
Privacy-preserving neural networks with Homomorphic encryption:
Challenges and opportunities

Bernardo Pulido-Gaytan1
& Andrei Tchernykh1,2,3

& Jorge M. Cortés-Mendoza2 & Mikhail Babenko4
&

Gleb Radchenko2
& Arutyun Avetisyan3

& Alexander Yu Drozdov5

Received: 29 July 2020 /Accepted: 13 January 2021
The Author(s) 2021

Abstract

Classical machine learning modeling demands considerable computing power for internal calculations and training with big data

in a reasonable amount of time. In recent years, clouds provide services to facilitate this process, but it introduces new security

threats of data breaches. Modern encryption techniques ensure security and are considered as the best option to protect stored data

and data in transit from an unauthorized third-party. However, a decryption process is necessary when the data must be processed

or analyzed, falling into the initial problem of data vulnerability. Fully Homomorphic Encryption (FHE) is considered the holy

grail of cryptography. It allows a non-trustworthy third-party resource to process encrypted information without disclosing

confidential data. In this paper, we analyze the fundamental concepts of FHE, practical implementations, state-of-the-art ap-

proaches, limitations, advantages, disadvantages, potential applications, and development tools focusing on neural networks. In

recent years, FHE development demonstrates remarkable progress. However, current literature in the homomorphic neural

networks is almost exclusively addressed by practitioners looking for suitable implementations. It still lacks comprehensive

and more thorough reviews. We focus on the privacy-preserving homomorphic encryption cryptosystems targeted at neural

networks identifying current solutions, open issues, challenges, opportunities, and potential research directions.

Keywords Cloud security . Homomorphic encryption .Machine learning . Neural networks . Privacy-preserving

1 Introduction

Cloud computing offers considerable benefits of availability,

scalability, pricing, energy efficiency, almost zero upfront

infrastructure investment, just-in-time service provisioning,

etc. However, it also brings security and privacy concerns,

where data breaches are the top threat [1]. Sensitive informa-

tion can be released, viewed, stolen, and used by an

This article is part of the Topical Collection: Special Issue on Privacy-

Preserving Computing

Guest Editors: Kaiping Xue, Zhe Liu, Haojin Zhu, Miao Pan and David

S.L. Wei

* Andrei Tchernykh

chernykh@cicese.mx

Bernardo Pulido-Gaytan

lpulido@cicese.edu.mx

Jorge M. Cortés-Mendoza

kortesmendosak@susu.ru

Mikhail Babenko

mgbabenko@ncfu.ru

Gleb Radchenko

gleb.radchenko@susu.ru

Arutyun Avetisyan

arut@ispras.ru

Alexander Yu Drozdov

alexander.y.drozdov@gmail.com

1 CICESE Research Center, carr. Tijuana-Ensenada 3918,

22860 Ensenada, BC, Mexico

2 South Ural State University, Prospekt Lenina 76,

454080 Chelyabinsk, Russia

3 Ivannikov Institute for System Programming, Alexander

Solzhenitsyn 25, Moscow 109004, Russia

4 North-Caucasus Federal University, Kulakova 2,

355029 Stavropol, Russia

5 Moscow Institute of Physics and Technology, Institutskiy 9,

Dolgoprudny 141701, Russia

https://doi.org/10.1007/s12083-021-01076-8

/ Published online: 8 March 2021

Peer-to-Peer Networking and Applications (2021) 14:1666–1691

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01076-8&domain=pdf
https://orcid.org/0000-0002-7384-7670
http://orcid.org/0000-0001-5029-5212
https://orcid.org/0000-0001-7209-8324
https://orcid.org/0000-0001-7066-0061
https://orcid.org/0000-0002-7145-5630
https://orcid.org/0000-0002-0470-9944
https://orcid.org/0000-0001-5607-2749
mailto:chernykh@cicese.mx

unauthorized third-party. Data outsourcing implies that the

user delegates direct data control and its processing. The user

requires greater trust in Cloud Service Providers (CSP) be-

cause dishonest behavior can compromise the data. In general,

new threats appear since more data is outsourced.

Security and privacy are critical issues for preserving integ-

rity, reliability, and availability in a cloud computing environ-

ment. Privacy and efficient data processing are important re-

search areas in the field of outsourcing computing.

Traditionally, encryption of confidential information was the

standard solution before the use of the cloud model. It may

protect user data privacy from a non-trustworthy third-party,

but it cannot support effective ciphertext computing.

In this respect, data in use is a phase of the data life cycle in

modern data security practices that goes overlooked.

Conventional cryptosystems successfully protect stored data

and data in transit but do not protect the data while decrypted

to be processed. The data value extraction requires decryption,

creating critical exposure points. As a result, privacy-

preserving techniques are emerging as a key consideration in

data analytics and cloud computing domains. The general idea

is to delegate data processing without giving transparent ac-

cess to it.

Fully Homomorphic Encryption (FHE) has been dubbed

the holy grail of cryptography, an elusive goal that could solve

cybersecurity problems [2–4]. FHE allows a non-trustworthy

third-party to process encrypted information without disclos-

ing confidential data. Since the remote server only sees en-

cryptions and never has access to the secret key, users can be

assured that it does not learn anything about their data or the

computation output. This is an extremely valuable opportunity

in the world of distributed computing and heterogeneous

networks.

FHE enables applying basic mathematical operations

directly to the ciphertext so that the decrypting of the

ciphertext results in the same answer as applying the

operations to the original unencrypted data. In other

words, FHE enables compatibility between two critical

factors: computing and privacy.

Today, the promising post-quantum tool based on HE is

technically feasible for real-world domains, after years of be-

ing considered a purely theoretical problem [5]. However, its

implementation exhibits several limitations in performance. A

long-pursue application is a privacy-preserving machine

learning model for predicting or classifying confidential infor-

mation. These systems promise to work with encrypted data

and have the same performance as their unencrypted versions,

providing security and accuracy at the same time.

A critical limitation of the extensive adoption of machine

learning is the low protection of sensitive information. In most

cases, access to the datasets is forbidden due to privacy con-

cerns, e.g., accessing medical datasets is a privacy violation of

the patients. In such a domain, the privacy-preserving Neural

Network (NN) models via Homomorphic Encryption (NN-

HE) come to place.

In this paper, we consider the current state-of-art NN-HE

systems focusing on the followings aspects:

& Latest issues related to the intersection of HE

cryptosystems and NN models, and ways to overcome

privacy and security threats arisen in present-day comput-

ing environments;

& Fundamental concepts of NN-HE, main theoretical re-

sults, capabilities, potential applications, and limitations,

discussing their state-of-the-art and the state-of-the-

practice;

& Important compromises between theoretical models and

their feasibility, showing tendencies of combining their

potentialities;

& High-level and low-level tools, frameworks, interfaces,

languages, libraries, etc.;

& Privacy-preserving NN-HE development by retrieving ac-

ademic publications in the last fifteen years to detect

emerging trends in research and relevant application

domains;

& NN-HE implementations using high-level and low-level

tools to demonstrate the advantages and disadvantages of

each approach.

This survey aims to give a knowledge basis to researchers

and practitioners interested in knowing, applying, and extend-

ing NN-HE models.

The paper is structured as follows. Section 2 reviews the

evolution of homomorphic encryption schemes. Section 3

provides the formal definition of fully homomorphic encryp-

tion and describes fundamental concepts, such as

bootstrapping and key-switching. Section 4 discusses the

state-of-the-art of homomorphic cryptosystems and machine

learning. Section 5 addresses privacy-preserving NN-HE, fo-

cusing on challenges and opportunities towards a blind non-

interactive classification. Section 6 presents NN-HE applica-

tions in real-world problems and current development tools.

Section 7 presents NN-HE implementation examples using

both high-level and low-level tools. Section 8 summarizes

open research problems and challenges. Finally, we conclude

and discuss future works in Section 9.

2 Homomorphic encryption

In this section, we discuss basic concepts of HE and their

evolution based on representative works in the area.

In the cryptography field, the term HE defines a kind of

encryption system able to perform certain computable func-

tions over ciphertexts. The output maintains the features of the

function and input format. The system has no access to

1667Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

information on the ciphertexts and secret keys. It only uses

publicly available information without risks of the data

breach. The HE concept refers to a mapping between func-

tions on the space of messages and ciphertexts. A homomor-

phic function applied to ciphertexts provides the same (after

decryption) result as applying the function to the original

unencrypted data.

Let m1 and m2 be messages, c1 and c2 be their cor-

responding ciphertexts. The operation
::
þ in an additively

HE produces the ciphertext cþ←c1
::
þ c2 that can be

decrypted to m1 +m2.

Similarly for
::
� in a multiplicatively HE, it generates the

ciphertext c�←c1
::
�c2 that is decrypted to m1 ·m2. Both HEs

obtain ciphertexts c+ and c×, without knowing m1 and m2.

Conventional encryption cannot compute m1 +m2 and m1 ·

m2 without the decryption of c1 and c2 first, when users sacri-

fice their privacy.

The HE is categorized according to the list of specific basic

mathematical operations executed over encrypted data. The

efficiency and flexibility of HE are strongly related to the

number of operations in the list. A HE scheme with a higher

number is more flexible but less efficient. In the opposite

direction, a scheme with a lower number is less flexible but

more efficient.

In the following sections, we describe three types of

HE cryptosystems: Partially Homomorphic (PHE),

S omewh a t Homomo r p h i c (SHE) , a n d Fu l l y

Homomorphic (FHE) encryptions, and discuss their lim-

itations and scopes.

2.1 Partially homomorphic encryption

PHE supports an unlimited number of one type of operation.

For example, additive HE allows an unbounded number of

additions but no multiplications.

Ronald Rivest, Adi Shamir, and Leonard Adleman (RSA)

cryptosystem is the first multiplicative PHE [6]. In general,

given twomessagesm1 andm2 and their respective ciphertexts

c1 ¼ me
1

� �
mod n, and c2 ¼ me

2

� �
mod n, where e is chosen

such that gcd(e, ϕ) = 1 for ϕ = (q1 − 1) · (q2 − 1) with large

primes q1 and q2, and n = q1 · q2. The ciphertext with the prod-

uct of the original plaintexts is computed as

c�← m1 � m2ð Þe mod n ¼ me
1

� �
mod n � me

2

� �
mod n

¼ c1
::
�c2

RSA is not semantically secure as a result of its determin-

istic encryption algorithm. Taher El-Gamal is another relevant

multiplicative PHE [7].

Shafi Goldwasser and Silvio Micali (GM) cryptosys-

tem is the first additively PHE [8]. According to GM

cryptosystem, there are two message m1 and m2 and

their respective ciphertexts c1 ¼ b21 � e
m1

� �
mod n and

c2 ¼ b22 � e
m2

� �
mod n, where b21 and b22 are quadratic

nonresidue values such that gcd b21; n
� �

¼ gcd b22; n
� �

¼ 1,

and e is one of the quadratic nonresidue modulo n values with

(x/n) = 1.

The GM scheme has a homomorphic property, where the

encryption of m1 +m2, is

cþ← b1 � b2ð Þ2 � em1þm2

h i
mod n

¼ b21 � e
m1

� �
� b22 � e

m2
� �� �

mod n

¼ b21 � e
m1

� �
mod n � b22 � e

m2
� �

mod n ¼ c1
::
þ c2

However, GM is not an efficient scheme, as ciphertexts

may be several hundred times larger than the initial plaintexts.

Relevant additive PHE cryptosystems are invented by and

named after Josh (Cohen) Benaloh in 1994 [9], David

Naccache and Jacques Stern (NS) in 1997 [10], Tatsuaki

Okamoto and Shigenori Uchiyama (OU) in 1998 [11],

Pascal Paillier in 1999 [12], Ivan Damgård and Mads Jurik

(DJ) in 2001 [13], Steven Galbraith in 2002 [14], and Akinori

Kawachi, Keisuke Tanaka and Keita Xagawa (KTX) in 2007

[15].

The encryption process in PHE does not guarantee a given

level of security. The worst-case hardness of “noisy” problems

is one direction in the security solution. The noise term de-

notes a moderate quantity of error injected in the encrypted

message and generates a not exact relation [16].

2.2 Somewhat homomorphic encryption

SHE supports a predetermined amount of different homomor-

phic operations, limiting the number of allowed operations.

Each operation increases the underlying noise, so its correct

evaluation depends on performing only a bounded number of

actions. Message decryption fails when noise overpasses a

certain threshold.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim (BGN) scheme

[17] was the first approach that allowed both additions and

multiplications with constant-size ciphertexts. BGN hardness

is based on the subgroup decision problem [18], which de-

cides whether an element is a member of a subgroup Gp of

group G of order n = q1 · q2. In BGN, ciphertexts c1 ¼ gm1

�he1 and c2 ¼ gm2 � he2 encrypts m1 and m2 messages, where

g and u are two random generators from G, h ¼ uq2 is a ran-

dom generator of the subgroup of G of order q1 and random

numbers e1and e2 from the set {0, 1,…, n − 1}.

The encryption of m1 +m2 is computed as

cþ←gm1þm2 � he1þe2þe ¼ gm1 � he1ð Þ � gm2 � he2ð Þ � he

¼ c1 � c2 � h
e ¼ c1

::
þc2

1668 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

Nonetheless, BGN is impractical due to it computes c× only

once using the bilinear map property, which maps s :G ×G =

G1, where G1 is a group of order n = q1 · q2.

Let g1 = s(g, g) and h1 = s(g, h), where g1 is of order n and

h1 is of order q1. Thus, there is α such that h ¼ gαq2 .

The encryption of m1 ·m2 is computed as

c�←g1
m1m2 � h1

m1e2þe2m1þαq2e1e2þe

¼ g1
m1m2 � h1

m1e2þe2m1þαq2e1e2 � h1
e

¼ g1
m1m2 � g1

αq2 m1e2þe2m1þαq2e1e2þeð Þ � h1
e

¼ g1
m1m2þαq2 m1e2þe2m1þαq2e1e2þeð Þ � h1

e

¼ s g; gð Þ m1þαq2e1ð Þ m2þαq2e2ð Þ � h1
e

¼ s gm1þαq2e1 ; gm2þαq2e2ð Þ � h1
e

¼ s gm1 � gαq2e1 ; gm2 � gαq2e2ð Þ � h1
e

¼ s gm1 � he1 ; gm2 � he2ð Þ � h1
e

¼ s c1; c2ð Þ � h1
e ¼ c1

::
�c2

where m1e2 + e2m1 + αq2e1e2 + e is uniformly distributed in

ℤN, and c× is uniformly distributed encryption of (m1 ·m2)

mod n, but now in G1 rather than G. However, BGN is still

additively homomorphic in G1.

Figure 1 presents a timeline of the most relevant inventions

in the history of HE up before the first Gentry’s FHE scheme

in 2009 [3].

