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Abstract—With the advent of cloud computing, data owners
are motivated to outsource their complex data management
systems from local sites to commercial public cloud for great
flexibility and economic savings. But for protecting data privacy,
sensitive data has to be encrypted before outsourcing, which
obsoletes traditional data utilization based on plaintext keyword
search. Thus, enabling an encrypted cloud data search service is
of paramount importance. Considering the large number of data
users and documents in cloud, it is crucial for the search service to
allow multi-keyword query and provide result similarity ranking
to meet the effective data retrieval need. Related works on
searchable encryption focus on single keyword search or Boolean
keyword search, and rarely differentiate the search results. In
this paper, for the first time, we define and solve the challenging
problem of privacy-preserving multi-keyword ranked search over
encrypted cloud data (MRSE), and establish a set of strict privacy
requirements for such a secure cloud data utilization system
to become a reality. Among various multi-keyword semantics,
we choose the efficient principle of “coordinate matching”, i.e.,
as many matches as possible, to capture the similarity between
search query and data documents, and further use “inner product
similarity” to quantitatively formalize such principle for similar-
ity measurement. We first propose a basic MRSE scheme using
secure inner product computation, and then significantly improve
it to meet different privacy requirements in two levels of threat
models. Thorough analysis investigating privacy and efficiency
guarantees of proposed schemes is given, and experiments on
the real-world dataset further show proposed schemes indeed
introduce low overhead on computation and communication.

I. INTRODUCTION

Cloud computing is the long dreamed vision of computing
as a utility, where cloud customers can remotely store their
data into the cloud so as to enjoy the on-demand high quality
applications and services from a shared pool of configurable
computing resources [1]. Its great flexibility and economic
savings are motivating both individuals and enterprises to
outsource their local complex data management system into
the cloud, especially when the data produced by them that need
to be stored and utilized is rapidly increasing. To protect data
privacy and combat unsolicited accesses in cloud and beyond,
sensitive data, e.g., emails, personal health records, photo al-
bums, tax documents, financial transactions, etc., may have to
be encrypted by data owners before outsourcing to commercial
public cloud [2]; this, however, obsoletes the traditional data
utilization service based on plaintext keyword search. The
trivial solution of downloading all the data and decrypting
locally is clearly impractical, due to the huge amount of
bandwidth cost in cloud scale systems. Moreover, aside from
eliminating the local storage management, storing data into

the cloud serves no purpose unless they can be easily searched
and utilized. Thus, exploring privacy-preserving and effective
search service over encrypted cloud data is of paramount
importance. Considering the potentially large number of on-
demand data users and huge amount of outsourced data
documents in cloud, this problem is particularly challenging
as it is extremely difficult to meet also the requirements of
performance, system usability and scalability.

On the one hand, to meet the effective data retrieval need,
large amount of documents demand cloud server to perform
result relevance ranking, instead of returning undifferenti-
ated result. Such ranked search system enables data users
to find the most relevant information quickly, rather than
burdensomely sorting through every match in the content
collection [3]. Ranked search can also elegantly eliminate
unnecessary network traffic by sending back only the most
relevant data, which is highly desirable in the “pay-as-you-
use” cloud paradigm. For privacy protection, such ranking
operation, however, should not leak any keyword related
information. On the other hand, to improve search result
accuracy as well as enhance user searching experience, it
is also crucial for such ranking system to support multiple
keywords search, as single keyword search often yields far too
coarse result. As a common practice indicated by today’s web
search engines (e.g., Google search), data users may tend to
provide a set of keywords instead of only one as the indicator
of their search interest to retrieve the most relevant data. And
each keyword in the search request is able to help narrow down
the search result further. “Coordinate matching” [4], i.e., as
many matches as possible, is an efficient principle among such
multi-keyword semantics to refine the result relevance, and has
been widely used in the plaintext information retrieval (IR)
community. However, how to apply it in the encrypted cloud
data search system remains a very challenging task because
of inherent security and privacy obstacles, including various
strict requirements like data privacy, index privacy, keyword
privacy, and many others (see section III-B).

In the literature, searchable encryption [5]–[13] is a helpful
technique that treats encrypted data as documents and allows
a user to securely search over it through single keyword and
retrieve documents of interest. However, direct application
of these approaches to deploy secure large scale cloud data
utilization system would not be necessarily suitable, as they
are developed as crypto primitives and cannot accommodate
such high service-level requirements like system usability, user
searching experience, and easy information discovery in mind.



2

Although some recent designs have been proposed to support
Boolean keyword search [14]–[21] as an attempt to enrich
the search flexibility, they are still not adequate to provide
users with acceptable result ranking functionality (see section
VI). Our early work [22] has been aware of this problem,
and solves the secure ranked search over encrypted data with
support of only single keyword query. But how to design an
efficient encrypted data search mechanism that supports multi-
keyword semantics without privacy breaches still remains an
challenging open problem.

