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Abstract

Privacy—the protection of information from unautho-

rized disclosure—is increasingly scarce on the Internet,

and yet increasingly important as every user becomes

both a content consumer and a content producer. The

lack of privacy is particularly true for popular peer-to-

peer data sharing applications, where public rendezvous

and dynamic membership mean that user behavior can

be easily monitored. In this paper, we describe the de-

sign, implementation, and experience with OneSwarm,

a new P2P data sharing system that provides users with

explicit, configurable control over their data: data can

be shared publicly or anonymously, with friends, with

some friends but not others, or only among personal de-

vices. OneSwarm is publicly available and has been

downloaded by hundreds of thousands of users in the

few months since its release. A key goal is to reduce

the performance cost of privacy and our measurements

of the live system show that anonymized data transfers

are performance competitive with unanonymized use.

OneSwarm’s novel lookup and transfer techniques yield

more than an order of magnitude improvement in transfer

speeds relative to Tor, another widely-used anonymiza-

tion system.

1 Introduction

Privacy—the protection of information from unautho-

rized disclosure—is a long-standing concern of computer

system design. Privacy has become of particular concern

as users become authors of content, rather than passive

consumers, sharing their content and their interests with

overlapping sets of people.

At a technical level, privacy is easy to accomplish with

centralized solutions. If the user data is stored on a server

in a data center, user directives about dissemination can

be easily enforced, and data about user interests can be

carefully limited or disabled on user request. However,

the reality is quite different in practice. Many popular

web services require users to sign away their privacy and

ownership rights as a condition of service; sites often

take advantage of this to collect, store, and share vast

amounts of personal data about their users. Most users

find this objectionable [30]. Even for vanilla Internet ac-

cess, ISPs now routinely divulge identifying information

about their customers to virtually any third party who

∗Dept. of Computer Science and Engineering, Univ. of Washington

asks for it [2]. Censorship is also made easier by central-

ization, and it is a practical concern in many countries

around the globe.

Peer-to-peer (P2P) data sharing systems potentially

provide an option for achieving scalability and privacy

without relying on centralization. With P2P, because

resources are contributed by users, there is no inherent

need to sacrifice privacy. But, most widely-used P2P

systems trade off privacy against usability, leaving us

with little in the way of a practical alternative to cloud

based solutions. On one side, systems like BitTorrent

are high performance and robust, but everyone’s activ-

ities are visible to anyone who cares to look. (Our re-

search group has monitored tens of millions of BitTorrent

users worldwide from a dozen machines at UW.) On the

other, anonymization systems like Tor and Freenet em-

phasize privacy but at the cost of poor performance and

robustness, in part because of misaligned incentives and

inefficient protocol choices such as single path routing.

In our performance evaluation, for example, OneSwarm

provides more than an order of magnitude improvement

in transfer rates relative to Tor.

In this paper, we describe the design, implementation,

and experience with a privacy-preserving file sharing ser-

vice called OneSwarm, intended to reduce the “cost”

of privacy by focusing on usability concerns: ease of

setup, support for a variety of different sharing and trust

models, interoperability with users satisfied with public

data sharing, as well as high efficiency and robustness.

In OneSwarm, data objects are located and transferred

through a mesh of untrusted and trusted peers populated

from user social networks. We argue that combining

trusted and untrusted peer relationships provides better

privacy and robustness than either approach would alone.

Content lookup and transfer is anonymous, congestion-

aware, and multipath, providing good performance at

reasonable overhead even for rare objects and diverse

peer bandwidths.

OneSwarm is part of a larger effort to build an alter-

native to cloud computing that does not depend on cen-

tralized trust, including services for rendezvous, lookup,

long-term storage, remote computation and the like. We

tackle privacy first because it is very poorly handled

in popular P2P systems, and yet privacy needs to be

an essential feature of such systems in our view. We

stress that privacy is of value for many legitimate rea-

sons. Some say: “nothing to hide, nothing to fear” but
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Figure 1: An example of the range of data sharing scenarios supported by OneSwarm. Bob downloads public data

using OneSwarm’s backwards compatibility with existing BitTorrent implementations, and makes the downloaded file

available to other OneSwarm users. Alice downloads the file from Bob without attribution using OneSwarm’s privacy-

preserving overlay, but she is then free to advertise the data to friends. Advertisements include a cryptographic

capability, which allows only permitted friends to observe the file at Alice.

we do not agree. For example, most YouTube content is

freely re-distributable. Using P2P techniques would save

YouTube hundreds of millions of dollars per year, but its

users would likely object if as a consequence, their ev-

ery search request was monitorable by third parties with

minimal effort.

OneSwarm has been downloaded by hundreds of thou-

sands of users, with active user groups in many coun-

tries, disproving the notion that “no one cares about pri-

vacy.” [21] We use this deployment as the basis for our

evaluation, collecting voluntarily reported usage statis-

tics from users as well as measurements of instrumented

OneSwarm clients running on PlanetLab [25]. Because

our measurements of the live system are limited by the

privacy needs of our users, we complement our study

with simulations of OneSwarm against a trace of ob-

ject sharing patterns and social connectivity of more than

1 million users of the last.fm music service [3].

The remainder of this paper is organized as follows.

Section 2 outlines the OneSwarm data sharing and work-

load model. We describe how we manage identities and

trust in Section 3 and our congestion-aware data lookup

and transfer algorithms in Section 4. We conduct a brief

security analysis in Section 5, evaluate the performance

of our system in Section 6, and discuss our deployment

experience in Section 7. We discuss related work in Sec-

tion 8 and conclude in Section 9.

2 Data sharing with OneSwarm

OneSwarm is designed to allow users to share data effi-

ciently and securely while preserving their privacy when

desired. Virtually everyone on the Internet is both a con-

tent producer and a content consumer, with a diverse set

of constraints on who should be allowed access to any

piece of content or usage pattern. One could design sep-

arate systems for each usage model, e.g., one for anony-

mous publication (Freenet [10]), another for anonymous

download (Tor [13]), yet another for controlled sharing

with friends. A tenet of our work is to support a range of

data sharing scenarios efficiently within a single frame-

work. Our motivation is pragmatic: like BitTorrent,

the performance of our system improves with increas-

ing number of users, and it is more natural to present

the user with a single interface than separate systems for

each type of data.

2.1 Sharing scenarios

Figure 1 illustrates the range of privacy preserving op-

tions supported by OneSwarm. In this example, suppose

users Alice and Bob both want to download a left-leaning

political podcast. Suppose further that Bob does not con-

sider his political views to be sensitive information, but

Alice would prefer that her political views not be made

public; instead, she might want to share the podcast with

just a few like-minded friends.

OneSwarm supports all of these levels of privacy

within the context of a single swarm. Bob downloads

the podcast from a public set of existing BitTorrent and

OneSwarm peers. During the download, Bob also acts as

a replica for sharing without attribution using an overlay

consisting of OneSwarm peers only. This overlay acts as

a mix [9], using source-address rewriting and multi-hop

overlay forwarding to obscure the identities of a path’s

source and destination. Alice is one such destination, and

she downloads the podcast using only anonymizing paths

to preserve her privacy from third-party monitoring. But,

she is free to advertise the file explicitly to friends who

may also be interested in the content.

Each case shown in Figure 1 imposes a different trade-

off between privacy and efficiency. Publicly distributed

data is not private, and direct transfers between a large

set of replicas yield efficient distribution. Sharing data

with permissions limits access and hence distribution ca-
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pacity. Finally, data shared without attribution is acces-

sible by anyone, but the set of users sharing the data is

obscured, which increases overhead. To summarize:

• Public distribution: All data sharing need not be pri-

vate. This is the case for which existing P2P systems

excel, and OneSwarm draws on this strength by serv-

ing as a fully backwards compatible BitTorrent client.

This helps bootstrap content into OneSwarm’s pri-

vacy preserving overlay; data originally obtained us-

ing legacy protocols can be easily shared using any

other mode. Sharing recorded course lecture videos is

an example of this type of distribution.

• With permissions: Persistent identities allow

OneSwarm users to define per-file permissions. In this

case, access to files is restricted (rather than attribu-

tion of source or destination). In OneSwarm, capa-

bilities restrict access to protected files, allowing all

permitted users to recognize one another and engage

in swarming downloads for scalability.1 For example,

OneSwarm can be used to restrict the distribution of a

photo archive to friends and family only.

• Without attribution: When sharing sensitive data,

privacy depends on obscuring attribution of source

and/or destination. Unlike data shared with permis-

sions, which is directly advertised, data shared with-

out attribution is located using privacy-preserving key-

word search, and data transfers are relayed through an

unknown number of intermediaries to obscure source

and destination. This type of distribution is appropri-

ate for sensitive material. Since it is up to the user to

define what is sensitive, the same data object may be

shared under all three of the models simultaneously.

To the best of our knowledge, OneSwarm is the first

data sharing system that unifies all of these common data

sharing scenarios without relying on centralized trust.

Many existing P2P systems like BitTorrent provide ef-

ficient public distribution, but lack basic mechanisms for

supporting access control or privacy. Anonymous pub-

lishing systems, e.g., Freenet [10], allow data sharing

without attribution, but exclude access control by design

and require participants to act as a cache for the (poten-

tially objectionable) content shared by others. A similar

problem is inherent in the design of traffic anonymization

systems based on onion routing, e.g., Tor [13], wherein

potentially malicious traffic is attributable to the exit

node of an onion route, creating a severe disincentive to

host a node. As a result, such networks are woefully un-

derprovisioned relative to demand. We consider these

and other related systems in more detail in Section 8.