SHE approaches are proposed by Andrew Yao [19] in

1982, Tomas Sander, Adam Young, and Moti Yung (SYY)

[20] in 1999, and Yuval Ishai and Anat Paskin (IP) [21] in

2007. They have several advantages and disadvantages

concerning the number of operations, ciphertexts redundancy,

processing efficiency, and vulnerability to attacks. In general,

they are either insecure or impractical, but they are the basis

for FHE.

2.3 Fully homomorphic encryption concept

Gentry [3] presents the first FHE scheme after 30 years of

countless advances in the field when researches began with

the invention of the public key cryptography in 1976 [22].

He builds a bootstrappable SHEwith hardness based on the

I d e a l Co s e t P r ob l em (ICP) . Th e s ch eme c an

homomorphically evaluate its decryption function. The con-

struction of the SHE uses the notion of the ideal in the lattice

algebra. The ideal I in the ring Z[x]/(f(x)) with f(x) of degree n

satisfies a + b ∈ I and r × a ∈ I for all a, b ∈ I and ∈Z[x]/(f(x)).

The scheme encrypts plaintextsm1 andm2 in ciphertexts c1

¼ ψ1ð Þ mod B
pk
J and c2 ¼ ψ2ð Þ mod B

pk
J , whe re ψ 1 ←

samp(BI,m1) and ψ2← samp(BI,m2) samples from the coset

I +m1 and I +m2, respectively, and B
pk
J defines a secrete base

for some ideal J in a ring R with a basis BI of I, for relative

primes I and J.

Encryption of m1 +m2 is computed as

cþ← ψ1 þ ψ2ð Þ mod B
pk
J ¼ ψ1ð Þ mod B

pk
J þ ψ2ð Þ mod B

pk
J

¼ c1
::
þ c2

and m1 ×m2 is computed as

c�← ψ1 � ψ2ð Þ mod B
pk
J ¼ ψ1ð Þ mod B

pk
J � ψ2ð Þ mod B

pk
J

¼ c1
::
� c2

The bootstrapping procedure reduces the noise in the ci-

phertext and can be applied an unlimited number of times.

Therefore, both aspects allow the construction of the first

FHE scheme. See Section 3.2 for more information about

bootstrapping.

Gentry’s lattice FHE approach was promising, but it has

several bottlenecks. The high computational cost and complex

implementation make it unfeasible.

Fig. 1 Homomorphic encryption timeline

1669Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

It becomes an object of optimization study and the basis of

new approaches to solve performance and implementation

problems [23–27].

After ten years, the advance in FHE is grouped into four

main families: Ideal Lattice-based, over integers, Learning

with Error based, and Nth-Degree Truncated Polynomial

Ring Unit (NTRU)-based.

The first family works follow Gentry’s original idea,

whose hardness is based on the lattice reduction

problem. The second family refers to those integer-

based approaches [23, 25] where the hardness of the

schemes is based on the Approximate of Greatest

Common Divisor (A-GCD) problem [28]. The third fam-

ily includes schemes based on Learning with Error

(LWE) [27] and Ring Learning with Error (RLWE)

[26, 29, 30], where both approaches are reducible to

the lattice problems. Finally, the family of NTRU [31]

and subsequent works [32, 33], also based on the lattice

problem.

Figure 2 shows the timeline of relevant FHE ap-

proaches: Craig Gentry [3] in 2009, Craig Gentry and

Shai Halevi (GH) in 2011 [4], Zvika Brakerski, Craig

Gentry and Vinod Vaikuntanathan (BGV) [26] in 2012,

Fan-Vercauteren variant of Zvika Brakerski’s scale-

invariant scheme (BFV) [29] in 2012, and Jung

Cheon, Andrey Kim, Miran Kim, and Yongsoo Song

(CKKS) [34] in 2017.

The continuous improvements and new approaches in-

crease the efficiency and performance of FHE schemes.

However, the contributions involve complicated designs,

large keys, low computing efficiency, and high computing

complexity.

The high overhead of performing additions and multiplica-

tion makes FHE impractical in real-world applications. To

have a better understanding of the scopes and limitations of

FHE schemes, we describe their most significant aspects in the

next section.

3 Fully homomorphic encryption

The arrival of the first FHE scheme had a significant impact

on the design of more secure systems, but not in their

implementations. The high level of security in an FHE solu-

tion can enhance many technologies, e.g., outsourcing com-

puting in cloud environments. But, the efficient implementa-

tion of the FHE is far away due to several limitations. This

section introduces the formal definition of FHE and funda-

mental concepts, such as bootstrapping and key-switching.

The privacy homomorphism termwas introduced byRivest

[35] to describe FHE formally; the main idea focuses on the

arbitrarily computing of encrypted data without using the de-

cryption key [3]. The concept of FHE does not involve the

obfuscation characteristic, where a scheme is capable of hid-

ing a sequence of l instructions called program P, P = {I1, I2,

…, Il}. In such a way, given a plaintext input m and program

P,O Pð Þ ¼ bP is an obfuscation transformation of P if only if bP
andP have the same observable behavior. More precisely, ifP

fails or terminates with an error condition, then bP may or may

not terminate; otherwise, P mð Þ ¼ bP mð Þ. For more detailed

information and additional considerations on obfuscating

transformations, refer to [36].

A third-party can process bP mð Þ without learning about bP.
The major disadvantage of the approach is the possibility to

learn about the relation between m and bP mð Þ. In contrast to

FHE, where the third-party can process an encrypted version

of P(m) but cannot decrypt m and bP mð Þ:
The general idea behind FHE is that the function f can be

eff ic ient ly expressed as a circui t that processes

homomorphically encrypted data, e.g., programs, mathemati-

cal operations, etc. [3].

FHE is considered a promising post-quantum tool [5].

Current public-key cryptography is based on the hardness of

solving problems such as factoring or discrete logarithms.

These widely studied problems are believed to be hard to settle

Fig. 2 Fully Homomorphic Encryption timeline

1670 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

on a classical computer. However, an adversary equippedwith

a sufficiently large quantum computer can solve them easily.

While the quantum computer does not exist today, its potential

is considered a threat.

The essence of FHE is to produce the output of a ciphertext

f(c) for any desired function f and encrypted message c of

plaintext m, as long as no information about c, f(c), and m

can be leaked. The function f can be efficiently computed.

The expected operation of an FHE scheme ε as the classic

black box model in computer systems is clarified by Fig. 3.

The challenging task is to find the appropriate mechanism

Evaluateε that satisfactorily leads to the output in a suitable

time.

The following sections clarify concepts as Encryptε and

Evaluateε and describes additional fundamental elements,

such as bootstrapping and key-switching.

3.1 Notation

Formally, an FHE scheme ε defines a conventional public-key

scheme with four operations: KeyGenε, Encryptε, Decryptε,

and Evaluateε [3]. The computational complexity of all ε op-

erations must be polynomial with respect to a security param-

eter λ, where:

& KeyGenε takes λ as input and produces a public key pk

and secret key sk as outputs, where pkmaps from a plain-

text space ℙ to a ciphertext space ℂ and sk in the opposite

direction.

& Encryptε uses pk and a plaintext m ∈ ℙ as inputs and pro-

duces a ciphertext c ∈ℂ as output.

& Decryptε defines the opposite process of Encryptε, it re-

ceives sk and c ∈ℂ as inputs and outputs the plaintextm ∈

ℙ.

& Evaluateε takes as input pk, a circuit δ ∈ δε, and a tuple of

ciphertexts C = 〈c1,…, ct〉 that encrypt M = 〈m1,…,mt〉

for the input wires of δ; it outputs a ciphertext C ′ ∈ℂ,

such that Decryptε(sk, C′) = δ(M).

Hence, given C that encryptM, the desired functionality of

Evaluateε operation is to obtain the ciphertext C ′ ←

Evaluateε(pk, δ, C) that encrypts δ(M) under pk, where δ(M)

defines the output of δ on unencrypted messages of M.

Additionally, the correctness and compactness properties are

fundamentals in the formal definition of an FHE scheme.

They can be expressed using the four basic operations defined

above.

Definition 1. CorrectnessAHE scheme ε is correct for circuits

in δε if, for any key-pair (sk, pk)←KeyGenε (λ), any circuit

δ ∈ δε, and any ciphertexts C = 〈c1,…, ct〉 where ci ←

Encryptε(pk,mi) for plaintexts M = 〈m1,…,mt〉, it is the case

that:

C0
←Evaluateε pk; δ;Cð Þ; then Decryptε sk;C

0
� �

¼ δ Mð Þ ð1Þ

Definition 2. Compactness A HE scheme ε is compact if there

is a polynomial f such that, for every value of the security

parameter λ, Decryptε can be expressed as a circuit Dε of size

at most f(λ). Now, let ε be compact and also correct for all

circuits in δε, it is said that ε “compactly evaluates” δε.

Definition 3. Fully Homomorphic Encryption A HE scheme ε

is fully homomorphic if it compactly evaluates all circuits, i.e.:

Decryptε sk;Evaluateε pk; δ;Cð Þð Þ ¼ δ Mð Þ ð2Þ

Since the first FHE scheme, the term of bootstrapping or

“recrypt” function is fundamental. The next section highlights

its importance and sketches the process.

3.2 Bootstrapping

The security of an FHE scheme resides in hiding the original

message with a certain level of noise. Before the FHE intro-

duction, the noise can be removed only by decryption; it limits

the number of operations on the ciphertexts. The error grows

with each homomorphic operation, and the decryption process

is hopeless when the error reaches a threshold.

The notion of bootstrapping is introduced to maintain the

error under the threshold. It allows creating the first FHE

scheme based on a bootstrappable SHE scheme, i.e., a scheme

able to homomorphically evaluate its own decryption func-

tion. The recrypt function is the core part of the bootstrapping

procedure to reduce the noise in the ciphertexts. It can be

applied an unlimited number of times to obtain fresh cipher-

texts. So, recryption actions guarantee the correct decryption

of the ciphertext after an unbounded number of operations.

In general, the recrypt function encrypts again the cipher-

text (the plaintext now is double encrypted), removing the

inner encryption by homomorphically evaluating the doubly

encrypted plaintext using the encrypted secret key [37].

In other words, recryption refers to the process of executing

Evaluateε function on Decryptε, i.e., Evaluateεðpk2;Dε;

sk1
� 	

; c1h i
� 	

), where pk2 defines the new public key, Dε is

the Decryptε function, sk1
� 	

is sk1 encrypted under pk2, and

c1h i the noisy ciphertext encrypted under pk1 and pk2.Fig. 3 Homomorphic encryption concept

1671Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

Algorithm 1 defines a sufficient process to build an FHE

scheme out of SHE; see [3] for more details.

The bootstrapping is a homomorphic encryption scheme

able to decrypt itself. The next section provides additional

information about this characteristic.

3.3 Key-switching

A second secret key is fundamental in the bootstrapping pro-

cess to encrypt/decrypt a ciphertext homomorphically. In al-

gorithmic terms, bootstrapping can be defined as:

C
0

←Encryptε pk2; Decryptε sk1;Cð Þð Þ ð3Þ

where the fresh ciphertext C′ contains less noise than the orig-

inal C. sk1 and C are encrypted under a public key pk1 and C′

under pk2. The encryption of sk1 is usually referred to as

bootstrapping key bk.

Key selection is a fundamental piece for the correct

operation of the process; the quality in the selection and

development of keys is directly proportional to the per-

formance carried out by bootstrapping. There are two

alternatives to define bk: encrypt the secret key sk1 un-

de r i t se l f Encryp t ε (pk 1 , sk 1) , o r ano the r key

Encryptε(pk2, sk1).

In the self-encryption key sk1, ciphertexts C and C′ are

encrypted under the same key, so the circular security [26]

avoids the use of several keys.

In contrast, the key-switching alternative has the advantage

of not requiring circular security, but it has to deal with mul-

tiple keys. A critical limitation of the key-switching approach

is the number of available keys, i.e., n keys allow to achieve

only a leveled homomorphism because they allow performing

n bootstrapping operations.

Circular security with key-switching is a combination of

both approaches. It repeatedly uses a collection of n iterative

keys: sk1, sk2, …, skn, sk1…. , skn…

The major disadvantage of the bootstrapping method

is the computational cost. The overhead becomes the

main drawback of the practicality of all FHEs. Most

of the bootstrapping routines are complex and slow.

Even with these limitations, researchers try to affront

these disadvantages with techniques of high-perfor-

mance, distributed, and parallel computing. All the cir-

cumstances make cloud computing ideal to receive the

benefits of the FHE schemes.

The next section delves into a promising long-pursue ap-

plication for privacy-preserving using homomorphic ciphers

in cloud environments.

4 State-of-the-art

In this section, we review the latest advances in HE and

Machine Learning-as-a-Service (MLaaS) fields. First, we

highlight the main topics discussed in the published HE re-

views. Later, we identify potential areas of opportunity, gen-

eral limitations ofMLaaS, introduce the latest approaches, and

discuss open research directions in the area.

4.1 HE surveys

HE surveys consolidate significant contributions focusing on

performance improvement, new approaches, applications,

among others. They provide knowledge foundation and gen-

eral panorama to researchers interested in applying and ex-

tending HE approaches.

Armknecht et al. [37] present the latest advances in the field

and discuss relevant terminology and notions. They investi-

gate fundamental concepts related to the implementation and

development of HE, particularly in FHE. Naehrig et al. [38]

exhibit the advantages of SHE in the medical, financial, and

advertising domain; the authors implement a proof-of-concept

based on RLWE to evaluate the efficiency and size of cipher-

texts. Moreover, Archer et al. [39] list the benefits of FHE or

SHE in real-world applications. The authors analyze its use in

genomics, health, security, and education domains and present

the significant importance of FHE.

Acar et al. [40] provide an exhaustive literature review and

open research directions to essential contributions in the field.

The survey gives the fundaments and future trends in the

domain of HE systems. Martins et al. [41] present the topic

from an engineering perspective. The last approaches in the

field are analyzed and compared concerning performance and

security. Vaikuntanathan [2] covers the development of HE

for readers with knowledge in the mathematic field rather than

for practitioners, similarly to Parmar et al. [42], Soitha and

Shunmuganathan [43], and Gentry [44].

Aguilar-Melchor et al. [45] discuss the implementation of

algorithms for signal processing in SHE. Hrestak and Picek

[46] describes practical scenarios in the domain of cloud com-

puting for HE. Moore et al. [47] propose an optimization

hardware implementation solution of FHE.

Table 1 lists the main topics discussed in the HE reviews. It

indicates a lack of specialized reviews focused on MLaaS-HE

and NN-HE. This is one of the motivations of our work.

The next section presents recent advances in MLaaS-HE.

We analyze contributions related to the design ofMLmodules

for processing confidential information.

1672 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

4.2 MLaaS-HE

MLaaS refers to services in cloud computing for deploying

machine learning tools [48]. It has emerged as a flexible and

scalable solution for the training and prediction remotely.

However, its most serious limitation is security and privacy

concerns [49]. For example, prediction and classification

models can involve extremely sensitive data: medical, adver-

tising, financial, and behavioral, among others.