In this paper, for the first time, we define and solve the
problem of multi-keyword ranked search over encrypted cloud
data (MRSE) while preserving strict system-wise privacy in
cloud computing paradigm. Among various multi-keyword
semantics, we choose the efficient principle of “coordinate
matching”, i.e., as many matches as possible, to capture
the similarity between search query and data documents.
Specifically, we use “inner product similarity” [4], i.e., the
number of query keywords appearing in a document, to
quantitatively evaluate the similarity of that document to the
search query in “coordinate matching” principle. During index
construction, each document is associated with a binary vector
as a subindex where each bit represents whether corresponding
keyword is contained in the document. The search query is also
described as a binary vector where each bit means whether
corresponding keyword appears in this search request, so the
similarity could be exactly measured by inner product of query
vector with data vector. However, directly outsourcing data
vector or query vector will violate index privacy or search
privacy. To meet the challenge of supporting such multi-
keyword semantic without privacy breaches, we propose a
basic MRSE scheme using secure inner product computation,
which is adapted from a secure k-nearest neighbor (kNN)
technique [4], and then improve it step by step to achieve
various privacy requirements in two levels of threat models.
Our contributions are summarized as follows,

1) For the first time, we explore the problem of multi-
keyword ranked search over encrypted cloud data, and
establish a set of strict privacy requirements for such a
secure cloud data utilization system to become a reality.

2) We propose two MRSE schemes following the principle
of “coordinate matching” while meeting different pri-
vacy requirements in two levels of threat models.

3) Thorough analysis investigating privacy and efficiency
guarantees of proposed schemes is given, and experi-
ments on the real-world dataset further show proposed
schemes indeed introduce low overhead on computation
and communication.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the system and threat model, our design
goals, and preliminary. Section III describes MRSE framework
and privacy requirements, followed by section IV, which gives
our schemes achieving efficiency and privacy requirements.
Section V presents simulation results. We discuss related work
on both single and Boolean keyword searchable encryption in
Section VI, and conclude the paper in Section VII.

data & index
encrypted

search request

Data owner

Semi-trusted

cloud server

ranked result

Data users
search control(trapdoors)

access control(data decryption keys)

Fig. 1: Architecture of the search over encrypted cloud data

II. PROBLEM FORMULATION

A. System Model

Considering a cloud data hosting service involving three
different entities, as illustrated in Fig. 1: data owner, data
user, and cloud server. Data owner has a collection of data
documents F to be outsourced to cloud server in the encrypted
form C. To enable the searching capability over C for effective
data utilization, data owner, before outsourcing, will first build
an encrypted searchable index I from F , and then outsource
both the index I and the encrypted document collection C
to cloud server. To search the document collection for t
given keywords, an authorized user acquires a corresponding
trapdoor T through search control mechanisms, e.g., broadcast
encryption [8]. Upon receiving T from data users, cloud server
is responsible to search the index I and return the corre-
sponding set of encrypted documents. To improve document
retrieval accuracy, search result should be ranked by cloud
server according to some ranking criteria (e.g., coordinate
matching, as will be introduced shortly). Moreover, to reduce
communication cost, data user may send an optional number
k along with the trapdoor T so that cloud server only sends
back top-k documents that are most relevant to the search
query. Finally, the access control mechanism is employed to
manage decryption capabilities given to users.

B. Threat Model

Cloud server is considered as “honest-but-curious” in our
model, which is consistent with the most related works on
searchable encryption. Specifically, cloud server acts in an
“honest” fashion and correctly follows the designated protocol
specification. However, it is “curious” to infer and analyze data
(including index) in its storage and message flows received
during the protocol so as to learn additional information. Based
on what information cloud server knows, we consider two
levels of threat models as follows.

Known Ciphertext Model In this model, cloud server is
supposed to only know encrypted dataset C and searchable
index I, both of which are outsourced from data owner.

Known Background Model In this stronger model, cloud
server is supposed to possess some backgrounds on the dataset,
such as the subject and its related statistical information, in
addition to what can be accessed in known ciphertext model.
As an instance of possible attacks in this case, cloud server
could utilize document frequency or keyword frequency [23]
to identify keywords in the query.
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C. Design Goals

To enable ranked search for effective utilization of out-
sourced cloud data under the aforementioned model, our
system design should simultaneously achieve security and
performance guarantees as follows.
• Multi-keyword Ranked Search: To design search

schemes which allow multi-keyword query and provide
result similarity ranking for effective data retrieval, in-
stead of returning undifferentiated results.

• Privacy-Preserving: To prevent cloud server from learn-
ing additional information from dataset and index, and to
meet privacy requirements specified in section III-B.

• Efficiency: Above goals on functionality and privacy
should be achieved with low communication and com-
putation overhead.

D. Notations

• F – the plaintext document collection, denoted as a set
of m data documents F = (F1, F2, . . . , Fm).

• C – the encrypted document collection stored in cloud
server, denoted as C = (C1, C2, . . . , Cm).

• W – the distinct keywords extracted from document
collection F , denoted as W = (W1,W2, . . . , Wn).

• I – the searchable index associated with C, denoted as
(I1, I2, . . . , Im) where each subindex Ii is built for Fi.

• W̃ – the subset of W , representing the keywords in a
search request, denoted as W̃ = (Wj1 , Wj2 , . . . , Wjt).

• TW̃ – the trapdoor for the search request W̃ .
• FW̃ – the ranked id list of all documents according to

their similarity with W̃ .

E. Preliminary on Coordinate Matching

As a hybrid of conjunctive search and disjunctive search,
“coordinate matching” [4] is an intermediate approach which
uses the number of query keywords appearing in the document
to quantify the similarity of that document to the query. When
users know the exact subset of the dataset to be retrieved,
Boolean queries perform well with the precise search require-
ment specified by the user. In cloud computing, however, this
is not the practical case, given the huge amount of outsourced
data. Therefore, it is more flexible for users to specify a list
of keywords indicating their interest and retrieve the most
relevant documents with rank order.

III. FRAMEWORK AND PRIVACY REQUIREMENTS FOR
MRSE

In this section, we define the framework of multi-keyword
ranked search over encrypted cloud data (MRSE) and establish
various strict system-wise privacy requirements for such a
secure cloud data utilization system.