1Of course, capabilities (or data itself) can be relayed to others once

obtained, but OneSwarm’s default behavior is to maintain restrictions

on data shared with permissions unless explicitly overridden.

2.2 Workload constraints

To guide the initial design of OneSwarm, we conducted

a large scale study of the object sharing behavior of

over a million users of the last.fm music web site. We

initially expected that most or all of the peering links

in OneSwarm to be formed between directly connected

friends. (Our deployment showed that this assumption

was often violated, for reasons apparent in the last.fm

data, discussed below.) last.fm is unique in providing

information about both the object sharing patterns and

the social graph of its users. Previous characterizations

of social networks measure graph structure alone, while

previous studies of file sharing omit social relationships.

We summarize the results from this study to provide

context for OneSwarm’s design choices; a more com-

plete description can be found in the appendix.

• Skewed object popularity motivates popularity-aware

search: The object popularity in last.fm is heavily

skewed; the top 5% of objects account for 79% of total

demand. Even so, rarely requested objects comprise a

significant portion of the overall demand. To support

this workload, the mechanism used for finding content

must be able to efficiently find popular content while

still being able to locate unpopular objects.

• Long paths motivates multipath downloads from a sin-

gle source: In last.fm, the average path length be-

tween users is 7.1. In an overlay with similar struc-

ture, the diversity of end-host bandwidth capacities

means that any single path is likely to be slow, limited

by its lowest-capacity and/or most congested link. To

provide good performance, OneSwarm uses multiple

paths per-source to transfer data.

• A resilient core improves availability but requires

adaptation to congestion: last.fm has significant path

diversity and a very resilient core. But, the popu-

larity of a minority of well-connected users suggests

that as the amount of traffic in the network increases,

OneSwarm must be able to find alternate routes to

avoid congested nodes.

• Bootstrapping is crucial since many users have few

trusted links: As with many social networks, popu-

larity is highly skewed in last.fm, and the majority of

users have few social links. In an overlay, this would

reduce both performance and privacy: downloads are

efficient only when there are multiple path options,

and privacy can likewise be more easily compromised

for users with very limited fanout. For such users to

benefit from OneSwarm, our design includes mecha-

nisms for both trusted and untrusted overlay links.

These constraints shape OneSwarm’s control and data

transfer protocols as well as how users manage and de-

fine trust relationships, the topic we describe next.

3



3 Managing identities and trust

Supporting the range of data sharing scenarios described

in Section 2 requires OneSwarm to expose a range of

options for managing trust. Sharing data with friends

only, for example, requires some notion of identity to al-

low users to relate real-world trust relationships to over-

lay connections. Robust data sharing without attribution

does not depend on trust in any individual peer, but rather

on the obfuscating effects of randomized data transfer

via multiple peers and paths. Sharing a file with dif-

ferent privacy options changes the details of how data

transfer occurs, which we describe in the next section. In

this section, we describe 1) OneSwarm’s notion of iden-

tity, 2) how users link identities to social relationships for

sharing data with permissions, and 3) how groups of po-

tentially untrusted peers are matched for sharing without

attribution. We discuss each of these in turn.

3.1 Identity and connectivity

Each OneSwarm user is named using a cryptographic

key that identifies that user among its peers. Each user

generates a 1024 bit public/private RSA key pair when

installing the client, with the public key serving as its

identity. OneSwarm identities are persistent, allowing

two users that have exchanged keys to locate and con-

nect to one another whenever both are online. Long-term

identities are linked to transient IP-addresses and port

numbers via a distributed hash table (DHT) maintained

among all users. On startup, each client P inserts a copy

of its current IP address and port into the DHT. This value

is inserted multiple times—once for each peer.

Multiple insertions of connectivity information enable

fine-grained control over network address information.

A simple alternative is indexing connectivity information

with the public key of P alone. But, in this case, any

user that learned P ’s public key could monitor P ’s net-

work location and availability as long as P maintained its

identity. By encrypting updates and updating connectiv-

ity information for each friend individually, P can con-

trol information disclosure in the DHT for each peer.

DHT entries for a client P are signed by P and en-

crypted with the public key of a given peer. Each entry is

indexed by a 20 byte randomly generated shared secret,

which is agreed upon during the first successful connec-

tion between two peers. Prior to the initial connection

with a newly added friend, P temporarily advertises con-

nectivity information at a special location: the SHA-1

hash of the concatenation P ’s public key and the public

key of the given friend. This location serves as the initial

rendezvous point.

In our implementation, ID → {IP, Port} mappings are

stored in a Kademlia-based DHT using twenty-fold repli-

cation for fault tolerance [20]. This level of replication

has been shown to provide high availability for DHTs

running on end-hosts [14]. Each client’s location in the

DHT is independent of its identity and is determined by

hashing the client’s current IP address and DHT port.

This inhibits systematic monitoring of targeted regions

of the DHT key space since the region for which each

client is responsible is determined by that client’s net-

work address and port, which is certified during DHT

operations by other OneSwarm peers.

3.2 Linking peers with trust relationships

The OneSwarm DHT tells a client how to connect to a

given peer provided the peer’s public key is known. But,

this requires users to first obtain keys. In existing social-

sharing P2P designs [10, 27], key exchange is typically

manual. We view manual exchange as a hindrance to

adoption and include multiple methods for automatically

exchanging identities.

Between two OneSwarm users that share a real-world

trust relationship, OneSwarm automates key exchange in

three ways. First, as in UIA [15], the OneSwarm client

discovers and exchanges keys with other OneSwarm

users over the local area network. Second, we piggy-

back on existing social networks, e.g., Google Talk or

Facebook, to distribute public keys. We observe that the

explicit encoding of trust relationships, a longstanding

stumbling block for public key infrastructures, has al-

ready been done by the users of existing social networks.

Third, users can email invitations to friends. Invitations

include a one-time use capability that authenticates the

recipient during an initial connection, during which pub-

lic key exchange occurs.

For all methods described above, users can choose

whether to accept new and updated keys. This allows

users to maintain separate lists of OneSwarm contacts

and contacts from other social services, while still avoid-

ing the inconvenience of manually exchanging keys with

friends out-of-band.

3.3 Managing groups and untrusted peers

Exchanging keys manually, via existing social networks,

or through email invitations all depend on users hav-

ing preexisting relationships with their peers. While ap-

propriate when fine-grained control is required, in many

circumstances explicitly authorizing every peer relation-

ship is cumbersome and unnecessary. For example,

OneSwarm is frequently used by communities of users

with dynamic membership but mutual pairwise trust,

e.g., a group of friends or colleagues. In this case, users

need to maintain a subscription to keys.

To support key management within a group,

OneSwarm allows users to subscribe to one or more

community servers. A community server maintains a list

of registered users and provides authorized subscribers

with a current set of public keys upon request. In effect,
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subscribers to a given community server delegate trust

regarding a subset of their peers to the operator, who

vets prospective members. When configuring their

subscriptions, users decide whether to apply updates

automatically or only after manual approval. When

configuring their community server, operators decide

between authenticated or public access as well as the

number of members to provide to each subscriber.

XML-encoded peer lists are delivered to the OneSwarm

client via HTTP secured using SSL, and requests to

authenticated community servers use standard HTTP

authentication mechanisms.

In addition to supporting automatic key exchange

among trusted groups, community servers also allow

OneSwarm users to easily obtain a set of untrusted peers

that increase robustness and privacy when sharing data

without attribution. Bootstrapping early adopters is a

significant challenge for overlay networks based on mu-

tual trust between directly connected peers. But, in the

case of sharing without attribution, trusted peers are not

required; privacy depends on the obfuscation provided

by forwarding data through multiple unknown interme-

diaries. Untrusted peers are used for this purpose only

and serve to bootstrap overlay connectivity when users

have few trusted friends.

Since registration with public community servers is

unrestricted, all peers obtained from one are treated as

untrusted by default. Registration itself is a three step

process. First, the OneSwarm client provides its public

key, which the server then verifies by issuing a challenge

nonce value and verifying the incremented, encrypted re-

sponse. Finally, the server uses consistent hashing of the

key to compute a subset of peers to return to the client.

Community server registration is designed to inhibit

systematic crawling of the membership list of a public

community server. Verifying keys with a challenge/re-

sponse allows the server to limit the number of registra-

tions by a single IP address, and consistent hashing lim-

its the information obtained from repeated membership

queries. Although an attacker with significant resources

can evade these restrictions and obtain a complete view,

doing so is of limited value. The overlay topology is

an amalgam of links from community servers, manual

exchanges, email invitations, and other social networks;

a crawl of community servers provides only a partial

view, and more privacy conscious users need not sub-

scribe to any community server whatsoever. We consider

the effectiveness of attacks enabled by public community

servers in more detail in Section 5.

4 Locating and transferring data

At this point, we have described how OneSwarm peers

join and maintain overlay connections and update con-

nectivity information. We next turn to the protocol used

to name, search for, and transfer data.