HE offers an elegant solution to the apparent paradox of

security in the cloud. It allows a blind process of encrypted

data in a remote server, i.e., the third-party does not learn

anything about the input data and output. According to the

notation in previous sections: given an HE scheme ε, a model

α, and an input pattern p with its correspondent ciphertext

e← Encryptε(p), the scheme ε returns a ciphertext s with the

evaluation of the model α on the input pattern p, where

Decryptε(s) =α (p).

Under this assumption, many machine learning models

have tried to implementing cryptographic systems for the pre-

diction and classification of confidential information using

homomorphic ciphers [50]. For instance, in health, to process

encrypted patient data and obtain an encrypted diagnosis.

Naehrig et al. [38] consider the training of a Logistic

Regression (LR) model with data protection during the

regression coefficients generation. The model enables an

efficient message encoding of an approximate polynomi-

al of degree N-1.

Khedr et al. [51] implement Bayesian filters and Decision

Trees (DT) for encrypted data using an FHE scheme. The

classification model supports ciphertexts multiplication with-

out require key-switching.

Several researchers focus their contributions on HE frame-

works capable of enriching the MLaaS paradigm and

designing an efficient environment for the arbitrary evaluation

of complex NNs over encrypted data.

Dowlin et al. [52] propose CryptoNets to address the chal-

lenge of achieving a blind non-interactive classification. The

NN uses a SHE scheme for inputs and propagates signals

across the network homomorphically. Its performance is lim-

ited due to the replacement of the sigmoidal activation func-

tion and the computational overhead. Several subsequent

works in the literature focus on improving its constraints.

Chabanne et al. [53] solve the limitations of CryptoNets by

adding a normalized layer before each activation layer. The

implementation is the first to enable a homomorphic evalua-

tion of Deep Neural Networks (DNN). The NN achieved an

accuracy similar to the best non-secure versions through an

FHE scheme.

Hesamifard et al. [54] develop CryptoDL to prove the pos-

sibility to find a lowest degree polynomial approximation of

an activation function within a specific error range. Rectified

Linear Unit (ReLU), Sigmoid, and hyperbolic Tangent (Tanh)

functions are approximated by polynomials.

Badawi et al. [55] present a Convolutional Neural Network

(CNN) for image classification with FHE properties on

Graphics Processing Units (GPU). The AlexNet accelerates

the classification process and maintains security and accuracy;

it classifies the MNIST dataset in 1% of the time CryptoNets

takes.

Zhang et al. [56] propose a privacy-preserving deep learn-

ing model for big data learning in a cloud computing environ-

ment. The model is trained with a back-propagation algorithm

and uses the BGV homomorphic scheme [26].

Brutzkus et al. [57] develop Low-Latency CryptoNets

(LoLa) to improve latency and memory usage over its prede-

cessors. While CryptoNets encodes each image’s feature as a

separate message, Lo-La encrypts the input vector as a single

Table 1 Main topics of HE reviews

Topic Technical Limitations Applications Tools Cloud-based Implementations

Reference

Vaikuntanathan [2] ● ●

Armknecht et al. [37] ● ● ● ● ●

Naehrig et al. [38] ● ● ● ● ●

Archer et al. [39] ● ●

Acar et al. [40] ● ● ● ●

Martins et al. [41] ● ● ●

Parmar et al. [42] ● ●

Shunmuganathan [43] ● ●

Gentry [44] ● ●

Aguilar-Melchor [45] ● ● ●

Hrestak and Picek [46] ● ● ●

Moore et al. [47] ● ●

1673Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

message. This modification allowed evaluating the same net-

work in a pair of seconds.

Takabi et al. [58] consider decentralized scenarios with

distributed datasets across multiple parties. The NN uses a

polynomial approximation as an activation function.

Nonetheless, the recryption process is carried out directly by

the client because the implementation has an interactive

approach.

Phong et al. [59] introduce an asynchronous Stochastic

Gradient Descent (SGD) on a DNN with an additively HE.

The approach holds the accuracy with an acceptable increase

of the overhead considering the conventional deep learning

systems.

Wagh et al. [60] develop the building blocks for a novel

protocol of NN with a secure three-party. The model enables

the training and inference of several NNs architectures with-

out learning about the data.

There is a key limitation of current HE schemes. They

cannot support division operations and comparisons, such as

the test of equality/inequality. Number comparison and sign

determination are essential operations for implementing cryp-

tographic algorithms in MLaaS [61]. As a consequence, with-

out their substantial development, practical adoption is bound-

ed [62].

One strong direction focuses on designing approximate

methods to address these limitations. Babenko et al. [61] in-

troduce a numerical comparison technique in the Residue

Number System (RNS) without requiring resource-

consuming non-modular operations.

Table 2 presents a comparison of MLaaS-HE related

works.

It emphasizes objectives, operational characteristics, ap-

proaches, and implemented schemes. Many studies analyze

efficiency, additionally to security. A higher level of security

increases the use of computational resources, and therefore,

implies less efficiency.

The literature review exposes three main challenges of NN-

HE research and development:

a. Low efficiency. Significant optimization is required in the

practical implementation of NN-HEs. High complexity

operations, such as bootstrapping and large encrypted

messages, are the main sources of low efficiency.

b. Reduced number of primitives. Technical characteristics

limit the applicability of NN-HE schemes in real-world

applications. A major number of operations, increased

multiplicative depth, efficient number comparison (sign

detection) can expand the adoption of privacy-

preserving systems.

c. Real-world applications. The HE schemes are being used

even with problems of performance and the limited num-

ber of primitives. ML models can train, predict, and clas-

sify confidential information using HE schemes.

In the next section, we focus on relevant aspects of privacy-

preserving neural networks.

5 Privacy-preserving neural networks

NNs are achieving remarkable results and are extensively used

in multiple domains. However, their implementation can be

difficult for inexperienced users. The training process with

relatively big datasets can consume many resources and time.

Сloud services can make it easier. The models can be im-

plemented, trained, and deployed on third-party infrastruc-

tures with a relative facility [69, 70].

The use of a third-party infrastructure reduces the problems

of resources and complexity but introduces privacy issues of

sensitive information [49, 71].

The access of the NN to the raw data can create potential

privacy risks. This section presents solutions for solving the

apparent paradox by allowing encrypted data to be blindly

processed by a remote server.

This section addresses the importance and shortcomings of

the homomorphic processing of NNs. The idea is to explain

the difficulties of achieving an efficient blind non-interactive

classification. First, we provide basic notions in the field of

NNs. Later, we present relevant aspects of the implementation

of privacy-preserving NN via HE (NN-HE), focusing on the

techniques for constructing NN-HE models.

5.1 Preliminaries

In the last decades, ML emerged as an essential topic in

Artificial Intelligence (AI). Moreover, ML algorithms based

on NNs are the primary research potential line. They provide

suitable solutions in a wide field of human knowledge. Its

massive adoption and generalized use reveal several possible

data privacy problems in the construction of a model. An

underlying notion of NN is required to understand its issue

of privacy.

NN is a computing model system that mimics the behavior

of a biological brain. It attempts to identify (to learn) underly-

ing relationships in the information provided by a dataset. The

architecture of NN groups a population of neurons in layers

and defines the connection between them. The neurons are

basic units to process information coming from the external

world.

Each neuron consists of nI inputs x ¼ x1;…; xnIð Þ and an

output f(y), where y ¼ ∑nI
i¼1wi � xi þ β. The value of y defines

a weighted sum of the inputs considering the weights w ¼

w1;…;wnIð Þ and a bias β.

The non-linear activation function f generates the final out-

put of the neuron. The definition of w and f are fundamental

problems of NN.

1674 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

T
ab
le
2

M
ai
n
p
ro
p
er
ti
es

o
f
M
L
aa
S
-H

E

R
ef
er
en
ce

Y
ea
r
O
p
er
at
io
n
s

M
L

S
ch
em

es
P
ar
ty

O
b
je
ct
iv
e

A
d
d
it
io
n
M
u
lt
ip
li
ca
ti
o
n
O
th
er

L
o
g
is
ti
c

re
g
re
ss
io
n

N
eu
ra
l

N
et
w
o
rk
s

D
ee
p
N
eu
ra
l

N
et
w
o
rk
s

D
ec
is
io
n

T
re
es

N
ai
v
e

B
ay
es

(R
)

L
W
E

In
te
g
er
-

b
as
ed

N
T
R
U

Id
ea
l

L
at
ti
ce
-b
as
ed

T
w
o
M
u
lt
i
S
ec
u
ri
ty

E
ff
ic
ie
n
cy

[6
]

1
9
7
8

●
●

●

[7
]

1
9
8
5

●
●

●

[1
2
]

1
9
9
9
●

●
●

[3
]

2
0
0
9
●

●
●

●
●

[3
8
]

2
0
1
1
●

●
●

●
●

●

[3
1
]

2
0
1
4
●

●
●

●
●

[6
3
]

2
0
1
4
●

●
●

●
●

●

[5
0
]

2
0
1
5
●

●
●

●
●

●

[5
1
]

2
0
1
5
●

●
●

●
●

●

[5
8
]

2
0
1
6
●

●
●

●
●

●
●

[5
2
]

2
0
1
6
●

●
●

●
●

●

[6
4
]

2
0
1
6
●

●
●

●
●

[6
5
]

2
0
1
6
●

●
●

●
●

●

[5
6
]

2
0
1
6
●

●
●

●
●

●

[5
]

2
0
1
7
●

●
●

●
●

●

[5
3
]

2
0
1
7
●

●
●

●
●

●

[5
4
]

2
0
1
7
●

●
●

●
●

●
●

[6
6
]

2
0
1
8
●

●
●

●
●

●

[5
9
]

2
0
1
8
●

●
●

●
●

●

[6
7
]

2
0
1
8
●

●
●

●
●

●

[5
5
]

2
0
1
8
●

●
●

●
●

●
●

[1
6
]

2
0
1
8
●

●
●

●
●

●

[6
8
]

2
0
1
9
●

●
●

●
●

●

[5
7
]

2
0
1
9
●

●
●

●
●

●
●

[6
0
]

2
0
1
9
●

●
●

●
●

●

[6
1
]

2
0
1
9
●

●
●

●
●

●

1675Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

The HE version of a neuron substitutes operators + and ×

by
::
þ and

::
�, respectively. The evaluation of the HE-neuron

requires the encrypted values of x, w, and β, such that:

c0←
::
f ∑nI

i¼1 wi

::
�xi

� � ::
þβ

� �
ð4Þ

where x;w, and β are the corresponding ciphertexts of x,w, and

β, and
::
f is the homomorphic version of f, for instance, a poly-

nomial approximation that only consists of operations
::
þ and

::
�.

c0 contains the encrypted output of the neuron computation, it

guarantees the privacy of the result even if c0 is disclosed.

The interaction between neurons is essential for NN per-

formance, the network structure defines the interaction be-

tween layers, subsets of grouped neurons. In the network se-

quence, the layer position establishes a specific role in the

processing of data. Typically, NN is composed of three types

of layers. The first layer is the input layer. It receives informa-

tion from outside the network. Internal layers, also called hid-

den, are not directly accessible from the exterior. The last

segment in the NN is the output layer. It transfers information

outside of the network.

Neurons can be connected to the neurons of the same layer

(self-recurrent), a successive layer (feed-forward), or a previous

layer (feedback/recurrent). Hence, a NN could be a recurrent

system, as opposed to the purely feed-forward ones, where each

neuron is evaluated only once. Throughout this manuscript, we

consider feed-forward networks because they are widely used,

easier to understand, and simpler to evaluate homomorphically.

The associate weight of a path between two neurons de-

fines the importance of the input in the neuron. Moreover, the

degree of connection establishes the number of inputs in the

neuron. The most widely used architectures are fully connect-

ed, convolutional, max pooling, and mean pooling. The NN-

HE does not apply anymodification in the structure of the NN.

The selection of an activation function is an essential ele-

ment in the construction of an effective NN model. It deter-

mines the reaction of a neuron to the inputs and information

forwarded to the following layers. The most common activa-

tion functions are step, sign, sigmoid, ReLU, and Tanh [72].

They contribute to the underlying relationships in a set of data

by the learning process.

The definition of an adequate
::
f is an open problem.

Standard activation functions use operations not supported

by HE, so to find cryptographically compatible replacement

functions is necessary to operate over encrypted data. Related

works provide several examples of approximate activation

functions for multiple domains.

5.2 Homomorphic training of neural networks

The training process consists of developing a mapping from

the input to the output space based on the modification of the

weights w of each neuron. The network is able to learn and

generalize information based on several examples. The pres-

ence of an external entity that controls the learning process is

defined as Supervised Learning (SL). Meanwhile. The ab-

sence of the entity is denoted as Unsupervised Learning (UL).

In SL, the supervisor adjusts w when the expected output bϑ
and actual output ϑ are different. The loss function L bϑ;ϑ

� �

measures the error between both outputs. In general, the train-

ing process is the following: 1) the network receives an input

pattern x, 2) it calculates the output ϑ =Net(x) by feeding x

forward and performing all the computations until the output

layer; 3) the network computes L bϑ;ϑ
� �

, and 4) it modifies the

weights to reduce the error. Finally, 5) the network repeats the

process several times for all the samples in the dataset. The

aim is to find a collection of weights that minimize that error.

The NN should provide correct answers after the training

process, even in the presence of patterns that are not used to

train the model. In the testing phase, the NN is evaluated under

a set of examples distinct to the training phase samples. The

idea is to avoid the overfitting of the model and measure its

efficiency with new information. The general process is an

analogy of the human brain evolution during a person’s life.

The training consists of computationally intensive tasks,

even for non-HEmodels. Training a NN itself involves a large

number of operations toward finding the collection of weights

that minimize L bϑ;ϑ
� �

. With HE, it becomes more challeng-

ing even with advanced technologies.

In the HE domain, the training process implies large

encrypted messages and several bootstrapping executions.

Its computational complexity is in orders of magnitude of

the unencrypted training. For instance, the computational cost

of seven-layer CNN training is around one hour with a con-

ventional CPU, while to train the same CNNwith HE requires

around a year [73]. Hence, training DNNs that can contain

tens, hundreds, or sometimes thousands of layers is

impractical.

Two options are common to deal with the bootstrapping

execution during NN-HE training: its acceleration and

exclusion.

High-performance, distributed, and parallel computing

provide tools for training over large encrypted datasets. The

main tendencies are to use hardware accelerators such as high

throughput computing units (GPU, FPGA, etc.) and custom-

ized chips (ASIC).

These technologies significantly reduce runtime and

can make them comparable to similar unencrypted ver-

sions. The use of cloud computing is a cornerstone in

this direction.

The first approach of avoiding bootstrapping operations

focuses on their substitution by decrypting the ciphertext

1676 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

inside a secure entity (client-server, secured HPC computers,

etc.).

