
The VLDB Journal (2008) 17:879–898
DOI 10.1007/s00778-006-0041-y

REGULAR PAPER

Privacy-preserving Naïve Bayes classification

Jaideep Vaidya · Murat Kantarcıoǧlu · Chris Clifton

Received: 30 September 2005 / Revised: 15 March 2006 / Accepted: 25 July 2006 / Published online: 3 February 2007
© Springer-Verlag 2007

Abstract Privacy-preserving data mining—developing
models without seeing the data – is receiving growing
attention. This paper assumes a privacy-preserving dis-
tributed data mining scenario: data sources collaborate
to develop a global model, but must not disclose their
data to others. The problem of secure distributed clas-
sification is an important one. In many situations, data
is split between multiple organizations. These organiza-
tions may want to utilize all of the data to create more
accurate predictive models while revealing neither their
training data/databases nor the instances to be classi-
fied. Naïve Bayes is often used as a baseline classifier,
consistently providing reasonable classification perfor-
mance. This paper brings privacy-preservation to that
baseline, presenting protocols to develop a Naïve Ba-
yes classifier on both vertically as well as horizontally
partitioned data.

Keywords Data mining · Privacy · Security ·
Naïve Bayes · Distributed computing

This material is based upon work supported by the National
Science Foundation under Grant No. 0312357. Portions of this
work were also supported by a Rutgers Research Resources
committee award.

J. Vaidya (B)
Rutgers University, Newark, NJ, USA
e-mail: jsvaidya@rbs.rutgers.edu

M. Kantarcıoǧlu
University of Texas at Dallas, Dallas, TX, USA
e-mail: muratk@utdallas.edu

C. Clifton
Purdue University, West Lafayette, IN, USA
e-mail: clifton@cs.purdue.edu

1 Introduction

There has been growing concern over the privacy
implications of data mining. Some of this is public per-
ception—the “Data Mining Moratorium Act of 2003”
introduced in the US Senate [14] was based on a fear
of Government searches of private data for individual
information, rather than what the technical community
views as Data Mining. However, concerns remain. While
data mining is generally aimed at producing general
models rather than learning about specific individuals,
the process of data mining creates integrated data ware-
houses that pose real privacy issues. Data that is of lim-
ited sensitivity by itself becomes highly sensitive when
integrated, and gathering the data under a single roof
greatly increases the opportunity for misuse.

Our solution to this problem is to avoid disclosing
data beyond its source, while still constructing data
mining models equivalent to those that would have
been learned on an integrated data set. Since we prove
that data is not disclosed beyond its original source,
the opportunity for misuse is not increased by the pro-
cess of data mining. This concept was first proposed
for decision tree classification [28]; protocols have also
been developed for association rule mining [24,38] and
clustering [26,39].

The definition of privacy followed in this line of
research is conceptually simple: no site should learn any-
thing new from the process of data mining. Specifically,
anything learned during the data mining process must
be derivable given one’s own data and the final result—
nothing is learned about any other site’s data that is
not inherently obvious from the data mining result. The
approach followed in this research has been to select a
type of data mining model to be learned and develop a

880 J. Vaidya et al.

protocol to learn the model while meeting this definition
of privacy.

Naïve Bayes is a simple but highly effective classifier.
This combination of simplicity and effectiveness has lead
to its use as a baseline standard by which other classifiers
are measured. With various enhancements it is highly
effective, and receives practical use in many applica-
tions (e.g., text classification [29]). This paper extends
the portfolio of privacy-preserving distributed data min-
ing to include this standard classifier.

In addition to the type of data mining model to be
learned, the different types of data distribution result
in a need for different protocols. For example, the first
decision tree paper in this area proposed a solution for
learning decision trees on horizontally partitioned data:
each site has complete information on a distinct set of
entities, an integrated dataset consists of the union of
these datasets. In contrast, vertically partitioned data
has different types of information at each site; each has
partial information on the same set of entities. In this
case an integrated dataset would be produced by join-
ing the data from the sites. While [27] showed how to
generate ID3 decision trees on horizontally partitioned
data, a completely new method was needed for vertically
partitioned data [10]. This paper proposes solutions for
both vertically partitioned, as well as horizontally parti-
tioned, data. For vertically partitioned data, our solution
does not even reveal the model. It only reveals the class
value of an individual instance when the classification is
performed.

Privacy-preserving classification has many real-world
applications. Consider a medical research study which
wants to compare medical outcomes of different treat-
ment methods of a particular disease (e.g., to answer
the question “will this treatment for this patient be suc-
cessful or not?”). The insurance companies must not
disclose individual patient data without permission [18],
and details of patient treatment plans are similarly pro-
tected data held by hospitals. Similar constraints arise in
many applications; European Community legal restric-
tions apply to disclosure of any individual data [11].
Here, we require classification models on vertically par-
titioned data. On the other hand, consider the case of
several banks which decide to leverage all of their trans-
action data to identify fraudulent credit card usage, or
insurance companies which jointly try to identify high-
risk customers. In both of these situations, the kinds
of data collected is the same, though it is collected for a
different set of entities. This is a situation which requires
classification models on horizontally partitioned data.

In Sect. 2, we briefly describe the Naïve Bayes classi-
fier. Section 3 gives references to prior work in this area
as well as giving the background necessary to under-

stand the protocols, including definitions from Secure
Multiparty Computation. We then present the model,
algorithm and proof of security for horizontally parti-
tioned data in Sect. 4 and for vertically partitioned data
in Sect. 5. Section 6 concludes the paper. Appendix pro-
vides a brief description of prior secure protocols uti-
lized as subroutines.

2 The Naïve Bayes classifier

The Naïve Bayes classifier is a highly practical Bayesian
learning method. The following description is based on
the discussion in Mitchell [29]. The Naïve Bayes clas-
sifier applies to learning tasks where each instance x is
described by a conjunction of attribute values and the
target function f (x) can take on any value from some
finite set C. A set of training examples of the target
function is provided, and a new instance is presented,
described by the tuple of attribute values 〈a1, a2, . . . , an〉.
The learner is asked to predict the target value, or clas-
sification, for this new instance.

The Bayesian approach to classifying the new instance
is to assign the most probable target value, cMAP, given
the attribute values 〈a1, a2, . . . , an〉 that describe the
instance.

cMAP = argmax
cj∈C

(
P(cj|a1, a2, . . . , an)

)
(1)

Using Bayes theorem,

cMAP = argmax
cj∈C

(
P(a1, a2, . . . , an|cj)P(cj)

P(a1, a2, . . . , an)

)

= argmax
cj∈C

(
P(a1, a2, . . . , an|cj)P(cj)

)
(2)

The Naïve Bayes classifier makes the further simpli-
fying assumption that the attribute values are condition-
ally independent given the target value. Therefore,

cNB = argmax
cj∈C

(

P(cj)
∏

i

P(ai|cj)

)

(3)

where cNB denotes the target value output by the Naïve
Bayes classifier.

The conditional probabilities P(ai|cj) need to be esti-
mated from the training set. The prior probabilities P(cj)

also need to be fixed in some fashion (typically by sim-
ply counting the frequencies from the training set). The
probabilities for differing hypotheses (classes) can also
be computed by normalizing the values received for each
hypothesis (class).

Privacy-preserving Naïve Bayes classification 881

Probabilities are computed differently for nominal
and numeric attributes.

2.1 Nominal attributes

For a nominal attribute X with r possible attributes val-
ues x1, . . . , xr, the probability P(X = xk|cj) = nkj

n where
n is the total number of training examples for which
C = cj, and nkj is the number of those training examples
that also have X = xk.

2.2 Numeric attributes

In the simplest case, numeric attributes are assumed to
have a “normal” or “Gaussian” probability distribution.

The probability density function for a normal distri-
bution with mean µ and variance σ 2 is given by

f (x) = 1√
2πσ

e−
(x−µ)2

2σ2 (4)

The mean µ and variance σ 2 are calculated for each class
and each numeric attribute from the training set. Now
the required probability that the instance is of the class
cj, P(X = x′|cj), can be estimated by substituting x = x′
in Eq. (4).

3 Related work in privacy-preserving computation

Recently, there has been significant interest in the area
of privacy-preserving data mining. We briefly cover some
of the relevant work. Several solution approaches have
been suggested. One approach is to add “noise” to the
data before the data mining process, and then use recon-
struction techniques that mitigate the impact of the noise
from the data mining results [1,2,13,37]. However,there
is some debate about the security properties of such
algorithms—Kargupta et al. pointed out an important
issue: arbitrary randomization is not safe [25]. Huang
et al. [19] further explore this issue as well and propose
two new data reconstruction methods based on data cor-
relations.

The data distortion approach addresses a different
problem from our work. The assumption with distortion
is that values must be kept private from the data mining
party. We instead assume that some parties are allowed
to see some of the data, while no one is allowed to see
all the data. In return, exact results can be obtained.

The other approach uses cryptographic techniques
to protect privacy. This approach of protecting privacy
of distributed sources was first used for the construc-
tion of decision trees [28]. This work closely followed

the secure multiparty computation approach discussed
below, achieving “perfect” privacy, i.e., nothing is
learned that could not be deduced from one’s own data
and the resulting tree. The key insight was to trade
off computation and communication cost for accuracy,
improving efficiency over the generic secure multipar-
ty computation method. There has since been work
to address association rule mining [24,42], clustering
[21,26,39], classification [10,40,41,43]. and generalized
approaches to reducing the number of “on-line” parties
required for computation [22]. While some of this work
makes trade-offs between efficiency and information
disclosure, all maintain provable privacy of individual
information and bounds on disclosure, and disclosure is
limited to information that is unlikely to be of practical
concern.

We have made use of several primitives from the
Secure Multiparty Computation literature. Recently,
there has been a renewed interest in this field, a good
discussion can be found in [9]. Currently, assembling
these into efficient privacy-preserving data mining algo-
rithms, and proving them secure, is a challenging task.
This paper demonstrates how these can be combined to
implement a standard data mining algorithm with prov-
able privacy and information disclosure properties.

3.1 Secure multiparty computation

To prove that our Naïve Bayes algorithm preserves pri-
vacy, we need to define privacy preservation. We use the
framework defined in Secure Multiparty Computation.

Yao first postulated the two-party comparison prob-
lem (Yao’s Millionaire Protocol) and developed a
provably secure solution [44]. This was extended to mul-
tiparty computations by Goldreich et al. [17].

We start with the definitions for security in the semi-
honest model. A semi-honest party follows the rules of
the protocol using its correct input, but is free to later
use what it sees during execution of the protocol to com-
promise security. A formal definition of private m-party
computation in the semi-honest model is given below.