Our overall approach is inspired by the success of ex-

isting P2P swarming systems, e.g., BitTorrent, and we

adopt existing swarming techniques wherever possible

with three exceptions. First, instead of sharing all data

publicly with a dynamic set of peers, OneSwarm users

explicitly define the trust level of a persistent set of peers

(by default peers are untrusted). Second, instead of cen-

tralizing information about which peers have which data

objects, e.g., at a coordinating tracker as in BitTorrent,

OneSwarm peers locate distant data sources by flood-

ing object lookups through the overlay. Third, instead of

sources sending data directly to receivers, data transfers

occur over the reverse overlay search path, using address

rewriting to obscure sender and receiver identities.

A source of complexity in our design is the need to

support a mix of trusted and potentially untrusted peers.

Indeed, our initial implementation assumed mutual pair-

wise trust among directly connected peers in order to

simply our protocol and security analysis. But, this re-

quirement was largely ignored by many of our initial

users. This section outlines the random perturbations of

the timing and delivery of protocol messages needed to

support untrusted peers, but we delay a more complete

discussion of attacks and defenses until Section 5 to first

provide a complete protocol description.

In the remainder of this section, we separate our dis-

cussion into three parts: how users discover peers and

data sources in the overlay, how data is exchanged, and

what incentives are provided to contribute resources.

4.1 Naming and locating data

OneSwarm peers connect to one another using secure

sockets (SSLv3) bootstrapped by their RSA key pairs.

When two peers connect, they exchange file list mes-

sages. file list messages are compressed XML includ-

ing attributes describing the name, size, date shared, and

other meta-data for files for which a particular peer has

permissions. For each privately shared file the meta-data

includes a 512-bit capability that is used as a symmetric

encryption key for use during transfers. After the initial

file list is received, subsequent lists include diffs only.

Naming: Shared files (or groups of files) are named in

OneSwarm using the 160 bit SHA-1 hash of their name

and content. The low order 64 bits of this hash are used

to identify swarms in search messages that are flooded to

discover potential data sources. For public data, users ob-

tain content hashes 1) out-of-band, e.g., from an email or

website, 2) from file list messages exchanged with peers,

or 3) from keyword search in the overlay. For private data

the user must obtain both the hash of the data as well

as capability used for decryption. We describe transfer

setup via search since this subsumes the other cases.

Congestion aware search: OneSwarm search is de-
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signed to manage the tradeoff between overhead and per-

formance by being congestion aware. Using the shortest

path minimizes overhead, but risks poor performance if

the shortest path is slow or overloaded. Given that highly

connected users are more likely to appear in a path, this

is a practical concern.

OneSwarm addresses this by managing the propaga-

tion of searches. Because the path taken by a search

message determines the path of data transfer, the key idea

is to forward searches along the shortest path possible

(to limit overhead) subject to each intermediary’s current

load (to improve performance).

To discover shortest paths, OneSwarm relies on flood-

ing. Keyword search messages include a randomly gen-

erated search ID and list of keywords. Unlike flooding

search in other P2P file sharing networks, OneSwarm

search messages do not include a time-to-live value since

this information would allow intermediaries nearby the

source or destination to easily reason about behavior. In-

stead, OneSwarm forwards searches to trusted peers pro-

vided the forwarder has idle capacity and the search has

not been forwarded previously. Clients maintain a his-

tory of search messages to avoid forwarding duplicates.

Among untrusted peers, forwarding is randomized to

prevent collusion attacks. Instead of forwarding un-

matched search messages to all peers, OneSwarm for-

wards searches to untrusted peers probabilistically. This

inhibits colluding untrusted peers from inferring a data

source by observing the lack of a forwarded search mes-

sage. To prevent information leakage through repeated

queries, the decision to forward a search is made ran-

domly —but deterministically— so repeated queries for

the same data will yield the same result.

To avoid the propagation of every search to every

client in the overlay, each client delays each search mes-

sage for at least 150 milliseconds before forwarding it to

peers. The search source (or any forwarder) may termi-

nate popular searches for which many data sources have

already been discovered by sending a search cancel mes-

sage to nodes to which they have sent or forwarded a

search message. (Search cancels are also sent if the up-

stream peer disconnects.) The search cancel message

is forwarded along the same paths as the corresponding

search message but without any forwarding delay, allow-

ing cancel messages to quickly reach the search frontier.

In addition to the fixed forwarding delay for search

cancellation, OneSwarm also delays messages based on

the load at each intermediary. Where load is high, search

propagation will tend to route around it, improving per-

formance. When excess capacity exists, search messages

will follow the shortest path, reducing transfer overhead.

Path setup: If a node is sharing a file that matches a

search query, it does not forward the search and in-

stead responds with a search reply message. Among

1

4

32
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Figure 2: An example of end-to-end path ID computa-

tion. Client 5 searches for peers with file ID 0xABC and

queries are forwarded along the dashed links.

trusted peers, this response is immediate. But, receiving

a search reply message in less than 150 ms (our default

per-hop forwarding delay) would reveal the responder as

a data source to potentially untrusted peers. To prevent

this, users delay search reply messages (and all protocol

messages) sent to untrusted peers in order to emulate the

delay of a longer path. This value is chosen randomly

between 150-300 ms (i.e., 1–2 hops). As with forward-

ing of search messages, the delay value is persistent for

a particular file and a particular peer to prevent informa-

tion leakage from repeated queries.

Search reply messages include a search identifier, a

list of content hashes which identify matching files, file

metadata, and a path identifier. The path identifier allows

clients to distinguish among multiple paths even if those

paths partially overlap. We first describe how path IDs

are computed and then how they are used to enable multi-

path and multi-source downloading. Each peer maintains

a randomly chosen link ID for each peer link.2 The data

source sets the initial value of the path ID to the lower 32

bits of the first matching file’s hash. Next, the path ID of

the search reply is updated before sending the message

to each peer (who forwarded the data request) by com-

puting the SHA-1 hash of the initial value XOR’d with

the link ID of the given peer. This process of updating

the path ID is repeated at each overlay hop, resulting in a

unique ID for each path that a search reply message tra-

verses on its way back to the sender. A simple example

of path ID computation is shown in Figure 2. The abil-

ity to recognize unique paths allows the receiver to add

new paths during the course of a download. Transfers

can start as soon as a one path is discovered, and new

2Though randomly chosen, this value is fixed for the lifetime of the

link.
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searches can be launched to replace paths that fail.

4.2 Data transfer

A path identifier indexes routing tables at each overlay

hop and effectively identifies a circuit from data source

to receiver. Keep-alive messages refresh paths, which ex-

pire after thirty seconds of inactivity. OneSwarm uses the

wire-level protocol from BitTorrent file to transfer data,

first obtaining a list of block hashes corresponding to the

metadata stored in .torrent files [12]. But, rather than

connecting directly to peers, OneSwarm tunnels BitTor-

rent traffic through overlay paths. Each overlay path is

treated as a virtual peer, even those that terminate at the

same endpoint. Of course, the receiver has no definitive

way to know which paths terminate where. Rather than

obtaining a list of peers from a centralized tracker, as in

BitTorrent, OneSwarm discovers new paths by periodi-

cally flooding search messages for active downloads.

Basing OneSwarm’s wire-level protocol on BitTorrent

draws on BitTorrent’s strengths. Swarming file down-

loads minimize redundant data transfers in the over-

lay. If multiple users are downloading a popular file,

OneSwarm will discover and use paths to those new par-

tial sources. Tit-for-tat, BitTorrent’s default request ser-

vicing policy, serves a second purpose in OneSwarm:

load balancing among multiple overlay paths. Like

unpredictable and heterogeneous end-hosts, multi-hop

overlay paths have highly variable bandwidth and end-

to-end latency. Scheduling block requests over unpre-

dictable paths requires careful engineering to avoid wast-

ing capacity or inducing lengthy data queues, but we in-

herit this feature for free by basing OneSwarm on the

popular, widely used Azureus BitTorrent implementa-

tion [1]. For example, if a path becomes congested traf-

fic will automatically be shifted to the paths that do not

traverse the congested link. If a forwarding node dis-

connects, the capacity of the data-source is automati-

cally shifted to the other paths. Building OneSwarm on

an existing P2P network and popular client also helps

in bootstrapping the overlay. In addition to its privacy-

preserving features, OneSwarm serves as a vanilla Bit-

Torrent client; publicly shared files can also be shared

privately with OneSwarm peers, bootstrapping content

in the overlay.

4.3 Incentives

Persistent identities and long-term relationships provide

a rich foundation on which to implement different incen-

tive strategies. Each OneSwarm client maintains transfer

statistics for each peer including total data uploaded and

downloaded, maximum transfer rates, control traffic vol-

ume, and uptime.

We retain BitTorrent’s default tit-for-tat policy for

making servicing decisions among multiple virtual peers.

This creates an incentive to contribute capacity while

downloading, improving swarm performance. Persis-

tent identities also create a strong incentive to continue

sharing data after downloads complete. During peri-

ods of contention, our default policy is to allocate band-

width among directly connected peers proportionally;

each peer is assigned a weight equal to the ratio of their

net contribution and net consumption. When this ratio

is greater than 1, a peer is a net contributor. A client

improves its standing over time by participating in the

system whenever possible.

Across all peers, forwarding data is zero sum.

Data consumption from the ingress peer connection is

matched by contribution at the egress. At the granularity

of individual paths, it is difficult to reason about whether

a particular forwarding connection is helpful for a peer’s

long-term interests. If the egress point is a peer often on

the path of a client’s own transfers, forwarding contribu-

tions will improve subsequent local performance. But, if

the ingress peer is a more useful data source, forwarding

will reduce long-term performance. To cope with this,

OneSwarm uses a default forwarding policy inspired by

peering relationships between ISPs. If the incoming/out-

going traffic ratio of a peer is approximately balanced

or greater than 1 over the long-term, forwarding is per-

mitted. But, if this ratio is significantly unbalanced, for-

warding is not permitted during periods of contention.

