
 Open access Posted Content DOI:10.1101/046920

Privacy-Preserving Read Mapping Using Locality Sensitive Hashing and Secure Kmer
Voting — Source link

Popic, Serafim Batzoglou

Institutions: Stanford University

Published on: 03 Apr 2016 - bioRxiv (Cold Spring Harbor Labs Journals)

Topics: Encryption, Locality-sensitive hashing and Cloud computing

Related papers:

 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

 Fast and accurate short read alignment with Burrows–Wheeler transform

 Fast gapped-read alignment with Bowtie 2

 Mash: fast genome and metagenome distance estimation using MinHash.

 Towards Secure and Fast Mapping of Genomic Sequences on Public Clouds

Share this paper:

View more about this paper here: https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-
516k8e31j7

https://typeset.io/
https://www.doi.org/10.1101/046920
https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7
https://typeset.io/authors/popic-3i0vtdo5di
https://typeset.io/authors/serafim-batzoglou-1a9ixp5rte
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/encryption-3by21bfi
https://typeset.io/topics/locality-sensitive-hashing-3sgz8t0y
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/papers/assembling-large-genomes-with-single-molecule-sequencing-and-3owcjv6cvc
https://typeset.io/papers/fast-and-accurate-short-read-alignment-with-burrows-wheeler-43uqhgr33c
https://typeset.io/papers/fast-gapped-read-alignment-with-bowtie-2-2axet5ses2
https://typeset.io/papers/mash-fast-genome-and-metagenome-distance-estimation-using-3b84vfnedh
https://typeset.io/papers/towards-secure-and-fast-mapping-of-genomic-sequences-on-7o0ifw0cna
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7
https://twitter.com/intent/tweet?text=Privacy-Preserving%20Read%20Mapping%20Using%20Locality%20Sensitive%20Hashing%20and%20Secure%20Kmer%20Voting&url=https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7
https://typeset.io/papers/privacy-preserving-read-mapping-using-locality-sensitive-516k8e31j7

Privacy-Preserving Read Mapping Using Locality Sensitive

Hashing and Secure Kmer Voting

Victoria Popic⋆ and Serafim Batzoglou

Department of Computer Science, Stanford University, Stanford CA, USA
{viq, serafim}@stanford.edu

Abstract. The recent explosion in the amount of available genome sequencing data imposes high
computational demands on the tools designed to analyze it. Low-cost cloud computing has the potential
to alleviate this burden. However, moving personal genome data analysis to the cloud raises serious
privacy concerns. Read alignment is a critical and computationally intensive first step of most genomic
data analysis pipelines. While significant effort has been dedicated to optimize the sensitivity and
runtime efficiency of this step, few approaches have addressed outsourcing this computation securely
to an untrusted party. The few secure solutions that have been proposed either do not scale to whole
genome sequencing datasets or are not competitive with the state of the art in read mapping. In this
paper, we present BALAUR, a privacy-preserving read mapping algorithm based on locality sensitive
hashing and secure kmer voting. BALAUR securely outsources a significant portion of the computation
to the public cloud by formulating the alignment task as a voting scheme between encrypted read and
reference kmers. Our approach can easily handle typical genome-scale datasets and is highly competitive
with non-cryptographic state-of-the-art read aligners in both accuracy and runtime performance on
simulated and real read data. Moreover, our approach is significantly faster than state-of-the-art read
aligners in long read mapping.

1 Introduction

Recent sequencing technology breakthroughs have resulted in a dramatic increase in the amount of available
sequencing data, enabling important scientific advances in biology and medicine. At the same time, the com-
pute and storage demands associated with processing genomic data have also substantially increased and now
often outmatch the in-house compute capabilities of many research institutions. Outsourcing computation
to commercial low-cost clouds (e.g., Amazon Elastic Compute Cloud, Azure, Google Cloud), which offer the
ability to allocate massive compute power and storage on demand, provides a convenient and cost-effective
solution to this problem. However, exposing genomic data to an untrusted third party also raises serious
privacy concerns since genomic data carries extremely sensitive personal information about its owner, such
as ethnicity, ancestry, and susceptibility to certain diseases. A recent review [9] describes the growing concern
over the ability to protect personal genetic privacy. As summarized by the review, the privacy of genetic
information is currently a demand of many regulatory statutes in the US and EU and a major determinant
of whether individuals are willing to participate in scientific studies. While, de-identification (i.e., removal of
personal identifiers) and anonymization techniques have been suggested as solutions to this problem, it has
been shown that such techniques cannot reliably prevent the identification of an individual from genomic
data [9, 12, 31, 33]. For example, numerous identity-tracing attacks have been demonstrated using quasi-
identifiers, including demographic metadata [29, 30], pedigree structures [25], and genealogical data [11,17].
The vulnerabilities of such approaches motivate the need for cryptographic techniques to process and store
genomic information.