Definition 1 (privacy w.r.t. semi-honest behavior): [16]
Let f :

({0, 1}∗)m �−→ ({0, 1}∗)m be a probabilistic,
polynomial-time functionality, where fi (x1, x2, . . . , xm)

denotes the ith component of f (x1, x2, . . . , xm) and let �

be m-party protocol for computing f . For I={i1, i2, . . . , it}
⊆ [m] where [m] denotes the set {1, 2, . . . , m}, we let
fI (x1, x2, . . . , xm) denote the subsequence fi1 (x1, x2, . . . ,
xm),. . . , fit (x1, x2, . . . , xm). Let the view of the ith party
during an execution of protocol � on x̄=(x1, x2, . . . , xm),
denoted view�

i (x̄) be
(
xi, ri, m1

i , . . . , mt
i
)

where ri repre-
sents the outcome of the ith party’s internal coin tosses,

882 J. Vaidya et al.

and mj
i represents the jth message received by the ith

party. Also for given I = {i1, i2, . . . , it}, we let view�
I (x̄)

denote the subsequence
(

I, view�
i1 (x̄) · · · view�

it (x̄)
)

.

We say that � privately computes f if there exists a
probabilistic polynomial time algorithm denoted S such
that for every I ⊆ [m], it holds that
{(

S
(
I,

(
xi1 , . . . , xit

)
, fI (x̄)

)
, f (x̄)

)}
x̄∈({0,1}∗)m

C≡ {(
view�

I (x̄) , output� (x̄)
)}

x̄∈({0,1}∗)m

where
C≡ denotes computational indistinguishability and

output� (x̄) denotes the output sequence of all parties
during the execution represented in the view�

I (x̄).

The above definition states that a computation is
secure if the view of the dishonest parties (combined
view, as dishonest parties may collude) during the execu-
tion of the protocol can be effectively simulated knowing
only the input and the output of the dishonest parties.
This is not quite the same as saying that private infor-
mation is protected. If information can be deduced from
the final result, it is obviously not kept private under
this definition. For example, if two entities that differ in
only one attribute are classified differently, information
about how that attribute affects classification is revealed.
This cannot be helped, as this information can always be
deduced from the result and the input.

While the semi-honest model may seem questionable
for privacy (if a party can be trusted to follow the pro-
tocol, why do not we trust them with the data?), we
believe that it meets several practical needs for early
adoption of the technology. Consider the credit card
fraud example given in Sect. 1. In many cases the par-
ties involved already have authorization to see the data
(e.g., the recent theft of credit card information from
CardSystems [35] involved data that CardSystems was
expected to see during processing). The problem is that
storing the data brings with it a responsibility (and cost)
of protecting that data; CardSystems was supposed to
delete the information once processing was complete. If
parties could develop the desired models without seeing
the data, then they are saved the responsibility (and cost)
of protecting it.

This provides a practical motivation for the semi-
honest model: parties will follow the protocol to avoid
seeing data they do not need, saving them the respon-
sibility of protecting the data from unauthorized disclo-
sure. Also in this paper, we consider only the protocols
that are secure under no collusion assumption. In other
words, we only consider the cases where the size of I
(as defined in Definition 1) is one. The above argument
also justifies the use of no-collusion assumption and the
resulting loss of protection against collusion among the

parties. Until the technology is proven, use where all par-
ties are not authorized to see the data is unlikely (e.g.,
medical research will still require institutional review
board approval for all parties). The simplicity and effi-
ciency possible with semi-honest protocols will help
speed adoption so that trusted parties are saved the
expense of protecting data other than their own. As
the technology gains acceptance, malicious protocols
will become viable for uses where the parties are not
mutually trusted. In any case, we do discuss the effect
of collusion on our protocols at the appropriate place.
This allows parties to know what is at risk and choose
whether to tolerate the risk.

In our later proofs, we use a key result from the secure
multiparty computation literature, the composition the-
orem. We state it here for the semi-honest model. A
detailed discussion of this theorem, as well as the proof,
can be found in [16].

Theorem 1 (Composition theorem for the semi-honest
model) Suppose that g is privately reducible to f and that
there exists a protocol for privately computing f . Then
there exists a protocol for privately computing g.

Proof Refer to [16]. ��
In the above definition, “g is privately reducible to f ”
implies that we can come up with a private protocol for
evaluating function g given a black box access to func-
tion f . This allows us to use existing secure protocols
as components, worrying only that their results do not
reveal anything and ignoring the communications car-
ried on by those components.

4 Privacy-preserving Naïve Bayes for horizontally
partitioned data

In this section, we will focus on securely learning a
Naïve Bayesian classifier on horizontally partitioned
data. Records of different patients that are treated by
different hospitals can be seen as an example of hori-
zontally partitioned data. All of the information for a
given patient is contained at one hospital, but different
hospitals have different patients.

In order to see how a privacy-preserving Naïve Bayes-
ian classifier is constructed, we need to address two
issues: how to select the model parameters and how to
classify a new instance.The following subsections pro-
vide details on both issues. The protocols presented
below are very efficient. However, they compromise a
little on security. At the end of the protocol, all parties
learn the total number of instances. In effect, they learn
the numerator and denominator for all the fractions

Privacy-preserving Naïve Bayes classification 883

computed. For multiple parties, this may not be a serious
privacy concern. However, we also present a technical
solution to this problem. Thus, in Sect. 4.4, we present
methods which do not reveal anything except the final
classifier.

For horizontally partitioned data model, all the attri-
butes needed for classifying an instance are held by
one site. Therefore, given the model, no collaboration
is needed for classifying a new instance. At the first
glance, it appears that a more secure solution can be
obtained by hiding the model parameters and using a
secure protocol to classify each new instance. Unfortu-
nately, this costly option (i.e., using a secure distributed
protocol for classifying a new instance) does not add
much to security. Since each site has knowledge of all of
the attributes, eventually by classifying sufficiently many
instances, a site may learn/infer the hidden model quite
easily. Therefore, we do not try to hide the model in the
horizontally partitioned data case. Instead, we simply
try to learn the Naive Bayes classifier without revealing
anything else.

For vertically partitioned case, different parties must
collaborate to find the classification result for every new
instance (we stress that no party has all the attributes
for a given instance). Since parties do not know all the
attributes of a new instance, they will not be able to pre-
dict the full model even by classifying many instances.
Therefore, hiding the model brings additional security
for vertically partitioned data and is necessary.

4.1 Building the classifier model

The procedures for calculating the parameters are differ-
ent for nominal attributes and numeric attributes. They
are described in the subsections below.

4.1.1 Nominal attributes

For a nominal attribute, the conditional probability that
an instance belongs to class c given that the instance has
an attribute value A = a, P(C = c|A = a), is given by

P(C = c|A = a) = P(C = c ∩A = a)

P(A = a)
= nac

na
. (5)

nac is the number of instances in the (global) training set
that have the class value c and an attribute value of a,
while na is the (global) number of instances which sim-
ply have an attribute value of a. The necessary param-
eters are simply the counts of instances, nac and na.
Due to horizontal partitioning of data, each party has
partial information about every attribute. Each party
can locally compute the local count of instances. The
global count is given by the sum of the local counts.

Securely computing a global count is straightforward.
(See secure summation in Appendix A.1.) Assuming
that the total number of instances is public, the required
probability can be computed by dividing the appropri-
ate global sums. Note that local number of instances
will not be revealed. Protocol 1 formally defines the
protocol.

For an attribute a with l different attribute values,
and a total of r distinct classes, l · r different counts need
to be computed for each combination of attribute value
and class value. For each attribute value a total instance
count also needs to be computed, which gives l addi-
tional counts.

Algorithm 1 Nominal Attributes
Require: k parties, r class values, l attribute values
1: {cx

yz represents #instances with party Px having class y and
attribute value z}

2: {nx
y represents #instances with party Px having class y}

3: {pyz represents the probability of an instance having class y
and attribute value z}

4: for all class values y do
5: for i = 1, . . . , k do
6: ∀z, Party Pi locally computes ci

yz
7: Party Pi locally computes ni

y
8: end for
9: end for

10: ∀(y, z), All parties calculate using the secure sum
protocol (see Appendix A.1), cyz =∑k

i=1 ci
yz

11: ∀y, All parties calculate using secure sum protocol,
ny =∑k

i=1 ni
y

12: All parties calculate pyz = cyz/ny

4.1.2 Numeric attributes

For a numeric attribute, the necessary parameters are
the mean µ and variance σ 2 for each class. Again, the
necessary information is split between the parties. To
compute the mean, each party needs to sum the attri-
bute values of the appropriate instances having the same
class value. These local sums are added together and
divided by the total number of instances having that
same class to get the mean for that class value. Once all
of the means µy are known, it is quite easy to compute
the variance σ 2

y , for all class values. Since each party
knows the classification of the training instances it has,
it can subtract the appropriate mean µy from an instance
having class value y, square the value, and sum all such
values together. The global sum divided by the global
number of instances having the same class y gives the
required variance σ 2

y . Protocol 2 formally describes the
protocol.

884 J. Vaidya et al.

Algorithm 2 Numeric Attributes
1: {xiyj represents the value of instance j from party i having class

value y}
2: {si

y represents the sum of instances from party i having class
value y}

3: {ni
y represents #instances with party Pi having class value y}

4: for all class values y do
5: for i = 1, . . . , k do
6: Party Pi locally computes si

y =
∑

j xiyj

7: Party Pi locally computes ni
y

8: end for
9: All parties calculate using secure sum protocol (see Appen-

dix A.1), sy =∑k
i=1 si

y
10: All parties calculate using secure sum protocol, ny =∑k

i=1 ni
y

11: All parties calculate µy = sy/ny
12: end for
13: {Create V = (X− µ)2}
14: for i = 1, . . . , k do
15: ∀j, viyj = xiyj − µy

16: ∀j, viy =∑
j(v

2
iyj)

17: end for
18: ∀y, All parties calculate using secure sum protocol,

vy =∑k
i=1 viy

19: All parties calculate σ 2
y = 1

ny−1 · vy

4.2 Evaluating an instance

Since all the model parameters are completely present
with all the parties, evaluation is simple. The party that
wants to evaluate an instance simply uses the Naïve
Bayes evaluation procedure locally to classify the
instance. The other parties have no interaction in the
process. Thus, there is no question of privacy being
compromised.

4.3 Proof of security

To prove that the protocols are secure, we utilize the
definitions given in the earlier section on secure multi-
party computation.

Theorem 2 Protocol 1 securely computes the probabil-
ities pyz without revealing anything except the probabil-
ity pyz, the global count cyz or the global number of
instances ny.

Proof The only communication taking place is at
steps 11 and 12. During these steps, the secure sum algo-
rithm is invoked to compute the global counts cyz and
ny. We apply the composition theorem stated in Theo-
rem 1, with g being the nominal attribute computation
algorithm and f being the secure sum algorithm. ��
Theorem 3 Protocol 2 securely computes the means µy

and variance σ 2
y without revealing anything except µy, σ 2

y ,
the global sum of instance values for each class sy and the
global number of instances ny, as also the sum vy.

