our scheme

according to k. Note that there is no recall for the exact

matching because the false negative doesn’t exist. One obser-

vation is that precision is very low when k is small, i.e. 5% at

k = 1. Because that multiple LSH functions are used together

to enlarge the gap between p1 and p2. So when the k is small,

the gap is not big enough to distinguish the different keywords,

and most of the files in the dataset have been returned, which

leads to high fp and low fn. The jump at k = 5 is due to

the gap between p1 and p2 increases exponentially respect to

k. After a certain k, i.e., k = 8, the precision is remained

at a high level, which is above 90% for the exact search and

above 80% for the fuzzy search. Another observation is that

the recall drops when increasing the k. This is because that

increasing the k will cause more false negatives. In general,

the false positive and the false negative cannot be improved

at the same time.

Another important parameter is the number of the keywords

in the query. Figure 4.(b) shows the precision of the exact

match decreasing slightly, from 100% to 96% while the

number of the keywords in the query increases from 1 to

10. This is reasonable because the false positive generated

by each keyword accumulates. But the precision for the fuzzy

search doesn’t show the same pattern. It is slightly increased

from 70% to 81% when the number of the keywords in the

query increases from 1 to 10. The reason is that the false

positive caused by the LSH functions contributes much more

8

Fig. 3. (a) The Bloom filter generation time for a single file v.s. # of the keywords; (b) The encryption time for all the indexes v.s. the dataset size. The
computation time for the search process; (c) Different size of the file set with the fixed keywords number k=5 in the query; (d) Different # of the keywords
in the query with the fixed file size 1000

than the false positive introduced by the Bloom filter. As the

portion of the fuzzy keywords decreases, the impact of the

false positive caused by the fuzzy keyword is reduced since

the fuzzy keywords contribute less in the search result.

VI. RELATED WORKS

A. Searchable Encryption Scheme without Fuzzy Search Sup-

port

1) Single Keyword Searchable Encryption: Song et al. [1]

studied this problem first under the symmetric key setting for

email systems. Their scheme didn’t contain an index, thus, the

search operation went through the entire file. Goh proposed

a secure index using the Bloom filter in [11]. Curtmola et

al. gave the formal definition of the searchable encryption and

proposed an index scheme based on the inverted list in [10]. In

[8], Wang et al. solved the result ranking problem utilizing the

keyword frequency and order-preserving encryption. Boneh et

al. [3]proposed the first searchable encryption scheme using

the asymmetric encryption scheme. All of these works only

supported the single keyword search over the encrypted data.

2) Multiple Keywords Searchable Encryption: To enrich

the search functionality, the schemes supporting conjunctive

keywords search have been proposed [4]–[7], [23]–[25]. Many

works which supported the conjunctive keyword search, subset

search, range queries were using the asymetric encryption

[5]–[7]. [23]–[25] used the predicate encryption to achieve

the conjunctive keywords search over encrypted data. In

[26], a logarithmic-time search scheme was presented to

support the range queries. Cao et al. [4] proposed a privacy-

preserving multi-keyword ranked search scheme using sym-

metric encryption. Sun et al. [2] proposed an efficient privacy-

preserving multi-keyword supporting cosine similarity mea-

surement. However, none of the schemes can support fuzzy

keyword search.

B. Searchable Encryption Scheme support Fuzzy Search

Li et al. proposed a wildcard based fuzzy search over

encrypted data in [12]. Then Liu et al. [13] improved the

scheme by reducing the index size. In [27], the LSH functions

are used to generate file index. But it took two rounds of

communication to achieve results ranking and only supported

the single keyword search. All the aforementioned schemes

only support the single keyword search, the fuzzy match OR

the exact match. In [14], Chuah et al. improved [12] by

introducing a tree structure index and enriched the search

functionality by treating the pre-defined phrases, for example,

“cloud computing”, as a single keyword.

VII. CONCLUSION

In this paper, we tackled the challenging multi-keyword

fuzzy search problem over the encrypted data. We proposed

and integrated several innovative designs to solve the multiple

keywords search and the fuzzy search problems simultane-

ously with high efficiency. Our approach of leveraging LSH

functions in the Bloom filter to construct the file index is novel

and provides an efficient solution to the secure fuzzy search

of multiple keywords. In addition, the Euclidean distance is

adopted to capture the similarity between the keywords and

the secure inner product computation is used to calculate the

similarity score so as to enable result ranking. We proposed a

basic scheme as well as an improved scheme in order to meet

different security requirements. Thorough theoretical security

analysis and experimental evaluation using real-world dataset

were carried out to demonstrate the suitability of our proposed

scheme for the practice usage.