Fo r in s t ance , Takab i [58] p re sen t s the f i r s t

homomorphically trained NN-HE using an interactive ap-

proach, where the decryption and encryption process must

be carried out directly by the client. It is a hybrid model be-

tween Secure Multi-party Computing (SMC) and HE.

The second approach focuses on pre-trained NN-HEs,

where the weights of an already trained NN are public. To

avoid the overhead of the training phase, it is performed over

unencrypted data keeping the evaluation on the encrypted

data. It is widely used in current practice.

5.3 Homomorphic evaluation of neural networks

The training and testing processes of NNs do not limit access

to the raw data. Consequently, legal and ethical requirements

may prevent cloud-based solutions for many applications [74,

75]. For example, the processing of DNA sequencing remains

a complex task, but now it is faster and less expensive due to

the methods developed over the last two decades [76].

Two opposing considerations should be evaluated. On the

one hand, sharing and processing the genetic sequence with

complex NN models could offer much value, such as disease

diagnosis. On the other hand, from a privacy perspective,

when a person shares his DNA sequence, his siblings or chil-

dren’s DNA is partially shared; it falls into severe problems if

such information reaches than unreliable third-parties. We can

find analogies of this example with medical, financial, or be-

havioral data.

The above problem detonated the interest of evaluating

arbitrarily complex NNs over encrypted data. One strong di-

rection focuses on the benefit of HE schemes for the process-

ing of information in NN. NN-HE is a natural extension of NN

models. The methodology consists of applying HE to the net-

work inputs and propagating the signals across the network

homomorphically. The training and inference phases are fun-

damental in the process of NN with privacy-preserving.

In the inference phase, the model’s dimensions are known

beforehand, so the number of operations can be estimated

apriori.

From a HE perspective, the network represents a leveled

circuit where levels are called layers. The cryptosystem allows

implementing an encryption scheme with a predefined noise

budget, avoiding bootstrapping or any recrypt function. In

other words, a leveled HE scheme is enough for the inference

phase since the amount of noise supported by the ciphertext is

known, and the polynomial functions have a fixed maximal

degree on the encrypted data.

Nonetheless, deep learning needs an FHE scale-invariant

scheme because it implies many hidden layers in the network.

Therefore, a large amount of noise has to be controlled by

bootstrapping or any recrypt function. Moreover, only

polynomial functions can be computed due to the HE schemes

supports only additions and multiplications.

The construction of NN-HE involves two challenges: a

computational design of the homomorphic processing of inner

network functions and low-degree polynomials manipulation.

The following sections delve into both challenges and solu-

tions proposed in the literature.

5.4 Homomorphic neurons

NN-NE design involves several aspects of efficient

implementations. For example, each neuron performs a

weighted-sum y and non-linear activation function f(y).

With the HE scheme, multiplication operation is slower

and adds large amounts of noise. A bootstrapping oper-

ation should be performed when a ciphertext contains

too much noise.

The computing of weighted-sum consists of a set of addi-

tions and multiplications between known constant weights

and ciphertexts. The processing of y can be improved since

one of the operands is plaintext and the size of the resultant

ciphertext remains the same as the input ciphertext.

Bos et al. [77] encryption scheme can help to clarify this

point. It maps plaintext messages from the ring RN
t ¼ ℤ t x½ �=

xN þ 1ð Þ to the ring RN
q ¼ ℤq x½ �= xN þ 1ð Þ. The encryption

scheme chooses random polynomials f, g∈ RN
q , f = (tf′ + 1)

mod q. The public key h is defined as (tgf−1)mod q, while f

is the secret key. Since not every element in RN
q is invertible,

these steps are iterated until the corresponding f has an inverse

and h can be computed. Encryption of a message m∈RN
t , can

bedefined as c ¼ q

t

 �
mð Þmod t þ eþ hs

� �
mod q,where e and

s are random noise polynomials in RN
q with coefficients of

small absolute value. Decrypting is done by computing

m ¼ t
q
� f � cð Þ mod q

j k
mod t. Here the product f · c is first

computed in RN
q ; the coefficients are interpreted as integers,

scaled by t/q, and rounded to the nearest integers. Finally, they

are interpreted as modulo t.

To compute an operation of addition or multiplication be-

tween plaintext and ciphertext there are two alternatives: 1)

The naive process is computationally intensive and incre-

ments the noise. It encrypts the constant and then executes

the operation, and 2) an optimized process encrypts the con-

stant without noise and performes the standard homomorphic

operation. Let c ¼ q

t

 �
� mð Þmod t þ eþ hs

� �
mod q be the

encrypted message and w the plaintext. Addition can be

achieved by multiplying w by q/t, and the result is adding to

c, which produces

cþ←
q

t

j k
� mþ wð Þmod t þ eþ hs

h i
mod q

1677Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

¼
q

t

j k
� mð Þmod t þ

q

t

j k
� wð Þmod þ eþ hs

h i
mod q

¼
q

t

j k
� mð Þmod t þ eþ hs

h i
mod q

þ
q

t

j k
� wð Þmod

h i
mod q

¼ c
::
þ w

Homomorphic multiplication is done similarly.

The processing of activation functions in HE is more com-

plicated because most of the functions are not polynomials,

such as sigmoid and ReLU functions. Some approaches re-

place standard functions with the non-linear low-degree

square function [52, 57]. Nonetheless, the square function’s

unbounded derivate induces a strange behavior during the

training phase with more than two non-linear layers [53].

Multiple approaches address the limitation of activation

function represented by polynomial approximation through

Taylor series, Chebyshev polynomials, among others

[53–55, 58, 78–81]. Since all NN inner functions are contin-

uous, the network can be viewed as a continuous function. If

the domain (the input space) is a compact set, then the Stone-

Weierstrass theorem [82] establishes that it can be approxi-

mated uniformly by polynomials. The challenge is to approx-

imate NN with polynomials of the lowest possible degree.

Let Net() be a network with l layers. If a polynomial of

degree d approximates the activation function in each layer,

then the polynomial approximation of Net() will be a polyno-

mial of degree dl. Hence, to achieve a low degree polynomial,

d and l must be small. Minimizing d is a standard exercise in

approximation theory. Even so, optimizing l implies reducing

the layers in Net(); this goes against the deep learning current

trend.

5.5 Data manipulation

Data representation and manipulation in the network is anoth-

er challenge of the construction and implementation of NN-

HE. Each ciphertext c has some noise that hides the message.

Hence, c =m + e, wherem represents the original message and

e defines the noise. Regardless of the data nature to be sub-

mitted in these computational models, their encryptions are

entries in a polynomial ring.

Mapping integers, floats, binaries, or another number sys-

tem to polynomials is a standard and widely studied exercise.

For example, a conventional mapping technique for integers

uses their binary representation; the binary expansion of an

integer generates the polynomials’ coefficients. However, it is

still necessary to achieve a low-degree polynomial

representation.

Multiple approaches provide low-degree polynomial rep-

resentation by applying the Chinese Remainder Theorem

(CRT) [52, 54, 55, 57, 83], where k primes q1, …, qk and a

polynomial ∑aix
i define k polynomials in such a way that the

jth polynomial is ∑[(ai)mod tj]x
i.

CryptoNets [52] and AlexNet [55] follow the CRT ap-

proach with polynomials of a high degree. They implement

a Single Instruction Multiple Data (SIMD) technique where a

single polynomial encodes a feature of multiple instances. For

example, if the input data are images with a dimension of 28 ×

28 pixels, it generates 784 ciphertexts (one per pixel) where

the number of images determines the ciphertexts’ size. The

constructions use the CRT to break the ciphertexts into mul-

tiples chunks and process them in parallel. The main contri-

bution of CRT is decreasing the processing time of high de-

gree polynomials.

The SMID approach has several limitations of latency and

memory. A single prediction implies many operations since

each feature represents a message, and the high number of

messages generates memory bottlenecks. It makes unfeasible

its implementation in DNN models. The biggest disadvantage

is inefficiency. The consumption of computational resources

is the same in processing one or a thousand images.

Lo-La [57] employs an alternative representation to reduce

the latency and memory usage of its predecessors. It encodes

an input vector v of d dimensions as a single messagemwhere

mi = vi, for i = 1,…, d. The private prediction of a linear clas-

sifier on v requires only a single message and O(logd) opera-

tions, in contrast to the d messages and O(d) operations of

previous systems for the same classifier. However, the scheme

is still dependent on the dimension of the message, and there-

fore, impractical for real-world applications with high-

dimension data.

In a nutshell, CryptoNets and Lo-La contributions are

the foundations of many types of solutions. Consequent

works combine different techniques for the reduction

and manipulation of polynomials such as CRT and

SIMD, among other methods. Besides, the evolution to-

wards an NN-HE friendly model suggests incorporating

GPUs, Field-Programmable Gate Arrays (FPGA), and

Application-Specific Integrated Circuits (ASIC). We are

dealing with a nascent research area with innumerable

potentials and commensurable benefits.

5.6 Noise and errors

As shown in previous sections, sometimes HE uses the con-

cepts of noise and error as interchangeable notions. In this

section, we differentiate them from each other for better un-

derstanding. Broadly, the noise is information injected into

data for the generic construction of a public-key cryptosystem.

In contrast, the error occurs as part of a rounding error occur-

ring during approximate computations. This section presents

the noise and error notions in the context of ML, specifically

in NN models.

1678 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

5.6.1 Noise

The design of NN-HE has to take into account the number of

arithmetic operations (addition and multiplication) necessary

for its implementation. In BFV [29] and CKKS [34] schemes,

the quantity of additions is unlimited, but the amount of mul-

tiplications is limited.

The multiplicative depth is the maximal number of

homomorphic multiplications, which can be performed

on ciphertexts to retrieve the result of these multiplica-

tions correctly. The computational complexity of each

multiplication and size of the public key depends on

the multiplicative depth. Both parameters are increased

with increasing depth.

As practice shows, the volume of noise depends on two

factors: level keys and implementation.

– Level keys. The upper limit of the multiplicative depth

relies on the selected level keys. For example, the

PALISADE library offers an algorithm for selecting level

keys to change the amount of noise that cannot be re-

moved without decryption or bootstrapping.

– Implementation. The maximum number of the multipli-

cative depth also depends on the algorithm implementa-

tion [84]. For instance, the theoretical boundary for mul-

tiplicative depth in Halevi et al., [85] and Bajard et al.,

[86] schemes is the same, but the multiplicative depth of

[85] is larger than [86] in practice. Also, the approximate

calculations of implementation [85] increase the noise in

comparison with exact calculations.

Gentry [3] proposes a mechanism to remove excessed

noise through the bootstrapping procedure (See Section 3.2),

which can be roughly construed as re-encryption or decryp-

tion in encrypted form. Some noise can only be removed with

decryption. The amount of noise after the bootstrapping pro-

cess is greater than in the original ciphertext for FHE over

integers [87].

Considering the great computational complexity of

bootstrapping, Badawi et al. [55] use a scheme that does not

require bootstrapping to implement CNN.

A general NN model consists of mathematical convo-

lutions and activation functions. In the best case, the

multiplicative depth of the mathematical convolution is

equal to one. For the realization of activation, the func-

tion is approximated by a polynomial, as HE supports

only addition and multiplication.

In the worst case, the multiplicative depth is equal to the

binary logarithm of the polynomial plus one. To reduce the

multiplicative depth in the polynomial calculating, various

techniques are used based on function compositions [88].

The correctness of the result in NN-HE depends on two

factors described in the next section.

5.6.2 Errors

Errors in data processing can compromise the correctness of

the results. The implementation of NN-HE distinguishes two

error classes: algorithmic errors and running errors.

Algorithmic errors. The representation of real numbers

with integer polynomials can lead to an incorrect result. An

error can occur in numbers in the vicinity of zero, even with-

out adding noise. Converting a value vector to polynomial

m(X) can lead to a severe error in calculations. For example,

let us consider the CKKS [34] scheme:

Let M-th cyclotomic polynomial with M = 8 (i.e. Φ8(X) =

X4 + 1), a scaling factorΔ = 64, and T ¼ ξ8; ξ
3
8

�

for the root

of unity ξ8 = exp(2πi/8). For a given vector z = (0.1, −0.01), its

corresponding real polynomial is −0.039X3 + 0.039X + 0.045

according to the interpolation polynomial in the Lagrange

form for a given set of points (ξ, 0.1), (ξ3, −0.01), ξ ; 0:1
� �

,

ξ3 ;−0:01
� �

, where aþ bi ¼ a−bi, a, b ∈ ℝ and i2 = − 1.

Then the output of the encoding algorithm is m(X) = −

2 X 3 + 2 X + 3 . N o t e t h a t 64−1 � m ξ8ð Þ;m ξ38
� �� �

≈

0:09107; 0:00268ð Þ is approximated to the input vector zwith

high precision.

The example shows that the encoding number − 0.01

turned into 0.00268 when it is decoded. The number

obtained during decoding differs in the value and sign,

i.e., it does not carry any information about the initial

number. Additionally, in this case, increasing Δ allows

reducing the absolute value.

As a consequence, an incorrect result using HE with NN is

highly probable when the input data are normalized, i.e., the

values are compressed up to the interval [0, 1]. Moreover, this

kind of error leads to incorrect results when using unstable

algorithms [89].

Running errors. The errors of calculations can arise as a

result of the polynomial approximation of activation functions

of NNs. For instance, let us consider the function ReLU(x) =

max(x, 0) = (sgn(x) + 1) · x.

The function max(a, b) returns the maximum value of a

and b, where sgn(x) is a sign function. When we calculate

ReLU(x), for x < 0, implemented by HE, with the sgn(x) algo-

rithm presented in [88], the function will be greater than zero.

Thus, the implementation of NN-HE should be considered

rounding errors that may occur.

6 Applications and tools

In this section, we outline NN-HE implementations in real-

world applications and show current tools for its development.

First, we illustrate the advances and limitations of HE libraries

and highlight NN frameworks. Later, we present a literature

1679Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

analysis to describe the growing interest in the field, the

breadth of domains that can benefit from it, and emerging

trends.

6.1 NN-HE tools

High-quality implementations should complement theoretical

research. Industrial and academic groups released several HE

libraries in recent years: SEAL, HElib, TFHE, PALISADE,

cuHE, HEAAN, HE-transformer, etc. Many implementations

are based on RLWE and contain common choices for the

underlying rings, error distributions, and other parameters.

Simple Encrypted Arithmetic Library (SEAL) [90] is the

most used open-source HE tool supporting BFV and CKKS

schemes. It is implemented in C++ with active developments

for other languages C#, F#, Python, and JavaScript. SEAL can

compress data to achieve significant memory footprint

savings.

Homomorphic-Encryption Library (HElib) [91] is an open-

source library based on the BGV scheme and developed in

C++. It focuses on the effective use of ciphertext packing and

data-movement optimizations. One disadvantage of HElib is

limited bootstrapping performance.

Faster Fully Homomorphic Encryption (TFHE) [24] is an

open-source library sustained in a Ring-variant of the GSW

and an alternative representation over the torus. The library in

C/C++ implements a very fast gate-by-gate bootstrapping pro-

cedure; this mode has no restriction on the number of gates or

their composition.

