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Innovative business models are the key to success in any
industry Tohidi and Jabbari (2012). Companies make sig-
nificant capital investments to develop innovative models
for improving the performance of their existing systems
Bottegal et al. (2017). Many companies restrict the use of
their ideas by filing patents or by hiding certain features
of their model and capitalize on it to generate revenues
and profits for their business He et al. (2008). Thus,
protecting a model as a confidential trade secret play an
important role in the growth and innovation of a company.
For example, beverage companies successfully ensure that
the syrup formula cannot be reverse engineered by using
their beverage available in the market. However, when
dealing with dynamical systems, the problem of protecting
the model becomes challenging since system identification
techniques can be employed for identifying a black-box
system model or to extract the parameters of a grey-
box system. Furthermore, with the advent of machine
learning, data mining techniques can be applied for sys-
tem identification Pillonetto (2016); Saitta et al. (2006).
Such techniques can help competitors unravel a company’s
⋆ This work was supported by the TU Delft Safety and Security

Institute under the DSyS Grant.

1. INTRODUCTION trade secret. This in turn advocates for privacy-preserving
solutions while disclosing information associated with the
model to a third party for statistical purposes.

One of the most important quantities to be computed
in surveys and audits is the aggregate information. Data
aggregation enables performing data mining applications
for understanding important phenomena, such as traffic
congestion patterns, influenza outbreaks, etc. Fan and
Xiong (2014). For example, consider a case where an
external party wants to periodically know the number of
products produced and sold in a particular time period,
and use it to compute the average for statistical analysis.
Companies sometimes voluntarily release this information
in the form of their production report, sales report etc,
and in some cases, they are mandated to release even the
amount of raw materials used in the production of their
product. For example, in the case of beverage industries,
the main raw material is water, and the amount of water
used in production must be disclosed to a governmental
body for keeping a check on the underground water levels.
However, as illustrated in the next section, periodically
releasing this information may also be used to identify
sensitive model parameters. Thus, there is a fundamental
need to preserve the system model as well as share the
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information generated by the model with reasonable utility
levels.

2. EXISTING WORK AND OUR CONTRIBUTIONS

There has been a large body of work done in the statis-
tics and database literature on disclosure limitation and
privacy-preserving publication of data Dwork and Roth
(2014). The recently proposed formulation of privacy by
Dwork Dwork (2006) called Differential Privacy (DP)
has been adopted as a standard definition of privacy in
many applications offering quantitative privacy guaran-
tees. Originally, differential privacy was proposed for a
static system as a measure of maximizing the accuracy
of queries from statistical databases while minimizing the
probability of identifying the individuals. In recent years,
differential privacy has gained a significant amount of
attention in the context of dynamical systems and con-
trol where researchers have used it for a diverse set of
objectives such as control Huang et al. (2014); Wang et al.
(2014), consensus Nozari et al. (2017); Mo and Murray
(2017), optimization Hale and Egerstedty (2015); Nozari
et al. (2016); Ling et al. (2016) and distributed fault
diagnosis Rostampour et al. (2018). Although differen-
tial privacy has made its way to systems and control,
very little work has been done in utilizing differential
privacy for protecting the system model. To the best of
our knowledge, only Bottegal et al. (2017), Le Ny and
Pappas (2013); Katewa et al. (2015) discuss the problem
of model-preservation in the context of differential pri-
vacy. In Bottegal et al. (2017), differential privacy was
explored for designing output noises for preserving the
model. In Katewa et al. (2015) differential privacy was
used to protect the consensus network topology from an
eavesdropper who may have an unauthorized access to
the central estimator. They present a mechanism where
each agent in the network adds differential private noise
to its output, and transmits it to the central estimator to
estimate the topology matrix and its eigenvalues. However,
the authors in Katewa et al. (2015) do not define any
utility function and characterize the privacy-utility trade-
offs. In Le Ny and Pappas (2013), the authors present
several perturbation techniques to release a model describ-
ing the dynamics of a large group of users responding
to a common single input signal and producing a single
output signal. However, their approach assumes a trusted
data aggregator which receives confidential scalar model
parameters from the other participants and then uses it
to publish a SISO transfer function describing the rela-
tionship between common input and aggregate output.
These gaps in the present state-of-the-art and a strong
fundamental need to protect the system model without a
trusted aggregator motivates us to explore this problem
in-depth using differential privacy.

The major contributions of this paper are as follows:

• We propose a novel differential privacy mechanism to
preserve the system model (system matrix A) privacy
while releasing the state sequences for data aggrega-
tion without a trusted intermediary aggregator. We
also derive an analytical expression to estimate the
minimum noise level required to guarantee differential
privacy.