Proof The only communication takes place at steps 9,
10 and 18. At all three of these steps the secure sum algo-
rithm is invoked to compute sy, ny and vy.Thus, again,
we simply apply the composition theorem stated in The-
orem 1, with g being the numeric attribute computation
algorithm and f being the secure sum algorithm. ��

4.4 Enhancing security

The protocols given above are not completely secure
in the sense that something more than just the model
parameters are revealed. The true numerators and the
denominators making up the actual parameter values
are revealed. For three or more parties, this allows upper
bounds on the number of instances with a party and
upper bounds on the composition of those instances (i.e.,
upper bound on the number belonging to a particular
class, etc.). Privacy of individual instances is always pre-
served. With an increasing number of parties, it is more
difficult to get accurate estimates of the remaining par-
ties. However, with just two parties, this does reveal
quite a bit of extra information. In general, the problem
is to calculate the value of the fraction without knowing
the shared numerator and/or shared denominator.

Note that the amount of information revealed for
multiple parties is not much more than what the param-
eters themselves reveal. However, technical solutions
(even with increased cost) are more satisfying as they
allow an individual decision of whether to trade off secu-
rity for efficiency. In the following subsection, we now
present a secure protocol based on computing the loga-
rithm securely.

4.5 Secure-logarithm- based approach

As mentioned above, to make our algorithm fully secure
(i.e., reveal nothing),we need to evaluate (

∑k
i=1 ci/∑k

i=1 ni) securely. Here evaluating the division becomes
the main problem. In order to overcome this problem,
we can rewrite the above expression as follows:

exp

⎡

⎣ln

⎛

⎝
k∑

i=1

ci

⎞

⎠− ln

⎛

⎝
k∑

i=1

ni

⎞

⎠

⎤

⎦

Then evaluating ln(
∑k

i=1 ci) − ln(
∑k

i=1 ni) securely is
sufficient. Clearly, this requires secure evaluation of
ln(

∑k
i=1 xi) function. In our work, we will use the secure

ln(x) evaluation method given in [28]. The one important
restriction of their method is that it only works for two
parties. In our case, it is easy to reduce the k party prob-
lem to the two-party case. Note that the last step in the
semi-honest version of the secure summation protocol

Privacy-preserving Naïve Bayes classification 885

Algorithm 3 Fully secure approach for nominal
attributes
Require: k parties, r class values, l attribute values
1: {cx

yz, nx
y, pyz are defined as in Protocol 1}

2: for all class values y do
3: for i = 1, . . . , k do
4: ∀z, Party Pi locally computes ci

yz
5: Party Pi locally computes ni

y
6: end for
7: end for
8: ∀(y, z), All parties, use secure sum protocol (see

Appendix A.1) until last step for finding
cyz =∑k

i=1 ci
yz and ny =∑k

i=1 ni
y

9: Let party 1 have Rc and Rn
10: Let party k have Rc + cyz mod p and Rn + ny mod p
11: {Note that last step of the summation has not been executed}
12: Using secure ln(x) protocol, party 1 and k gets random v1,vk

s.t.,
v1 + vk = C · ln(Rc + cyz − Rc mod p) mod p

13: Using secure ln(x) protocol, party 1 and k gets random u1,uk
s.t.,
u1 + uk = C · ln(Rn + ny − Rn mod p) mod p

14: Party k calculates sk = vk − uk mod p and sends it to party 1
15: Party 1 calculates the s1 = sk + v1 − u1 mod p
16: All parties calculate pyz = exp(s1/C)

has the first party subtracting the random number from
the result. So just before this subtraction occurs, no party
has the summation and nothing is revealed. At this point,
instead of subtracting the random number, both parties
can use the secure approximate ln(x1+x2) protocol given
in [28]. Using their protocol, it is easy to get random
v1, v2 such that v1 + v2 = C · ln(x1 + x2) mod p.

One important fact about the secure ln(x) evaluation
algorithm is that there is a public constant C used to
make all elements integral. The method for determining
C is given in [28]. Also, operations are executed in a field
with size p that is capable of containing the actual results
multiplied by the constant. Our reduction requires us to
slightly change the protocol. In [28], protocol x1 + x2
is directly added using a small addition circuit. In our
case we use modular addition. (This does not change
the asymptotic performance of the method.) After using
secure logarithm, it is easy to evaluate our desired func-
tion securely. Protocol 3 describes how these ideas can
be applied to our problem. Here, we only give the proto-
col for nominal attributes, it is straightforward to extend
this to continuous attributes.

Theorem 4 Protocol 3 securely evaluates pyz in semi-
honest model (assuming no collusion between parties).

Proof To show that the above protocol is secure in semi-
honest model where there is no collusion between par-
ties, we will show that each party’s view of the protocol
can be simulated based on its input and its output. Again,
we will use the secure composition theorem to prove

the entire protocol secure since our method securely
reduces to the logarithm function.

Parties 2, . . . , k − 2 only see a summation added to
some random number. Therefore, as earlier, the simula-
tor for these parties will be a uniform number generator.
Note that the probability that they will see some number
x during the execution is 1

p . The simulator will generate
the number with the same probability.

For parties 1 and k, there is the additional step of com-
puting the logarithm. We have to show that this does not
reveal anything either. Assume that logarithm protocol
returns random shares of the result.

Now let us define the simulator for the party k. Clearly,
before the logarithm protocol has started, party k has
Rn + ny mod p and Rc + cyz mod p. These are indis-
tinguishable from a random number drawn from an
uniform distribution. The execution of the logarithm
protocol can be simulated by using the simulator for the
logarithm protocol. The details for this simulator can be
found in [28]. After the protocol, party k only sees u2, v2
which are also indistinguishable from uniform distribu-
tion. Therefore the messages it sees during the protocol
can be easily generated by an uniform random number
generator.

If we look at the messages received by the party 1, one
set of messages come from the execution of logarithm,
then it receives random shares of u1, v1. Also it receives
(u2 − v2) mod p. We can define the simulator for k as
follows: first it runs the simulator of the logarithm func-
tion, then it generates three random numbers uniformly
chosen between 0 and p − 1. Note that u2, v2 are inde-
pendent and u2−v2 mod p is also uniformly distributed,
as

Pr(u2 − v2 = k mod p)

=
p−1∑

v=0

Pr(u2 = k+ v+ v mod p|v2 = v) · Pr(v2 = v)

=
p−1∑

v=0

Pr(u2 = k+ v mod p) · Pr(v2 = v)

=
p−1∑

v=0

1
p2 =

1
p

This concludes the proof. ��

4.5.1 Effect of collusion on privacy

The solution described above assumes no collusion
among parties. This assumption could be easily relaxed
for the summation part by using the techniques
described in Appendix A.1. Those techniques allow us to
calculate cyz and ny privately even if up to k− 1 parties

886 J. Vaidya et al.

collude. (If all k parties collude, they would probably
share data outside the protocol and privacy protection
is irrelevant.)

For the secure logarithm part, it is harder to protect
against collusion. Note that before the secure logarithm
evaluation, the two parties hold the shares of the sum-
mation results. Clearly, if those two parties collude, they
can learn the cyz and ny values that we want to protect.
At the same time, if we use a secure summation proto-
col that can protect against collusions that involve k− 1
parties, then we can easily prove that colluding parties 1
and k can at most learn cyz and ny values.

To prevent even the revelation of cyz and nyz under
collusion, it would be worth developing a practical ln(x)

protocol that can handle more than two shares; this is
an interesting challenge for future work.

4.5.2 Communication and computation cost

Privacy is not free. To evaluate the secure logarithm,
we need to make O(log(p)) oblivious transfers for a
total of O(log(p) · t) bits.(p is the size of the field used
and depends on the total database size and the preci-
sion required in calculating the logarithm; t is the secu-
rity parameter.) Based on the precision required for
the logarithm protocol (let u be the number of terms
used in the Taylor approximation), we need to do a
secure polynomial evaluation with degree u for evaluat-
ing each pyz.

Therefore, total number of bits transferred will be
O(log(p) · (t + k)), where k is the number of parties.
Since oblivious transfer and secure polynomial evalua-
tion is much more expensive than addition, the O(log(p))

oblivious transfers plus one secure polynomial evalua-
tion with degree u will dominate the computation cost.

We can give a reasonable estimate of the computa-
tional cost by looking at the details of the protocol given
in [28]. For estimation purposes, let us assume that total
size of union of all the databases is T. Let l̃n(x) be
the approximate result of the secure logarithm proto-
col. From [28], we know that the difference between the
actual result and the secure approximation is, | ln(x) −
l̃n(x)| ≤ 1

2u.(u+1)
. Since in our case, we try to estimate

exp
(
ln(cyz)−ln(ny)

)
by calculating exp

(
l̃n(cyz)− l̃n(ny)

)
.

We can make the relative error arbitrarily small by
choosing an approximating polynomial with appropri-
ate degree u. More precisely, relative error re can be
written as

re =
∣∣∣
∣∣∣

exp
(
ln(cyz)− ln(ny)

)− exp
(

l̃n(cyz)− l̃n(ny)
)

exp
(
ln(cyz)− ln(ny)

)

∣∣∣
∣∣∣

=
∣∣∣1− exp

(
l̃n(cyz)− ln(cyz)+ ln(ny)− l̃n(ny)

)∣∣∣

≤
∣
∣∣∣1− exp

(
2

2u.(u+ 1)

)∣
∣∣∣

In the last step of the above equation, we used the
fact that | ln(x) − l̃n(x)| ≤ 1

2u.(u+1)
≤ 0.5. Clearly, u can

be adjusted to bound the re value.
Now given the database size T (i.e., number of tuples

in the database), desired upper bound on re, and secu-
rity parameter t, we can estimate the actual computa-
tional cost. As we mentioned before, secure summation
only involves simple summations, therefore the com-
putation cost will be dominated by the computation

of the exp
(

l̃n(cyz)− l̃n(ny)
)

assuming that k < 1, 000.

(Note that an exponentiation for reasonable t values is
at least 1,000 times more expensive than an addition.)
For each evaluation of the secure l̃n(x), we need to do
2 · �log(T)� one out of two oblivious transfers. Each
oblivious transfer requires four exponentiations. (See
the appendix for details.) Each polynomial evaluation
with degree u requires u exponentiations. Therefore, for
each evaluation of l̃n(x), we need to do 8 · �log(T)� + u
exponentiations with t bit long numbers. Therefore, we
can estimate the total computation cost for calculating
pyz as 16 · �log(T)� + 2u exponentiations.

We estimated the cost of an exponentiation using the
GMP library on an Intel Pentium Dual 830, 3.00 GHZ
with 2 GB ram. The exponentiation time for t = 512 was
0.0015 s, for t = 1, 024 it was 0.0104 s.

The following table summarizes the estimated total
exponentiation computation time for the pyz for two
different total database sizes (106, 108); two different u
values 10, 20; and with respective relative error bounds
1.8× 10−4, 9.1× 10−8.