A. MRSE Framework

For easy presentation, operations on the data documents are
not shown in the framework since data owner could easily

employ traditional symmetric key cryptography to encrypt and
then outsource data. With focus on index and query, a MRSE
consists of four algorithms as follows.
• Setup(1`) Taking a security parameter ` as input, data

owner outputs a symmetric key as SK.
• BuildIndex(F , SK) Based on the dataset F , data owner

builds a searchable index I which is encrypted by the
symmetric key SK and then outsourced to cloud server.
After the index construction, the document collection can
be independently encrypted and outsourced.

• Trapdoor(W̃) With t keywords of interest in W̃ as input,
this algorithm generates a corresponding trapdoor TW̃ .

• Query(TW̃ , k, I) When cloud server receives a query
request as (TW̃ , k), it performs the ranked search on
the index I with the help of trapdoor TW̃ , and finally
returns FW̃ , the ranked id list of top-k documents sorted
by their similarity with W̃ .

Both search control and access control are not within the
scope of this paper. While the former is to regulate how
authorized users acquire trapdoors, the later is to manage
users’ access to outsourced documents.

B. Privacy Requirements for MRSE

The representative privacy guarantee in the related litera-
ture, such as searchable encryption, is that the server should
learn nothing but search results. With this general privacy
description, we explore and establish a set of strict privacy
requirements specifically for the MRSE framework.

As for the data privacy, data owner can resort to traditional
symmetric key cryptography to encrypt the data before out-
sourcing, and successfully prevent cloud server from prying
into outsourced data. With respect to the index privacy, if
server deduces any association between keywords and en-
crypted documents from index, it may learn the major subject
of a document, even the content of a short document [23].
Therefore, searchable index should be constructed to prevent
server from performing such kind of association attack. While
data and index privacy guarantees are demanded by default
in the related literature, various search privacy requirements
involved in the query procedure are more complex and difficult
to tackle as follows.
Keyword Privacy As users usually prefer to keep their search
from being exposed to others like cloud server, the most
important concern is to hide what they are searching, i.e., the
keywords indicated by the corresponding trapdoor. Although
the trapdoor can be generated in a cryptographic way to protect
the query keywords, cloud server could do some statistical
analysis over the search result to make an estimate. As a
kind of statistical information, document frequency (i.e., the
number of documents containing the keyword) is sufficient to
identify the keyword with high probability [24]. When cloud
server knows some background information of the dataset,
this keyword specific information may be utilized to reverse-
engineer the keyword.
Trapdoor Privacy Since only authorized users are allowed
to acquire trapdoors for their search query, the server is not
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expected to have the ability to generate valid trapdoors from
previous received ones. Specifically, given one trapdoor for a
set of multiple keywords, the server is not allowed to generate
a valid trapdoor for its subset, including single keyword.
For example, it is forbidden to generate or deduce a new
trapdoor as TWi for keyword Wi from the received trapdoor as
T(Wi,Wk) for two keywords (Wi, Wj). Moreover, the server is
not allowed to generate a valid trapdoor, e.g., T(Wi,Wj), from
two or more trapdoors, like T(Wi,Wk) and T(Wj ,Wk).

Search Pattern In accordance with the definition in related
work on single keyword searchable encryption [8], search
pattern of data user in MRSE means any information that can
be derived by server if it acquires the knowledge that two
arbitrary searches are performed for the same keywords or
not. If the trapdoor is generated in a deterministic manner,
server could easily know the search pattern of any data
user by comparing trapdoors received from that user. So
the fundamental protection for search pattern is to introduce
nondeterminacy into trapdoor generation procedure.

Access Pattern Within the ranked search, access pattern is
the sequence of search results where every search result is
a set of documents with rank order. Specifically, the search
result for W̃ is denoted as FW̃ , consisting of the id list of all
documents ranked by their similarity to W̃ . Then the access
pattern is denoted as (FW̃1

,FW̃2
, . . .) which are the results

of sequential searches. Although a few searchable encryption
works, e.g., [17] has been proposed to utilize private informa-
tion retrieval(PIR) technique [25], to hide access pattern, our
proposed schemes are not designed to protect access pattern
for the efficiency concerns. This is because any PIR based
technique must “touch” the whole dataset outsourced on the
server which is inefficient in the large scale cloud system.

IV. PRIVACY-PRESERVING AND EFFICIENT MRSE

To efficiently achieve multi-keyword ranked search, we pro-
pose to employ “inner product similarity” [4] to quantitatively
formalize the efficient ranking principle “coordinate match-
ing”. Specifically, Di is a binary data vector for document
Fi where each bit Di[j] ∈ {0, 1} represents the existence
of the corresponding keyword Wj in that document, and Q
is a binary query vector indicating the keywords of interest
where each bit Q[j] ∈ {0, 1} represents the existence of the
corresponding keyword Wj in the query W̃ . The similarity
score of document Fi to query W̃ is therefore expressed as
the inner product of their binary column vectors, i.e., Di ·Q.
For the purpose of ranking, cloud server must be given the
capability to compare the similarity of different documents
to the query. But, to preserve strict system-wise privacy, data
vector Di, query vector Q and their inner product Di·Q should
not be exposed to cloud server. In this section, we first propose
a basic MRSE scheme using secure inner product computation,
which is adapted from a secure k-nearest neighbor (kNN)
technique, and then show how to significantly improve it to
be privacy-preserving against different levels of threat models
in the MRSE framework in a step-by-step manner.