ACKNOWLEDGMENT

This work was supported in part by US National Science

Foundation under grants CNS-1217889 and CNS-1338102.

REFERENCES

[1] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” S&P 2000, vol. 8, pp. 44–55, 2000.

[2] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, T. Hou, and H. Li, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,” in ASIACCS 2013, May 2013.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” EUROCRYPTO 2004, pp. 506–522,
2004.

[4] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” INFOCOM

2011, pp. 829–837, 2011.

9

Fig. 4. (a). The performance matrices of varying the value of k. We fix the query size to 5; (b).The performance matrices of varying # of keywords in the
query. We fix the k=10.

[5] Y. Hwang and P. Lee, “Public key encryption with conjunctive keyword
search and its extension to a multi-user system,” Pairing 2007, pp. 2–22,
2007.

[6] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” Theory of Cryptography, vol. 4392, pp. 535–554, 2007.

[7] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” ACNS 2004, vol. 3089, pp. 31–45, 2004.

[8] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” ICDCS 2010, pp. 253–262, 2010.

[9] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” ACNS 2005, vol. 3531, pp. 442–455,
2005.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
CCS 2006, vol. 19, pp. 79–88, 2006.

[11] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive on October 7th,
pp. 1–18, 2003.

[12] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in IEEE INFOCOM

2010, mini-conference, San Diego, CA, USA, March 2010.
[13] C. Liu, L. Zhu, L. Li, and Y. Tan, “Fuzzy keyword search on encrypted

cloud storage data with small index,” ICCCIS 2011, pp. 269–273, 2011.
[14] M. Chuah and W. Hu, “Privacy-aware bedtree based solution for fuzzy

multi-keyword search over encrypted data,” ICDCSW 2011, pp. 273–
281, 2011.

[15] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” Proceedings of the 30th ACM

symposium on Theory of computing, vol. 126, pp. 604–613, 1998.
[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, pp. 422–426, 1970.
[17] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure

knn computation on encrypted databases,” SIGMOD 2009, pp. 139–152,
2009.

[18] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health records in
cloud computing: Patient-centric and fine-grained data access control in
multi-owner settings,” in SecureComm 2010, Singapore, September 7-9
2010.

[19] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in IEEE

INFOCOM 2010, San Diego, CA, USA, March 2010.
[20] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions,” SCG 2004, 2004.
[21] S. M. Bellovin and W. R. Cheswick, “Privacy-enhanced searches using

encrypted bloom filters,” 2007.
[22] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” 2013.
[23] E. Shi, J. Bethencourt, T. h. Hubert, C. Dawn, and S. A. Perrig, “Multi-

dimension range query over encrypted data,” S&P 2007, pp. 350–364,
2007.

[24] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” TCC 2009, pp. 457–473, 2009.

[25] N. Attrapadung and B. Libert, “Functional encryption for inner product:
Achieving constant-size ciphertexts with adaptive security or support for
negation,” PKC 2010, vol. 6056, pp. 384–402, 2010.

[26] Y. Lu, “Privacy-preserving logarithmic-time search on encrypted data in
cloud,” NDSS 2012, 2012.

[27] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” 28th International Conference on Data

Engineering, pp. 1156–1167, 2012.

APPENDIX

Definition 1. A distribution D over R is called a p-stable dis-

tribution, if ∃p ≥ 0 such that for n real numbers v1, v2, · · · , vn
and i.i.d. variables X1, X2, · · · , Xn with same distribution,

the summation
∑

i viXi also follows the distribution D with

the variable (
∑

i |vi|p)1/pX , where X is a random variable

with distribution D.

• when p = 1, it is Cauchy distribution, defined by the

density function fp(x) =
1
π

1
1+x2 , is 1-stable.

• when p = 2, it is Gaussian distribution, defined by the

density function fp(x) =
1√
2π

e−x2/2, is 2-stable.

The p-stable LSH function is given by:

ha,b(v) =

⌊

a · v + b

w

⌋

where a is a d-dimensional vector, b ∈ [0, w] is a real number

and w is a fixed constant for one family.

The hash function ha,b(v) : R
d → Z maps a d-dimensional

vector v onto the set of integers. By choosing different a, b,
different hash functions in the family can be generated. Given

two vectors v1,v2, let c =‖ v1 − v2 ‖p, it is easy to see

p(c) = Pra,b[ha,b(v1) = ha,b(v2)] =

∫ w

0

1

c
fp(

t

c
)(1− t

w
)dt,

where fp is the probability density function. Denote ǫ = r2/r1,

then p-stable LSH is showed (r, ǫr, p1, p2)-sensitive where

p1 = p(r), p2 = p(ǫr) in [20].