• Furthermore, we define a utility function in our prob-
lem setup, and characterize the resulting privacy-
utility trade-off using numerical simulations. We also
analyze the effect of the DP mechanism w.r.t the
various privacy design parameters.

3. MOTIVATING EXAMPLE

Consider an example of supply chain economics depicted
in Figure 1 which involves three different parties,: Supplier
(S), Producer (P ) and Retailer (R). S purchases the
quantity u(k) of raw materials at each day k and discards a
fraction δ1 of raw materials when shipping a fraction α1 to
P . P transforms these raw materials into finished products
and sells a fraction of α2 to R while discarding a fraction
of δ2 due to faults, low quality etc. Finally R returns a
fraction β3 of defective products every day, and sells a
fraction γ3 to customers. This supply chain model can be
recast into a discrete-time linear state space equation as
follows:
[
x1(k + 1)
x2(k + 1)
x3(k + 1)

]

=

[
1− α1 − δ1 0 0

α1 1− α2 − δ2 β3

0 α2 1− β3 − γ3

]

︸ ︷︷ ︸

A

[
x1(k)
x2(k)
x3(k)

]

+

[
1
0
0

]

u(k).

(1)
The state x1(k) represents the amount of raw material
in S, x2(k) and x3(k) denotes the products in P and R
respectively. The output y(k) represents the products sold
to customers. The system model matrix A contains infor-
mation about the percentage of products discarded in each
chain, the percentage of defective products returned by the
retailer to producer, and typically companies would like to
keep such internal information private when disclosing the
state vector x(k) to any external organization for survey
and auditing purposes. Exposing the system matrix might
damage the reputation of each party in the supply chain
and may even result in the breach of trust among the
customers. For example, consider exposing the information
δ1 and β3 to the public. A higher δ3 implies that a large
percentage of raw material supplies have been discarded
due to poor quality. Higher β3 implies that the percentage
of defective products produced is high. Information such
as the percentage of products discarded in each chain or
percentage of defective products may also give insight into
sensitive information such as the quality and efficiency of
the production machine, thinking pattern behind rejecting
products etc. Furthermore, if a competitor gets hold of
the supply chain model i.e. the A matrix of the target
company, then it could very likely predict the amount of
production of the target company with high accuracy and
beat them to the market. Thus, the system matrix A must
be protected while releasing the information of the state
vectors for data aggregation purposes.

Now, let us discuss the scenario of releasing the state
samples after a certain time duration of T days without
perturbing the state samples, i.e., no privacy. These state
vectors are typically required in surveys and audits for
measuring the aggregate amount of products from the
supplier, producer and retailer side for a period of time.
Consider the input u(k) to be a Dirac delta function of
magnitude C i.e. u(k) = Cδ. This means once for every T
days, the supplier S purchases a raw material of quantity
C. Thus for k ∈ (0, T ], the state space equation in (1)
reduces to
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Fig. 1. Internal flow of information between the Supplier, Producer and Retailer in a simple supply chain model.

[
x1(k + 1)
x2(k + 1)
x3(k + 1)

]

=

[
1− α1 − δ1 0 0

α1 1− α2 − δ2 β3

0 α2 1− β3 − γ3

]

︸ ︷︷ ︸

A

[
x1(k)
x2(k)
x3(k)

]

.

(2)
Let the external query at a given time index k be

Q(k) = x(k),

Upon repeating this query for a period T , the adversary
arrives at the following relation

[x1 x2 · · ·xT ]
︸ ︷︷ ︸

Xf

= A [x0 x1 · · ·xT−1]
︸ ︷︷ ︸

Xp

. (3)

Equation (3) can be solved for A by

Ā = Xf X
T
p (Xp X

T
p )

−1. (4)

Without the presence of noise, the estimate Ā = A for
sufficient time samples which means the adversary could
easily infer the sensitive information about the model, thus
resulting in a privacy breach.

4. PROBLEM SETUP

In this paper an autonomous linear time-invariant system
with perfect measurement will be considered

{
x(k + 1) = Ax(k)

y(k) = x(k)
, (5)

where x(0) �= 0 is assumed to be publicly known. The
notation xA(k) will be used to represent the value of
x generated by a particular system matrix A at time
instant k. The sequence up to time T is denoted by
XA[0 : T ], while ‖.‖p represents the p−norm of a vector
or the induced p−norm of a matrix with p ∈ [1,∞).
Lap(0, b)n denotes n dimensional Laplace distribution
with i.i.d. components, each with a probability density
function p(x) = 1

2b
e−

x
b .