Read alignment is a critical and computationally intensive first step of most genomic data analysis
pipelines. While tremendous effort has been dedicated to this problem, leading to the development of many
highly efficient read mapping tools [18,20,21,23], few approaches have addressed outsourcing this computation
securely to an untrusted party. The few secure solutions that exist either do not scale to whole genome
sequencing [3, 13, 15] datasets or are not competitive with the state of the art in read mapping [8]. For
example, the protocol [3] for computing edit distances using homomorphic encryption (HOM) [10] requires 5
minutes on a single pair of 25-bp sequences [15], and the approach [13] using secure multi-party computations,
while more efficient, still takes 4 seconds for a pair of 100-bp sequences. Such compute costs cannot scale

⋆ Corresponding author.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

to whole genome computations, which require the pairwise comparison of millions to billions of sequences.
Recently, Chen et al [8] proposed a secure seed-and-extend read mapping algorithm on hybrid clouds, which
splits the computation such that the public cloud finds the exact seed matches using encrypted seeds and
the private cloud extends the seed matches using unencrypted data. With this approach, mapping 10 million
100-bp reads takes 372 CPU hours: 1.5h on 30 nodes (with 8 cores/node) on the public cloud and an
additional 2h on the private cloud. Here the time spent on the private cloud alone is comparable with the
total runtime of a standard state-of-the-art aligner. For instance, the Bowtie2 aligner [18] takes 12 minutes
to map 2 million 100-bp long reads on a single core with a peak memory footprint of 3.24GB. Moreover,
to align 100-bp long reads with an edit distance of six, this approach requires 6.8TB to store the reference
index. Therefore, although it can handle genome-scale computations in reasonable time, this approach still
significantly exceeds the compute and storage requirements of standard read aligners.

In this paper we introduce BALAUR, a novel privacy preserving read mapping technique for hybrid clouds
that securely outsources a significant portion of the read-mapping task to the public cloud, while being
highly competitive with existing state-of-the-art aligners in speed and accuracy. At a high level, BALAUR can
be summarized in the following two phases: (1) fast identification of a few candidate alignment positions
in the genome using the locality sensitive hashing (LSH) (on the secure private client) and (2) evaluation
of each candidate using secure kmer voting (on the untrusted public server). We leverage LSH and the
MinHash [7] technique in Phase 1, by formulating the task of finding the candidate alignment positions as
nearest neighbor search under the Jaccard set similarity criterion, searching for reference sequences that are
most similar to the reads. To rapidly find such sequences, we first pre-compute the MinHash fingerprints of
reference genome windows and store them in our MinHash reference genome index (MHG) data structure,
designed to efficiently scale to full human genome datasets. The high selectivity of the MHG is crucial for our
alignment algorithm, since it significantly decreases the overhead associated with encrypting and transferring
the selected reference sequences for secure voting in Phase 2. It also demonstrates the effectiveness of LSH
and MinHash for whole-genome alignment in general and especially for long read mapping. We describe each
step in detail in the remainder of this paper, analyze the security guarantees of our approach and present an
evaluation of its performance on simulated and real read datasets. The BALAUR algorithm was implemented
in C++ and is freely available at http:://viq854.github.com/balaur.

2 Background

2.1 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is a probabilistic dimensionality-reduction technique that has been intro-
duced by Indyk and Motwani [14] to address the approximate similarity search problem in high dimensions.
Its key property is to maximize the probability of collision of objects that are similar. In particular, let H
be a family of hash functions h : Rd → U . An LSH scheme defines a probability distribution over the family
H, such that given two objects x, y ∈ Rd: Prh∈H [h(x) = h(y)] = similarity(x, y).