PALISADE [92] is an open-source project for the imple-

mentation of a HE library with support to BGV, BFV, CKKS,

FHEW, and THEW schemes. It was developed with C++ and

provided an extension for multi-party. PALISADE takes ad-

vantage of RNS algorithms to achieve high performance.

CUDA Homomorphic Encryption (cuHE) [93] is a GPU-

accelerated library implemented in C++ for the parallel plat-

form CUDA. Arithmetic functions adopt the CRT, Number-

Theoretic Transform (NTT), and Barrett reduction to handle

with large polynomial operands.

Homomorphic Encryption for Arithmetic of Approximate

Numbers (HEAAN) [34] is a library with supports for the

CKKS scheme. It is implemented in C++ with support to

fixed-point arithmetic. The approximate operations of rational

numbers generate an error that depends on configurable

parameters.

Homomorphic Encryption transformer for nGraph (HE-

transformer) [94] is a HE project for Intel nGraph Compiler

based on SEAL; the implementation in C++ provides a graph

compiler for NN. The project is a proof-of-concept to measure

the performance of HE schemes for deep learning.

The selection of a specific HE library is a step that requires

knowledge of its advantages and disadvantages. Table 3 com-

pares the most common general-purpose HE libraries with

their pros and cons. It describes crucial key features for rapid

adoption and further development. The selection of an ade-

quate approach of the privacy-preserving tool should consider

these essential features.

On the other hand, an important decision in the NN-HE

implementation is choosing a framework to deal with the

NN model. Table 4 presents the characteristics of popular

ML frameworks. Our goal is to emphasize those high-level

tools used to compute homomorphic operations. Core lan-

guage is the primary library language, but most of them use

more than one to build the framework. Bindings define offi-

cial interfaces to support other languages and libraries for

different activities: feature extraction, training, etc. GPU indi-

cates the availability of CUDA for GPU computation, a cru-

cial feature for training and testing modern CNNs.

According to Table 4, several works employ toolboxes

such as Caffe, Dlib, Pytorch, TensorFlow, and Theano on

researches related to CNN over encrypted data. Moreover, it

underlines the GPU’s use as an essential capability for HE

computation. Also, it highlights C++ and Python as key lan-

guages in model building.

These efforts towards NN-HE are either insecure or im-

practical. They suffer from the limitations mentioned in pre-

vious sections. They are based on PHE cryptosystems [108,

110], compute plaintext and simulate ciphertext performance

[99], introduce NN models without multi-party computation

support [112], propose interactive NNs [110], or use the math-

ematical properties of “homomorphism” to NN training, not

HE itself [96]. Moreover, all of them use high-level toolboxes

solely for pre-process and pre-train NN models.

6.2 Literature analysis

The pros and cons of HE libraries do not describe their current

study or research. So, an important topic is the analysis of their

trends in the field. Moreover, the study of the applications

mostly addressed by the research community. A proper and

instrumented overview for NN-HE development is of utmost

importance. In this section, we start with a method for retriev-

ing relevant works, then we analyze the most prominent terms

and, finally, touch upon several emerging trends in the HE

domain.

Initial evidence of the interest in HE topics is academic

publications’ growth in the last fifteen years. Among the vast

number of publications, we distinguish the following two

types of papers,

a. research publications suggesting new HE approaches, or

extending and applying an existing one,

b. dissertations and thesis addressing HE cryptosystems.

For databases querying, we consider three popular data-

bases as publication sources: ProQuest Dissertations and

1680 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

https://github.com/NervanaSystems/ngraph

Theses (PQDT) database, Web of Science (WoS) database,

and Google Scholar. Like in many fields, in HE literature,

the same notion can be named by multiple terms. To avoid

misinterpretations, we consider most of these terms in the

database querying, which generally holds in papers.

For PQDT, we performed searches of thesis from the cor-

responding query:

– query “(homomorphic) (encryption OR encrypt OR ci-

pher OR encode)”. We select “since 2005” and “since

2013” and take all works for each result.

ForWoS, wemerged the results from the following queries

(options “Search by topic” and “All collections” were

enabled):

Table 3 Comparison of commonly general-purpose HE libraries across their pros and cons

Tool Pros Cons

SEAL Well-documented.

Easy security parameters setting.

Poor flexibility.

Limited number of supported schemes.

HElib Efficient homomorphic operations. Low bootstrapping performance.

Complicated security parameter setting.

TFHE Fast bootstrapping. Poor performance for simple tasks.

PALISADE Multiple HE schemes.

Cross-platform.

Poor documentation and support.

cuHE Parallelism and high memory bandwidth of GPUs.

HEAAN Operations between rational numbers.

HE-transformer Integration with deep learning libraries. Extension of SEAL.

Table 4 Machine learning frameworks features

Ref Tool Core

language(s)

Binding(s) GPU OpenMP Mobile

devices

HE

implementation

[95] Caffe C++ Python, Matlab ● ● [96]

[97] Chainer Python ●

(Convetjs, https://github.

com/karpathy/convnetjs)

Convetjs JavaScript

(DL4j, https://deeplearning4j.org/) DL4j C++, Java Java, Scala, Clojure, Python,

Kotlin

● ●

[98] Dlib C++ Phyton ● ● [99]

(DSSTNE, https://github.

com/amzn/amazon-dsstne)

DSSTNE C++ ●

[100] Flux Julia ●

[101] H20 Java Python, R, Scala

[102] Keras Python R ● ● [103]

[104] Deep Learning

Toolbox

C, C++, Java,

MATLAB

●

[105] CTNK C++ C#, Python. ● ●

[106] Mxnet C++, Python Scala, Julia, Clojure, Java,

C++, R and Perl.

● ●

(Neon, https://github.

com/NervanaSystems/neon)

Neon Python ●

(OpenNN, https://www.opennn.

net/)

OpenNN C++ ● ●

(Paddle, https://github.

com/PaddlePaddle/Paddle)

Paddle C++ Python ● ●

[107] Pytorch Python, C/C++ Java ● ● ● [108]

[109] TensorFlow Phyton C++, R, JavaScript. ● ● [110]

[111] Theano Python ● ● [112]

[113] Torch Lua C/C++, LuaJIT ● ●

1681Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

https://github.com/karpathy/convnetjs
https://github.com/karpathy/convnetjs
https://deeplearning4j.org/
https://github.com/amzn/amazon-dsstne
https://github.com/amzn/amazon-dsstne
https://github.com/NervanaSystems/neon
https://github.com/NervanaSystems/neon
https://www.opennn.net/
https://www.opennn.net/
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle

– query “(homomorphic) (encryption OR encrypt OR ci-

pher OR encode)”. We select “since 2005” and “since

2013” and take all papers for each result, including their

citation statistics per year;

– query “(homomorphic) (encryption OR encrypt OR ci-

pher OR encode) (cryptosystem OR cryptography OR

cybersecurity)”. We select “since 2005” and “since

2013” and take all papers for each result, including their

citation statistics per year.

The last part of the literature analysis consists of highlight-

ing popular applications and tools in the HE area under the

premise that a popular theme has more results in a search

engine like Google Scholar than a poorly addressed.

Google Scholar indexes the majority of publications of

interest. Hence, for Google Scholar, we conducted searches

literature from the following independent queries:

(1). For HE libraries:

– query ‘((“[abbreviation]” OR “[original name]”) AND

“homomorphic encryption”)’. We count the papers

indexed for each result;

– e.g., query ‘((“cuHE” OR “CUDA Homomorphic

Encryption”) AND “homomorphic encryption”)’ for

cuHE tool. Abbreviation set = {cuHE, PALISADE,

HEAAN, HE-transformer, TFHE, SEAL, and HElib}.

(2). For HE specific areas of applications:

– query ‘(“medical”OR “health”) AND “homomorphic en-

cryption”)’. We count the papers indexed;

– query ‘(“financial” OR “insurance”) AND “homomor-

phic encryption”)’. We count the papers indexed;

– query ‘(“genomics” OR “DNA”) AND “homomorphic

encryption”)’. We count the papers indexed;

– query ‘(“government” OR “smart government” OR

“smart cities”) AND “homomorphic encryption”)’. We

count the papers indexed;

– query ‘(“industrial” OR “cyber-physical”) AND “homo-

morphic encryption”)’. We count the papers indexed;

– query ‘(biometrics AND “homomorphic encryption”)’.

We count the papers indexed.

Figure 4 presents the number of published articles and the-

sis (Fig. 4a), and citations (Fig. 4b) related to HE.

The analysis is conducted based on the PQDT aswell as the

WoS database. PQDT is a comprehensive collection of disser-

tations and thesis, which offers millions of works from world-

wide universities.

Both graphs show a significant increase in publications and

citations since 2013 due to the practicability demonstration of

the first FHE scheme in 2009 [3] and its implementation in

2011 [4].

The following analysis considers only works written within

the last five years due to two main reasons: the publications

and dissertations of the last five years include 74% of the total

elements. This number provides a reasonable definition of

recent works.

A keyword analysis of the thesis and dissertations can

guide to identify trending topics in the HE area. We collected

the set of keywords fromHE-related literature published in the

last five years.

Figure 5 presents the prevalent terms and the number of

times they are included in the research. Two significant ele-

ments are identified. First, words closely related to HE con-

cepts such as data, security, privacy, cryptography, privacy-

preserving, cybersecurity, and lattices are prevalent (see

Fig. 5a). The second popular field is associated with: cloud

computing, multi-party computing, and secure computing.

The characteristics of these environments make them suitable

to receive the benefits of HE.

Similarly, but with a different direction, a keyword analysis

highlights terms related to HE specific areas of applications. It

allows an overview of the emerging research area of applica-

bility. Figure 5b presents the keywords related to particular

applications in the HE domain. It can measure popularity by

the number of times a term is included in the research. The

0

50

100

150

200

250

300

350

400

450

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

(a) Publications

Thesis Articles

0

500

1000

1500

2000

2500

3000

3500

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

(b) Citations

CitesFig. 4 Number of publications

(a) and citations (b) related to HE

1682 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

domains are not mutually exclusive. One study can address a

topic in two or more fields.

According to Fig. 5b, machine learning and big data are the

two most significant fields in the HE domain, mainly due to

datasets’ sensibility. It also shows health, robotics, biometrics,

and genomics as potential areas to adopt these approaches.

Smart grid and blockchain propose decentralized security sys-

tems of data exchange and processing.

Quantum computing evidences the concern in the crypto-

graphic community to generate post-quantum cryptosystems.

Searchable encryption illustrates the need for a system with

search capability over encrypted information, i.e., searching

without disclosure. The engine does not know what it is

looking for, but it does [114]. Also, applications such as image

processing, autonomous vehicles, and election guard are

prevalent.

Finally, in Fig. 6, we present relevant applications and tools

based on the number of related documents provided by the

Google Scholar search engine. Our goal is to highlight popular

topics under the premise that a popular theme has more results

in a search engine than a poorly addressed. Several literature

approaches have applied HE schemes to tangible real-world

applications in health, genomics, smart government, cyber-

physical industrial systems, and education (see more details

in [37–39]).

Our search includes applications highlighted by the key-

word analysis conducted above. It considers keywords such as

robotics, biometrics, and financial.

Figure 6a presents the popularity of the HE-specific appli-

cations. The x-axis value represents the number of

publications.

On the other hand, several research groups worldwide have

developed public libraries of HE for specific applications and

general-purpose use. Some examples are mentioned in the

previous sections. A trend analysis of HE tools can give a

broader idea of their current use.

Figure 6b presents the popularity of the HE libraries. The

query is performed considering both the library’s original

name, its abbreviation.

The systematic analysis confirms the research

community’s emerging interest in the construction of HE ma-

chine learning models for handling highly sensitive data and

processing encrypted data.

The use of well-known general-purpose tools, such as

HElib and SEAL, characterized by the effective execution of

homomorphic operations, is widespread. It also underlined

tools such as PALISADE or application areas such as biomet-

rics, finance, and robotics.

Previous surveys, to the best of our knowledge, did not

distinguish topics of the HE development.

Modern data security practices successfully protect stored

data and data in transit from non-trustworthy third-parties but

do not protect the data while decrypted to be processed. This

vulnerability enables a wide range of potential application

lines to develop HE schemes in almost any domain. In a nut-

shell, we are dealing with a nascent research area in constant

0 5 10

Health

Financial

Government

Industrial

Biometrics

Genomics

Robotics

Occurrence in references (x10³)

(a)

0 5 10

Helib

SEAL

TFHE

HE-transformer

HEAAN

PALISADE

cuHE

Occurrence in references (x10²)

(b)

Fig. 6 Occurrence in (a)

application areas and (b)

commonly general-purpose HE

libraries

0 20 40 60

Data security

Data privacy

Cryptography

Cloud computing

Privacy-preserving

Cybersecurity

Multi-Party

Secure computation

Secret sharing

Lattices

Garbled circuit

Occurence in research publications

(a)

0 5 10 15 20 25

Machine learning

Big data

Health

Blockchain

Smart grid

Quantum computing

Searchable encryption

Biometrics

Image processing

Autonomous vehicles

Election guard

Genomics

Occurrence in research publications

(b)

Fig. 5 Keywords related to (a)

HE concepts and (b) specific

applications published in the last

five years

1683Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

growth, with innumerable potentials and commensurable

benefits.

7 NN-HE implementations

This section presents a comparison of three NN-HE

implementations. We use high-level and low-level tools and

compare their performance. We show compromise between

technologies and highlight combining their potentialities.

On one side, several tools are well known and highly val-

idated. But they do not provide the facility to incorporate new

data representation and their processing. On the other side,

basic development offers more flexibility, but its implemen-

tation, validation, and testing are more time-consuming.

Most HE tools are developed in low-level languages, such

as C or C++, with the idea of increasing application speed.

The main tools for developing NNs are implemented in high-

level languages, such as Python, for quick understanding. NN

frameworks have greatly simplified novel methods of devel-

opment, but their structures are not designed to support alter-

native information representations.

The objective of NN-HE systems is threefold: accuracy,

data security, and computational complexity. Extremely se-

cure models are not useful if they do not offer acceptable

accuracy and computational complexity. So, the three objec-

tives should always be presented in the system design. Here,

the trade-off between technologies comes into place.

For studying purposes, we use PyTorch [107] as a repre-

sentative ML tool. It is a deep learning framework used in

many papers of top research conferences in the past couple

of years. PyTorch has an important prevalent among the re-

search community and industry as well. A friendly and flexi-

ble environment is its primary goal. Users can quickly and

easily perform experiments on the platform.

An efficient implementation of NN-HE requires flexibility

on both NN and HE technologies, combining HE tool poten-

tialities with the PyTorch facilities.

PySyft [115], CrypTen [116], and TenSEAL libraries offer

a bridge between the PyTorch platform and many privacy-

preserving techniques described in a long history of academic

research.