A. MRSE I: Basic Scheme

1) Secure kNN Computation: In the secure k-nearest neigh-
bor (kNN) scheme [26], Euclidean distance between a database
record pi and a query vector q is used to select k nearest
database records. The secret key is composed of one (d + 1)-
bit vector as S and two (d + 1)× (d + 1) invertible matrices
as {M1,M2}, where d is the number of fields for each record
pi. First, every data vector pi and query vector q are extended
to (d + 1)-dimension vectors as ~pi and ~q, where the (d + 1)-
th dimension is set to −0.5||p2

i || and 1, respectively. Besides,
the query vector ~q is scaled by a random number r > 0 as
(rq, r). Then, ~pi is split into two random vectors as {~pi

′, ~pi
′′},

and ~q is also split into two random vectors as {~q ′, ~q ′′}.
Note here that vector S functions as a splitting indicator.
Namely, if the j-th bit of S is 0, ~pi

′[j] and ~pi
′′[j] are set

as the same as ~pi[j], while ~q ′[j] and ~q ′′[j] are set to two
random numbers so that their sum is equal to ~q[j]; if the j-
th bit of S is 1, the splitting process is similar except that
~pi and ~q are switched. The split data vector pair {~pi

′, ~pi
′′} is

encrypted as {MT
1 ~pi

′, MT
2 ~pi

′′}, and the split query vector pair
{~q ′, ~q ′′} is encrypted as {M−1

1 ~q ′, M−1
2 ~q ′′}. In the query

step, the product of data vector pair and query vector pair, i.e.,
−0.5r(||pi||2−2pi ·q), is serving as the indicator of Euclidean
distance (||pi||2−2pi ·q+ ||q||2) to select k nearest neighbors.
Without prior knowledge of secret key, neither data vector nor
query vector, after such a series of processes, can be recovered
by analyzing their corresponding ciphertext.

As MRSE is using inner product similarity instead of
Euclidean distance, we need to do some modifications on
the data structure to fit the MRSE framework. By eliminating
dimension extension, the final result changes to be the inner
product as rpi · q, and it seems that an efficient inner product
computation scheme can be directly achieved. However, this
approach hides the product only by a scale factor r which will
leak the relationship among different queries. For example, if
two queries are taking for the same keywords, denoted as rq
and r′q, similarity scores in two queries will satisfy the scale
relationship, i.e., (pi ·rq)/(pi ·r′q) = (pj ·rq)/(pj ·r′q) = r/r′.
As a consequence, the search pattern of data user is leaked
via examining whether similarity scores for all documents in
two queries hold such relationship.

2) MRSE I Scheme: To provide a guarantee against vi-
olation on search pattern clearly presented above, we have
to eliminate the scale relationship among similarity scores
in different queries. To do so, instead of simply removing
the extended dimension as we plan to do at the first glance,
we preserve this dimension extending operation but assign
a random number to the extended dimension in each query
vector. The whole scheme to achieve ranked search with
multiple keywords over encrypted data is as follows.

• Setup After extracting the distinct keywords set W
from the document collection F , data owner randomly
generates a (n+1)-bit vector as S and two (n+1)×(n+1)
invertible matrices {M1,M2}. The secret key SK is in
the form of a 3-tuple as {S, M1,M2}.

• BuildIndex(F , SK) Data owner generates a binary data
vector Di for every document Fi, where each binary bit
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Di[j] represents the existence of the corresponding key-
word Wj in that document. Subsequently, every subindex
Ii is generated by applying dimension extending, splitting
and encrypting procedures on Di. These procedures are
similar with those above except that the (n + 1)-th entry
in ~Di is set to 1 during dimension extending. Finally,
subindex Ii = {MT

1
~Di
′,MT

2
~Di
′′} is built for every

encrypted document Ci on cloud server.
• Trapdoor(W̃) With t keywords of interest in W̃ as input,

one binary vector Q is first generated where each bit Q[j]
indicates whether Wj ∈ W̃ is true or false. Q is then
scaled by a random number r 6= 0 as rQ, and extended
to a (n + 1)-dimension vector as ~Q = (rQ, t) where t is
another random number. After applying the same splitting
and encrypting processes as above, the trapdoor TW̃ is
generated as {M−1

1
~Q′, M−1

2
~Q′′}.

• Query(TW̃ , k, I) With the trapdoor TW̃ , cloud server
computes the similarity scores of each document Fi as in
equation 1. WLOG, we assume r > 0. After sorting all
scores, cloud server returns the top-k ranked id list FW̃ .

With the randomness t brought into the query vector, the
final similarity scores do not keep the proportional relationship
to the original inner product and therefore prevent cloud server
from guessing search pattern through search results.

Ii · TW̃ = {MT
1

~Di
′,MT

2
~Di
′′} · {M−1

1
~Q′,M−1

2
~Q′′} (1)

= ~Di
′ · ~q ′ + ~Di

′′ · ~q ′′ = ~Di · ~Q = r(Di ·Q) + t.