For example, a simple family of functions H can be constructed for d-dimensional binary vectors from
{0, 1}d under the Hamming distance metric. In this case, the family of functions can just consist of all the
projections of the input points from {0, 1}d onto one of the d vector coordinates; namely, of the functions
hi(x) = xi, where i ∈ {1, ..., d} is a random index into the vector x. It can be easily seen that under such
hash functions, the probability of collision of the hashes of two given vectors will be equal to the fraction
of coordinates that are equal between the two vectors. For a survey of different LSH families see [2]. In
computational biology, LSH has been applied to several tasks, including motif discovery [32], genome-wide
association studies [6], and more recently SMS read overlap detection for de novo assembly [5].

In this work we apply LSH to hash the reference genome and the reads, such that the hash values (referred
to as fingerprints) of the read and its genome window collide with high probability. Since the read can differ
from the reference sequence it maps to due to sequencing errors and true genomic variants, our similarity
measure needs to handle differences in the two sequences arising from base substitutions and indels. A
standard approach for measuring the similarity between two strings is to represent them as sets (e.g., a set
of all the words in a document). Then the similarity of two such sets A and B can be expressed by their

Jaccard coefficient : J(A,B) = |A∩B|
|A∪B| . Several LSH families have been proposed for the Jaccard similarity

criterion. Below we describe one of the most popular such techniques; namely, the MinHash algorithm, which
we applied to NGS datasets in this work.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

http:://viq854.github.com/balaur
https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

MinHash Algorithm. The min-wise independent permutations (MinHash) LSH family has been proposed
by Broder et. at [7] for the Jaccard similarity measure and is defined as follows. Let U be the ground set of all
possible set items. Given a random permutation π of indices of U and a set X, let hπ(X) = minx∈X{π(x)}.
The MinHash LSH family H will consist of all such functions for each choice of π. It can be easily shown
that for a given h chosen uniformly at random, Pr[hπ(A) = hπ(B)] = J(A,B) (see [7] for details).

Due to the high variance in the above probability of collision, an amplification process is usually applied
to reduce it. More specifically, instead of using one hash function, we concatenate L different hash functions
from the family H chosen independently at random. It can be shown that given the number of the hash
collisions among the chosen L functions, c, the ratio c/L can also be used as an unbiased estimator for
J(A,B). Since computing random permutations can be prohibitive, the hash functions are typically created
using universal hash functions of the form: h(x) = ax+ b. We follow a similar approach in our method.

3 Methods

3.1 MinHash Fingerprinting

Algorithm 1 Rolling MinHash

1: procedure MinHashRoll(M,moldest, Fw)
2: wp+1,last ← last kmer in window wp+1

3: Hlast ← Ĥ(wp+1,last)
4: for i = 0 to L do

5: minh ← hi(Hlast)
6: if minh < Fwp

(i) then
7: Fw(i)← minh

8: M(i,moldest)← minh

9: else if M(i,moldest) != Fw(i) then
10: M(i,moldest)← minh

11: else

12: Fw(i)← MAX VAL

13: M(i,moldest)← minh

14: for j = 0 to n do

15: if M(i, j) < Fw(i) then
16: Fw(i)←M(i, j)

17: moldest ← (moldest + 1) mod n

In order to apply the set Jaccard similarity measure to the ref-
erence genome windows and the read sequences, we represent
them as sets of overlapping kmers. Given a sequence S, the
set of overlapping kmers consists of all the substrings of S of
length k. There is a clear tradeoff between the length k and the
sensitivity of the results. If k is low, the resulting kmers will
be short and shared by many sequences; on the other hand, if
k is too large, there might be no kmer matches between the
read and its corresponding reference window due to sequenc-
ing errors and genomic variations. We found k = 16 to provide
a good balance. Furthermore, due to the repetitive nature of
the genome, some kmers can be more informative than others.
In particular, kmers that occur frequently across the genome
carry little information value and are ineffective sequence mark-
ers. These kmers are analogous to uninformative commonplace
words, such as ’the’ and ’an’, in a word document. We discard
such frequently occurring kmers from the sequence set.

Given the set K = {s0, s1, ..., sn−1} of kmers of length k of
a read or reference window sequence S, its MinHash fingerprint vector F = [f0, f1, ..., fL−1] is created as
follows. First each kmer in the set is hashed using a deterministic hash function Ĥ, resulting in the set of
kmer hash values KĤ = {Ĥ(s0), Ĥ(s1), ..., Ĥ(sn−1)}. We then apply L random universal hash functions of
the form hi(x) = aix+ bi to each element of KĤ . The fingerprint entry fi is the minimum set element under
each hash function hi:

fi = min{hi(Ĥ(s0)), hi(Ĥ(s1)), ..., hi(Ĥ(sn−1))}.