This default policy can be overridden. Users are free to

assign static weights per-peer or forward data without re-

gard to traffic imbalance.

In practice, our default policy has proven sufficient to

induce a surplus of forwarding capacity in the system.

We verify this in our performance evaluation (Section 6).

5 Security Analysis

OneSwarm’s overarching security goal is to improve pri-

vacy by allowing users to control information disclosure.

When sharing data with permissions, disclosure is lim-

ited by familiar mechanisms: strong identities, capabil-

ities, and end-to-end encryption. In this section, we fo-

cus on providing privacy in the more challenging case of

data sharing without attribution. In this case, our goal

is to be resistant to the disclosure of user behavior to an

attacker with control over a limited number of overlay

nodes. Specifically we assume attackers lack complete

knowledge of the current overlay structure and that users

are conservative when specifying trusted peers. We point

out, however, that an explicit non-goal is to eliminate the

possibility of monitoring by a highly capable monitor-

ing agent with global wiretap capabilities or the ability

to seize specific computers.

In the remainder of this section, we outline several

potential attacks and quantify their effectiveness using

measurements of OneSwarm users in the wild. In the
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appendix, we explore a wider range of threats: inferring

data sources, associating search requests to users, iden-

tifying trusted links, and so on. Because of space lim-

itations, we restrict our attention to what we believe to

be the most likely attackers conducting the most likely

attacks: one or more colluding OneSwarm users boot-

strapped via community servers attempting to infer the

source of a data transfer. The discussion highlights the

following aspects of the OneSwarm protocol that signif-

icantly enhance user privacy.

• Persistent peering relationships limit monitoring

power: In BitTorrent, peers are dynamically assigned,

allowing attackers to become a peer of virtually ev-

eryone, given enough time. By contrast, OneSwarm

peers are persistent, improving contribution incentives

but also limiting the ability of attackers to inject nodes

at arbitrary locations in the overlay.

• Heterogeneity of trust relationships foils timing at-

tacks: OneSwarm users define links as either trusted

or untrusted and keep this information private. As the

protocol behavior varies with link type, the combined

use of trusted and untrusted links greatly diminishes

an attacker’s ability to infer the length of an overlay

path based on timing information.

• Lack of source routing limits correlation attacks:

OneSwarm does not provide peers with the ability to

construct arbitrary overlay paths. Attackers could use

this to correlate performance with ongoing transfers.

Such an attack is known to degrade privacy in Tor, for

example [32]. Individual clients have a limited view

of the overlay and cannot control path setup beyond

directly connected neighbors.

• Constrained randomness frustrates statistical attacks:

The uncertainty arising from random perturbations

in the protocol could be reduced through statistical

analysis if repeated probes yielded different draws.

OneSwarm prevents such analysis by making all ran-

dom decisions deterministically with respect to a given

query and link.

• Network dynamics limit value of historical data:

While relationships in OneSwarm are long lived,

the end-to-end paths between senders and receivers

change rapidly due to churn and transient congestion.

This reduces the window of opportunity for adver-

saries to combine data from multiple observations in

order to reverse-engineer user behavior.

5.1 Inferring data sources

Timing attack: By measuring the round trip time (RTT)

of search / response pairs, an attacker can estimate the

proximity of a data source. Usually, paths are lengthy,

making the chances of being next to any particular data

source quite low. For a small number of requests, how-
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Figure 3: An attacker, A, with C1, ..., Ck colluders tests

if a target T is sharing a file.

ever, an attacker might be directly connected to a data

source and also be able to identify it as such based on the

low RTT of response messages.

To frustrate this attack, OneSwarm artificially inflates

delays for queries received from untrusted peers; all re-

sponses to untrusted peers are delayed by a random but

deterministic amount (computed based on the content

hash) in order to emulate the delay profile of forwarded

traffic from one or more hops away.

Even when data sources choose the minimum artificial

delay, the RTT observed by an attacker is indistinguish-

able from that of a data source that is two overlay hops

away and connected via low latency, trusted forwarding

links. In other words, the combined use of trusted and

untrusted links provides many more possible explana-

tions for a given delay profile than a system that uses

only untrusted links.

Collusion attack: Next, we analyze the case of multiple

colluding peers as illustrated by Figure 3. In this exam-

ple, A sends a targeted search to T , receives a search re-

sponse, and observes whether the search was forwarded

to colluding peers C1, ..., Ck. Recall that forwarding

search messages is probabilistic to provide deniability.

Each search message has a configurable probability, pf ,

of not being forwarded to a particular peer. As a re-

sult, a lack of forwarding does not definitively identify

a data source; missing search messages may arise from

random chance. But, a lack of forwarding observed by

many colluding peers is highly suggestive of T sourcing

the object. Assuming a fixed forwarding probability of

pf and k colluders, Pr[Not source|response received] =
(1−pf )k. With just a few colluders, an attacker can gain

very high confidence.

Although effective, this attack requires both attacker

and colluders to be directly connected to the target. The

most likely avenue for this is a public community server

to which the target subscribes. Community servers give

a random set of users to each client. As a result, the

likelihood of an individual attacker being matched with

a specific target for a community server with N members

is n
N

, where n is the number of peers returned for a single

request, 26 by default. To prevent an attacker from sys-
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tematically crawling the entire set of community server

peers, key registrations are limited per-IP and per-prefix,

and the set of randomly returned peers is determined by

performing a consistent hash on the requesting client’s

initially provided public key.

As a specific example, consider achieving greater than

95% confidence in the identification of a data source

given pf = 0.5 for peers received from a community

server.3 Achieving 95% confidence in identification re-

quires at least six directly connected peers (an attacker

and five colluders). For a community server with N

users, the likelihood of achieving a particular number of

direct connections is given by the complement of a bi-

nomial CDF with success probability n
N

. In the case of

a community server returning n = 26 peers with 1,000

users, the probability of 30 attackers achieving six di-

rect connections with a target is much less than 1%. At-

tempting to achieve six or more connections with any

peer (rather than a specific target) increases the likeli-

hood of success to 10%. More broadly, the effectiveness

of either variant of this attack in practice depends on the

resources of an attacker relative to the population of a

public community server. Privacy depends on this ratio

being small, and privacy-conscious users are free to de-

crease their forwarding probability (pf ) or avoid public

community servers completely. By contrast we note that

we were able to monitor the interest patterns of tens of

millions of BitTorrent users with only a dozen machines

at UW.

5.2 Deconstructing overlay paths

Our discussion so far has considered attacks aimed at

confirming whether a specific user is sharing a particu-

lar object. We next consider the more generic attack of

attempting to locate any data source for a particular ob-

ject, but without having a specific target a priori. This

requires first deconstructing the overlay path to a poten-

tial data source before testing if it is sharing the object.

To do this, a group of attackers can use coordinated mea-

surements of search response message propagation to

infer the likely next hop along an overlay path, monitor

or attempt to peer with that client, and then repeat.

The feasibility of this attack depends on the length,

stability, and diversity of paths to the object. Lengthy

paths require more iterations to deconstruct, during

which time the path may vanish due to mesh dynamics.

Similarly, the existence of a large, dynamic replica set

and/or many paths creates an ever-changing “direction”

towards sources, confounding inference based on search

response RTTs. We find that this is frequently the case

for the OneSwarm workload; search response messages

do not have a consistent next hop, even for back-to-back

3Low values of pf for community server peers are offset by the high

amount of path diversity among them.

Figure 4: The distribution of search / response RTTs

and the distribution of variance for RTTs on identical

overlay paths with more than 10 search responses.

searches monitored by many vantage points.

To evaluate this, we analyze search response RTT

measurements collected by a set of PlanetLab nodes run-

ning instrumented OneSwarm clients. As with would-be

attackers, these nodes are bootstrapped via public com-

munity servers. Each node monitors all search requests

it forwards, recording the RTTs of search response mes-

sages. For a given search, the peer responding with the

least RTT across all measurement nodes is the likely next

hop to the data source. We measure the stability of first

responders for back-to-back search requests; i.e., is the

first responder for a given search the same as the first re-

sponder for the next search? With ten vantage points,

65% of back-to-back searches have the same first re-

sponder. Surprisingly, increasing the number of vantage

points to 100 reduces back-to-back consistency to 63%.

On the whole, it is difficult to reason about the likely di-

rection of search response messages since the ordering

of responses is highly variable.

The unpredictable ordering of search response mes-

sages is attributable to the naturally large variations in

message delays. Figure 4 summarizes the distribution of

response RTTs for more than 42 million searches. Large

RTTs suggest lengthy paths; the majority of search re-

sponse messages are observed more than one second

after forwarding their corresponding search. Even so,

a variety of confounding factors make reasoning about

path length on the basis of delay difficult. OneSwarm is

willing to tolerate lengthy queueing delays at congested

nodes (up to 7 seconds in our current implementation).