Looking at Table 1, we can also easily estimate the
effect of accuracy on the computation time. These results
indicate that the reduction in the relative error from
1.8 × 10−4 to 9.1 × 10−8 on the average requires 5%
increase in the computation time. Since for practical
purposes relative error 9.1×10−8 is sufficient, the effect
of increased accuracy is not too significant in overall
computation time. Since the total computation cost for
calculating pyz can be estimated as 16 · �log(T)�+2u ex-
ponentiations, increasing the accuracy (i.e., increasing
the u) will not significantly increase the overall cost for
large data sets (i.e., for large T values).

Compared to the non-secure version of the pyz calcu-
lation that involves only k additions and a division, the
secure version is clearly much slower. On the other hand,
our estimation indicates that calculating pyz privately in
practice is feasible.

Privacy-preserving Naïve Bayes classification 887

Table 1 Estimated computation time for pyz

Security Number of Degree of the Estimated
parameter tuples polynomial time (s)

512 106 10 0.51
512 106 20 0.54
512 108 10 0.68
512 108 20 0.71

1024 106 10 3.54
1024 106 20 3.74
1024 108 10 4.70
1024 108 20 4.91

5 Privacy-preserving Naïve Bayes for vertically
partitioned data

This section addresses the issue of classification over
vertically partitioned data. With vertically partitioned
data, different sites hold different attributes. We have
already discussed real-life situations where this is appli-
cable. One issue of particular interest with classification
is the location and security properties of the class attri-
bute. We can divide this into two possibilities:

• All the parties hold the (common/public) class attri-
bute, or

• Only a subset of the parties have the (secret) class
attribute.

The first case is the simplest, assuming that the class
attribute of the training data is known to all parties.
In some cases this is reasonable—e.g., manufacturers
of subcomponents collaborating to determine expected
failure rates of fully assembled systems based on attri-
butes of the subcomponents. In this case, it is easy to
estimate all the required counts for nominal attributes
and means and variances for numeric attributes locally,
causing no privacy breaches. Prediction can be accom-
plished by independently estimating the probabilities,
and securely multiplying and comparing to obtain the
predicted class.

More interesting is the general case, where not all par-
ties have the class attribute. We can simplify this to the
basic case where one party has the class attribute and the
other has the remaining attributes. Imagine, as before,
manufacturers of subcomponents; but in this case a man-
ufacturer wants to analyze failure of its subcomponent
when used as part of the full system. While all parties
would like to see overall failure rates drop, most would
prefer not to disclose their own problems to get this to
happen. Solving this enables us to solve any distribution
of attributes. (Extension to more than two parties, or

where the party with the class attribute has more infor-
mation, is straightforward.)

It is also necessary that the model learned not reveal
information—the model parameters (probability distri-
bution of classes) would reveal information about the
(protected) class values. Instead, we build a model where
each party has random shares of the model, and collab-
orate to classify an instance. The only knowledge gained
by either side is the class of each instance classified.

The obvious alternative, generating and sharing the
classifier, reveals considerable information about both
the attributes and the classes. The relative distribution
of classes in the training data is likely to be sensitive, as is
the mean/variance or distribution of the attribute values.
With our approach, neither party learns anything new
until a new instance is classified, and then the only thing
learned is the predicted class of that instance. While
learning the predicted class of enough instances may
allow reverse-engineering the classifier, this is unavoid-
able given the goal of learning the classes of the test
data. In addition, if either party feels too much is being
revealed, they can simply dispose of their share of the
classifier to ensure nothing further is disclosed. Also, it is
possible to extend the protocols developed such that the
class of each instance is learned only by the party holding
the class attribute (nothing is learned by the remaining
parties). In some cases, this might be preferable.

Having both parties (the data site and the class site)
hold shares of all the model parameters complicates the
evaluation of a new instance. Classifying a new instance
is no longer a straightforward task and a joint protocol is
required to classify any new instance. The method to do
this is given in Sect. 5.2. At this point, it is necessary to
emphasize that the protocols proposed here for the ver-
tically partitioned case are fully secure. Thus, only the
classification of a new instance is computed—no other
information is revealed, not even about the classifier.

5.1 Building the classifier model

The basic idea behind our protocol is that each party
ends up with shares of the conditionally independent
probabilities that constitute the parameters of a Naïve
Bayes classifier. By themselves, the shares appear
random—only when added do they have meaning. This
addition only occurs as part of evaluating the classifier
on an instance—and the protocol that does this reveals
only the class of the instance.

We need to address two issues: how to compute shares
of the model parameters, and how to classify a new
instance. We start with computing the shares of the
parameters. For nominal attributes, the parameters are
P(xi|cl) = ni/n for each class i and attribute value l. For

888 J. Vaidya et al.

numeric attributes, we need the mean and variance for
the probability density function given in Eq. (4).

5.1.1 Nominal attributes

Party Pd holds the nominal attribute D, while party
Pc holds the class attribute C. D has r possible values,
a1, . . . , ar. C has k possible class values c1, . . . , ck. The
goal is to compute r × k matrices Sc, Sd where the sum
of corresponding entries sc

li + sd
li gives the probability

estimate for class ci given that the attribute has value al.
Thus, we compute the probabilities one at a time.

Note that the probability for a particular class value
ci and attribute value al is nothing but the number of
instances having that attribute value and class value (nli)
divided by the total number of instances having that class
value (ni). If each entity having that attribute value and
that class value contributes 1/ni to the sum, the total
will be equal to the required probability. Thus, the key
idea is that to compute a given entry sli, Pd constructs a
binary vector corresponding to the entities in the train-
ing set with 1 for each item having the value al and 0 for
other items. Pc constructs a similar vector with 1/ni for
the ni entities in the class, and 0 for other entities. Now,
the scalar product of the vectors gives the appropriate
probability for the entry. Essentially each instance that
has the required class value and attribute value contrib-
utes 1/ni (as required) to the total sum. Since the scalar
product protocol gives random splits of the scalar prod-
uct to the two parties, each party gets a random share of
the probability as required.

Protocol 4 defines the protocol to compute the shares
of these renormalized ratios (probabilities) in detail. To
accomplish the security proof, calculations must occur
over a closed field; as a result values are premultiplied by
a constant and truncated to integral values. To achieve
full precision, this constant should be a multiple of the
least common multiple of n1, . . . , nk; however sharing
this would reveal private information about the distribu-
tion of classes. (n! would be an acceptable multiple that
would not reveal class distributions, but is computation-
ally intractable.) In practice, using n on the order of word
size (e.g., 264) will give reasonable precision (around
19 decimal digits) and computational cost. To simplify
presentation, we will speak of “probability” when the
algorithm in fact computes C · probability.

5.1.2 Numeric attributes

For numeric attributes, computing the probability
requires knowing the mean µ and variance σ 2 for each
class value.

Algorithm 4 Computing shares of all probabilities
Require: Nominal attribute D, Class attribute C
Require: n transactions, r attribute values, k class values
Require: Const (field size/precision)
Ensure: r × k share matrices Sc, Sd where S = Sc + Sd gives the

probability values for each class/attribute
1: for i = 1, . . . , k {For each class value} do
2: {Pc generates the vector Y from C:}
3: for j = 1, . . . , n do
4: if Cj = ci {jth entry of C has value ci} then
5: yj ← �Const/ni�
6: else
7: yj ← 0
8: end if
9: end for

10: for l = 1, . . . , r {For each attribute value} do
11: {Pd generates the vector X from D:}
12: for j = 1, . . . , n do
13: if dj = al then
14: xj ← 1 {Attribute value is al}
15: else
16: xj ← 0
17: end if
18: end for
19: sc

li, sd
li ← X · Y computed using a secure scalar product

protocol (Appendix A.2)
20: end for
21: end for

Computing the mean is similar to the preceding algo-
rithm—for each class, Pc builds a vector of 1/ni and 0
depending on whether the training entity is in the class
or not, and the mean for the class is the scalar product
of this vector with the projection of the data onto the
attribute. The scalar product gives each party a share
of the result, such that the sum is the mean (actually
a constant times the mean, to convert to an integral
value.) The result is a length k vector of the shares of
the means. Since, homomorphic encryption is used as an
underlying tool in all the protocols, and homomorphic
encryption only works over integral numbers, all the
values are converted to integers by premultiplying them
with a reasonable constant (and truncating if necessary).

Computing the variances σ 2
1 , . . . , σ 2

k is more difficult,
as it requires summing the square of the distances
between values and the mean, without revealing val-
ues to Pc or classes to Pd, or means to either. This is
accomplished with homomorphic encryption: E(a+b) =
E(a) · E(b), as described subsequently.

Remember that Pd owns the data vector while Pc
holds the class vector. Thus subtracting the correct mean
from each data value can only be done by Pc though it
should not know what the data values or the means are.
To achieve this, Pd generates a homomorphic encryp-
tion key-pair Ek, Dk. Next, Pd encrypts the data vector
as well as the shares of the means that he has. These
are sent to Pc along with the encryption key (Note: the

Privacy-preserving Naïve Bayes classification 889

decryption key is not sent). Pc can now encrypt his shares
of the means and using the homomorphic property of
the encryption system, subtract the appropriate mean
from each data value in encrypted form. Pc also sub-
tracts a random value, keeping the random value as its
share of the distances. Homomorphic encryption makes
this possible without decrypting. It now sends the vector
back to Pd, which can decrypt to get the distance minus
a random value.

The parties now engage in a square computation pro-
tocol (Appendix A.4) to compute shares t′j, t′′j of the
square of the sum of Pc’s randoms rj and the decrypted
distance. The scalar product of Pd’s share vector and the
class vector Y is taken, giving two shares. To its share,
Pc adds the scalar product of its vector of randoms and
Y. This gives each party a share of σ 2 multiplied by
the probability of an item appearing in the class (again
scaled to an integral value, in this case by the cube of
the chosen constant.) Protocol 5 describes this process
in detail.

The scalar product and square computation subrou-
tines are based on previous work, and are discussed in
Appendix.

5.2 Evaluating an instance

A new instance is classified according to Eq. (3). Since
both y = x2 and y = ln x are monotonically increasing
functions, squaring and taking the natural log still pre-
serves the correctness of the argmax. Thus, the equation
can be rewritten as follows:

cNB = argmax
cj∈C

(

P(cj)
∏

i

P(ai|cj)

)

= argmax
cj∈C

⎛

⎝ln

(

P(cj)
∏

i

P(ai|cj)

)2
⎞

⎠

= argmax
cj∈C

(
(
2 · ln P(cj)

)+
∑

i

ln
(

P(ai|cj)
2
))

= argmax
cj∈C

(
C + (

2 · ln P(cj)
)+∑

i ln
(
P(ai|cj)

2)
)

(6)

where the constant C is determined by the number and
composition of the nominal attributes. Given l nominal
attributes, C = ∏l

i=1 Consti, where each Consti is the
constant the ith nominal probability is multiplied by to
get adequate integral precision for that attribute. taking
the logarithm converts the constant multiplicative factor
into a constant additive factor.