3.2 MinHash Reference Genome Index

To rapidly find the windows of the genome most similar to the reads under the Jaccard metric, we construct
a MinHash reference genome index (MHG) as follows. We apply the MinHash algorithm to each window of
the genome (of length equal to the length of the reads) to obtain its fingerprint Fw. Windows of the genome
containing only high-frequency kmers and ambiguous-base kmers are excluded. Once the fingerprints are
computed, each window is stored in multiple tables corresponding to distinct fingerprint projections. We
describe these steps in detail below.

Rolling MinHash. Using the fact that consecutive windows of the genome are related, we developed a
rolling MinHash technique to more efficiently compute the fingerprint of window wp+1 from that of window
wp, where p and p+ 1 are consecutive positions in the genome. This technique is applied as follows.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

s0

s1

sn-1

K = { s0, s1, …, sn-1 }

genome window (w)

kmers!

KĤ = { Ĥ(s0), Ĥ(s1), …, Ĥ(sn-1) }

Ĥ!

h0! h1!
hL-1!

min! min! min!

F = [f0 , f1 , f2 , f3 , … , fL-1]

fingerprint!

[f1, f3, fL-1]

b"

projF (z)!

hash tables!

t0!

t1!

tz!

tT-1!

buckets!

B-1!

Ĥ
V
!

1!0! x!

x = ĤV(projF(z))!

w!

Fig. 1: Indexing of a single window of
the genome using L hash functions for
the fingerprint, T hash tables, and pro-
jections onto b=3 dimensions.

Let M be a matrix of size L × n, where L is the length of
the fingerprint and n is the size of the kmer set. The function
MinHashRoll shown in Algorithm 1 takes as argument the matrix
M , the column index moldest, and the fingerprint vector Fw obtained
for window wp; it then updates the state of these three variables
accordingly, with the fingerprint of wp+1 being stored in Fw. The
three variables are initialized for the first genome window w0 as fol-
lows: M(i, j) = hi(w0j), where w0j is the kmer at position j in w0,
moldest = 0, and Fw(i) = min(M(i, ·)). The MinHashRoll procedure
is then applied for all successive windows p > 0. The optimization
is due to the fact that the minimum over each row of M only needs
to be recomputed when the wp minimum value in that row comes
from a column corresponding to moldest and is smaller than the hash
value of the last kmer in wp+1. This technique greatly reduced the
computation time of the indexing step.

Window Bucketing. By the MinHash property, the number of en-
tries shared between the fingerprints of two given sequences is equiv-
alent to the similarity of the original sequence sets, near-duplicate
sequences resulting in fingerprints sharing multiple fi entries; there-
fore, in order to identify such sequences, we need to efficiently com-
pare their corresponding fingerprints. Since pairwise fingerprint com-
parisons would result in an infeasible running time, the fingerprints
are further hashed into T hash tables using LSH as follows. Let
projF be a projection of the fingerprint vector F onto b-dimensions.
Given b and T , we generate T random projections of F by creating
T vectors of length b of sparse indices into F and extracting the F
coordinates at those indices. Each projection vector is then hashed
into B buckets (s.t. B = 2M) using the multiply-shift hash func-
tion ĤV initialized with a vector (a0, ..., ab−1) of random odd 64-bit
integers. The hash value of each projection is computed as follows:
ĤV (projF) = (

∑b−1
i=0 projF (i) · ai) ≫ (64 − M). As a result, each

of the B buckets in a given hash table, will store the positions of
the windows whose fingerprints under the table’s projection hashed
to that bucket (i.e., windows that share at least the b fingerprint
coordinates selected by the projection). The index construction is
schematically illustrated in Figure 1.