Since search response messages are interleaved with

data traffic, response times may be controlled by either

1) network propagation delay, 2) lengthy overlay queue-

ing delay at congested intermediaries, or 3) the protocol-

imposed propagation delay of search messages. These

effects manifest in significant variations in RTTs for even

identical paths (i.e., responses carrying the same path

ID). We point out that this data was collected before the

reduction of the minimum search delay to 150 ms in the

publicly available client release and also before the inclu-
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Figure 5: Cumulative distribution of peers per-client.

sion of randomized search response delays, and so the

current implementation is likely to exhibit even greater

variability, but a smaller minimum delay.

Very capable monitoring agents can use these types

of attacks to deduce some activities of OneSwarm users

in limited cases. But, systematically monitoring user

behavior requires significant effort and resources, e.g.,

to quickly compromise the machines of multiple over-

lay hops to deconstruct paths. Compared to the ease

with which third parties monitor P2P networks today,

OneSwarm provides users with substantial privacy gains.

6 Evaluation

To evaluate OneSwarm, we measure its performance and

robustness both in the wild and synthetically using trace

replay. OneSwarm has been downloaded hundreds of

thousands of times to date, and we use a combination

of both voluntarily reported user data as well as instru-

mented clients to quantify OneSwarm’s real-world effec-

tiveness at the scale of thousands of users. To examine

OneSwarm’s operation at even larger scale, we replay

traces of the social graph and usage behavior of more

than one million last.fm users. In both cases, our main

result is that OneSwarm provides high throughput and

availability in spite of the overhead arising from preserv-

ing privacy. In support of this conclusion, we also mea-

sure the effectiveness of OneSwarm’s protocol mecha-

nisms and report usage and workload statistics.

6.1 Real-world deployment

Methodology: Although many aspects of user behav-

ior are (deliberately) obscured by designing for privacy,

we draw on two sources of data to profile overall sys-

tem overhead, utilization, and performance. The first

of these is voluntarily reported summary statistics from

more than 100,000 distinct OneSwarm users collected

over a seven month period. These include the total num-

ber of peers, how frequently various peer import methods

are used, and aggregate data transfer volumes.

Our second source of data is instrumented OneSwarm

clients running on 150 PlanetLab [25] machines. Sub-

scribing to several public community servers boot-

Figure 6: Comparing transfer times mediated by the

OneSwarm overlay to direct transfer.

straps connectivity for these clients, providing each with

dozens of random OneSwarm peers. Our PlanetLab

nodes act as passive vantage points to measure the the

background forwarding traffic in the overlay. To date,

this has resulted in an average of 766 GB of traffic for-

warded per day.

We have also measured other properties of

OneSwarm’s workload such as session times, geo-

graphic distribution, network-level locality, diurnal

usage patterns, upload and download capacity dis-

tributions, NAT status, and object popularity. These

results are generally consistent with existing studies of

widely-used P2P networks.

Overlay structure: Although many overlay links in

OneSwarm are based on social relationships, the graph

structure overall is strongly influenced by the random

matching of public community servers, as well as the ten-

dency for many users to import a large number of keys

en masse from websites maintaining active user lists.

Both of these effects are reflected in the distribution of

overlay peers per user shown in Figure 5. This distribu-

tion shows significant variations in connectivity. While

some users maintain hundreds or even thousands of peer

connections, the median value is just 22. The sudden

increase in mass near this value is attributable to com-

munity servers, which return 26 peers by default. Subse-

quent increases arise from users subscribing to multiple

community servers. For clients reporting data, 53% of

peers are imported from community servers, 46% manu-

ally, with the remaining 1% of peers coming from LAN,

email invitations, or social network import.

Overhead: OneSwarm uses multihop overlay forward-

ing to share data without attribution, introducing signif-

icant overhead relative to direct point-to-point transfers.

Given the lengthy paths suggested by our measurements

of search response message timings, a concern is that

forwarding demands might overwhelm overlay capacity

and degrade end-to-end performance.

To quantify the impact of overhead on transfer perfor-

mance, we compare the time taken by transfers 1) when

mediated by overlay forwarding and 2) when using a
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Figure 7: The distribution of client upload capacity uti-

lizations over the course of one day. Although most

clients have excess capacity, transient congestion occurs

at many nodes.

direct point-to-point connection between sender and re-

ceiver. If the overlay is not capacity constrained, we

would expect both transfers to have a similar duration,

on average, and indeed, we find this to be the case for

transfers conducted between our PlanetLab nodes.

Figure 6 summarizes the ratio of the overlay and direct

transfer times between our PlanetLab nodes. There are

two cases. We first measured transfer times when shar-

ing random data between pairs of 20 PlanetLab nodes

and while disabling all other PlanetLab clients; i.e., the

overlay did not benefit from any additional forwarding

capacity. We measured transfers between 75 pairs chosen

randomly without replacement. A ratio of 1.0 means that

overlay and direct transfers took identical time, with ra-

tio > 1 indicating a faster direct transfer and ratio < 1 in-

dicating a faster overlay transfer. This is a worst case for

OneSwarm as PlanetLab nodes are generally of higher

capacity than the typical OneSwarm peers doing the for-

warding. In addition the download had only one data

source ruling out any performance gains from multi-

source downloads. Even without the addition of Planet-

Lab forwarding capacity, overlay transfers does not im-

pose a performance bottleneck in most cases, some trans-

fers are faster and some slower with the median ratio of

overlay and direct transfer times being 0.94.

We next investigated whether adding PlanetLab for-

warding capacity to the overlay would improve transfer

times. We repeated the experiment over several weeks

and between all our PlanetLab hosts, comparing perfor-

mance for 683 pairs of transfers. In this case the median

performance ratio is 0.76; i.e., more often than not, trans-

fers mediated by the overlay complete faster than direct

point-to-point transfers. We attribute these performance

gains to OneSwarm’s use of multiple overlay paths caus-

ing favorable TCP effects due to concurrent TCP connec-

tions and potentially lower per-hop RTT.

Utilization: Although the overlay benefits from a sur-

plus of capacity in aggregate, individual paths and in-

dividual nodes are often congested, motivating our use

Figure 8: A comparison of single and multi-path transfer

performance.

of congestion-aware search and multi-path transfers. To

confirm this, we examine each user’s reported utilization

over time. For the set of users reporting transfer volume

statistics, we compute the maximum transfer rate over all

reported 15-minute intervals and treat this as the capac-

ity for a given IP address, computing utilization for all

other 15 minute periods relative to this maximum. These

samples are summarized in Figure 7. Although average

utilization is 49%, many nodes are frequently bandwidth

limited; node utilization is 95% or greater during 23%

of measured intervals. In short, temporarily overloaded

clients are not uncommon despite the overlay being over-

provisioned on average.

Multi-path transfer performance: Unlike systems that

anonymize traffic at the packet level, OneSwarm data

transfers can tolerate out-of-order data delivery, allow-

ing us to use multi-path and multi-source transfers to

improve performance and robustness. This is crucial in

wide-area P2P environments defined by heterogeneity.

Each individual path exhibits the bandwidth capacity of

its slowest link. Given the highly skewed bandwidth ca-

pacity distribution of P2P nodes, the capacity of individ-

ual multi-hop paths is typically low.

To confirm this, we compare the multipath transfer

rates achieved between PlanetLab nodes during overlay

transfers to the performance of separately measured indi-

vidual forwarding paths. Both distributions are summa-

rized in Figure 8. Multi-path transfers average 457 KBps,

while single path transfer rates average just 29 KBps.

As an additional comparison, we measured transfer rates

achieved when routing traffic over Tor between the same

set of PlanetLab nodes, which yielded an average transfer

rate of 20 KBps. The combination of transient conges-

tion, bandwidth heterogeneity, and potentially lengthy

paths all contribute to the benefits of multi-path trans-

fer, which is essential for providing good performance

and robustness.

6.2 Trace replay in the last.fm social graph

Our evaluation of OneSwarm in the wild is constrained

by our limited view of the network and its topology. To
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complement this, we use trace data from the last.fm mu-

sic website to drive a large-scale simulation of file shar-

ing mediated by a social overlay network. The site allows

users to publish their music playback histories to others

and define social relationships. We crawl these histories

to build a trace of the user behavior and social relation-

ships of 1.7 million users. last.fm’s workload is a chal-

lenging case for OneSwarm as the overlay structure is

sparse and limited to social links only. In practice, many

OneSwarm users complement their trusted friend links

with untrusted links from public community servers. In

this section, we apply this trace to OneSwarm. Addi-

tional details regarding our crawl and analysis are avail-

able in the appendix.

Methodology: Our last.fm trace data drives a discrete

event simulator with ten second timesteps. Each last.fm

user is interpreted as a OneSwarm user, friend links in the

last.fm social graph correspond to OneSwarm peers, and

each unique song request made by a user is interpreted

as an object request in the overlay network. Searches are

cancelled when 10 distinct paths are discovered.

We assume that all users have unconstrained download

capacity, and each user is assigned an upload capacity

limit drawn from a measured distribution of BitTorrent

capacities [18]. Each user starts as a replica for songs that

user listened to during the first week of our trace, and we

begin the trace playback at the outset of the second week.

Object sizes are derived from the measured lengths of

songs, and we assume a constant data rate of 128 Kbps.

To exercise capacity constraints, we increase this data

rate to 1 Mbps for indicated trials; this rate is consistent

with high quality streaming web video.

To evaluate the impact of user lifetimes on availability,

we compare trace playback 1) when all users observed in

the last.fm trace are active (we refer to this as “always

on”), and 2) when users persist in the overlay for eight

hours after playback of the final song of their session.