We compare the performance of three NNs imple-

mented in PyTorch, SEAL, and a combination of both

(SEAL + PyTorch). SEAL is a low-level tool, and

PyTorch is a high-level tool, both with high adoption

in their respective domains. A combination of both ap-

proaches provides a middle point between efficiency

and facility of implementation.

The evaluation considers three types of instances: native,

small, and large. Native (N) instance corresponds to the orig-

inal implementations using specifications, parameters, and

characteristics proposed in the corresponding papers [52,

57]. Small (S) instance has only one convolutional layer.

Large instance (L) uses a convolutional network with six-

layer architecture: one convolutional input layer with 28 ×

28 input nodes, four hidden layers, and one output fully con-

nected layer with ten neurons (one per digit or class). The

difference between a small and large instance lies in the num-

ber of convolutional layers. The four hidden layers include

one activation layer with pooling, one convolutional, one

pooling, and a fully connected activation layer. All neurons

use a square activation function.

We use the two datasets that consist of the well-known

handwritten digits MNIST (Modified National Institute of

Standards and Technology) database and Fashion MNIST

(F-MNIST) - MNIST-like dataset of labeled fashion images.

They are commonly used for training various image process-

ing systems.

The test set includes 10,000 examples. The analysis is per-

formed on a computer with Windows 10 of 64-bit OS and an

Intel(R) Core (TM) i7-8565U CPU 1.8 GHz with 16 GB of

memory and 256 GB of SSD.

Table 5 presents the accuracy, latency, and memory usage

of three CNNs with MNIST and F-MNIST. Latency corre-

sponds to the time required to process a single prediction

Table 5 Performance comparison of three implementations of Convolutional Neural Networks

Tool HE NN-HE Instance MNIST F-MNIST

Lat. (s) Acc. (%) Memory (Mb) Lat. (s) Acc. (%) Memory (Mb)

PyTorch – L 0.011 99.51 465.20 0.010 89.20 448.42

SEAL ● CryptoNets N 283.56 98.95 4750.21 290.01 83.74 5781.14

● LoLa S 0.34 96.92 593.70 0.34 82.02 576.32

● LoLa N 3.50 98.95 2076.40 3.45 83.74 2010.90

● LoLa L 14.43 99.20 2781.60 14.21 84.13 2430.10

SEAL + PyTorch ● – S 1.2 96.90 1543.34 1.16 82.01 1453.21

● – N 12.67 98.88 7301.92 12.52 83.71 7135.67

● – L 46.92 99.16 9871.81 46.11 84.08 8869.10

1684 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

request. CryptoNets takes the same processing time for one or

4096 predictions.

Results show the trade-off between the implemented ap-

proaches in memory and latency. The computational resources

of the framework implemented in Phyton is compromised

concerning other approaches in a language such as C++.

We are at the beginning of a long road ahead exploring the

NN-HE field. Several approaches are restricted due to higher

computational requirements and complex space of functions.

However, the analysis elucidates a competitive accuracy per-

formance of PyTorch + SEAL implementation.

NN-HE is a nascent area with a small number of primitives.

However, these primitives can achieve an accuracy similar to

the non-secure versions for some cases and under certain cir-

cumstances.WhileMNIST and F-MNIST are datasets smaller

than medical or financial ones, like many other complex tasks

in modern computing, where NN-HE can take advantage of

hardware support such as GPU, FPGA, or ASIC.

8 Challenges

Although the HE standards, platforms, and implementations

presented in this work help advancing NN-HE, there are still

some open challenges to be solved: overhead, performance,

interoperability, bootstrapping bottlenecks, sign determina-

tion, common frameworks, etc.

Overhead. NN-HE has a significant overhead compared

with its unencrypted analogous, making it impractical for

many applications. The training phase of NN consists of a

computationally intensive task for non-HE models. With

HE, it becomes more challenging even with advanced tech-

nologies. A new tendency is to avoid the training phase by

using pre-trained models to achieve a balance between com-

plexity and accuracy.

Parallelization. One way to deal with the computational

overhead is to incorporate well-known and new parallelizing

techniques. NN-HE models can be adapted to use high-

performance computing, distributed systems, and specialized

resources. Multi-core processing units (GPU, FPGA, etc.) or

customized chips (ASIC) technologies give the possibility of

friendlier and efficient NN-HE environments. Another way to

improve the overall efficiency is related to the possibility of

batching and parallelizing several bootstrapping operations

together.

Polynomial Approximation. A crucial challenge in devel-

oping NN-HE consists of the computational design for the

homomorphic processing of the neuron’s inner functions.

NN-HE requires operations not supported by HE, so it is nec-

essary to find cryptographically compatible replacement func-

tions to operate over encrypted data.

The activation function is an essential element in the con-

struction of an effective NN-HE. It determines NN-HE

accuracy and computational efficiency. Moreover, activation

functions have a significant effect on the converging speed of

the network. Also, its derivative, also known as gradient, is

fundamental in the training phase.

Mult iple approaches address the limitat ion by

polynomially approximating non-compatible functions with

a cryptographically consistent polynomial form. These func-

tions should exhibit a trade-off between complexity and accu-

racy, limiting the efficiency of conventional approximation

techniques [117].

In practice, an inadequate approximation function can re-

sult in poor performance and long processing time of NN-HE.

Moreover, it produces larger encrypted messages that increase

memory use.

The challenge of designing a cryptographically com-

putable approximation of the activation function is in

identifying low-degree polynomial with a minimal error

and good accuracy.

Leveled HE schemes. Another vital direction focuses on

designing schemes without bootstrapping that supports the

NN evaluation of bounded (pre-determined) depth. Such

leveled HE schemes dramatically improves performance by

removing the bottleneck and complexity generated by the

bootstrapping recrypt function. However, this approach limits

the deep learning implementation. While it is efficient for

bounded NN-HE, the complexity may become undesirably

high for deep learning models.

Binary Neural Networks (BNN) are emerged as an area

of opportunity to achieve blind non-interactive NN-HE

models. Since the space of functions is restricted, the solution

should be limited by the number of possible inputs and out-

puts. In BNN, every layer maps a binary input to a binary

output, using a set of binary weights and a binary activation

function. For the bias, it applies a batch normalization before

each activation function. The input data is binarized using a

predefined threshold.

In general, data and weights in non-standard binary repre-

sentations {−1, 1} can be mapped to binary space {0, 1} by

replacing −1 with 0. The weighted-sum can be performed by

an element-wise product. It uses the logical operator XNOR

and subsequently sums the result of the previous step by

counting the number of ones. The binary activation function

f(y) returns 1 if y > 0 and −1 otherwise.

Interoperability of existing ML tools is another challeng-

ing problem to achieve friendly NN-HE models. Popular NN

frameworks have simplified the development of novel NN

methods, but they do not provide HE support. The develop-

ment of NN-HE depends on the current tools and their flexi-

bility to supply or incorporate new approaches. The low flex-

ibility of several HE libraries restricts their interaction with

other frameworks. It makes more complicated the design, test-

ing, and implementing new models, hence, increases the de-

velopment time.

1685Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

Automatization. The development of HE applications im-

plies manual configuration and high expertise in different do-

mains: scheme-specific optimizations, complicated security

parameter setting, low-level programming, among others.

Improper setup can generate low performance, encryption in-

security, and corrupted or unrecoverable information. The au-

tomatization and simplification of the development lifecycle

are required. The implementation should be easily employed

by beginners and highly configurable for expert users.

Common framework.Most of the related works focus on

specific environments with different characteristics. It limits

the possibility of comparing new approaches to state-of-art

algorithms. A standard framework can simplify the compara-

tive analysis and show the advantages of new models. It

should simplify the adoption of libraries, algorithms, mea-

sures, and statistical analysis.

9 Conclusion

Easy deploying of machine learning in clouds makes homo-

morphic encryption an important mechanism to solve security

and privacy concerns. Many solutions have been proposed in

the continuum between theoretical and applied aspects.

Theoretical research increases understanding of the problem

by developing new theories and algorithms, while applied

research is to solve real-world problems in business, medicine,

industry, etc.

Although different aspects have been discussed in the lit-

erature, a systematic comparison of the state-of-the-art NN-

HE solutions has not been conducted.

In this paper, we:

& review the latest advances of HE cryptosystems, focusing

mainly on the intersection of cryptography and neural net-

works, discussing the state-of-the-art and the state-of-the-

practice;

& describe fundamental concepts, such as bootstrapping,

key-switching, noise, running errors, algorithmic errors,

etc., that are easy to follow for readers who are not familiar

with NN-HE. We cover the main theoretical results, capa-

bilities, opportunities, potential applications, and trends of

design and application;

& Highlight the compromises between NN technologies and

HE feasibility, combining their potentialities and impor-

tant limitations

& discuss current development tools, frameworks, emerging

trends in the research, and relevant application domains;

& compare three NN-HE implementations with CryptoNets

and LoLa, both using high-level and low-level tools to

demonstrate the advantages and disadvantages of each

approach.

& Finally, we sketch open problems, challenges, and solu-

tions associated with homomorphic cryptosystems and

machine learning.

The key goal is to show how to process encrypted infor-

mation by non-trustworthy third-parties without disclosing

confidential data. Specifically, we concentrate on the

p r i v a cy -p r e s e r v i ng neu r a l n e two rk s and the i r

implementations.

Acknowledgments This work was supported by the Ministry of

Education and Science of the Russian Federation (Project 075-15-2020-

788).

Appendix

To facilitate understanding the described ideas, we summarize

the main HE and NN terminology. Table 6 shows the general

acronyms. Table 7 presents main notations. Table 8 describes

the terms used in the paper.

Acronyms

Notations

Table 6 Acronyms

Acronym Description

HE Homomorphic Encryption

PHE Partially Homomorphic Encryption

SHE Somewhat Homomorphic Encryption

FHE Fully Homomorphic Encryption

CSP Cloud Service Provider

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

BNN Binary Neural Network

NN-HE Neural Network with Homomorphic Encryption

ICP Ideal Coset Problem

NTRU Nth-Degree Truncated Polynomial Ring Unit

A-GCD Approximate of Greatest Common Divisor

LWE Learning with Error

RLWE Ring Learning with Error

AI Artificial Intelligence

ML Machine Learning

MLaaS Machine Learning as a Service

MLaaS-HE MLaaS with Homomorphic Encryption

SMC Secure Multi-party Computing

1686 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

Terminology

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

Table 6 (continued)

Acronym Description

LoLa Low-Latency CryptoNets

LR Logistic Regression

DT Decision Tree

ReLU Rectified Linear Unit

GPU Graphics Processing Unit

SGD Stochastic Gradient Descent

RNS Residue Number System

SL Supervised Learning

UL Unsupervised Learning

CRT Chinese Remainder Theorem

SIMD Single Instruction Multiple Data

FPGA Field-Programmable Gate Array

ASIC Application-Specific Integrated Circuit

NTT Number-Theoretic Transform

PQDT ProQuest Dissertations and Theses

WoS Web of Science

MNIST Modified National Institute of Standards and Technology

F-MNIST Fashion MNIST

Table 7 Notations

Notation Description

ℙ Plaintext space

ℂ Ciphertext space

mi Message i in the plaintext space

qi Prime i

ci Message mi in the ciphertext space

(encryption of mi)
::
� Homomorphic multiplication
::
þ Homomorphic addition

c+, c× Addition and multiplication of ciphertexts,

respectively

a←b Set a as b

N Polynomial of degree N

(a) mod n Modulo n of a

b2i i-th quadratic nonresidue value

gcd(a,b) Greatest common division of a and b

I1, I2, …, Il Sequence of l instructions

P Program P

bP Obfuscated version of program P

O Obfuscating transformation

ε Homomorphic encryption scheme

e Noise

pk Public key

λ Security parameter

Table 7 (continued)

Notation Description

bk Bootstrapping key

ski Secret key i

ski
� 	

Secret key i on bits

δε Circuit on the homomorphic encryption scheme

Dε Decryptε function expressed as a circuit

α Machine learning model

ϑ Neural network output

bϑ Neural network expected output

L bϑ;ϑ
� �

Loss function

nI Number of inputs in neurons

x ¼ x1;…; xnIð Þ Neuron inputs

w ¼ w1;…;wnIð Þ Neuron weights

β Neuron bias

y ¼ ∑nI
i¼1wi xi þ β Neuron weighted sum function

l Number of neural network layers

f Activation function

d Activation function degree

Δ Scaling factor

sgn(x) Sign function

RN
t Ring

vi Vector of i dimensions

ΦM Cyclotomic polynomial of degree M

Table 8 Terms

Term Description

Bootstrapping Process to reduce the noise in ciphertexts by the

homomorphic evaluation of the decryption

circuit, where the fresh ciphertext contains less

noise than the original. This notion maintains

the noise under a threshold, allowing

unbounded homomorphic computations.

Bootstrapping key Encryption of the secret key. When the

bootstrapping process encrypts the ciphertext

again, the bootstrapping key removes the inner

encryption by homomorphically evaluating the

doubly encrypted plaintext.

Ciphertext Encrypted message.

Algorithmic error Error in data processing that compromises the

correctness of the results generated by

representing real numbers with integer

polynomial. An error of this nature can occur in

numbers in the vicinity of zero, even without

adding noise.

Functional error Rounding error that results from the polynomial

approximation of activation functions of neural

networks.