Memory Reduction and Parallel Construction. There is a clear tradeoff between the number of hash
tables used and the sensitivity of the algorithm, more hash tables allowing us to identity more potential
hits. However, the space consumption scales linearly with the number of tables and when indexing the
full human genome, the memory requirement for large enough T can be too high. In order to reduce the
memory footprint of the index, we use the following scheme: instead of storing each position separately in
the buckets, we store contigs, defined by a position and a length, that represent consecutive genome windows
that hashed to the same bucket under the same projection. Since the genome is indexed in a linear fashion,
the positions will be inserted into the buckets in sorted order; therefore, it is only necessary to check the last
inserted position. As a result of this storing scheme, the produced indices are significantly smaller in size.
The greatest compression is achieved for larger windows. For example, for window length of 150-bp, 2.83B
genome windows were found to have valid MinHash fingerprints; bucketing them into T = 78 tables resulted
in 6.58B total entries across all the tables, which constitutes a 33.5× size reduction. For windows of length
1000-bp, the reduction in size was 245×. The memory requirements for the full human genome reference
GRCh37 MHG index under the parameters L = 128, T = 78, b = 2,M = 18 used in our experiments vary
according to the index size as follows: 150-bp: 74GB, 350-bp: 30GB, 1000-bp: 11GB, 10000-bp: 1.1GB. To
further reduce the index size, we also provide optional sampling, under which the position p is not added to
the bucket if it is within ǫ of p′, which can result in potentially larger contigs to be handled during alignment
(this behavior is disabled by default).

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

We parallelized the index construction algorithm using OpenMP and use the TBB C++ library’s scalable
allocators [28] to optimize the frequent bucket memory allocations. Each thread hashes the windows of a
contiguous region of the reference genome sequence and maintains local buckets to eliminate lock contention.
When the threads are done processing the genome, the per-thread local buckets are merged. Given the
present scheme, indexing the full reference genome on the Intel Xeon X5550 processor takes 1.3 hours using
4 cores on windows of 1000-bp with the parameter setting L = 128, T = 78, b = 2,M = 18.

3.3 Secure Read Mapping on Hybrid Clouds

Overview. At a high level, our alignment algorithm can be divided into two main steps: (1) read MinHash
fingerprint computation to select candidate contigs from the precomputed MinHash reference index (Phase
1) and (2) kmer voting to select the optimal alignment position among the candidate contigs (Phase 2).
Phase 1 constitutes a small fraction of the runtime for typical NGS datasets and currently runs on the secure
client, while Phase 2 is outsourced to the public cloud. In order to outsource Phase 2, the client encrypts and
transfers kmers generated from the read and candidate windows to the cloud, which can then be securely
used for voting. We discuss the algorithm and privacy analysis of each phase below.

Threat Assumptions. We assume the “honest-but-curious” adversary cloud model, which follows the read
alignment protocol correctly but might still try to infer the read sequences from the input data it sees and
any background information it has obtained. The computation on the private client and the client-server
communications are assumed to be secure. Our goal is to prevent the cloud from deciphering the original
read sequences, which can lead to the identification of the individual they came from.

We reasonably assume that the adversary has access to the standard reference genome used during
alignment. This data enables the adversary to perform numerous statistical attacks even on encrypted kmer
datasets if a deterministic cryptographic scheme (DET) is used to encrypt the kmers, which will produce the
same ciphertext value for equal plaintext kmers, allowing the adversary to detect repeats. We differentiate
between local repeat structures (LRS), formed by equal kmers inside each read or contig, and global repeat
structures (GRS), formed by kmer collisions across reads or contigs. The information leaked by both types of
repeat structures can be exploited in a variety of attacks.

For instance, an LRS attack counting intra-read or contig kmers can be designed as follows. For each win-
dow of the genome (e.g. of length equal to the read length), the adversary can precompute kmer histograms
representing how many times different kmers occurred in this window. Using LRS, similar histograms can
also be computed for each read from the encrypted kmers. Finding matches between read and reference
histograms can then potentially uncover the encrypted read sequences. We instrumented such an attack in
order to assess how identifiable are the reference windows from their kmer histograms. For a window length
of 150-bp, we found 91% of the windows of the genome to have no 20-bp long repeat kmers (i.e., every kmer
occurs exactly once, making such windows unidentifiable); however, various unique patterns emerged in the
remaining 9% of the windows, suggesting that leaking LRS is not secure.