4.1 Differential Privacy for System Model Identification

Differential privacy is a method of introducing randomness
or noise into a particular system such that the adversary
cannot uniquely identify the data to be protected while at
the same time computing the query from the data with
considerable amount of utility Dwork and Roth (2014). In
this case, the data to be protected is the model or the
system matrix A while the query is

Q(k) = x(k). (6)

The noise is calibrated according to the sensitivity of
the query and added to the state vectors x(k) as given
by (7). These perturbed samples will be transmitted to

Fig. 2. Illustration of the Adjacency Relationship and
Sensitivity.

an external entity (potential adversary) who wants to
compute the aggregate of all the state vectors up to time
T . To design the noise η(k) ∈ R

n in M(k) given by (7),

M(k) : x̃(k) = x(k) + η(k), (7)

we first present the following definitions:

Definition 1. (β Adjacency) : Two state matrices A and
A′ are β adjacent (denoted by Adjβ) if for some β ≥ 0,

Adjβ
def

= ‖A−A′‖
2
≤ β . (8)

Remark 1. Adjacency in differential privacy captures the
quantity to be hidden. Contrary to the standard definition
of adjacency used in DP for static and dynamic systems
Ny and Pappas (2014); Le Ny and Pappas (2013); Fan and
Xiong (2014), where adjacency is defined w.r.t. changes
in only component i while keeping the other components
j �= i unchanged, our definition allows changes that can
possibly affect various components of the state matrix A.
While other p-norms are possible in (8), we decided to
follow the definition given in Katewa et al. (2015), where
the privacy of topology in consensus networks is addressed.

Definition 2. (Sensitivity) : The sensitivity ∆(x) repre-
sents the maximum possible difference between two state
vectors generated by any two β-adjacent state matrices
starting from the same initial condition x(k − 1). In this
paper, we define sensitivity in terms of the L1 norm

∆(x) =
∥
∥xA(k)− xA′(k)

∥
∥
1
,

=
∥
∥Ax(k − 1)−A′x(k − 1)

∥
∥
1
.

(9)

Figure 2 illustrates the adjacency relationship and sensi-
tivity.

Definition 3. (Finite Time ǫ Differential Privacy): Given
ǫ ≥ 0, the mechanism M given in (10)

M : X̃[0 : T ] = X[0 : T ] + η[0 : T ], (10)



312 Lakshminarayanan Nandakumar  et al. / IFAC PapersOnLine 52-20 (2019) 309–314

preserves ǫ-differential privacy up to time T if for any
two β-adjacent state matrices A and A′, and for any
R ⊆ range (M) the following relationship is satisfied:

Pr
[

X̃A[0 : T ] ∈ R
]

≤ eǫ Pr
[

X̃A′ [0 : T ] ∈ R
]

. (11)

Definition 3 says that if the state matrix changes from A
to an A′ that is β- adjacent, then the corresponding state
trajectory statistics change at most by a factor of eǫ, where
ǫ quantifies the privacy loss. Clearly, when the privacy
loss is minimal, the utility of the resulting state samples
becomes minimal as well. Thus, to quantify the degree
of utility of the resulting state samples, we introduce the
following definition:

Definition 4. (Utility) : Utility U is defined as

U = E

[

1−
∥

∥Xavg − X̃avg

∥

∥

1

2max(‖Xavg‖1, ‖X̃avg‖1)

]

, (12)

where Xavg = 1

T

∑T

k=0 x(k) and X̃avg = 1
T

∑T

k=0 x̃(k).

Remark 2. By design, it holds 0≤U ≤ 1, with U=1 when
Xavg=X̃avg, and U=0 when Xavg=−X̃avg.

4.2 Adversarial Estimate

Upon receiving the perturbed state samples x̃(k), the

adversary will be able to obtain an estimate denoted by Â
as follows:

Â = arg min
Ã∈Rn×n

∥

∥X̃f − ÃX̃p

∥

∥, (13)

where X̃f = X̃A[1 : T ] and X̃p = X̃A[0 : T − 1]. The
DP-mechanism in (7) will ensure that the state samples
generated by A and A′ ∈ Adjβ are almost equally likely
i.e., the state samples generated by Adjβ state matrices are
statistically not very different Katewa et al. (2015). Hence
by observing these state samples, the adversary will not be
able to distinguish between A and A′ with high confidence
level while retaining the necessary information to compute
the query with reasonable utility. Thus, the privacy of the
state matrix A is preserved which results in the estimation
error

E = E

[

∥

∥A− Â
∥

∥

2

]

. (14)

The term
∥

∥A− Â
∥

∥

2
is defined as the perturbation norm.