1687Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes weremade. The images or other third party material in this article

are included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in the

article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cloud Security Aliance (2019) Top threats to cloud computing:

Egregious eleven. Accessed 20.07.20

2. Vaikuntanathan V (2011) Computing blindfolded: new develop-

ments in fully Homomorphic Encryption. In: 2011 IEEE 52nd

Annual Symposium on Foundations of Computer Science. Palm

Springs, CA, pp 5–16. https://doi.org/10.1109/FOCS.2011.98

3. Gentry C (2009) A fully Homomorphic encryption scheme. In:

Stanford University. Stanford, PhD Thesis

4. Gentry C, Halevi S (2011) Implementing gentry’s fully homomor-

phic encryption scheme. In: Paterson KG (ed) Advances in

Cryptology – EUROCRYPT 2011. Lecture notes in computer

science, vol 6632. Springer, Berlin, Heidelberg, pp 129–148.

https://doi.org/10.1007/978-3-642-20465-4_9

5. Player R (2017) Parameter selection in lattice-based cryptography.

In: University of London. PhD Thesis, Royal Holloway

6. Rivest R, Shamir A, Adleman L (1978) A method for obtaining

digital signatures and public-key cryptosystems. Commun ACM

21:120–126. https://doi.org/10.1145/359340.359342

7. ElGamal T (1985) A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Trans Inf Theory 31:

469–472. https://doi.org/10.1109/TIT.1985.1057074

8. Goldwasser S, Micali S (1982) Probabilistic encryption and how

to play mental poker keeping secret all partial information. In:

Proceedings of the fourteenth annual ACM symposium on

Theory of computing (STOC '82). ACM, New York, USA, pp

365–377. https://doi.org/10.1145/800070.802212

9. Benaloh J (1994) Dense probabilistic encryption. Proceedings of

the workshop on selected areas of cryptography, In, pp 120–128

10. Naccache D, Stern J (1998) A new public key cryptosystem based

on higher residues. In: Proceedings of the 5th ACM conference on

Computer and communications security (CCS '98). ACM, New

York, USA, pp 59–66. https://doi.org/10.1145/288090.288106

11. Okamoto T, Uchiyama S (1998) A new public-key cryptosystem

as secure as factoring. In: Nyberg K (ed) Advances in Cryptology

— EUROCRYPT'98. Lecture notes in computer science, vol

1403. Springer, Berlin, Heidelberg, pp 308–318. https://doi.org/

10.1007/BFb0054135

12. Paillier P (1999) Public-key cryptosystems based on composite

degree residuosity classes. In: Stern J (ed) Advances in

Cryptology - EUROCRYPT ‘99. Lecture notes in computer sci-

ence, vol 1592. Springer, Berlin, Heidelberg, pp 223–238. https://

doi.org/10.1007/3-540-48910-X_16

13. Damgård I, Jurik M (2001) A Generalisation, a simplification and

some applications of paillier’s probabilistic public-key system. In:

Kim K (ed) Public Key Cryptography. PKC 2001. Lecture Notes

in Computer Science, vol 1992. Springer, Berlin, Heidelberg, pp

119–136. https://doi.org/10.1007/3-540-44586-2_9

14. Galbraith SD (2002) Elliptic curve paillier schemes. J. Cryptology

15:129–138. https://doi.org/10.1007/s00145-001-0015-6

15. Kawachi A, Tanaka K, Xagawa K (2007) Multi-bit cryptosystems

based on lattice problems. In: Okamoto T, Wang X (eds) Public

Key Cryptography – PKC 2007. Lecture Notes in Computer

Science, vol 4450. Springer, Berlin, Heidelberg, pp 315–329.

https://doi.org/10.1007/978-3-540-71677-8_21

16. Minelli M (2018) Fully homomorphic encryption for machine

learning. In: PSL Research University. PhD Thesis, Paris

17. Boneh D, Goh EJ, Nissim K (2005) Evaluating 2-DNF formulas

on ciphertexts. In: Kilian J (ed) Theory of cryptography. TCC

2005, Lecture Notes in Computer Science, vol 3378. Springer,

Berlin, Heidelberg, pp 325–341. https://doi.org/10.1007/978-3-

540-30576-7_18

18. Gjøsteen K (2004) Subgroup membership problems and public

key cryptosystem. In: Norwegian University of Science and

Technology. PhD Thesis, Trondheim

19. Yao A (1982) Protocols for secure computations. In: 23rd Annual

Symposium on Foundations of Computer Science. USA, Chicago,

pp 160–164. https://doi.org/10.1109/SFCS.1982.38

20. Sander T, Young A, Yung M (1999) Non-interactive

cryptocomputing for NC1. In: Proceedings of the 40th Annual

Symposium on Foundations of Computer Science (FOCS '99).

IEEE, USA, pp 554–566. https://doi.org/10.1109/SFFCS.1999.

814630

21. Ishai Y, Paskin A Evaluating branching programs on encrypted

data. Theory Cryptogr:575–594

22. DidieW, HellmaM (1976) New directions in cryptography. IEEE

Trans Inf Theory 22:472–492

23. Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully

Homomorphic Encryption over the Integers. In: Gilbert H (ed)

Advances in Cryptology – EUROCRYPT 2010, Lecture Notes

in Computer Science, vol 6110. Springer, Berlin, Heidelberg, pp

24–43. https://doi.org/10.1007/978-3-642-13190-5_2

24. Chillotti I, Gama N, Georgieva M, Izabachène M (2016) Faster

Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1

Seconds. In: Cheon J, Takagi T (eds) Advances in Cryptology –

ASIACRYPT 2016. Lecture Notes in Computer Science, vol

10031. Springer, Berlin, Heidelberg, pp 3–33. https://doi.org/10.

1007/978-3-662-53887-6_1

25. Brakerski Z, Vaikuntanathan V (2011) Efficient fully homomor-

phic encryption from (Standard) LWE. In: 2011 IEEE 52nd

Table 8 (continued)

Term Description

Homomorphism Structure-preserving transformation. It describes a

correspondence between functions on the space

of texts and ciphertexts.

Key-switching Multi-key handling technique to perform

bootstrapping operations, each recrypt process

requires a new secret key.

Circular security Self-encryption approach where the public key is

encrypted under itself. In contrast to the

key-switching technique, it avoids the use of

several keys.

Noise Moderate quantity of error injected in the

encrypted message.

Plaintext Original unencrypted message.

Semantically secure If an attacker cannot distinguish two encryptions

from each other even if the attacker knows (or

has chosen) the corresponding plaintexts.

Padding Practice of adding data to the beginning, middle,

or end of a message prior to encryption.

1688 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

https://doi.org/

Annual Symposium on Foundations of Computer Science. Palm

Springs, CA, pp 97–106. https://doi.org/10.1109/FOCS.2011.12

26. Brakerski Z, Gentry C, Vaikuntanathan V (2012) (Leveled) fully

homomorphic encryption without bootstrapping. In: Proceedings

of the 3rd Innovations in Theoretical Computer Science

Conference - ITCS ‘12. ACM, New York, USA, pp 309–325.

https://doi.org/10.1145/2090236.2090262

27. Gentry C, Sahai A, Waters B (2013) Homomorphic encryption

from learning with errors: conceptually-simpler, asymptotically-

faster, attribute-based. In: Canetti R, Garay JA (eds) Advances in

Cryptology – CRYPTO 2013. Lecture Notes in Computer

Science, vol 8042. Springer, Berlin, Heidelberg, pp 75–92.

https://doi.org/10.1007/978-3-642-40041-4_5

28. Gentry C (2010) Computing arbitrary functions of encrypted data.

Commun ACM 53:97–105. https://doi.org/10.1145/1666420.

1666444

29. Fan J, Vercauteren F (2012) Somewhat practical fully

Homomorphic encryption. IACR Cryptol. ePrint Arch:2012/144

30. Brakerski Z (2012) Fully homomorphic encryption without mod-

ulus switching from classical GapSVP. In: Safavi-Naini R, Canetti

R (eds) Advances in Cryptology – CRYPTO 2012. Lecture Notes

in Computer Science, vol 7417. Springer, Berlin, Heidelberg, pp

868–886. https://doi.org/10.1007/978-3-642-32009-5_50

31. Rohloff K, Cousins DB (2014) A scalable implementation of fully

Homomorphic encryption built on NTRU. In: Böhme R, Brenner

M, Moore T, Smith M (eds) Financial Cryptography and Data

Security. FC 2014. Lecture Notes in Computer Science, vol

8438. Springer, Berlin, Heidelberg, pp 221–234. https://doi.org/

10.1007/978-3-662-44774-1_18

32. Hiromasa R, Abe M, Okamoto T (2015) Packing messages and

optimizing bootstrapping in GSW-FHE. In: Katz J (ed) Public-

Key Cryptography - PKC 2015. Lecture Notes in Computer

Science, vol 9020. Springer, Berlin, Heidelberg, pp 699–715.

https://doi.org/10.1007/978-3-662-46447-2_31

33. Alperin-Sheriff J, Peikert C (2014) Faster bootstrapping with

polynomial error. In: Garay JA, Gennaro R (eds) Advances in

Cryptology – CRYPTO 2014. Lecture Notes in Computer

Science, vol 8616. Springer, Berlin, Heidelberg, pp 297–314.

https://doi.org/10.1007/978-3-662-44371-2_17

34. Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic

Encryption for Arithmetic of Approximate Numbers. In: Takagi

T, Peyrin T (eds) Advances in Cryptology – ASIACRYPT 2017.

Lecture Notes in Computer Science, vol 10624. Springer, Cham,

pp 409–437. https://doi.org/10.1007/978-3-319-70694-8_15

35. Rivest RL, Dertouzos ML, Adleman L (1978) On data banks and

privacy homomorphisms. Found Secur Comput 4:160–179

36. Collberg C, Thomborson C, Low D (1997) A taxonomy of obfus-

cating transformations. Technical Report 148. University of

Auckland, New Zealand

37. Armknecht F, BoydC, Carr C, Gjøsteen K, Jäschke A, Reuter CA,

StrandM (2015) A guide to fully homomorphic encryption. IACR

Cryptology ePrint Archive 1192

38. Naehrig M, Lauter K, Vaikuntanathan V (2011) Can homomor-

phic encryption be practical? In: Proceedings of the 3rd ACM

workshop on Cloud computing security workshop - CCSW '11.

ACM, New York, USA, pp 113–124. https://doi.org/10.1145/

2046660.2046682

39. Archer D, Chen L, Cheon JH, Gilad-Bachrach R, Hallman RA,

Huang Z, Jiang X, Kumaresan R, Malin BA, Sofia H, Song Y,

Wang S (2017) Applications of Homomorphic encryption.

Technical report, HomomorphicEncryption.org, Redmond WA

40. Acar A, Aksu H, Selcuk Uluagac A, Aksu H, Uluagac AS (2018)

A survey on Homomorphic encryption schemes: theory and im-

plementation. ACM Comput Surv 51:1–35. https://doi.org/10.

1145/3214303

41. Martins P, Sousa L, Mariano A (2017) A survey on fully

Homomorphic encryption: an engineering perspective. ACM

Comput Surv 50:33–33. https://doi.org/10.1145/3124441

42. Parmar PV, Padhar SB, Patel SN, Bhatt NI, Jhaveri RH, S’ad

Vidya S, Shri S’ad M, Mandal V (2014) Survey of various

Homomorphic encryption algorithms and schemes. Int J Comput

Appl 91:26–32. https://doi.org/10.5120/15902-5081

43. Sobitha Ahila S, Shunmuganathan KL (2014) State of art in

Homomorphic encryption schemes. Int J Eng Res Appl 4:37–43

44. Gentry C (2014) Computing on the edge of Chaos: structure and

randomness in encrypted computation. In: Proceedings of the

2014 International Congress of Mathematicians (ICM), pp 609–

632. http://eprint.iacr.org/2014/610

45. Aguilar-Melchor C, Fau S, Fontaine C, Gogniat G, Sirdey R

(2013) Recent advances in Homomorphic encryption: a possible

future for signal processing in the encrypted domain. IEEE Signal

Process Mag 30:108–117. https://doi.org/10.1109/MSP.2012.

2230219

46. Hrestak D, Picek S (2014) Homomorphic encryption in the cloud.

In: 37th International Convention on Information and

Communication Technology, Electronics and Microelectronics

(MIPRO’14). IEEE, Opatija, pp 1400–1404. https://doi.org/10.

1109/MIPRO.2014.6859786

47. Moore C, O’Neill M, HanleyN, O’Sullivan E (2014) Accelerating

integer-based fully homomorphic encryption using Comba multi-

plication. In: IEEE Workshop on Signal Processing Systems

(SiPS). IEEE, Belfast, pp 1–6. https://doi.org/10.1109/SiPS.

2014.6986063

48. Hunt T, Song C, Shokri R, Shmatikov V, Witchel E (2018)

Chiron: privacy-preserving machine learning as a service. arXiv:

1803.05961

49. Zheng Q, Wang X, Khurram Khan M, Zhang W, Gupta BB, Guo

W (2018) A lightweight authenticated encryption scheme based

on chaotic SCML for railway cloud service. IEEE Access 6:711–

722. https://doi.org/10.1109/ACCESS.2017.2775038

50. Bost R, Popa RA, Tu S, Goldwasser S (2015) Machine learning

classification over encrypted data. IACR Cryptology ePrint

Archive 2014:331

51. Khedr A, Gulak G, Member S, Vaikuntanathan V (2015)

SHIELD: Scalable Homomorphic implementation of encrypted

data-classifiers. IEEE Trans Comput 65:2848–2858. https://doi.

org/10.1109/TC.2015.2500576

52. Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehrig M,

Wernsing J (2016) CryptoNets: Applying neural networks to

encrypted data with high throughput and accuracy. In: Balcan

M-F, Weinberger KQ (eds) Proceedings of the 33rd

International Conference on Machine Learning (ICML'16), pp

201–210. JMLR.org

53. Chabanne H, DeWargny A, Milgram J, Morel C, Prouff E (2017)

Privacy-preserving classification on deep neural network. IACR

Cryptology ePrint Archive 2017/35

54. Hesamifard E, Takabi H, Ghasemi M (2017) CryptoDL: deep

neural networks over encrypted data. arXiv:1711.05189

55. Badawi A Al, Chao J, Lin J, Mun CF, Sim JJ, Tan BHM, Nan X,

Aung KMM, Chandrasekhar VR (2018) Towards the AlexNet

moment for homomorphic encryption: HCNN, the First

Homomorphic CNN on Encrypted Data with GPUs. IEEE

Transactions on Emerging Topics in Computing. https://doi.org/

10.1109/TETC.2020.3014636

56. Zhang Q, Yang LT, Chen Z (2016) Privacy preserving deep com-

putation model on cloud for big data feature learning. IEEE Trans

Comput 65:1351–1362. https://doi.org/10.1109/TC.2015.

2470255

57. Brutzkus A, Elisha O, Gilad-Bachrach R (2019) Low latency pri-

vacy preserving inference. In: Proceedings of the 36th

1689Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

International Conference on Machine Learning (ICML'19), pp

1295–1304 JMLR.org

58. Takabi H, Hesamifard E, Ghasemi M (2016) Privacy preserving

multi-party machine learning with Homomorphic encryption. In:

29th Annual Conference on Neural Information Processing

Systems (NIPS). Barcelona, Spain

59. Phong LT, Aono Y, Hayashi T,Wang L,Moriai S (2018) Privacy-

preserving deep learning via additively Homomorphic encryption.

IEEE Trans Inf Forensics Secur 13:1333–1345. https://doi.org/10.

1109/TIFS.2017.2787987

60. Wagh S, Gupta D, Chandran N (2019) SecureNN: 3-party secure

computation for neural network training. Proc Priv Enhancing

Technol 2019:26–49. https://doi.org/10.2478/popets-2019-0035

61. Babenko M, Tchernykh A, Chervyakov N, Kuchukov V,

Miranda-López V, Rivera-Rodriguez R, Du Z, Talbi E-G (2019)

Positional characteristics for efficient number comparison over

the Homomorphic encryption. Program Comput Softw 45:532–

543. https://doi.org/10.1134/S0361768819080115

62. Aslett LJM, Esperança PM, Holmes CC (2015) A review of ho-

momorphic encryption and software tools for encrypted statistical

machine learning. arXiv:1508.06574

63. Bos JW, Lauter K, Naehrig M (2014) Private predictive analysis

on encrypted medical data. J Biomed Inform 50:234–243. https://

doi.org/10.1016/j.jbi.2014.04.003

64. Xu C, Chen J, Wu W, Feng Y (2016) Homomorphically

encrypted arithmetic operations over the integer ring. In: Bao F,

Chen L, Deng R,Wang G (eds) Information Security Practice and

Experience. ISPEC 2016. Lecture Notes in Computer Science, vol

10060. Springer, Cham, pp 167–181. https://doi.org/10.1007/

978-3-319-49151-6_12

65. Aono Y, Hayashi T, Phong LT, Wang L (2016) Scalable and

secure logistic regression via homomorphic encryption. In:

Proceedings of the Sixth ACM Conference on Data and

Application Security and Privacy - CODASPY 2016. ACM,

New York, USA, pp 142–144. https://doi.org/10.1145/2857705.