Similarly, the GRS information can also be used to instrument a frequency attack by counting how many
times each kmer occurred in the entire read dataset. Assuming that this frequency is equivalent to the kmer
frequency inside the reference genome, the adversary can create a mapping between plaintext sequences and
encrypted kmers found to occur with similar frequencies (this attack was analyzed by Chen et al [8] since their
algorithm allows the adversary to compute such frequencies; however, they determined that this information
would not offer much re-identification power to the attacker). GRS information can be further exploited if the
relative positions of the kmers inside each sequence are also known. For instance, the adversary can attempt
to assemble reads or initial contigs into longer contigs by detecting suffix-prefix kmer overlaps (e.g., using
a standard overlap graph assembly algorithm [4]). Longer contigs can then enable more effective histogram
attacks since their kmer histograms would result in signatures that are more unique (especially when coupled
with kmer position information). Furthermore, identifying repeating kmer tuples in non-overlapping reads or
contigs can also leak information due to potential unique co-occurrence patterns (we refer to attacks using
this information as GRS-pattern attacks). For example, if two kmers are observed in one contig at a relative
distance x but in a different contig at a relative distance y, then if there exists a single pair of kmers that
co-occur at distances x and y in the reference genome, we can exactly identify these two kmers. Any number
of more complex co-occurrence patterns can be similarly exploited.

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2: Distribution of the number of candidate contigs (cropped) selected per read computed over 100K read datasets
for varying read lengths. The percentage of reads for which the true contig was selected is shown on top of each
distribution.

Given the above vulnerabilities, our voting technique must not leak LRS and GRS information. In order
to provide this guarantee, we apply a masking scheme to hide local repeats and employ different encryption
keys for each voting task to hide GRS. We provide further details and analyze the security guarantees of our
approach in the next sections.

Phase 1: Read MinHash Fingerprinting and Candidate Contig Identification. During the first
phase of the alignment process we compute the MinHash fingerprints of each read in order to identify a
small set of candidate alignment positions in the genome, which are expected to be similar to the reads
under the Jaccard similarity metric. The fingerprints are computed using the procedure described in Section
3.1. Given the fingerprints, we also calculate the T b-dimensional projection hash values to retrieve the
genome windows that share the fingerprint entries selected by each projection. As detailed in Section 3.2,
each of these hash values corresponds to a particular bucket in the T index hash tables. Thus we obtain T
buckets, each containing contigs of windows which share at least b entries with the read (we use b=2 in our
experiments, which guarantees that the candidate windows and the read share at least two entries in their
fingerprints). This step comprises only a small portion of the total alignment runtime for typical read lengths
(see Results) and is not currently outsourced to the public cloud in order to avoid the communication costs
associated with shipping the read kmers, as well as potential inference attacks (see Appendix A).

Intuitively, the more buckets a window shares with the read, the more likely it is to be the correct
alignment: a perfect match, for instance, would share all T buckets. Therefore, given the contigs from all
the buckets, the final processing step in identifying the best candidate contigs is to find the rough contig
duplicates and count the total number of buckets they are present in, bhits. To do so, our client performs a
simple n-way merge using a min-priority heap that stores (contig, bid) tuples of the entries in the buckets
(where bid uniquely identifies each bucket), relying on the fact that the buckets have been sorted by increasing
position during indexing. We use a threshold bmin hits to represent the minimum bhits required for a contig
to be considered a strong candidate, as well as keep track of the highest bhits seen so far, bbest hits. A given
contig is passed to the next alignment step if its bhits ≥ bmin hits and it is within some predefined range from
bbest hits. Figure 2 illustrates the effectiveness of the MinHash index in reducing the number of candidate
alignment positions to only a few contigs per read given the bmin hits thresholds of 1 (i.e. the contig is
processed even if it is only present in one bucket) and 2 (i.e. the contig must be present in at least two
separate buckets). As expected, a higher bmin hits threshold results in a much smaller number of processed
contigs. We can see that our MinHash index allows us to select fewer than 10 contigs for most reads. This
high selectivity is crucial for our alignment algorithm, since it significantly decreases the overheads associated
with encrypting and transferring the selected contigs for Phase 2.

Phase 2: Secure Kmer Voting. Given a contig, the second phase of the algorithm is to estimate the
displacement φ which best aligns it to the read, as well as a score which measures the quality of that
alignment. We define a voting task to represent such a read and contig pair and employ the following voting
technique to process each task resulting from Phase 1 (each task can be executed in parallel on the cloud).