Object availability: A simple metric that distills the fea-

sibility of F2F overlay forwarding is the fraction of ob-

jects requests satisfied; i.e., those that discover at least

one replica in the overlay. During trace replay, 11% of

searches fail for the last.fm workload with both always

on and 8 hour lifetimes during peak load. During sim-

ulations spanning the time period of minimum load, the

fraction of failed searches increases to 24% as a large

fraction of the network becomes disconnected because

of the sparse nature of the last.fm overlay.

Searches can fail for any of three reasons: 1) the song

being requested occurred only during the second week

of our trace (no replicas exist), 2) all available replicas

are offline, or 3) no path exists to the query source from

available replicas due to either overloaded or unavailable

nodes along the path. Object requests of the first type

(no replicas exist) account for 6% of total demand in our

Figure 9: Path length stretch. For the last.fm workload,

the majority of transfers use shortest paths. As data vol-

ume increases, capacity constraints induce stretch.

trace. These searches are certain to fail and correspond to

the songs listened to by just one last.fm user in our trace.

This implies that the remaining cases (capacity overload

and/or replica unavailability) cause search failures in just

5% of cases during peak load and in 18% of cases during

minimum load.

Overhead: OneSwarm discovers paths to replicas by

flooding search messages among friends. Although the

majority of data transfered is due to popular objects, the

majority of control traffic stems from requests for unpop-

ular object for which search messages are forwarded to

nearly every active node in the overlay (during periods

of low contention). This is an explicit design choice to

improve availability in OneSwarm.

We compute search overhead as the fraction of control

messages making up overall traffic. For the last.fm work-

load with always on lifetimes, overhead is 27% of total

data traffic. The increased data rate during video play-

back reduces the fraction of overhead to 6%. Overhead

with 8 hour lifetimes is higher than when peers are al-

ways on since the relative low density of the graph makes

it difficult to find the 10 unique paths required to cancel

the search. For peers with 8 hour lifetimes, the overhead

is 77% for the last.fm workload and 43% for the video

workload. Although large both fractionally and by total

volume, recall that search messages are forwarded only

when a node has idle capacity. As a result, capacity con-

sumed by control traffic is not capacity lost during data

transfers, assuming unconstrained download capacity.

Stretch: In addition to promoting availability by discov-

ering potentially rare replicas, flood-based search also

typically discovers short paths. When objects are large,

trading control traffic for short paths is preferable; re-

ducing the number of forwarding hops for bulk data

can save the equavilent of an enormous volume of rel-

atively tiny control messages. We measure how often

OneSwarm discovers (and can use) the shortest available

paths by computing the path length stretch for transfers

during trace replay. We compute stretch as the average

path lengths to all replicas used during a file download

12



weighted by the fraction of total data attributable to a

given replica. The distributions of stretch for various

workload conditions are shown in Figure 9.

The last.fm workload with always on lifetimes is the

best case. Path diversity is high and aggregate de-

mand is much less than aggregate capacity. In this case,

OneSwarm uses shortest paths for 55% of transfers with

an average path length from source to replica of 4.8. 95%

of objects have a stretch ≤ 1.2. Path diversity is reduced

when lifetimes decrease (8 hour, average path length

5.1); this increases stretch. In both cases, a small frac-

tion of requests traverse paths with frequent contention,

increasing stretch. Increased data rate (HQ web video)

increases stretch as well, but this increase is attributable

to contention for bandwidth rather than node unavailabil-

ity. With always on lifetimes, just 28% of video transfers

use shortest paths (average path length 5.8).

7 Deployment experience

Since its release, OneSwarm’s evolution has been guided

by feedback from the user community. Broadly, our

experience has been extremely positive, with enthusias-

tic users providing debugging insights, language trans-

lations, and suggestions for future improvements. We

summarize two aspects of user behavior and feedback

that have had a fundamental impact on the evolution of

OneSwarm’s design.

Bootstrapping requires nurturing communities: Our

initial software release included three methods of ex-

changing keys to bootstrap overlay connectivity: 1) im-

porting contacts Google Talk (GTalk), 2) local network

discovery, and 3) manual exchange. Our expectation was

that the majority of users would prefer the automatic

management provided by GTalk key import and rarely

use other options. This was wrong.

In practice, the most common method of bootstrap-

ping connectivity among early adopters was manual key

exchange. Thousands of users exchanged keys freely on

the public message board at OneSwarm’s website. Sur-

prisingly, several technically savvy power users set up

dedicated websites for so-called regional key sharing,

wherein users from a particular country could exchange

keys to foster data sharing among a community with a

single language and/or shared interests. Users of these

sites provide their public key and are provided an up-to-

date list of keys from other members in turn. (Unsurpris-

ingly, software support for rapidly importing multiple

keys was the most frequently requested feature during

this time.) This model for key exchange motivated the

design and implementation of community servers, which

have largely supplanted manual key sharing sites.

Users ignore inconvenient trust assumptions: Because

we expected that peer connections would be based pri-

marily on social relationships, our initial design assumed

mutual trust among directly connected peers. Unfortu-

nately, even technically savvy users typically ignored this

requirement, adding peers from public bulletin boards.

For most users, the sophistication required for launch-

ing attacks, even when directly connected, provided suf-

ficient privacy to make performance and availability their

primary concern.

Assuming trust among directly connected peers

greatly simplified the security analysis of our initial de-

sign by removing the challenging case of a directly con-

nected attacker. Since this assumption was ignored, we

provided protocol support for untrusted peers and to con-

sider explicitly the possible attacks of this case.

8 Related work

Providing privacy and anonymity for Internet data trans-

fers is a longstanding goal of the research community,

and we draw on many existing ideas in our design.

Privacy: Relaying electronic messages through inter-

mediaries to obscure the source and destination from

third parties was first proposed for anonymous email by

Chaum [9]. Anonymizer provides anonymization ser-

vices commercially, providing a centralized service that

relays web traffic [4]. Crowds [28] provides anonymous

web browsing by randomly tunneling requests via other

system participants. Herbivore [29] enables anonymous

file-sharing by providing a more scalable implementation

of DC-nets [8]. Herbivore provides strong anonymity at

the cost of significantly increased overhead relative to ad-

dress rewriting. Our focus on bulk data distribution leads

us to adopt a design that adapts these classic techniques

to modern workloads.

Tor [13] uses onion routing techniques to anonymize

requests via a set of relay nodes. More recent work has

shown that the same functionality can be achieved with-

out a public key infrastructure [19]. Tarzan uses similar

address rewriting techniques in a P2P context [16]. Al-

though we use data forwarding for privacy, OneSwarm

does not have exit-nodes. Often, the malicious activ-

ity emanating from exit nodes is attributed to their host-

ing organizations, discouraging users from hosting exit

nodes. Also, OneSwarm is not architected as a service;

to use the network, users must run the client, promoting

balanced capacity and demand.

OneSwarm differs from all these systems in its sup-

port for a spectrum of data-sharing models and peer trust

relationships. Our deployment showed that this diversity

was needed in practice.

Trust: Incorporating real-world trust relationships has

been a crucial design element in several recently pro-

posed systems. SybilGuard [31] uses properties of social

networks to ferret out synthetic identities in social sys-

tems. In Ostra [24], the scarcity of social connections

is used to combat spam. UIA [15] provides data routing
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and name resolution over a socially constructed overlay

of personal devices. Turtle [27] is a file-sharing applica-

tion that limits direct communication to only the social

graph in an attempt to circumvent third-party monitor-

ing. Freenet [10] version 0.7 includes a so-called darknet

mode of operation that is similar, restricting transfer to a

social connections only.

Our experience suggests that using social connectivity

alone is insufficient for many users. Instead, OneSwarm

augments a social topology with a variety of additional

untrusted links to ease bootstrapping, improve robust-

ness, and by allowing for a mixture of peer sources fur-

ther enhance privacy. Anonymous publishing systems

such as Freenet provide anonymous storage for public

data stored by other nodes in the network. In contrast,

OneSwarm users control the sharing of their own data

via permissions and store only the data that they produce

or have explicitly downloaded.

Workload: Our measurements and analysis of the

last.fm workload are largely consistent with existing

work that characterizes sharing in P2P networks [5, 17,

26] and usage of popular content sharing sites [7]. Inde-

pendent measurement efforts have shed light on the prop-

erties of popular online social networks [6, 22, 23]. Our

measurements build on understanding developed in this

prior work, combining measurements of a social graph

with a trace of sharing activity on that graph, and we

make this combined data set available to the community.

9 Conclusion

Although widely used, currently popular P2P file sharing

networks expose user behavior to silent, third party mon-

itoring. This occurs even when the material being shared

is completely legitimate. To address this, we have built

OneSwarm, a file sharing system designed to reduce the

cost of privacy to the average user. We develop novel

techniques for efficient, robust, and privacy-preserving

lookup and data transfer. We provide users flexible con-

trol over their privacy by defining sharing permissions

and trust at the granularity of individual data objects and

peers. The OneSwarm client is publicly available for

download on Linux, Mac OS X, and Windows, and it is

in widespread use around the globe. Our measurements

with the live OneSwarm deployment show that it de-

livers on its promise: privacy-preserving downloads on

OneSwarm are roughly as fast as a direct Internet trans-

fer between the two nodes, and an order of magnitude

faster than using Tor for the same operation.
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Figure 10: Complementary cumulative distribution

(CCDF) of degrees for all users in the last.fm trace. A

best-fit power law distribution is shown (α = 1.51) for

comparison.