4.3 Research Problem

With the above problem setup: design the noise η(k) in (7)
satisfying the DP-definition in (11) for a given ǫ, β, and
characterize the resulting trade-off between the privacy
and utility levels.

5. PROPOSED SOLUTION

In this section, we present a noise adding DP-mechanism
to protect the privacy of the system matrix A. The most
common way to implement the DP mechanism is to add
noise generated according to the Laplacian distribution
based on the sensitivity ∆ of the system Dwork and Roth
(2014). We consider the sensitivity from the system matrix
A to the state vector x(k) since the goal is to protect the
A matrix. To design η(k), we first need to estimate the
sensitivity up to time T given as:

∆(T ) = max
A,A′:Adjβ

∥

∥XA[0 : T ]−XA′ [0 : T ]
∥

∥

1
. (15)

Once ∆(T ) is obtained, the following theorem stated in
Ny and Pappas (2014) provides a sufficient condition for
the noise design.

Theorem 1. The mechanism M in (10) is ǫ- differentially
private up to time T if η(k) is white Laplacian noise with

distribution η(k) ∼ Lap(0, b)n and b ≥ ∆(T )
ǫ

.

Proof 1. The proof follows from Theorem 2 in Ny and
Pappas (2014).

Remark 3. Notice that the noise design parameter b is
inversely proportional to ǫ. Thus as ǫ decreases, the noise
parameter b increases resulting in a flat tail Laplacian
distribution curve i.e. the probability of picking a random
number close to zero is very low and hence a higher
noise level is generated. As a result, when ǫ decreases,
the privacy level increases and vice-versa. Also, notice the
noise parameter b is directly proportional to the sensitivity
∆(T ). Thus the lower the sensitivity, the lower the noise
that needs to be added and vice-versa.

Intuitively, if the sensitivity is low, then for two different
β−adjacent matrices, the change in the corresponding
state trajectories will not be large, and hence the level
of noise required to make the two state trajectories “sta-
tistically not very different” will also be small Katewa
et al. (2015). Since sensitivity is crucial in designing a DP-
induced noise, we may try to calculate ∆(T ). However it is
difficult to obtain analytical expression for ∆(T ). Hence,
we propose the following theorem instead that charac-
terizes the upper bound on the sensitivity. Through this
upper bound, we obtain the minimum noise level required
to ensure DP.

Theorem 2. The sensitivity ∆(T ) is upper bounded by

∆(T ) ≤
√
n β

∥

∥x(0)
∥

∥

1

T
∑

k=0

∥

∥Ak
∥

∥

1
(16)

Proof 2. To obtain the upper bound for the sensitivity
function ∆(T ) given by (15), let us consider two measure-
ments xA and x′

A produced by β adjacent state matrices
A and A′

∥

∥

∥

∥

xA(k + 1)− xA′(k + 1)

∥

∥

∥

∥

1

=
∥

∥Ax(k)−A′x(k)
∥

∥

1

≤
∥

∥A−A′
∥

∥

1

∥

∥x(k)
∥

∥

1

≤
√
n
∥

∥A−A′
∥

∥

2

∥

∥x(k)
∥

∥

1

≤
√
n β

∥

∥x(0)
∥

∥

1

∥

∥Ak
∥

∥

1

∥

∥

∥

∥

XA[0 : T ]−XA′ [0 : T ]

∥

∥

∥

∥

1

=
T
∑

k=0

∥

∥

∥

∥

xA(k + 1)− xA′(k + 1)

∥

∥

∥

∥

1

≤
√
n β

∥

∥x(0)
∥

∥

1

T
∑

k=0

∥

∥Ak
∥

∥

1

(17)

Remark 4. From (17), we can see that the sensitivity ∆(T )
is bounded for a finite value of T . Also, when A is a Schur
matrix, ∆(T ) is bounded for all values of T . Anyway,
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Fig. 3. Illustration of the DP Mechanism simulated for
various values of β and ǫ

∆(T ) is a monotone function of T , which formalizes the
intuitive fact that given a longer observation horizon T,
and adversary can get a more accurate estimate of the
model. Also, we must note that ∆(T ) can be very large in
case A is not or close to not being Schur. The noise η(k)
can be generated by setting b as follows

b =
∆(T )

ǫ
=

√
n

β

ǫ

∥

∥x(0)
∥

∥

1

T
∑

k=0

∥

∥Ak
∥

∥ (18)

Note that the ratio λ
def

= β
ǫ
represents the privacy level

Katewa et al. (2015) whereas ǫ represents the privacy
loss with β being another privacy design parameter. If β
increases for a fixed ǫ, then DP is ensured for a larger set
of state matrices. Similarly if ǫ decreases, then the privacy
level increases.