Let’s start by representing a read R and a candidate contig C as a set of kmers and their associated
positions: {...(sRi , p

R
i)...} and {...(sCj , p

C
j)...}, respectively (our implementation currently uses 20-bp overlap-

ping kmers). Assume we have found the correct contig. With no error and only unique kmers, a single match

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

M(i,j) := (sRi == sCj) would unambiguously yield the correct alignment. Namely: φ(i,j) = pCj − pRi . We say
that match M(i,j) votes for the alignment position φ(i,j). Given noisy data and non-unique kmers, however,
no single match is guaranteed to be correct. Furthermore, due to potential insertion and deletion errors, all
correct matches may still not agree on a precise alignment. Therefore, we search for the alignment which
(roughly) explains the maximum number of kmer matches as follows. First we let each kmer in the read
matching a kmer in the contig vote for the respective alignment positions. As a result we obtain a vector V
of votes for each position in the contig. Since we expect some votes to be split across neighboring positions
due to indels, we perform a simple convolution over V to collect neighboring votes, resulting in a new vector
V̄ , where V̄i =

∑2n
j=0 Vi−n+j (we use n = 10 in our experiments). The position in V̄ with the maximum

number of votes is selected as the best alignment position, with the number of votes representing its score
(if a range of positions have the maximum number of votes, we pick the middle position in the range). As
we process all the contigs, we keep the best score r1 and second best score r2 found per read in order to
identify situations when a read can map well to multiple positions and estimate the mapping quality of our

alignments. We currently use the simple formula α×(r1−r2)
r1

(similar to other methods like BWA-SW [22]) for
our mapping quality.

Our goal is to outsource Phase 2 securely to the cloud. The main requirement then is to encrypt the
kmers and positions securely. We propose two protocols for executing the voting scheme above, using DET
and HOM to encrypt the kmers, respectively. Our implementation uses the first protocol since it is more
practical and we focus on this protocol in the rest of the manuscript. The second protocol is described in
Appendix B.

Kmer Hashing. A key property of our voting protocol is that it does not require the comparison of
kmers across voting tasks, since we only need to detect kmer matches between a read and its candidate
contig to count the votes. This allows us to avoid leaking GRS information by associating unique secret keys
with each voting task and computing the kmer hashes as follows. First we apply a standard cryptographic
hash function SHA-1 (with a 256-bit secret key K) to each kmer, which guarantees that even kmers that
only differ by a single nucleotide are hashed to completely different values. SHA-1 produces a 20-byte digest,
of which we use the first 8 bytes as our kmer hash (note, both the SHA-1 hashing scheme and the length of
the kmer hash can be easily replaced in our method by another deterministic cryptographic hashing scheme
without affecting its resulting alignment accuracy). Next we apply an additional encryption step to each
digest using a set of two randomly-generated 64-bit keys, (kT1 , k

T
2), that are unique for each voting task T ,

such that a kmer si associated with a given task is set to the following value: ((SHA-1K(si) ⊕ kT1) × kT2).
While we could use a unique per task secret key with SHA-1 to avoid the second encryption step, this would
prevent us from precomputing the contig kmer hashes ahead of time, increasing our voting data encryption
overheads on the client. Instead, using the two-step procedure, we can optimize the encryption time by
only having to apply the faster second step to the precomputed SHA-1 reference kmers. As a result, kmer
collisions can be detected within each task but not across different tasks. Finally, in order to avoid leaking
LRS information, we need to mask repeat kmers inside each read and contig. To mask a repeat kmer, we
can replace its hash value with a random 64-bit value. While this would be sufficient when comparing kmer
values only, such masking can be detected when evaluating the matching pattern between read and contig
kmers. For example, if kmer positions are given and we observe a kmer mismatch enclosed by kmer matches
in both the read and the contig, we can deduce that the mismatch is due to masking (since the matching
predecessor and successor kmers will entirely cover the bases of the mismatching kmer). Therefore, in order
to avoid this leak, we mask the neighboring kmers of each repeat as well, such that there are at least v
masked kmers around each repeat, where v is the length of the voting kmers.

In order to minimize bandwidth, our method also supports sampling the contig kmers, such that only a
fraction of kmers are sent to the server and participate in voting. The configurable sampling rate parameter,
ρ, controls the sparsity of the sampled kmers. We evaluate the effects of sampling and repeat masking on
alignment accuracy in the Results section.