Appendix

A last.fm workload

In this section, we report additional details regarding our

measurements of the last.fm workload.

A.1 Social network

Our crawl discovered 1,768,197 users and 6,325,306 so-

cial links. Most users that had social links were in a

single large connected component. Because last.fm does

not provide a count of all active users, we estimate cov-

erage by sampling users and computing the fraction of

these that were observed during our crawl. last.fm pro-

vides lists of users per country, and our samples were

drawn randomly from the set of all users providing coun-

try information.4 We sampled 8,081 such users of which

4,263 occur in our crawl (53%). Of the remaining users,

92% have no social links. The remaining 8% of users are

grouped into small, disconnected clusters. These results

suggest that our crawl covers the largest connected com-

ponent in the social network and that the overwhelming

majority of remaining users have no social links.

Degree distribution: Figure 10 shows the complemen-

tary cumulative distribution function (CCDF) of degrees

for all users observed in our trace. Our crawl reveals

that the majority of users have very low degree. 30%

of users have just one social link, the median degree is

3, and 81% of users have 10 or fewer friends in last.fm.

This is in many ways the worst case for our work: reach-

ing the majority of fringe users requires longer average

path lengths. Also shown is a best-fit power law distribu-

tion (α = 1.51) obtained using the maximum likelihood

method [11]. The Kolmogorov-Smirnov goodness-of-fit

metric for the fit is 0.137. Unlike other social networks,

the last.fm degree distribution does not strongly follow a

power-law.

4Although we could sample such users by screen scraping web

pages, enumerating all users in this manner violates the API accept-

able use policy.
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Figure 11: The fraction of nodes in the largest connected

component of the last.fm social graph (y-axis) as an in-

creasing fraction of high degree nodes are removed (x-

axis).

A.2 Resilient core

Social networks tend to have a highly connected core of

nodes. For protocols built on social networks, this may

hinder both performance and robustness. When avail-

able, core nodes may become bottlenecks. When un-

available, path lengths increase, raising overhead and re-

ducing capacity, and some nodes become completely dis-

connected.

For our purpose, understanding the structure of the

core is crucial for system design. If most paths neces-

sarily transit the core, these nodes will need to manage

carefully the sharing of scarce resources. But, if signifi-

cant path redundancy exists, core nodes can (and should)

be avoided during periods of congestion.

To understand which of these effects dominates, we

perform the following analysis. After removing a frac-

tion of the highest degree nodes from the graph, we com-

pute the resulting connectivity and repeat this removal

for an increasing fraction of nodes. The results are sum-

marized in Figure 11. Connectivity degrades slowly,

suggesting the existence of redundant paths around any

highly connected nodes. This data differs somewhat

from previous studies of online social networks [23].

For example, Mislove et al. showed that removing only

0.01% of nodes split off over twenty percent of users into

their own disconnected islands, while leaving most of the

rest connected. We speculate that this difference is due to

last.fm lacking publish/subscribe support for extremely

popular nodes; lacking these nodes, the last.fm graph is

already split into a connected component and many iso-

lated users. President Obama may (as of this printing)

have millions of “friends”, but he is unlikely to medi-

ate file sharing requests for each of them. The Flickr

connected component fractured completely after the re-

moval of 10% of the highest degree nodes; in contrast,

the last.fm social graph fractured after removing 24% of

the highest degree nodes. At the very least, our data in-

dicates more diversity in resilience among social graphs

than previously thought, and we caution therefore that
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Figure 12: Unused client bandwidth for transfers involv-

ing either the fastest single path, multiple paths, or mul-

tiple paths for the subset of clients with more than five

friends

our results may not generalize beyond our data set.

Synthesizing these results, we observe that limited

path redundancy is expected for those users with ex-

tremely low degree. But, for the set of nodes with even

modest connectivity, redundant paths exist, even after

targeted removal of high degree nodes. From the per-

spective of building OneSwarm, these results call for an

adaptive design. High load on core nodes should be de-

tected and alternate paths used. But, in circumstances

where such paths are the only option, resource sharing

must be effective.

A.3 Path properties

The average path length in the last.fm social graph is 7.1,

and the diameter is 14.5 Paths between last.fm users tend

be longer than those of other social networks, e.g., Mis-

love, et al. report average path lengths between 4 and 6

for popular social networks [23]. We attribute this dif-

ference to the absence of very high degree nodes in the

last.fm data set, and to the relative prevalence of low de-

gree nodes; both factors increase path length.

Longer average path lengths present a challenge for

multi-hop overlay forwarding; any single path is likely

to have some node with limited capacity, and each path

is only as fast as its slowest link. However, we lack the

ability to measure the bandwidth of each last.fm user. In-

stead, we synthesize this data by assigning each user in

the last.fm social graph a bandwidth capacity, drawn ran-

domly from a previously measured bandwidth distribu-

tion of BitTorrent users [18].

Figure 12 compares 50,000 randomly selected

{source, receiver} pairs in terms of utilization of sender’s

capacity, for various transfer disciplines. This data shows

the potential for improvement from using multiple paths.

Even assuming we could find the fastest single path, just

24% of user pairs saturated the sender’s capacity. This

increases to 39% when using multiple paths. With mul-

5Because computing all shortest paths in such a large graph is not

computationally feasible, these results are based on a sample of 50,000

randomly selected user pairs.

Figure 13: CCDF of the number of unique users listening

to a given song for all observed songs.

tiple paths, performance is limited by the large fraction

(nearly 30%) of last.fm users with only a single friend.

The most significant increase in performance comes

from combining multiple paths and multiple friends. In

this case, 60% of senders are fully utilized. Figure 3 con-

servatively assumes only a single source for a specific

piece of data; we relax that assumption next.

A.4 Listening habits

This section reports measurements of the listening be-

havior of last.fm users. We focus on the workload prop-

erties most relevant to the design of OneSwarm. These

are: 1) the popularity of objects, 2) the variation in de-

mand among users, and 3) the total and peak demand.

We discuss each of these in turn.

Object popularity: For file sharing systems layered on

social networks, path lengths depend on both the connec-

tivity of users and the object popularity. Even if paths

between users are typically lengthy, paths to popular ob-

jects may be short because of replication. We first con-

sider object popularity in terms of requests per object.

This is shown in Figure 13. Most objects receive few re-

quests from unique users; 64% of songs are listened to

by just one user.

Although the majority of objects are unpopular, as ex-

pected, popular objects account for the majority of total

demand. Figure 14 shows the cumulative fraction of total

system demand attributed to objects ordered by decreas-

ing popularity. We reproduce an identical accounting

for demand in the BitTorrent P2P file sharing system for

comparison. Demand is skewed in both BitTorrent and

last.fm but both the heads and tails of the distributions

differ. Unpopular objects contribute significantly more

to total demand in last.fm than in BitTorrent. Songs lis-

tened to by three or fewer unique users account for 10%

of total demand. Also, popular last.fm objects account

for a larger fraction of total demand than do popular Bit-

Torrent objects. The top 5% of objects account for 79%

of total demand in last.fm and 63% in BitTorrent.

The comparatively large fraction of total demand at-

tributable to unpopular objects may stem from last.fm’s
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Figure 14: Cumulative distribution of object demand in

the last.fm and BitTorrent workloads.

approach to data collection. Existing P2P workload mea-

surements are influenced by the properties of the distri-

bution system. For example, if unpopular objects have

poor availability in a particular P2P network, an object

request trace is likely to underrepresent the true demand

for those objects. Since last.fm simply records user be-

havior when interacting with their own libraries, it does

not exhibit this bias.

The implications of this data for the design of

OneSwarm are twofold. 1) The skew in object popular-

ity implies that many requests will be for popular objects

with plentiful replicas; locating these will not require a

thorough search of the entire overlay, presenting an op-

portunity to reduce overhead. 2) But, to provide high

availability for less unpopular objects, OneSwarm should

be able to conduct a thorough search if needed.

Demand per user: Figures 13 and 14 show demand

from the perspective of objects. We next turn to demand

per user. For last.fm, demand per user is the distribution

of songs played, shown in Figure 15. Demand varies by

orders of magnitude; some user histories include 10s of

songs while others include 1000s. This type of skew in

demand is typical of object request workloads. While

one might expect heavy users of last.fm to also have

many friends, the length of play history and the number

of friends are only weakly correlated (ρ = 0.14). From

the perspective of file sharing, this implies that a signifi-

cant fraction of requests will come from users with only

limited connectivity.

The measurements in Figure 15 describe only active

users, i.e., those that listen to at least one song. Surpris-

ingly, these users are in the minority; 52% of measured

last.fm users did not listen to any songs during our two

week trace. If availability correlates with activity, proto-

col designers building on social networks should expect

a large fraction of the social links to be unavailable even

over lengthy time scales. Over shorter time scales, the

last.fm usage exhibits a typical diurnal pattern with peak

activity of 7.3% of users and a typical daily minimum of

2%, obtained using our fine-grained measurements of the

Figure 15: The cumulative fraction of users (y-axis)

playing a given number of unique songs (x-axis) or fewer

in our two week trace.

listening behavior of 1,000 users.