3) Analysis: We analyze this basic MRSE scheme from
three aspects of design goals described in section II.
Functionality and Efficiency Assume the number of query
keywords appearing in a document Fi is xi = Di · Q. From
equation 1, the final similarity score as yi = Ii ·TW̃ = rxi + t
is a linear function of xi. Besides, the coefficient r is set as a
positive random number, so the order of similarity is exactly
preserved for all the outsourced documents. When cloud server
creates the FW̃ by the final similarity score yi, the top-k
most similar documents to the query are included with the
precise rank order. Similar with the secure kNN scheme, our
inner product based MRSE scheme is an outstanding approach
from the performance perspective. In the step like BuildIndex
or Trapdoor, the generation procedure of each subindex or
trapdoor involves two multiplications of a (n + 1) × (n + 1)
matrix and a (n + 1)-dimension vector. In the Query, the
final similarity score is computed through two multiplications
of two (n + 1)-dimension vectors.
Privacy As for the data privacy, traditional symmetric key
encryption techniques could be properly utilized here and
is not within the scope of this paper. The index privacy
is well protected if the secret key SK is kept confidential
since such vector encryption method has been proved to be
secure in known ciphertext model [26]. In addition to the
random number t in the query result, our basic scheme can
generate two totally different trapdoors for the same query W̃ .
Therefore, the search pattern is well protected in our basic
scheme, while it is an unsolved privacy leakage problem in
related symmetric key based searchable encryption schemes
because of the deterministic property of trapdoor generation.

TABLE I: Min/Max Score Analysis I

r > 0 min{yj} = r ·min{xi}+ t
r > 0 submin{yj} = r · submin{xi}+ t
r < 0 max{yj} = r ·max{xi}+ t
r < 0 submax{yj} = r · submax{xi}+ t

B. MRSE II: Privacy-Preserving Scheme in Known Cipher-
text Model

MRSE I scheme performs outstanding from the efficiency
perspective and also provides privacy guarantee on search
pattern, but it will incur trapdoor privacy leakage once cloud
server is requested by users to execute two or more times
of searches. By analyzing similarity scores obtained during
search, cloud server has a chance to deduce a valid trapdoor
which violates trapdoor privacy goal. We first demonstrate how
such analysis attack works, and then show this problem can
be fixed through inserting dummy keyword.

1) Min/Max Score Analysis Attack: With any two valid
trapdoors T1 and T2 submit by users, cloud server may
explore the relationship among similarity scores to deduce
a new trapdoor T3. If T1 and T2 happen to be trapdoors
for two related sets of query keywords, like {K1,K2} and
{K1, K2,K3,K4}, T3 then becomes a valid trapdoor for
keywords {K3,K4}. To illustrate, the relationship between
final similarity score yj with the original one xi is listed
in Tab. I. WLOG, we only discuss the case where r > 0.
In the query Q1 with the trapdoor T1 = {T1[1], T1[2]},
there may exist a document containing neither K1 nor K2

with very high probability. As a result, the minimal original
similarity score as min{xi} is equal to 0 and the minimal
final similarity score as min{yj} becomes t1. Considering
the large number of outsourced documents, it is very likely
that there also exists a document containing only one of the
two keywords, and then the subminimal original similarity
score as submin{xi} is equal to 1 and the subminimal final
similarity score as submin{yj} becomes r1 + t1. With t1 and
r1 + t1, cloud server solves r1 with apparent ease. Similarly,
the other two parameters r2 and t2 can be figured out with
T2 = {T2[1], T2[2]} for query Q2. Assume that the original
query vector for {K3,K4} is denoted as Q3. Note that Q3 is
equal to Q2 −Q1 according to the definition of binary query
vector and the relationship between three keyword sets. Then
the 2-tuple as {T2[1]/r2−T1[1]/r1, T2[2]/r2−T1[2]/r1} can
be utilized by cloud server as a valid trapdoor T3 for query
Q3 where r3 is set to 1 and t3 is set to (r2/r2 − t1/r1). The
effectiveness of T3 is validated in equation 2.

Ii · T3

= Ii · {T2[1]/r2 − T1[1]/r1, T2[2]/r2 − T1[2]/r1}
=

Ii[1] · T2[1] + Ii[2] · T2[2]
r2

− Ii[1] · T1[1] + Ii[2] · T1[2]
r1

= ( ~Di · ~Q2)/r2 − ( ~Di · ~Q1)/r1

= (Di ·Q2 + t2/r2)− (Di ·Q1 + t1/r1)
= r3(Di ·Q3) + t3 (2)

Actually, such kind of trapdoor deduction enables cloud server
to perform query that is not requested by any user, and thus
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TABLE II: Min/Max Score Analysis II

r > 0 min{yj} = r ·min{xi + εi}+ t
r > 0 submin{yj} = r · submin{xi + εi}+ t
r < 0 max{yj} = r ·max{xi + εi}+ t
r < 0 submax{yj} = r · submax{xi + εi}+ t

violates search privacy, specifically the trapdoor privacy.
2) MRSE II Scheme: The previous analysis attack shows

that the trapdoor privacy problem stems from the determin-
istic relationship between the minimal/subminimal (or max-
imal/submaximal) final similarity score and two parameters
as r and t. Therefore, breaking the deterministic relationship
is an alternative to protect trapdoor privacy. In this section,
we propose an improved MRSE scheme preserving trapdoor
privacy in the known ciphertext model. Namely, we will show
how to break the deterministic relationship while maintaining
as much efficiency and accuracy as possible. Introducing some
randomness in the final similarity score is an effective way
towards what we expect here. More specifically, unlike the
randomness involved in the query vector, we insert a dummy
keyword into each data vector and assign a random value to
it. All the vectors are extended to (n + 2)-dimension instead
of (n+1), and each entry in Di is not a binary value anymore
for storing the random variable εi of the dummy keyword in
the (n + 2)-th dimension. Improvement details in MRSE II
scheme is shown as follows.
• Setup Data owner randomly generates a (n+2)-bit vector

as S and two (n + 2) × (n + 2) invertible matrices as
{M1,M2}.

• BuildIndex(F , SK) The (n + 2)-th entry in ~Di is set to
a random number εi during the dimension extending.