Algorithm 5 Computing mean and variance
Require: n data items, k class values, precision/field size Const
Require: Pd has data vector D, Pc has class vector C
1: {Compute the mean:}
2: for i = 1, . . . , k do
3: for j = 1, . . . , n do
4: if Cj = ci {jth entry of C has value ci } then
5: yj ← �Const/ni�
6: else
7: yj ← 0
8: end if
9: end for

10: µ′i, µ′′i ← D ·Y {Computed with secure scalar product.}
11: {shares µ′i + µ′′i = Const · µi, where µi is the mean for class

i}
12: end for
13:
14: {Compute the variance}
15: Pd: generate a homomorphic public key encryption pair

Ek, Dk
16: for j = 1, . . . , n do
17: de

j ← Ek(Const · dj)

18: end for
19: for i = 1, . . . , k do
20: me

i ← Ek(µ′i)
21: end for
22: Pd sends De, Me, and Ek to Pc
23: Pc: generate the vectors Z:
24: for j = 1, . . . , n do
25: Generate random rj
26: zj ← de

j /(mcj · Ek(µ′′cj
+ rj))

27: {= Ek(Const · dj − µ′cj
− µ′′cj

− rj)}
28: {= Ek(Const · (dj − µcj)− rj)}
29: end for
30: Pc sends Z to Pd
31: Pd decrypts all the transactions in Z to get W (i.e., wj ←

Dk(Ek(Const · (dj − µl)+ rj)) = Const · (dj − µl)+ rj)
32:
33: for j = 1, . . . , n do
34: Shares t′j, t′′j ← (rj + wj)

2 using the protocol in Appendix
A.4

35: end for
36: for i = 1, . . . , k do
37: {Y is vector for class k as generated in steps 1–5}
38: Compute shares temp, σ ′′j where temp+ σ ′′j = T′′ ·Y
39: Pc : σ ′′j ← T ·Y+ temp

40: {Note σ ′j + σ ′′j = Const3 · (1
nj
· (∑j(dj − µj)

2))}
41: end for

For a nominal attribute,

ln
(

P(ai|cj)
2
)
= ln

(nj

n

)2 = 2 ln(p′ + p′′)

We have already shown how to compute p′ and p′′
in Sect. 5.1.1. The parties can compute shares of the ln
function securely using the secure ln method developed
by Lindell and Pinkas, outlined later in Appendix A.5.
Finally, they can multiply their shares by 2 to generate
the necessary shares.

890 J. Vaidya et al.

For a numeric attribute,

ln
(

P(ai|cj)
2
)
= ln

(
1

2πσ 2 e−
(x−µ)2

σ2

)

= − ln(2πσ 2)− (x− µ)2

σ 2

= − ln(2π)− ln(σ 2)− (x− µ)2

σ 2 (7)

ln(2π) is publicly computable, but it does not need to
be computed since it is applied equally to both sides of
the comparison. Shares of σ 2 are present with both par-
ties. Shares of ln(σ 2) can again be computed using the
method discussed in Appendix A.5. Shares of (x − µ)2

can be computed using the square computation method
given in Appendix A.4. Finally, shares of (x − µ2)/σ 2

can once again be obtained using the same trick of com-
puting the natural log and exponentiating it as described
in Sect. 4.5. In brief, this is done as follows: observe that

(x− µ2)

σ 2 = e(ln((x−µ2)/σ 2)) (8)

= e((ln(x−µ2))−ln(σ 2)) (9)

Since, shares of (x−µ)2 and σ 2 are present with both
parties, shares of ln(x − µ)2 and ln(σ 2) can again be
computed using the method discussed in Appendix A.5.
Each party independently adds its shares and raises e
to the appropriate power (computes e+share). Therefore,
party 1 computes eshare1 . Party 2 computes e−share2 . Now,
they simply run a protocol to compute shares v1, v2 such
that v1 + v2 = eshare1 · e−share2 . This can be easily done
through polynomial evaluation.

Thus, for every class value, for each attribute, the
shares of the required values are present with the party
owning the attribute and the party owning the class attri-
bute. Now, evaluating Eq. (6) reduces to a simple circuit
evaluation. The required circuit adds all of the shares
for each attribute for each class value and outputs the
name of the class with the maximum such value. This
circuit is similar to the Secure_Add_and_Compare cir-
cuit used in [39] except that it is extended to multiple
attributes. Thus, the only result is the classification of the
new instance.

The Taylor series expansion is a bounded approx-
imation to the real value. However, the result class
of the algorithm can only be wrong if the true Naïve
Bayes probability estimate of the correct class and the
incorrect result are within the bound δ. Again, from
[28], we know that the difference between the actual
result and the secure approximation is, | ln(x)− l̃n(x)| ≤

1
2u.(u+1)

. Increasing the number of steps in the Taylor
series expansions, and thus the communication cost,
allows the choice of δ to be arbitrarily small—indeed,

improving the relative error from the order of 10−4 to
the order of 10−8 results only in a performance penalty
of approximately 10%. If the correct class and the class
returned are this close, then the “incorrect” result is
nearly as good an answer as the best result, and likely
to be adequate in practice. Similarly, the errors in calcu-
lating probability due to precision can be ignored, since
precision can be improved arbitrarily by selecting a good
value for Const.

5.3 Proof of security

We now give a proof of security for the protocols devel-
oped, assuming security of the prior work described in
Appendix. We start with a lemma that share splitting
does in fact preserve privacy.

Lemma 1 If a function y = f (x1+x2) is evaluated over a
finite field F , where the inputs x1 and x2 are shares known
to two different parties; and the output y is also split into
shares, with share y1 is chosen randomly from an uniform
distribution over the field F and y2 = y − y1, then both
parties can independently simulate their share yi.

Proof The proof is quite obvious. First, we need to prove
that P(y2 = a) = 1

|F | .

P(y2 = a) = P(y− y1 = a)

= P(y1 = y− a)

= 1
|F |

This is equivalent to choosing y2 from an uniform
distribution over the field F . Note that though the joint
distribution of y1, y2 is not necessarily uniform, indepen-
dently both y1 and y2 can be simulated using a uniform
distribution. ��
Theorem 5 Protocol 4 privately computes the shares of
all the probabilities.

Proof The only communication occurs at line 19 with
the invocation of the scalar product protocol. The results
of the scalar product protocol are random shares, which
can be simulated as shown in Lemma 1. Applying the
composition theorem (1 on the scalar product protocol
completes the simulation of Protocol 4. ��
Theorem 6 Protocol 5 privately computes the shares of
the means and variances.

Proof Communication occurs only at lines 10, 22, 30, 34
and 38. We prove the protocol secure by providing a
simulator for both parties Pc and Pd. The simulator for
both Pc and Pd proceeds simply by executing the actual

Privacy-preserving Naïve Bayes classification 891

protocol. In order to show that the view of each party
can be simulated, we only need to simulate the messages
received by each party.

At line 10, the results of the scalar product protocol
are random shares, which can be simulated by both Pc
and Pd as shown in Lemma 1.

At line 22, Pc simulates the message received by Pc
generating a key pair and using the generated encryption
key for Ek. It also generates a n random numbers to com-
prise De and k random numbers to form Me. Assuming
security of encryption, these are computationally indis-
tinguishable from the true vectors and encryption key.

To simulate the message received by Pd at line 30, Pd
chooses n random numbers from an uniform distribu-
tion over the field F and encrypts these numbers with its
key Ek to form the vector Z. Note that each zj simulates
the encryption of Const · (dj−µcj)− rj. Since the opera-
tions are over a finite field F and the rj is also uniformly
chosen over the finite field F ,

P(Dk(zj) = x) = P(Const · (dj − µcj)− rj = x)

= P(rj = Const · (dj − µcj)− x)

= 1
|F |

Thus simulating the value is possible by choosing a ran-
dom number from an uniform distribution over F and
encrypting this random with the encryption key Ek.

At line 34,the results of the square computation are
random shares, which can be simulated by both Pc and
Pd as shown in Lemma 1.

At line 38, the results of the scalar product protocol
are random shares, which can be simulated by both Pc
and Pd as shown in Lemma 1.

Note that the scalar product in line 39 is a completely
local computation by Pc and thus does not need to be
simulated by Pd. Applying the composition theorem
using the scalar product protocol at lines 10 and 38, and
with the square computation protocol at line 34, com-
pletes the proof that Protocol 5 can be simulated. ��
Theorem 7 The evaluation protocol in Sect. 5.2 privately
computes the class.

Proof For nominal attributes, the shares of the probabil-
ities are present with both the parties to begin with. The
secure ln computation returns random shares to both
parties. By Lemma 1, these shares can be independently
simulated by both the parties.

Similarly, for numeric attributes, the shares of the
means and variances are present with both parties. The
secure ln computation returns random shares of the var-
iance to both parties. By Lemma 1, these shares can be
independently simulated. The shares of (x−µ)2 are com-
puted by a call to the secure square computation pro-
tocol. Since this protocol also computes random shares,

by Lemma 1, these shares can be independently simu-
lated by both parties. Finally, the shares of (x − µ)2/σ 2

are computed using multiple invocations of the secure
ln protocol, as also the polynomial evaluation protocol,
both of which compute random shares, again Lemma 1
shows that these can be simulated.

The addition and comparison circuit is a generic cir-
cuit, proven secure by [17]. The result is simply the out-
put class, and is simulated exactly as the final result is
presumed known by the simulator. Applying Theorem 1
to the secure ln computation, protocols 4, 5 and square
computation protocol, the evaluation protocol is also
secure. ��

5.4 Effect of collusion on security

The final issue requiring discussion is that of collusion.
With only two parties, collusion is irrelevant in
practice—parties willing to collude could simply share
data outside the protocol. The entire protocol for com-
puting model parameters only involves communication
between the two parties holding the class attribute and
the data attribute, so collusion with any other party will
not give any additional information. The protocol for
evaluating an instance uses generic circuit evaluation
techniques and can easily be made resistant to collusion.

5.5 Communication and computation cost

We now look at the cost of the devised algorithms. First,
we consider the communication cost of the protocols
proposed. Then, we estimate the computation cost of
the protocols. As earlier, for the purpose of this analy-
sis, the number of distinct class values is assumed to be k.

5.5.1 Communication cost

For a nominal attribute with r attribute values, the scalar
product protocol is called a total of r · k times over n-
dimensional vectors. Thus, depending on the cost of the
scalar product (which is typically linear in n), the cost of
protocol 4 is O(rkn). For small values of r, k this is fea-
sible, though for large values it may be quite inefficient.
A mitigating factor is that if r, k are large relative to the
size of the training set n, Naïve Bayes is probably not a
good classifier to use anyway.

For numeric attributes, to compute the shares of the
means requires k invocations of the scalar product pro-
tocol. To compute the variance, at line 22 Pd sends
2n-dimensional vectors to Pc. At line 30, Pc sends one
n-dimensional vector to Pd. Line 34 involves n invo-
cations of the square computation protocol. Since the
square computation protocol consists of one polynomial

892 J. Vaidya et al.

evaluation for a polynomial of degree 2, the communi-
cation cost of n invocations of the square computation
require only linear (O(nk)) communication cost where
the constant is quite small. Finally, line 38 again involves
k invocations of the scalar product protocol. Thus, the
total communication cost is clearly linear in n (O(nk)).
The cost for numeric attributes is significantly lower than
for nominal attributes.