Total demand: Over the two weeks of our activity trace,

we observed 799,953 users that listened to at least one

song with 156,295,286 total songs played. Of these,

15,120,192 were unique song requests per user. Mul-

tiplying this value by the average song length in bits

(weighted by popularity) gives an estimate for the total

demand. Assuming an audio bitrate of 128 Kbits/s, to-

tal demand for measured last.fm users over two weeks is

44.6 TB.

Our measurements suggest that, at least for a music

sharing workload, multihop overlay forwarding is prac-

tical given current broadband capacities. Distributing

44.6 TB in two weeks requires just 4.2 MB of data per

user per day. Even when forwarded over multiple hops,

this meager amount of traffic is still well under the giga-

bytes of total capacity of even a modest 1 Mbit home

broadband connection. Further, because our trace ac-

counts for only two weeks of usage, we overestimate the

steady-state demand of the last.fm workload. The num-

ber of unique songs added by the second week of our

trace was roughly half the unique songs discovered dur-

ing the first week.

B Supplemental security analysis

While different attackers might seek a wide range of in-

formation we are focusing our analysis towards protect-

ing the information that our users consider most impor-

tant to protect.

• Sharing behavior: Who is sharing a certain file

F ? / Is a person X sharing file F ? This is the pri-

mary information we are protecting and our aim is

to make attacks aimed at revealing sharing behavior

difficult even for powerful attackers.

• Content of privately shared files: Not all files

in OneSwarm is shared with the everyone in the

network. OneSwarm supports private sharing and

keeping access to this information to the users al-

lowed is critical.
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• User interest: Who is searching for file F ? / Did

person X initiate a certain search?

• Overlay structure: Some attacks are easier to

mount if the global overlay structure is known by

the attacker. Because of this we do not want to

reveal information about the overlay structure un-

necessarily, on the other hand, limited information

about the overlay structure is of lesser value so leak-

ing some information is acceptable.

B.0.1 Adversary capabilities:

OneSwarm aims to protect against a wide range of at-

tackers, the attacker could be anything from an private

corporation monitoring user behavior or a large number

of user, to a nosy person trying to figure out if a friend

is sharing a certain file. Below is a list of capabilities

that we expect attackers to be able to possess. We enu-

merate (but do not consider further) attacks and attackers

described in Section 5.

• Arbitrary OneSwarm users: An attacker that is

connected to the OneSwarm network and thus in-

directly connected to every other OneSwarm user in

that component of the network.

• Untrusted peers: A user connected directly con-

nected to a OneSwarm user, Alice, as an untrusted

peer. This could either be a peer that is marked as

untrusted by Alice or a trusted friend that wishes to

get information about files that Alice has chosen to

not show to that particular friend thus making him

untrusted with regards to those files.

• Colluding untrusted peers

• Trusted friends

• Local wiretap: An attacker that can monitor all Al-

ice’s network traffic. This encompasses everything

from law enforcement with wiretap permission to a

hacker running a rouge access point or monitoring

traffic at an open wireless network.

We have systematically investigated which attacks

against the OneSwarm network that can be launched by

users with different capabilities. An overview of these

can be found in Table 1.

B.1 Attacker with local wiretap

In this section we consider attacks from an attacker that

can monitor all network traffic to and from Alice. This

could for example someone at a coffeeshop monitoring

an open wireless network, a employer monitoring a cor-

porate network or a small ISP monitoring its customers.

It should be noted that if Alice was using any of the

currently popular P2P networks an attacker with this ca-

pability would have complete knowledge of what she is

downloading/uploading and searching for.

Inferring overlay links: An attacker with local packet

sniffing capability will be able to see which IPs Alice

is connected to enabling them to discover the IPs of the

connected friends.

Inferring the source of data: Since the attacker can see

only encrypted network traffic, it will not be possible to

know which files are shared by a person. However, an

attack can inspect the differences in the amount of data

uploaded and downloaded. If the amount uploaded is

larger than the amount downloaded, it indicates that the

person is sharing some unknown data at that time. Since

OneSwarm will discard any data queued for forwarding

when overlay channels are closed, the natural churn in

the system will cause some uncertainty regarding the ac-

curacy of uploaded and downloaded volumes.

Inferring the source of searches: An attacker can only

see the encrypted network traffic, so it will have to rely

on the difference in uploaded and downloaded traffic to

be able to detect if the person is performing a search.

Because of the small size of search messages and the fact

the a OneSwarm user constantly is forwarding searches

for other users, this attack requires a very low volume of

background traffic to be successful. To further limit the

usefulness of this attack, even a successful attack would

only be able to detect that the user performed a search at

that time, while the content of the search would not be

visible to the attacker.

B.1.1 Attacks by friends in the social network

Inferring the source of data: Alice has complete con-

trol over which files that are visible to which friends,

even if the friends are trusted. Alice is free to change

OneSwarms behavior towards them on a per-file-per-

friend basis. If Alice allows a peer to see a certain file

that file is included in a file list, that file can be requested

by the peer. If Alice does not allow a certain friend to see

a certain file, Alice will treat any requests from that peer

as though received from an untrusted peer.

Inferring the source of searches: The vulnerability in

this case is the same as for colluding untrusted friends.

We point out that before Alice starts the download, she

can specify which peers that can see the file. If she allows

a peer to observe a file, that peer will be able to see the

file in Alice’s file list once the download starts.

B.1.2 Attacks by people distant in the network

Inferring social links: Reasoning about the actions of

a targeted OneSwarm user becomes much easier if an

attacker can learn about the complete set of that user’s

friends. Given our use of existing social networks to

bootstrap OneSwarm social links, an attacker that ob-

tained access to a user’s Google Talk contact list could
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Attacker Infer source of data Infer source of search Infer overlay links

Internet user Absolute privacy Absolute privacy DHT inital friend connect

attack

OneSwarm

user

Can get user/IP of “likely next

hop” and rough estimate of

hop count

Can get user/IP of “likely

previous hop”

Search timing attack discov-

ering if 2 untrusted friends

are friends with each other

Untrusted peer Rough estimate of hop count,

lowest possible estimate will

be at least 2 hops giving Alice

plausible deniability

Know if Alice is “likely pre-

vious hop”

Search timing attack discov-

ering which directly con-

nected peer are friends with

Alice

c colluding

untrusted peers

Same as single untrusted +

search forward attack with

P (falsepositive) = ((1 −
pf )c−1)

same as single untrusted same as single untrusted

Trusted peer Exposed by design Exposed by design Same as single untrusted

Local wiretap Know existance of transfer

but not content / final destina-

tion

Know existance of search

but not content / final

destination∗

Get IP of Alices currently

connected peers

Untrusted peer

+ local wiretap

Know if Alice is sharing file

with hash h

TCP reset spoof attack →
Know if Alice is source of

search

Same as Local wiretap

Table 1: Information discovered by attackers with different capabilities, ∗In the absense of background traffic

learn about many potential OneSwarm friends. But, the

potential for manual addition of friends hampers defini-

tive reasoning using these sources alone. A determined

attacker A can test if two users P and Q are friends as

follows. Suppose A is friends with both P and Q (ei-

ther by accidental addition or compromising an existing

friend’s machine). A can send P a search message and

measure the time before receiving the forwarded search

from Q. If this time is roughly twice the search forward-

ing delay), P and Q are likely to be directly connected.

An analogous timing attack can be conducted with two

colluders: one friend of P and one friend of Q compar-

ing message receive times.

Inferring the source of data: A timing attack similar to

that described for iteratively localizing search sources

applies to data sources as well (by measuring search re-

ply receive times rather than those of search messages).

This is frustrated by randomized delays and the high

level of background traffic in the network.

B.2 Combination attacks

In this section we consider attacks where the attacker has

several of the capabilities listed above. Rather than enu-

merating all possible combinations we will instead dis-

cuss attacks that can be launched with limited resources

but still provide the attacker with information.

B.2.1 Local packet sniffing, untrusted peer link:

Here we consider an attacker that can monitor all of Al-

ice’s network traffic and is connected to Alice via an un-

trusted peer link. The attacker seeks to deduce whether

Alice is sharing content with hash h. He will monitor the

difference in uploaded and downloaded bytes on Alice’s

network interface. Unless Alice’s upload link is satu-

rated with other uploads, the difference in uploaded vs

downloaded bytes will change as the attacker is starting

and stopping the download of h, while the download is

running Alice will upload more data than she downloads.

By repeatedly starting and stopping the download the at-

tacker can look for a matching pattern in Alice’s network

activity. The existence of such a pattern implies that Al-

ice is sharing the file.

B.2.2 Local packet sniffing, indirectly connected to
Alice through the OneSwarm network

Here we consider an attacker that can monitor all of Al-

ice’s network traffic and in addition is connected to the

OneSwarm network and indirectly connected to Alice

through any number of intermediaries. The attacker will

lanuch the start/stop download attack described above. If

a pattern emerges in Alice’s network traffic Alice is shar-

ing the specific file. For this attack to be successful the

following must be true:

• Alice has spare upload capacity

• The attacker is close enough to Alice in the over-

lay that searches for the hash will reach her before

getting dropped.

• The file is rare enough or attacker close enough that
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the search will not be canceled before reaching Al-

ice.

• The overlay path(s) between the attacker and Al-

ice has enough spare capacity to cause a significant

change in Alices network traffic.

Very capable monitoring agents can use these types

of attacks to deduce some activities of OneSwarm users

in limited cases. Compared to the ease with which third

parties monitor P2P networks today, OneSwarm provides

users with substantial privacy gains.
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