• Trapdoor(W̃) The (n+2)-th entry in ~Q is always set to
1 for any query Q.

• Query(TW̃ , k, I) The final similarity score computed by
cloud server is equal to r(xi + εi) + ti.

3) Analysis: We follow the same steps as in MRSE I.
Functionality and Efficiency Because the randomness is
introduced as a part of the similarity score, the final search
result on the basis of sorting similarity scores may not be
as accurate as that in MRSE I scheme. For the considera-
tion of search accuracy, let ε follow a normal distribution
N(0, σ2). To quantitatively evaluate the search accuracy, we
set a measure as precision Pk to capture the fraction of
returned top-k documents that are included in the real top-
k list. Detailed accuracy evaluation on the real-world dataset
will be given in section VI. Besides, MRSE II scheme takes
similar computation and communication costs as in MRSE I
scheme, except that all the vector multiplication operations are
run in the (n + 2)-dimension instead of (n + 1)-dimension.
Privacy We first take a look at trapdoor privacy, especially
the Min/Max score analysis. Similar with the case discussed
above, we assume that cloud server has two trapdoors T1

and T2 for query keywords {K1,K2} and {K1, K2,K3,K4}
respectively. To perform Min/Max score analysis, the server
scans the entire index and computes all the final similarity
scores as listed in Tab. II. With the interference of ε, the
adversary cannot explore useful relationship between the min-

TABLE III: K3 appears in every document

Doc Query for {K1, K2, K3} Query for {K1, K2}
1 x1 = 3, y1 = r(3 + ε1) + t x′1 = 2, y′1 = r′(2 + ε1) + t′
2 x2 = 2, y2 = r(2 + ε2) + t x′2 = 1, y′2 = r′(1 + ε1) + t′
3 x3 = 1, y3 = r(1 + ε3) + t x′3 = 0, y′3 = r′(0 + ε3) + t′

TABLE IV: K3 does not appear in either document

Doc Query for {K1, K2, K3} Query for {K1, K2}
1 x1 = 2, y1 = r(2 + ε1) + t x′1 = 2, y′1 = r′(2 + ε1) + t′
2 x2 = 1, y2 = r(1 + ε2) + t x′2 = 1, y′2 = r′(1 + ε1) + t′
3 x3 = 0, y3 = r(0 + ε3) + t x′3 = 0, y′3 = r′(0 + ε3) + t′

imal/subminimal final similarity score and two parameters as
r and t, and thus the Min/Max score analysis attack does not
work anymore. In addition, any single trapdoor itself does
not reveal valuable information, like the positions of 1 in
its original query vector Q, and therefore keyword privacy is
well protected. To sum up, in the known ciphertext model,
MRSE II scheme meets all expected privacy requirements
mentioned in section III-B.

C. MRSE III: Privacy-Preserving Scheme in Known Back-
ground Model

When cloud server has known some background informa-
tion on the outsourced dataset, keyword privacy cannot be
guaranteed anymore by MRSE II scheme. This is possible in
known background model because cloud server can use scale
analysis as follows to deduce the keyword-specific informa-
tion, e.g., document frequency, which can be further com-
bined with background information to identify the keyword
in a query at high probability. After presenting how cloud
server uses scale analysis attack to break keyword privacy,
we propose a more advanced MRSE scheme to be privacy-
preserving in known background model.

1) Scale Analysis Attack: Given two correlated trapdoors
T1 and T2 for query keywords {K1,K2} and {K1,K2,K3}
respectively, there will be two special cases when searching on
any three documents as listed in Tab. III and Tab. IV. In any
of these two cases, there exists a system of equations among
those similarity scores as follows,





y1 − y2 = r(1 + ε1 − ε2);
y′1 − y′2 = r′(1 + ε1 − ε2);
y1 − y3 = r(2 + ε1 − ε2);

y′1 − y′3 = r′(2 + ε1 − ε2).

(3)

And cloud server could deduce the following scale relationship
among all the six scores being consistent with equation 3,

(y1 − y2)/(y′1 − y′2) = (y1 − y3)/(y′1 − y′3). (4)

To this end, although the exact value of xi is encrypted as yi,
cloud server, based on the equivalence of (y1−y2)/(y′1−y′2)
and (y1 − y3)/(y′1 − y′3), could deduce that whether all the
three documents contain K3 or none of them contain K3. By
extending three documents to the whole dataset, cloud server
could deduce two possible values of document frequency of
the keyword K3. In known background model, the server can
further identify the keyword K3 by referring to the keyword
specific document frequency information about the dataset.
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Fig. 2: With different choice of standard deviation σ for the
random variable ε, there exists tradeoff between (a) Precision,
and (b) Rank Privacy.

2) MRSE III Scheme: The privacy leakage shown above is
caused by the fixed value of random variable εi in data vector
Di. To eliminate such fixed property in any specific document,
more dummy keywords instead of only one should be inserted
into every data vector Pi. All the vectors are extended to (n+
U + 1)-dimension instead of (n + 2), where U is the number
of dummy keywords inserted. Improved details in MRSE III
scheme is presented as follows.

• Setup(1n) Data owner randomly generates a (n+U+1)-
bit vector as S and two (n+U+1)×(n+U+1) invertible
matrices {M1,M2}.

• BuildIndex(F , SK) The (n+j+1)-th entry in ~Di where
j ∈ [1, U ] is set to a random number ε(j) during the
dimension extending.

• Trapdoor(W̃) By randomly selecting V out of U dummy
keywords, the corresponding entries in Q are set to 1.