Selecting the parameters is done off-line, while clas-
sification of a new instance can be considered “online”,
and is done one instance at a time. For every class, evalu-
ation requires one call to the secure ln protocol for every
nominal attribute and two calls to the secure ln protocol,
one call to the square computation protocol and one call
to the polynomial evaluation protocol for every numeric
attribute. Finally, it also requires one call to the generic
addition and comparison circuit to find the class having
the maximum. Secure ln computation requires running
Yao’s protocol on a circuit that is linear in the size of the
inputs followed by the private evaluation of a polyno-
mial of degree k′ over the field F . The value of this k′ is
user decidable depending on the accuracy/cost tradeoff.
The total communication cost is dominated by the cir-
cuit evaluation and is O(k · k′ log |F | · |S|) bits, where |S|
is the length of the key for a pseudo-random function.

The cost of the square computation protocol is insig-
nificant (since it is a constant). The cost for a numeric
attribute is dominated by the secure ln protocol.

The single generic circuit required to find the class
with the maximum value requires a total of k compari-
son circuits built on top of q addition circuits, where q is
the total number of attributes. The cost of this is linear
in q + k. For a total of q attributes, the total cost of a
single evaluation is O(qk · log |F | · |S|) bits.

5.5.2 Computation cost

We now estimate the computation cost for the proposed
protocols. For categorical attributes, Protocol 4 invokes
the scalar product protocol for every combination of
class value and attribute value. Thus, with k class values,
r attribute values, the scalar product protocol is called
r ·k times. For a general vector of size n, the scalar prod-
uct protocol requires n modular exponentiations, and
n modular multiplications. However, if at least one of
the vectors is boolean (all values are only one or zero),
no exponentiations are required, and the cost is signifi-
cantly reduced to only n multiplications. Furthermore,
a multiplication is required only whenever the element
is 1, not when it is 0. In Protocol 4, an element for the
vector Y is 1 only once per class value (per different X).
Therefore the total cost of protocol 5 is k · n modular
multiplications.

Table 2 Estimated time for computing model parameters for a
nominal attribute

Security Number of Number of Estimated
parameter tuples classes time

512 106 2 7.6 s
512 106 3 11.4 s
512 108 2 12.66 min
512 108 3 19 min
1,024 106 2 24 s
1,024 106 3 36 s
1,024 108 2 40 min
1,024 108 3 1 h

We estimated the cost of a multiplication using the
GMP library on an Intel Pentium Dual 830, 3.00 GHZ
with 2 GB ram. For t = 512, one million multiplications
take 3.8 s, for t = 1, 024, they require 12 s.

Since the number of attribute values does not affect
the computation cost, Table 2 shows the estimated cost
for two different database sizes (106, 108), and two differ-
ent class sizes (2, 3). As we can see, for nominal attri-
butes, our solution is very scalable (since the optimized
scalar product protocol can be used) and large quantities
of data can easily be processed.

For numeric attributes, computing the mean requires
k scalar products over vectors of size n. For the variance,
one needs to encrypt two vectors of length n, multiply
the vectors, and decrypt it once. Then the square compu-
tation protocol is run once over the entire vector. Finally,
the k variances are computed using k scalar products
over vectors of length n. n square computations require
2n exponentiations. A scalar product also requires n
exponentiations. Each encryption and decryption also
requires an exponentiation. Thus the total number of
exponentiations required is kn+ n+ n+ n+ 2n+ kn =
(2k + 5)n exponentiations. As earlier, an exponentia-
tion requires 0.0015 s for t = 512 bits and 0.0104 s for
t = 1, 024 bits. In Table 3 we show the total cost by
looking at different values of t, n, k. As we can see, for
numeric attributes, the proposed protocols are not so
scalable. Inherently, the optimized version of the scalar
product cannot be used, and this significantly slows the
computation. If a more streamlined scalar product pro-
tocol were used, or security restrictions were relaxed,
it would be possible to speed the computation time up
significantly.

Now, we consider the cost of evaluating an instance.
For each class, evaluation requires one call to the secure
ln protocol for every nominal attribute and two calls to
the secure ln protocol, one call to the square compu-
tation protocol and one call to the polynomial evalua-
tion protocol for every numeric attribute. Finally, it also

Privacy-preserving Naïve Bayes classification 893

Table 3 Estimated time for computing model parameters for a
numeric attribute

Security Number of Number of Estimated
parameter tuples classes time(s)

512 1, 000 2 13.5
512 1, 000 3 16.5
512 10, 000 2 135
512 10, 000 3 165
1,024 10, 00 2 93.6
1,024 1, 000 3 114.4
1,024 10, 000 2 936
1,024 10, 000 3 1,144

requires one call to the generic addition and comparison
circuit to find the class having the maximum.

Secure ln computation requires 2 ·�log(|F |)� one-out-
of-two oblivious transfers, where F denotes the field
in which all operations are carried out. Each oblivious
transfer requires four exponentiations. (See the appen-
dix for details.) Each polynomial evaluation with degree
u requires u exponentiations. Therefore, for each eval-
uation of secure ln, we need to do 8 · �log(|F |)� + u
exponentiations with t bit long numbers.

A polynomial evaluation with degree w requires w
exponentiations. The square computation protocol
requires evaluation of a polynomial of degree 2. There-
fore, the square computation protocol requires two ex-
ponentiations. The final polynomial evaluation required
for numeric attributes is over a polynomial of degree 1.
Therefore, this requires one exponentiation. Thus, the
total cost per nominal attribute is 8 · �log(|F |)� + u ex-
ponentiations with t bit long numbers, and the total cost
per numeric attribute is 16 · �log(|F |)� + 2u+ 3 expon-
entiations. We implemented the final add-and-compare
circuit to find out the time taken. The time required by
this circuit is linear in seconds to the number of total clas-
ses. Thus, for k classes, the final circuit requires k/2 secs.

Thus, if there are n1 nominal attributes and n2 numeric
attributes, we can estimate the total computation cost as
(8 · �log(|F |)�+u) ·n1+ (16 · �log(|F |)�+ 2u+ 3) ·n2 ex-
ponentiations + k/2 seconds. At the outside, a field size
of 106 is much more than sufficient. Thus, �log(|F |)� =
6. Using the earlier estimated cost of exponentiation
(for t = 512, 0.0015 s and for t = 1, 024, 0.0104 s),
we can now estimate the final cost. The total cost is
((48 + u)n1 + (99 + 2u)n2) · 0.0015 + k/2 seconds, for
t = 512 and it is ((48+u)n1+ (99+ 2u)n2) · 0.0104 + k/2
seconds, for t = 1, 024.

Table 4 shows the overall cost for different values of
u, n1, n2, k. As we can see, the time required to evalu-
ate an instance is still quite reasonable (and within the
web response time of 30 s). Obviously, this time grows

linearly with the number of attributes—and thus very
high dimensional data will need significantly more time;
though, in this case Naïve Bayes is probably not the best
classifier to use anyway.

6 Conclusion

When legal/commercial reasons make it impossible to
share data, it may be imprudent to share even models
generated from the data. We have presented a method
that bypasses this restriction for mining Naïve Bayes
models.

This paper has concentrated on the semi-honest
model, where each party assumed to follow the proto-
cols but may try to infer information from the messages
it sees. While many of the components can be extended
to the malicious model,doing so efficiently is an open
research problem.

Privacy is not free. In general, privacy-preserving pro-
tocols are more expensive than non-privacy-preserving
protocols for the same problem. Progress in this area
will enable application of data mining to opportunities
that are currently unexplored due to privacy and secu-
rity concerns.

Appendix: Secure computation subroutines

The privacy-preserving algorithms developed later are
based on several secure computation protocols. While
most have either been previously published, or are
straightforward given previously published work, we
summarize them here for completeness. Most are two-
party protocols; this does lead to concern with collusion
between the two parties. For some uses of these proto-
cols (e.g., in the vertical partitioning protocol), collusion
would reveal information of the colluding parties; in the
horizontally partitioned case the problems with collu-
sion are specifically noted in the theorem.

Note that the primary practical application of the
semi-honest model is for parties that wish to avoid see-
ing data they do not need; parties are presumed to have
incentives not to collude.

A.1 Secure sum

One building block frequently required is a way to
securely calculate the sum of values from individual sites.
Assuming three or more parties and no collusion, the
following method [23] securely computes such a sum.

894 J. Vaidya et al.

Table 4 Estimated cost for classifying an instance

Security Degree of Number of Number of Number of Estimated time(s)
parameter the polynomial nominal attributes numeric attributes classes

512 10 5 5 2 2.328
512 10 5 5 3 2.828
512 10 10 10 2 3.655
512 10 10 10 3 4.155
512 20 5 5 2 2.553
512 20 5 5 3 3.053
512 20 10 10 2 3.955
512 20 10 10 3 4.455

1, 024 10 5 5 2 10.204
1, 024 10 5 5 3 10.704
1, 024 10 10 10 2 19.408
1, 024 10 10 10 3 19.908
1, 024 20 5 5 2 11.764
1, 024 20 5 5 3 12.264
1, 024 20 10 10 2 22.528
1, 024 20 10 10 3 23.028

Assume that the value v =∑k
i=1 vi to be computed is

known to lie in the range [0, . . . , n− 1] where vi denotes
the share of the ith site.

One site is designated the master site, numbered 1.
The remaining sites are numbered 2, . . . , k. Site 1 gener-
ates a random number R, uniformly chosen from
[0, . . . , n − 1]. Site 1 adds this to its local value v1, and
sends the sum R + v1 mod n to site 2. Since the value
R is chosen uniformly from [0, . . . , n − 1], the number
R + v1 mod n is also distributed uniformly across this
region, so site 2 learns nothing about the actual value of
v1. For the remaining sites i = 2, . . . , k−1, the algorithm
is as follows: Site i receives

V = R+
i−1∑

j=1

vj mod n.

Since this value is uniformly distributed across [0, . . . ,
n− 1], i learns nothing. Site i then computes

R+
i∑

j=1

vi mod n = (vi + V) mod n

and passes it to site i+ 1.
Site k performs the above step, and sends the result

to site 1. Site 1, knowing R, can subtract R to get the
actual result. Note that site 1 can also determine

∑k
i=2 vi

by subtracting v1. This is possible from the global result
regardless of how it is computed, so site 1 has not learned
anything from the computation.

This method faces an obvious problem if sites col-
lude. Sites i − 1 and i + 1 can compare the values they
send/receive to determine the exact value for vi. The
method can be extended to work for an honest majority.
Each site divides vi into shares. The sum for each share

is computed individually. However, the path used is per-
muted for each share, such that no site has the same
neighbor twice. To compute vi, the neighbors of i from
each iteration would have to collude. Varying the num-
ber of shares varies the number of dishonest (colluding)
parties required to violate security. Detailed analysis of
this method can be found in [6].