6. SIMULATION RESULTS

We consider the same supply chain example as explained
in Section 3. The system matrix A is taken as

A =

[

0.16 0 0
0.8 0.25 0.01
0 0.7 0.19

]

.

We set T = 15 days and x0 = [1000 0 0]
T
.

6.1 System Matrix Estimation

The adversary obtains an estimate of the system matrix
Â given by (13). Figure 3 shows the estimation error E

simulated for various values of β and ǫ. It is clear that
as ǫ increases the estimation error tends to zero i.e., the
adversarial estimate approaches the true value, and hence
there is no privacy. It is evident that when β is increased for
a fixed ǫ, DP is ensured for a larger set of state matrices. As
β increases, the noise added also increases due to the rise in
sensitivity, and hence, the estimation error is found to be
higher for larger β’s as we increase ǫ. Next, we simulated
for multiple noise realizations and calculated the sample
mean to approximate the expected error E given in (14).
Figure 4 shows the variation of the expected error w.r.t.
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Estimation Error vs Privacy Level λ

Fig. 4. State Matrix Estimation Error.
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0.9
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1

U

Fig. 5. Privacy-Utility Trade-off Characterization

the privacy level λ. Naturally, when λ = 0 i.e. no privacy,
the expected error E = 0. As expected, the estimation
accuracy degrades with increase in the privacy level.

6.2 Privacy vs Utility

We now characterize the privacy-utility trade-off by cal-
culating the estimation error E and utility U for various
values of the privacy level λ. Figure 5 depicts the plot
between the estimation error and utility for various values
of λ. This plot helps in choosing an appropriate privacy
and utility level for this system. For example, when λ = 0.6
we have,

Xavg =

[

79.3651
85.6429
74.0124

]

, X̃avg =

[

95.9388
81.4923
83.1509

]

, U = 0.9427.

Â =

[

0.0014 −0.0019 −0.0040
0.0031 0.0030 −0.0033
−0.0064 0.0036 0.0024

]

, E = 0.9075.

Notice the difference between the actual A matrix and the
matrix Â obtained by the adversary from the perturbed
state trajectories using (4). Let us now compare both the
matrices element-wise. From A, we see that a12 = 0,
which means in the actual supply chain model (see Fig-
ure 1), there was no backward communication between
the producer P and supplier S. Similarly, a13 = 0 and
a31 = 0 i.e., there was no communication link between the
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supplier S and retailer R in the actual model. However, the
presence of non-zero components in â12, â13, â31 �= 0 from
Â obtained by the adversary suggests him/her otherwise.
The adversary certainly cannot deduce with high confi-
dence level regarding the presence or absence of backward
communication between different parties with E ≈ 0.91,
thereby, preserving the privacy of the given model. Note
that as emphasized in Remark 1, this was possible because
our definition of adjacency allowed changes in multiple
components of the A matrix. Next, analyzing the eigen-
values of A, we have:

γ = [0.1311 0.3089 0.1600]
T
,

whereas the adversarial estimated eigenvalues are:

γ̂ = [−0.0032 0.0050 + 0.0036i 0.0050− 0.0036i]
T
.

The adversary does not obtain any information regarding
the system properties from the estimated eigenvalues and
can even be misled to falsely conclude the presence of
oscillation in the system due to complex poles, whereas, no
such oscillatory behavior is present in the original system.
Thus, in this case, through differential privacy, we are able
to mislead the adversary in several directions while still
managing to retain a high data utility (U ≈ 0.95).

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a differential privacy mecha-
nism to protect the system matrix. The proposed mech-
anism adds synthetic noise generated according to the
Laplacian probability distribution and prevents an exter-
nal adversary from uniquely identifying the system matrix
when accessing the state samples to compute the aggre-
gate information. We derived an analytical bound on the
sensitivity function and calculated a sufficient noise level
required to ensure DP. Simulation results validate our DP
approach and show that the expected error of the system
matrix estimation increases leading to an increase in the
privacy level. Furthermore, we characterized the resulting
trade-off between the privacy and utility level using em-
pirical evidence. Using this characterization, we saw how
differential privacy aids in the process of introducing un-
certainty and ambiguity in the adversarial mind while still
retaining higher levels of utility. Future work may involve
designing an asymptotically decaying noise to retain even
higher levels of data utility and providing mathematical
proofs that the resulting mechanism preserves differential
privacy. We also plan to extend this framework to non-
autonomous systems with the goal of protecting both the
system and input matrices.
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