• Query(TW̃ , k, I) The final similarity score computed by
cloud server is equal to r(xi +

∑
ε
(v)
i ) + ti where the

v-th dummy keyword is included in the V selected ones.

3) Analysis: To achieve the 80-bit security level, there
should be at least 280 different values of

∑
ε

v)
i for each data

vector. The number of different
∑

ε
(v)
i is equal to (U

V ), which
is maximized when U

V = 2. Besides, considering (U
V ) ≥ (U

V )V ,
it is greater than 280 when U = 160 and V = 80. So every data
vector should include 160 dummy elements, and every query
vector will randomly select 80 dummy elements. To this end,
MRSE III scheme is secure against scale analysis attack, and
provides various expected privacy guarantees within known
ciphertext model or known background model.

Moreover, to make
∑

ε
(v)
i follow the Normal distribution

N(0, σ2) as above, every ε(j) is assumed to follow the same
uniform distribution M(−c, c), where the mean as µj is 0
and the variance as σ2

j is c2/3. According to the central limit
theorem, the sum of 80 independent random variables ε(j)

follows the Normal distribution, where µ = 80µj=0 and σ2 =
80σ2

j = 80c2/3. Therefore, the value of c is set as
√

3
80σ.

With such parameter setting, search accuracy is statistically
the same as that in MRSE II scheme.

1 2 3 4 5 6 7
2

4

6

8

10

12

# of douments in dataset (x 102)

#
 o

f 
d

is
ti
n

c
t 

k
e

y
w

o
rd

s
 (

x
 1

0
3
)

 

 

(a)

1 2 3 4 5 6 7
0

5

10

15

20

25

# of documents in dataset (x 102)

T
im

e
 o

f 
b

u
ild

in
g

 i
n

d
e

x
 (

x
 1

0
2
s
)

 

 

MRSE_I
MRSE_II
MRSE_III

(b)

Fig. 3: Relationship between number of documents in dataset
and (a) Number of distinct keywords in dataset, and (b) Time
cost for building searchable index.

V. PERFORMANCE ANALYSIS

In this section, we demonstrate a thorough experimental
evaluation of the proposed technique on a real-world dataset:
the Enron Email Dataset [27]. We randomly select different
number of emails to build dataset. The whole experiment
system is implemented by C language on a Linux Server
with Intel Xeon Processor 2.93GHz. The public utility routines
by Numerical Recipes are employed to compute the inverse
of matrix. The performance of our technique is evaluated
regarding the efficiency of three proposed MRSE schemes,
as well as the tradeoff between search precision and privacy.

A. Precision and Privacy

As presented in Section IV, dummy keywords are inserted
into each data vector and some of them are selected in every
query. Therefore, similarity scores of documents will be not
exactly accurate. In other words, when cloud server returns
top-k documents based on similarity scores of data vectors to
query vector, some of real top-k relevant documents for the
query may be excluded. This is because either their original
similarity scores are decreased or the similarity scores of some
documents out of the real top-k are increased, both of which
are due to the impact of dummy keywords inserted into data
vectors. To evaluate the purity of the k documents retrieved
by user, we define a measure as precision Pk = k′/k where k′

is number of real top-k documents that are returned by cloud
server. Fig. 2(a) shows that the precision in MRSE III scheme
is evidently affected by the standard deviation σ of the random
variable ε. From the consideration of effectiveness, standard
deviation σ is expected to be smaller so as to obtain high
precision indicating the good purity of retrieved documents.

However, user privacy may have been partially leaked to
cloud server as a consequence of small σ. As described
in section III-B, access pattern is defined as the sequence
of ranked search results. Although search results cannot be
protected (excluding costly PIR technique), we can still hide
the rank order of retrieved documents as much as possible. In
order to evaluate this privacy guarantee, we first define the rank
perturbation as p̃i = |ri− r′i|, where ri is the rank number of
document i in the retrieved top-k documents and r′i is its rank
number in the real top-i ranked documents. The overall rank
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Fig. 4: Time cost of generating trapdoor. (a) For the same
number (10) of keywords in a query within different number
of documents in dataset. (b) For different number of keywords
in a query within same number (500) of documents in dataset.

privacy measure at point k is then defined as the average of all
the p̃i for every document i in the retrieved top-k documents,
denoted as P̃k =

∑
p̃i/k. Fig. 2(b) shows the rank privacy

at different points with two standard deviations σ = 1 and
σ = 0.5 respectively.

From these two figures, we can see that small σ leads to
higher precision of search result but lower rank privacy guaran-
tee, while large σ results in higher rank privacy guarantee but
lower precision. In other words, our scheme provides a balance
parameter for data users to satisfy their different requirements
on precision and rank privacy.

B. Efficiency

1) Index Construction: To build a searchable index I from
dataset F , the first step is to map the keyword set extracted
from each document Fi to a data vector Di, followed by
encrypting every data vector. The time cost of mapping or
encrypting depends directly on the dimensionality of data
vector which is determined by the number of distinct keywords
in the dataset. Fig. 3(a) shows that the number of documents in
dataset determines the number of distinct keywords. Note that
a list of standard IR techniques can be used to significantly
reduce the number of distinct keywords, such as case folding,
stemming, and stop words. We omit this refining process and
refer readers to [4] for more details. Fig. 3(b) shows that
the computation cost of building index is almost linear with
the number of documents in dataset. The index construction
computation cost in MRSE I scheme is very similar with that
in MRSE II scheme since the dimensionality in MRSE II is
just one more than that in the former scheme. The number
of dummy keywords in MRSE III scheme becomes 160 so
that the index construction time is slight larger than the
other two schemes. Although the time of building index is
not a negligible overhead for data owner, this is a one-time
operation before data outsourcing. Besides, Tab. V lists the
storage overhead of subindex in MRSE III scheme within
different number of documents in dataset. The subindex size
is absolutely linear with the dimensionality of data vector, but
its increasing speed slows down in coincidence with that of
the number of distinct keywords. The subindex size in the
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Fig. 5: Time cost of query. (a) For the same number (10) of
keywords in a query within different number of documents
in dataset. (b) For different number of keywords in a query
within the same number (500) of documents in dataset.