A.2 Scalar product protocol

Another key sub-protocol required is a protocol for
computing the scalar product of two vectors. Many scalar
product protocols have been proposed in the past [8,
15,20,38]. The method of Goethals et al. [15] is quite
simple and provably secure. We now briefly describe
it. The problem is defined as follows: Alice has a n-
dimensional vector X while Bob has a n-dimensional
vector Y. At the end of the protocol, Alice should get
ra = X · Y + rb where rb is a random number chosen
from an uniform distribution and is known only to Bob.
The key idea behind the protocol is to use a homo-
morphic encryption system such as the Goldwasser–
Micali cryptosystem [4], the Benaloh cryptosystem [3],
the Naccache–Stern cryptosystem [30], the Paillier cryp-
tosystem [34], and the Okamoto–Uchiyama cryptosys-
tem [33]. Homomorphic Encryption is a semantically
secure public-key encryption which, in addition to stan-
dard guarantees, has the additional property that given
any two encryptions E(A) and E(B), there exists an
encryption E(A∗B) such that E(A) ∗ E(B) = E(A ∗ B),
where ∗ is either addition or multiplication (in some abe-
lian group). The cryptosystems mentioned above are
additively homomorphic (thus the operation ∗ denotes
addition). Using such a system, it is quite simple to

Privacy-preserving Naïve Bayes classification 895

create a scalar product protocol. The key is to note that∑n
i=1 xi · yi =∑n

i=1(xi+ xi+ · · · + xi) (yi times). If Alice
encrypts her vector and sends in encrypted form to Bob,
Bob can using the additive homomorphic property to
compute the dot product. The specific details are given
below:

Here is the actual protocol:
Require: Alice has input vector X = {x1, . . . , xn}
Require: Bob has input vector Y = {y1, . . . , yn}
Require: Alice and Bob get outputs rA, rB respectively

such that rA + rB = X ·Y
1: Alice generates a private and public key pair (sk,

pk).
2: Alice sends pk to Bob.
3: for i = 1, . . . , n do
4: Alice sends to Bob ci = Epk(xi).
5: end for
6: Bob computes w =∏n

i=1 cyi
i

7: Bob generates a random plaintext rB.
8: Alice sends to Bob w′ = w · Epk(−rB).
9: Alice computes rA = Dsk(w′) = X ·Y− rB.

A.3 One-out-of-two oblivious transfer

The one-out-of-two oblivious transfer protocol
involves two parties, Alice and Bob. Alice has an input
bit σ , while Bob has 2 inputs B0 and B1. At the end of
the protocol, Alice learns only Bσ and nothing else while
Bob learns nothing at all. The one-out-of-two oblivi-
ous transfer (OT2

1) was suggested by Even, Goldreich
and Lempel [12] as a generalization of Rabin’s “oblivi-
ous transfer” [36]. For completeness, we now describe a
method for doing oblivious transfer [32].

First, we describe two cryptographic definitions that
are used in the protocol.

Computational Diffie–Hellman Assumption. Assume
that p is a very large prime number and g is the
generator of its multiplicative group (i.e. every num-
ber between 1, . . . , p− 1 can be written as gk mod p
for some k between 1 . . . p − 1). The computational
Diffie–Hellman Assumption states that given ga mod
p and gb mod p (Note that a and b is not given),
there is no efficient way to compute gab mod p. This
assumption is the basis for the Diffie–Hellman key
exchange protocol; if it does not hold many crypto-
graphic techniques would be breakable.

Random Oracle Assumption. In the construction of the
protocol, we will use a cryptographic Hash function
H. We assume that this function is known to all par-
ties (e.g., SHA) and it maps its input to what appears
to be a random output. Again, this is a common cryp-
tographic tool used in many protocols.

Now using the Diffie–Hellman Assumption and a
hash function H, we can implement a one-out-of-two
oblivious transfer that discloses no information even if
one of the parties tries to deviate from the protocol. In
the following protocol, as defined above, let σ be the
input of Alice and let B0 and B1 be the inputs of Bob.
Also note that every operation except evaluating the
function H and ⊕ (exclusive or) is done mod p.

1. Bob publishes a random number C between 1, . . . ,
p− 1 along with g and p.

2. Alice picks a random number k between 1, . . . , p−1,
sets Pσ = gk and P1−σ = C/Pσ , and sends P0 to Bob.

3. Bob finds P1 by evaluating C/P0, creates E0 = (gr0 ,
H((P0)

r0)⊕ B0), E1 = (gr1 , H((P1)
r1)⊕ B1), by ran-

domly choosing r0, r1 between 1, . . . , p−1, and sends
E0, E1 to Alice.

4. Alice computes H((Pσ)rσ) = H((grσ)k)) to find Bσ .

In the above protocol the choice of Alice (σ) is not
revealed because all Bob receives is either gk or C/gk,
where k is chosen randomly. Since operations are done
in mod p, both gk or C/gk values are uniformly dis-
tributed between 0, . . . , p − 1. Therefore, Bob does not
see anything more than a random number. Alice learns
nothing by receiving the random C, or (because of the
random oracle hash function) from inspecting E0 or E1.
While Alice can decrypt Eσ to obtain the final result, by
the original Diffie–Hellman assumption it cannot deter-
mine (grσ−1)k to decrypt the other box. If Alice could
decrypt both E0 and E1, this would contradict with the
Diffie–Hellman assumption.

A.4 Square computation

The problem is defined as follows: Alice holds xa, while
Bob holds xb. Together they wish to compute shares of
the function f = (xa+xb)2. Thus, at the end of the proto-
col, Alice should have ya and Bob should have yb such
that ya + yb = (xa + xb)2. An obvious way to do this
is using oblivious evaluation of polynomials. Alice first
generates a random value ya. Alice then forms the poly-
nomial P(z) = (1)z2 + (2xa)z+ (x2

a − ya). An oblivious
evaluation of P(xb) by Bob gives Bob, yb = P(xb). Note
that yb + ya = x2

b + 2xaxb + x2
a − ya + ya = (xa + xb)2 as

required.

A.4.1 Oblivious evaluation of polynomials

Alice has a polynomial P of degree k over some finite
field F . Bob has an element x ∈ F and also knows k.
Alice would like to let Bob compute the value P(x) in

896 J. Vaidya et al.

such a way that Alice does not learn x and Bob does
not gain any additional information about P (except
P(x)). This problem was first investigated by [31]. Sub-
sequently, there have been more protocols improving
the communication and computation efficiency [7] as
well as extending the problem to floating point numbers
[5]. For our protocols, we use the protocol given in [7]
since it requires only O(k) exponentiations in order to
evaluate a polynomial of degree k (where the constant
is very small). This works well since we only require
evaluation of low-degree polynomials.

We now briefly describe the protocol used for oblivi-
ous polynomial evaluation that uses the secure dot prod-
uct described before as a subroutine. Given a dot prod-
uct protocol, we can easily create a protocol for poly-
nomial evaluation as follows: Let P(y) = ∑k

i=0 aiyi be
Alice’s input and x be Bob’s input, using secure dot
product, Bob can evaluate the P(x) as follows:

Alice forms Bob forms

U =

⎡

⎢⎢⎢
⎣

a0
a1
...
ak

⎤

⎥⎥⎥
⎦

V =

⎡

⎢⎢⎢
⎣

1
x
...
xk

⎤

⎥⎥⎥
⎦

Alice and Bob engage in secure dot product so that
(only) Bob gets r = U.V Clearly r = ∑k

i=0 aixi = P(x).
Assuming that dot product protocol is secure, above
protocol is also secure.

A.5 Privately computing ln x

In classifying an instance, we need to be able to privately
compute ln x, where x = x1 + x2 with x1 known to Alice
and x2 known to Bob. Thus, Alice should get y1 and Bob
should get y2 such that y1 + y2 = ln x = ln(x1 + x2).
One of the key results presented in [28] was a crypto-
graphic protocol for this computation. We now describe
the protocol in brief: Note that ln x is Real while general
cryptographic tools work over finite fields. We multiply
the ln x with a known constant to make it integral.

The basic idea behind computing random shares of
ln(x1 + x2) is to use the Taylor approximation for ln x.
Remember that the Taylor approximation gives us

ln(1+ ε) =
∞∑

i=1

(−1)i−1εi

i

= ε − ε2

2
+ ε3

3
− ε4

4
+ · · · for − 1 < ε < 1

For an input x, let n = �log2 x�. Then 2n represents the
closest power of 2 to x. Therefore, x = x1+x2 = 2n(1+ε)

where −1/2 ≤ ε ≤ 1/2. Consequently,

ln(x) = ln(2n(1+ ε))

= ln 2n + ln(1+ ε)

≈ ln 2n +
∑

i=1...k

(−1)i−1εi/i

= ln 2n + T(ε)

where T(ε) is a polynomial of degree k. This error is
exponentially small in k.

There are two phases to the protocol. Phase 1 finds
an appropriate n and ε. Let N be a predetermined (pub-
lic) upper-bound on the value of n. First, Yao’s circuit
evaluation is applied to the following small circuit which
takes x1 and x2 as input and outputs random shares of
ε2N and 2Nn ln 2. Note that ε2n = x − 2n, where n can
be determined by simply looking at the two most signifi-
cant bits of x and ε2N is obtained simply by shifting the
result by N − n bits to the left. Thus, the circuit outputs
random α1 and α2 such that α1 + α2 = ε2N , and also
outputs random β1 and β2 such that β1 + β2 = 2Nn ln 2.
This circuit can be easily constructed. Random shares
are obtained by having one of the parties input random
values α1, β1 ∈R F into the circuit and having the circuit
output α2 = ε2N−α1 and β2 = 2Nn ln 2−β1 to the other
party.

Phase 2 of the protocol involves computing shares of
the Taylor series approximation, T(ε). This is done as
follows: Alice chooses a random w1 ∈ F and defines
a polynomial Q(x) such that w1 + Q(α2) = T(ε). Thus
Q(·) is defined as

Q(x) = lcm(2, . . . , k)

k∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1

Alice and Bob then execute an oblivious polynomial
evaluation with Alice inputting Q(·) and Bob inputting
α2, in which Bob obtains w2 = Q(α2). Alice and Bob
define u1 = lcm(2, . . . , k)β1+w1 and u2 = lcm(2, . . . , k)

β2 + w2. We have that u1 + u2 ≈ 2N lcm(2, . . . , k) ln x.
Further details on the protocol, as well as the proof of
security, can be found in [28].