2857731

66. Kim A, Song Y, Kim M, Lee K, Cheon JH (2018) Logistic re-

gression model training based on the approximate homomorphic

encryption. BMC Med Genet 11:83. https://doi.org/10.1186/

s12920-018-0401-7

67. Coron JS, Lepoint T, Tibouchi M (2014) Scale-invariant fully

homomorphic encryption over the integers. In: Krawczyk H.

(eds) Public-Key Cryptography. PKC 2014. Lecture Notes in

Computer Science, vol 8383. Springer, Berlin, Heidelberg, pp

311–328. https://doi.org/10.1007/978-3-642-54631-0_18

68. Wood A, Shpilrain V, Najarian K, Kahrobaei D (2019) Private

naive Bayes classification of personal biomedical data: application

in Cancer data analysis. Comput Biol Med 105:144–150. https://

doi.org/10.1016/j.compbiomed.2018.11.018

69. Kaushik S, Gandhi C (2020) Capability based outsourced data

access control with assured file deletion and efficient revocation

with trust factor in cloud computing. Int J Cloud Appl Comput 10:

64–84. https://doi.org/10.4018/IJCAC.2020010105

70. Premkamal PK, Pasupuleti SK (2020) Alphonse PJA: efficient

escrow-free CP-ABE with constant size Ciphertext and secret

key for big data storage in cloud. Int J Cloud Appl Comput 10:

28–45. https://doi.org/10.4018/IJCAC.2020010103

71. Tchernykh A, Babenko M, Kuchukov V, Miranda-Lopez V,

Avetisyan A, Rivera-Rodriguez R, Radchenko G (2019) Data

reliability and redundancy optimization of a secure multi-cloud

storage under uncertainty of errors and falsifications. In: 2019

IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW). Rio de Janeiro, Brazil, pp

565–572. https://doi.org/10.1109/IPDPSW.2019.00099

72. Zhang GP (2000) Neural networks for classification: a survey.

IEEE Trans Syst Man Cybern Part C Appl Rev 30:451–462.

https://doi.org/10.1109/5326.897072

73. Rondeau T (2020) Data protection in virtual environments

(DPRIVE). DARPA/MTO, Technical report

74. Tchernykh A, Schwiegelsohn U, Talbi EG, Babenko M (2019)

Towards understanding uncertainty in cloud computing with risks

of confidentiality, integrity, and availability. J Comput Sci 36:

100581. https://doi.org/10.1016/j.jocs.2016.11.011

75. Miranda-Lopez V, Tchernykh A, Babenko M, Avetisyan A,

Toporkov V, Drozdov AY (2020) 2Lbp-RRNS: Two-levels

RRNS with backpropagation for increased reliability and priva-

cy-preserving of secure multi-clouds data storage. IEEE Access.

Multidiscip. Open Access J. 1–1. https://doi.org/10.1109/

ACCESS.2020.3032655

76. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N,

Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen

E, Zerr T (2008) Mapping and sequencing of structural variation

from eight human genomes. Nature. 453:56–64. https://doi.org/

10.1038/nature06862

77. Bos JW, Lauter K, Loftus J, Naehrig M (2013) Improved security

for a ring-based fully homomorphic encryption scheme. In: Stam

M (ed) Cryptography and Coding. IMACC 2013. Lecture Notes in

Computer Science, vol 8308. Springer, Berlin, Heidelberg, pp 45–

64. https://doi.org/10.1007/978-3-642-45239-0_4

78. Chou E, Beal J, Levy D, Yeung S, Haque A, Fei-Fei L (2018)

Faster CryptoNets: leveraging sparsity for real-world encrypted

inference. arXiv:1811.09953

79. Shokri R, Shmatikov V (2015) Privacy-preserving deep learning.

In: Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, New York,

USA, pp 1310–1321. https://doi.org/10.1145/2810103.2813687

80. Bakshi M, Last M (2020) CryptoRNN-privacy-preserving recur-

rent neural networks using Homomorphic encryption. In: Dolev S,

Kolesnikov V, Lodha S, Weiss G (eds) Cyber Security

Cryptography and Machine Learning. CSCML 2020. Lecture

Notes in Computer Science, vol 12161. Springer, Cham, pp

245–253. https://doi.org/10.1007/978-3-030-49785-9_16

81. Bourse F, Minelli M, Minihold M, Paillier P (2018) Fast

Homomorphic evaluation of deep discretized neural networks.

In: Shacham H, Boldyreva A (eds) Advances in Cryptology –

CRYPTO 2018. Lecture Notes in Computer Science, vol 10993.

Springer, Cham, pp 483–512. https://doi.org/10.1007/978-3-319-

96878-0_17

82. StoneMH (1948) The generalizedWeierstrass approximation the-

orem. Math Mag 21(4):167–184

83. Boemer F, Cammarota R, Costache A, Wierzynski C (2019)

nGraph-HE2: A high-throughput framework for neural network

inference on encrypted data. In: Proceedings of the 7th ACM

Workshop on Encrypted Computing & Applied Homomorphic

Cryptography. ACM, New York, USA, pp 45–56. https://doi.

org/10.1145/3338469.3358944

84. Qaisar Ahmad Al Badawi A, Polyakov Y, Aung KMM,

Veeravalli B, Rohloff K (2019) Implementation and performance

evaluation of RNS variants of the BFV Homomorphic encryption

scheme. IEEETrans Emerg TopComput. https://doi.org/10.1109/

TETC.2019.2902799

85. Halevi S, Polyakov Y, Shoup V (2019) an improved rns variant of

the bfv homomorphic encryption scheme. In: Matsui M (ed)

Topics in Cryptology – CT-RSA 2019. Lecture Notes in

Computer Science, vol 11405. Springer, Cham, pp 83–105.

https://doi.org/10.1007/978-3-030-12612-4_5

86. Bajard JC, Eynard J, Hasan MA, Zucca V (2017) A full RNS

variant of FV like somewhat homomorphic encryption schemes.

In: Avanzi R, Heys H (eds) Selected Areas in Cryptography –

SAC 2016. Lecture Notes in Computer Science, vol 10532.

1690 Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

Springer, Cham, pp 423–442. https://doi.org/10.1007/978-3-319-

69453-5_23

87. Cheon JH, Han K, Kim D (2019) Faster Bootstrapping of FHE

over the Integers. In: Seo J (ed) Information Security and

Cryptology – ICISC 2019. Lecture Notes in Computer Science,

vol 11975. Springer, Cham, pp 242–259. https://doi.org/10.1007/

978-3-030-40921-0_15

88. Cheon JH, Kim D, Kim D (2020) Efficient Homomorphic com-

parison methods with optimal complexity. In: Moriai S, Wang H

(eds) Advances in Cryptology - ASIACRYPT 2020. Lecture

Notes in Computer Science, vol 12492. Springer, Cham, pp

221–256. https://doi.org/10.1007/978-3-030-64834-3_8

89. Gregory RT, Krishnamurthy EV (1984) Methods and applications

of error-free computation. Springer-Verlag New York. https://doi.

org/10.1007/978-1-4612-5242-9

90. Chen H, Laine K, Player R (2017) Simple encrypted arithmetic

library - SEAL v2.1. In: Brenner M et al (eds) Financial

Cryptography and Data Security. FC 2017, Lecture Notes in

Computer Science, vol 10323. Springer, Cham, pp 3–18. https://

doi.org/10.1007/978-3-319-70278-0_1

91. Halevi S, Shoup V (2013) Design and implementation of a

Homomorphic-encryption library. IBM Res 6:12–15

92. PALISADE, https://palisade-crypto.org/community

93. Dai W, Sunar B (2016) cuHE: A Homomorphic Encryption

Accelerator Library. In: Pasalic E, Knudsen L (eds)

Cryptography and Information Security in the Balkans. Lecture

Notes in Computer Science, vol 9540. Springer, Cham, pp 169–

186. https://doi.org/10.1007/978-3-319-29172-7_11

94. Boemer F, Lao Y, Cammarota R, Wierzynski C (2019) NGraph-

HE: A graph compiler for deep learning on Homomorphically

encrypted data. In: Proceedings of the 16th ACM International

Conference on Computing Frontiers (CF '19). ACM, New York,

USA, pp 3–13. https://doi.org/10.1145/3310273.3323047

95. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,

Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture

for fast feature embedding. In: Proceedings of the 22nd ACM

international conference on Multimedia. ACM, New York,

USA, pp 675–678. https://doi.org/10.1145/2647868.2654889

96. Ma Y, Wu L, Gu X, He J, Yang Z (2017) A secure face-verifica-

tion scheme based on Homomorphic encryption and deep neural

networks. IEEE Access 5:16532–16538

97. Tokui S, Oono K, Hido S, Clayton J (2015) Chainer: a next-gen-

eration open source framework for deep learning. In: Proceedings

of the Workshop on Machine Learning Systems (LearningSys) at

the 28th Annual Conference on Neural Information Processing

Systems (NIPS), pp 1-6. http://learningsys.org/papers/

LearningSys_2015_paper_33.pdf

98. King DE (2009) Dlib-ml: a machine learning toolkit. J Mach

Learn Res 10:1755–1758

99. Boura C, Gama N, Georgieva M, Jetchev D (2019) Simulating

Homomorphic Evaluation of Deep Learning Predictions. In:

Dolev S, Hendler D, Lodha S, Yung M (eds) Cyber Security

Cryptography and Machine Learning. CSCML 2019. Lecture

Notes in Computer Science, vol 11527. Springer, Cham, pp

212–230. https://doi.org/10.1007/978-3-030-20951-3_20

100. Innes M (2018) Flux: elegant machine learning with Julia. Journal

of Open Source Software, 3(25):602. 10.21105/joss.00602

101. Candel A, Parmar V, LeDell E, Arora A (2016) Deep Learning

with H2O. 4th ed, Mountain View, CA, H2O.ai Inc

102. Chollet F (2015) Keras. https://keras.io

103. SalemM, Taheri S, Yuan JS (2019) Utilizing transfer learning and

Homomorphic encryption in a privacy preserving and secure bio-

metric recognition system. Computers. 8(1):3

104. Kim P (2017) MATLAB deep learning: with machine learning,

neural networks and artificial intelligence. Berkeley, CA, Apress.

https://doi.org/10.1007/978-1-4842-2845-6

105. Seide F, Agarwal A (2016) CNTK: Microsoft’s Open-Source

Deep-Learning Toolkit. In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, New York, USA, pp 2135–2135.

https://doi.org/10.1145/2939672.2945397

106. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B,

Zhang C, Zhang Z (2015) Mxnet: a flexible and efficient machine

learning library for heterogeneous distributed systems. arXiv:

1512.01274

107. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,

Killeen T (2019) PyTorch: An Imperative Style, High-

Performance Deep Learning Library. In: Proceedings of the

Advances in Neural Information Processing Systems,

Vancouver, BC, Canada, pp. 8024–8035. arXiv, vol 1912, p

01703

108. Wang X, Maturana D, Yang S, Wang W, Chen Q, Scherer S

(2019) Improving learning-based ego-motion estimation with ho-

momorphism-based losses and drift correction. In: 2019 IEEE/

RSJ International Conference on Intelligent Robots and Systems

(IROS). Macau, China, pp 970–976. https://doi.org/10.1109/

IROS40897.2019.8968515

109. Abadi M, Agarwal A, Barham P, Brevdo E (1603) Large-Scale

Machine Learning on Heterogeneous Systems. arXiv, Xiaoqiang

Z TensorFlow, p 04467

110. Zhu Q, Lv X (2018) 2P-DNN: Privacy-preserving deep neural

networks based on Homomorphic cryptosystem. arXiv:

1807.08459

111. Bergstra J, Bastien F, Breuleux O, Lamblin P, Pascanu R,

Delalleau O, Bengio Y (2011) Theano: deep learning on GPU

with Python. J Mach Learn Res 1:1–48

112. Servia-Rodriguez S, Wang L, Zhao JR, Mortier R, Haddadi H

(2017) Personal model training under privacy constraints.

Training 40(33):24–38

113. Collobert R, Bengio S, Mariethoz J (2002) Torch: a modular ma-

chine learning software library. Technical report, IDIAP. https://

infoscience.epfl.ch/record/82802/files/rr02-46.pdf

114. Li Z, Zhao M, Jiang H, Xu Q (2019) Keyword guessing on multi-

user searchable encryption. Int J High Perform Comput Netw 14:

60–68. https://doi.org/10.1504/IJHPCN.2019.099744

115. Ryffel T, Trask A, Dahl M, Wagner B (1811) Mancuso J.

Passerat-Palmbach J A generic framework for privacy preserving

deep learning. arXiv, Rueckert D, p 04017

116. Gunning D, Hannun A, Ibrahim M, Knott B, van der Maaten L,

Reis V, Sengupta S, Venkataraman S, Zhou X (2019) CrypTen: a

new research tool for secure machine learning with PyTorch.

https://ai.facebook.com/blog/crypten-a-new-research-tool-for-

securemachine-learning-with-pytorch

117. Cortés-Mendoza JM, Tchernykh A, Babenko M, Pulido-Gaytán

LB, Radchenko G, Leprevost F, Wang X, Avetisyan A (2020)

Privacy-preserving logistic regression as a cloud service based

on residue number system. In: Voevodin V, Sobolev S (eds)

Supercomputing. RuSCDays 2020. Communications in

Computer and Information Science, vol 1331. Springer, Cham,

pp 598–610. https://doi.org/10.1007/978-3-030-64616-5_51

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

1691Peer-to-Peer Netw. Appl. (2021) 14:1666–1691

	Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
	Abstract
	Introduction
	Homomorphic encryption
	Partially homomorphic encryption
	Somewhat homomorphic encryption
	Fully homomorphic encryption concept

	Fully homomorphic encryption
	Notation
	Bootstrapping
	Key-switching

	State-of-the-art
	HE surveys
	MLaaS-HE

	Privacy-preserving neural networks
	Preliminaries
	Homomorphic training of neural networks
	Homomorphic evaluation of neural networks
	Homomorphic neurons
	Data manipulation
	Noise and errors
	Noise
	Errors

	Applications and tools
	NN-HE tools
	Literature analysis

	NN-HE implementations
	Challenges
	Conclusion
	Appendix
	Acronyms
	Notations
	Terminology

	References