TABLE V: Storage overhead of subindex

# of documents in dataset 1000 2000 3000 4000 5000
Size of subindex (KB) 101.4 131.8 166.6 203.8 228.9

other two MRSE schemes is close to that in MRSE III scheme
because of trivial differences in dimensionality of data vector.

2) Trapdoor Generation: Fig. 4(a) shows that the time
to generate a trapdoor is greatly affected by the number of
documents in dataset. Like index construction, every trap-
door generation incurs two multiplications of a matrix and
a split query vector, where the dimensionality of matrix
or query vector is different in three proposed schemes and
becomes larger with the increasing number of documents in
dataset. Fig. 4(b) demonstrates the trapdoor generation cost in
MRSE III scheme is about 3 percentages larger than that in the
other two schemes, which is majorally brought by the larger
dimensionality. More importantly, it shows that the number
of keywords in a query have little influence on the overhead
of trapdoor generation, which is a significant advantage over
related works on multi-keyword searchable encryption.

3) Query: Query execution in cloud server consists of
computing and ranking similarity scores for all documents in
the dataset. Fig. 5 shows the query time is dominated by the
number of documents in dataset, and the number of keywords
in the query has very slight impact on it like the trapdoor
generation above. With respect to the communication cost in
Query, the size of trapdoor is the same as that of subindex
listed in the Tab. V, which keeps constant in the same dataset,
no matter how many keywords are contained in a query.
While the computation and communication cost in the query
procedure is linear with the number of query keywords in other
multiple-keyword search schemes [14], [16], our proposed
schemes enjoy the constant overhead in the query which makes
it more practical in the cloud paradigm.

VI. RELATED WORK

Single Keyword Searchable Encryption Traditional single
keyword searchable encryption schemes [5]–[13], [22] usually
build an encrypted searchable index such that its content is
hidden to the server unless it is given appropriate trapdoors
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generated via secret key(s) [2]. It is first studied by Song et
al. [5] in the symmetric key setting, and improvements and
advanced security definitions are given in Goh [6], Chang
et al. [7] and Curtmola et al. [8]. Our early work [22]
solves secure ranked keyword search which utilizes keyword
frequency to rank results instead of returning undifferentiated
results. However, it only supports single keyword search.
In the public key setting, Boneh et al. [9] present the first
searchable encryption construction, where anyone with public
key can write to the data stored on server but only authorized
users with private key can search. Public key solutions are
usually very computationally expensive however. Furthermore,
the keyword privacy could not be protected in the public key
setting since server could encrypt any keyword with public key
and then use the received trapdoor to evaluate this ciphertext.
Boolean Keyword Searchable Encryption To enrich search
functionalities, conjunctive keyword search [14]–[18] over
encrypted data have been proposed. These schemes incur
large overhead caused by their fundamental primitives, such as
computation cost by bilinear map, e.g. [16], or communication
cost by secret sharing, e.g. [15]. As a more general search
approach, predicate encryption schemes [19]–[21] are recently
proposed to support both conjunctive and disjunctive search.
Conjunctive keyword search returns “all-or-nothing”, which
means it only returns those documents in which all the
keywords specified by the search query appear; disjunctive
keyword search returns undifferentiated results, which means
it returns every document that contains a subset of the specific
keywords, even only one keyword of interest. In short, none
of existing Boolean keyword searchable encryption schemes
support multiple keywords ranked search over encrypted cloud
data while preserving privacy as we propose to explore in this
paper. Note that, inner product queries in predicate encryption
only predicates whether two vectors are orthogonal or not,
i.e., the inner product value is concealed except when it
equals zero. Without providing the capability to compare
concealed inner products, predicate encryption is not qualified
for performing ranked search. Furthermore, most of these
schemes are built upon the expensive evaluation of pairing
operations on elliptic curves. Such inefficiency disadvantage
also limits their practical performance when deployed in cloud.
On a different front, the research on top-k retrieval [24] in
database community is also loosely connected to our problem.

VII. CONCLUSION

In this paper, for the first time we define and solve the
problem of multi-keyword ranked search over encrypted cloud
data, and establish a variety of privacy requirements. Among
various multi-keyword semantics, we choose the efficient
principle of “coordinate matching”, i.e., as many matches
as possible, to effectively capture similarity between query
keywords and outsourced documents, and use “inner product
similarity” to quantitatively formalize such a principle for sim-
ilarity measurement. For meeting the challenge of supporting
multi-keyword semantic without privacy breaches, we first
propose a basic MRSE scheme using secure inner product
computation, and significantly improve it to achieve privacy

requirements in two levels of threat models. Thorough analysis
investigating privacy and efficiency guarantees of proposed
schemes is given, and experiments on the real-world dataset
show our proposed schemes introduce low overhead on both
computation and communication. As our future work, we
will explore supporting other multi-keyword semantics (e.g.,
weighted query) over encrypted data, integrity check of rank
order in search result and privacy guarantees in more stronger
threat model.
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