References

1. Agrawal, D., Aggarwal, C.C.: On the design and quan-
tification of privacy preserving data mining algorithms.
In: Proceedings of the 20th ACM SIGACT-SIGMOD-SI-
GART Symposium on Principles of Database Systems, pp.
247–255. ACM, Santa Barbara, California, USA (2001).
http://doi.acm.org/10.1145/375551.375602

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining.
In: Proceedings of the 2000 ACM SIGMOD Conference on
Management of Data, pp. 439–450. ACM, Dallas, TX (2000).
http://doi.acm.org/10.1145/342009.335438

Privacy-preserving Naïve Bayes classification 897

3. Benaloh, J.C.: Secret sharing homomorphisms: Keeping
shares of a secret secret. In: A. Odlyzko (ed.) Advances in
Cryptography–CRYPTO86: Proceedings, vol. 263, pp. 251–
260. Lecture Notes in Computer Science, Springer Heidel-
berg (1986). http://springerlink.metapress.com/openurl.asp?
genre=article&issn= 0302-9743&volume=263&spage=251

4. Blum, M., Goldwasser, S.: An efficient probabilistic pub-
lic-key encryption that hides all partial information. In:
R. Blakely (ed.) Advances in Cryptology—Crypto 84 Pro-
ceedings. Springer, Heidelberg (1984)

5. Chang, Y.C., Lu, C.J.: Oblivious polynomial evaluation
and oblivious neural learning. Lecture Notes in Com-
puter Science, vol. 2248, pp. 369+ (2001). citeseer.nj.nec.
com/531490.html

6. Chor, B., Kushilevitz, E: A communication-privacy tradeoff
for modular addition. Inf. Process. Lett. 45, 205–210 (1993)

7. Cramer, R., Gilboa, N., Naor, M., Pinkas, B., Poupard, G.:
Oblivious Polynomial Evaluation. In: The Privacy Preserving
Data Mining (paper by Naor and Pinkas) (2000)

8. Du, W., Atallah, M.J.: Privacy-preserving statistical anal-
ysis. In: Proceeding of the 17th Annual Computer Secu-
rity Applications Conference. New Orleans, Louisiana, USA
(2001). http://www.cerias.purdue.edu/homes/duw/research/
paper/acsac20 01.ps

9. Du, W., Atallah, M.J.: Secure multi-party computation prob-
lems and their applications: A review and open prob-
lems. In: New Security Paradigms Workshop, pp. 11–20.
Cloudcroft, New Mexico, USA (2001). http://www.cerias.
purdue.edu/homes/duw/research/paper/nspw2001.ps

10. Du, W., Zhan, Z.: Building decision tree classifier on pri-
vate data. In: C. Clifton, V. Estivill-Castro (eds.) IEEE
International Conference on Data Mining Workshop on
Privacy, Security, and Data Mining, vol. 14, pp. 1–8. Aus-
tralian Computer Society, Maebashi City, Japan (2002).
http://crpit.com/Vol14.html

11. Directive 95/46/EC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the free
movement of such data. Official J. Eur. Communities I(281),
31–50 (1995) http://europa.eu.int/comm/internal_market/
privacy

12. Even, S., Goldreich, O., Lempel, A: A randomized proto-
col for signing contracts. Commun. ACM 28(6), 637–647
(1985)

13. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Pri-
vacy preserving mining of association rules. In: The 8th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 217–228. Edmonton, Alberta, Can-
ada (2002). http://doi.acm.org/10.1145/775047.775080

14. Feingold, M., Corzine, M., Wyden, M., Nelson, M.: Data Min-
ing Moratorium Act of 2003. U.S. Senate Bill (proposed)
(2003). http://thomas.loc.gov/cgi-bin/query/z?c108:S.188:

15. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On secure
scalar product computation for privacy-preserving data min-
ing. In: C. Park S. Chee (eds.) The 7th Annual International
Conference in Information Security and Cryptology (ICISC
2004), vol. 3506, pp. 104–120 (2004)

16. Goldreich, O.: The Foundations of Cryptography, vol. 2,
chap. General Cryptographic Protocols. Cambridge Uni-
versity Press, Cambridge (2004). http://www.wisdom.
weizmann.ac.il/∼oded/PSBookFrag/prot.ps

17. Goldreich, O., Micali, S., Wigderson, A.: How to play
any mental game—a completeness theorem for pro-
tocols with honest majority. In: 19th ACM Sympo-
sium on the Theory of Computing, pp. 218–229 (1987).
http://doi.acm.org/10.1145/28395.28420

18. Standard for privacy of individually identifiable health
information. Fed. Regist. 67(157), 53,181–53,273 (2002).
http://www.hhs.gov/ocr/hipaa/finalreg.html

19. Huang, Z., Du, W., Chen, B.: Deriving private information
from randomized data. In: Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data,
Baltimore, MD (2005)

20. Ioannidis, I., Grama, A., Atallah, M.: A secure protocol for
computing dot-products in clustered and distributed envi-
ronments. In: The 2002 International Conference on Parallel
Processing, Vancouver, British Columbia (2002)

21. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data. In: Pro-
ceedings of the 2005 ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Chicago, IL,
pp. 593–599 (2005)

22. Kantarcioglu, M., Vaidya, J.: An architecture for privacy-
preserving mining of client information. In: C. Clifton
V. Estivill-Castro (eds.) IEEE International Conference on
Data Mining Workshop on Privacy, Security, and Data Min-
ing, vol. 14, pp. 37–42. Australian Computer Society, Maeb-
ashi City, Japan (2002). http://crpit.com/Vol14.html

23. Kantarcıoğlu, M., Clifton, C.: Privacy-preserving distributed
mining of association rules on horizontally partitioned data.
In: The ACM SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD’02), Mad-
ison, Wisconsin, pp. 24–31 (2002) http://www.bell-labs.com/
user/minos/DMKD02/Papers/kantarcioglu.pdf

24. Kantarcıoğlu, M., Clifton, C.: Privacy-preserving distributed
mining of association rules on horizontally partitioned
data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037
(2004) http://doi.ieeecomputersociety.org/10.1109/TKDE.
2004.45

25. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the
privacy preserving properties of random data perturbation
techniques. In: Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM’03). Melbourne, Florida
(2003)

26. Lin, X., Clifton, C., Zhu, M.: Privacy preserving clustering
with distributed EM mixture modeling. Knowl. Inf. Syst. 8(1),
68–81 (2005) http://dx.doi.org/10.1007/s10115-004-0148-7

27. Lindell, Y., Pinkas, B.: Privacy preserving data mining.
In: Advances in Cryptology — CRYPTO 2000, pp. 36–54.
Springer, Heidelberg (2000)

28. Lindell, Y., Pinkas, B.: Privacy preserving data min-
ing. J. Cryptol. 15(3), 177–206 (2002) http://www.research.
ibm.com/people/l/lindell//id3_abs.html

29. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill
Science/Engineering/Math, New York (1997)

30. Naccache, D., Stern, J.: A new public key cryptosystem based
on higher residues. In: Proceedings of the 5th ACM confer-
ence on Computer and communications security, pp. 59–66.
ACM Press, San Francisco, California, United States (1998).
doi: http://doi.acm.org/10.1145/288090.288106

31. Naor, M., Pinkas, B.: Oblivious transfer and polyno-
mial evaluation. In: Proceedings of the 31st annual
ACM symposium on Theory of computing, pp. 245–254.
ACM Press, Atlanta, Georgia, United States (1999). doi:
http://doi.acm.org/10.1145/301250.301312

32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In:
Proceedings of SODA 2001 (SIAM Symposium on Discrete
Algorithms), Washington, D.C. (2001)

33. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem
as secure as factoring. In: Advances in Cryptology—Euro-
crypt ’98, LNCS 1403, pp. 308–318. Springer, Heidelberg
(1998)

898 J. Vaidya et al.

34. Paillier, P.: Public key cryptosystems based on composite
degree residuosity classes. In: Advances in Cryptology—Eu-
rocrypt ’99 Proceedings, LNCS 1592, pp. 223–238. Springer,
Heidelberg (1999)

35. Perry, J.M.: Statement of John M. Perry, President and
CEO, Cardsystems Solutions, Inc. before the United
States House of Representatives Subcommittee on Over-
sight and Investigations of the Committee on Financial
services. http://financialservices.house.gov/hearings.asp?
formmode=detail&hearing =407&comm=4(2005). http:
//financialservices.house.gov/hearings.asp?formmode=deta
il&hearing=407&comm=4

36. Rabin, M.: How to exchange secrets by oblivious transfer.
Tech. Rep. TR-81, Aiken Computation Laboratory, Harvard
University (1981)

37. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in associa-
tion rule mining. In: Proceedings of 28th International Con-
ference on Very Large Data Bases, pp. 682–693. VLDB, Hong
Kong (2002) http://www.vldb.org/conf/2002/S19P03.pdf

38. Vaidya, J., Clifton, C.: Privacy preserving association rule min-
ing in vertically partitioned data. In: The 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Edmonton, Alberta, Canada, pp. 639–644. (2002).
http://doi.acm.org/10.1145/775047.775142

39. Vaidya J., Clifton C (2003) Privacy-preserving k-means
clustering over vertically partitioned data. In: The 9th ACM

SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Washington, DC, pp. 206–215 (2003).
http://doi.acm.org/10.1145/956750.956776

40. Vaidya, J., Clifton, C.: Privacy preserving naïve bayes classifier
for vertically partitioned data. In: 2004 SIAM International
Conference on Data Mining, Lake Buena Vista, Florida,
pp. 522–526 (2004) http://www.siam.org/meetings/sdm04/pro-
ceedings/sdm04_059.pdf

41. Vaidya, J., Clifton, C.: Privacy-preserving decision trees
over vertically partitioned data. In: The 19th Annual
IFIP WG 11.3 Working Conference on Data and Appli-
cations Security. Springer, Storrs, Connecticut (2005)
http://dx.doi.org/10.1007/11535706_11

42. Vaidya J., Clifton C.: Secure set intersection cardinality with
application to association rule mining. J. Comput. Secur. 13(4)
(2005).

43. Wright, R., Yang, Z.: Privacy-preserving bayesian network
structure computation on distributed heterogeneous data. In:
Proceedings of the 10th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Seattle,
WA (2004)

44. Yao, A.C.:How to generate and exchange secrets. In:
Proceedings of the 27th IEEE Symposium on Founda-
tions of Computer Science, pp. 162–167. IEEE, NewYork
(1986)

	Abstract
	Introduction
	The Naïve Bayes classifier
	Nominal attributes
	Numeric attributes
	Related work in privacy-preserving computation
	Secure multiparty computation
	Privacy-preserving Naïve Bayes for horizontally partitioned data
	Building the classifier model
	Nominal attributes
	Numeric attributes
	Evaluating an instance
	Proof of security
	Enhancing security
	Secure-logarithm- based approach
	Effect of collusion on privacy
	Communication and computation cost
	Privacy-preserving Naïve Bayes for vertically partitioned data
	Building the classifier model
	Nominal attributes
	Numeric attributes
	Evaluating an instance
	Proof of security
	Effect of collusion on security
	Communication and computation cost
	Communication cost
	Computation cost
	Conclusion
	Secure sum
	Scalar product protocol
	One-out-of-two oblivious transfer
	Square computation
	Oblivious evaluation of polynomials
	Privately computing lnx