Position Binning. While we cannot reveal the actual position of contig kmers in the reference genome,
we only need the relative positions of the kmers inside the contig in order to compute the local displacement
of each match and count the votes. The displacement that received the most votes could then be sent to
the client and added to the global start position of the contig inside the reference. Our protocol reveals only
the partial ordering of the kmers inside the read and contig, shuffling kmers falling into different bins. In
our experiments, we use a bin size β = 20 (equal to the length of the kmers), such that the position of

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

each kmer is ambiguous within β positions and only the relative positions of the bins are known (e.g. β = 1
would reveal the full ordering of the kmers). More specifically, the stream of read or contig kmers received
at the server, can be broken down into bins of size β, such that bin Bi (i.e. ith bin in the stream) contains β
kmers in an arbitrary random order that fall in the range [l, h) = [i× β, i× β + β). In this case, each kmer
match casts a vote for a range of positions (as opposed to a single position described above) equivalent to
the positions obtained if every single kmer in the contig bin matched every kmer in the corresponding read
bin, namely: [lC − hR + 1, hC − lR].

When kmer sampling is enabled (as described above), binning the positions can mediate the effect of
masking repeat neighborhoods on alignment accuracy (as shown in Results). Namely, for a sampling rate ρ,
if there are β/ρ unique kmers in the bin, these kmers will be selected for voting (without having to reveal
their precise positions in the bin) and the bin will not be masked; otherwise, masking will be applied on the
entire bin. Furthermore, binning the positions minimizes the information learned about the pattern in which
the read kmers matched against the contig.

Privacy Analysis. As discussed above, our voting scheme does not leak LRS and GRS information,
preventing the adversary from detecting any repeats in the dataset and thus avoiding the defined frequency
attacks. The main information the adversary has is the result of each voting task: the number of kmers
matched and their binned positions. However, given the presence of errors across the reads (a single error
will result in a different matching pattern) and SNPs in the genome (e.g., unrelated reads covering different
SNPs might share the same voting results), we are unaware of a statistical attack that could use this
information. Additionally we also reveal the length of the candidate contigs. The length of the contig is
determined by how many contiguous windows of the genome fell into the MHG buckets matched by a read’s
MinHash fingerprint. While precomputing the same bucket structure would be difficult for the adversary
when the projections and the L hash functions are unknown, we can eliminate this vulnerability by splitting
long contigs into multiple pieces up to length Λ. Furthermore, we also add a small randomly selected amount
of padding to each contig in order to prevent contig matching across tasks using their lengths. Splitting the
contigs or adding extra padding does not affect the accuracy of the results, while having a negligible compute
and communication overhead (since the amount of padding used and the number of required splits is small).

By default, our voting tasks consist of a single read and candidate contig pair. This prevents the adversary
from learning the number of candidate contigs matched by each read (since it cannot correlate which tasks
belong to the same read), as well as protects against the GRS-pattern attack. While most reads match only a
few contigs (see Figure 2), this number can vary based on how repetitive the read sequences are in the genome
(and can represent a strong signal for highly repetitive sequences); however, below a certain low threshold
Z, the number of reads matching at least Z candidate contigs would become uninformative. Therefore, we
provide functionality for batching contigs, such that a task can store a read and multiple candidate contigs.
This mode can reduce the encryption time and the bandwidth requirement (since we would not need to ship
read kmers encrypted with different task keys for every single candidate contig). However, batching does
result in vulnerability to the GRS-pattern attack. In order to evaluate our method with maximum security
guarantees, we do not enable batching in our experiments.

4 Results

Length Program
1 % 2%

Q10% Err% Time (s) Q10% Err% Time (s)

150-bp
BALAUR 96.0 0.03 62 94.4 0.03 85
Bowtie2 95.9 0.02 68 94.5 0.03 65
BWA-MEM 96.8 0.01 57 96.8 0.02 73

350-bp
BALAUR 97.8 0.003 71 96.8 0.003 106
Bowtie2 97.4 0.006 178 96.5 0.001 169
BWA-MEM 98.4 0.002 169 98.3 0.002 192

Table 1: Evaluation on simulated whole-genome GRCh37 reads.

First it is important to assess whether
our approach of combining LSH and kmer
voting is competitive in accuracy and
performance to the existing read aligners.
In order to do that we simulated 150-bp
and 350-bp long read datasets of 100K
reads each from the human genome ref-
erence GRCh37 using the wgsim program
[19] with the following (default) parame-
ters: SNP mutation rate = 0.09%, indel
mutation rate = 0.01%, and sequencing base error rate = 1% and 2% (typical for the Illumina sequencing
datasets). We compare our results to two of the most popular and efficient read aligners, BWA-MEM [20]
and Bowtie2 [18] using their default settings. All the experiments were performed on a single 2.67 GHz Intel

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Xeon X5550 processor. The accuracy results in a distributed setting will remain the same, while some addi-
tional costs will be incurred due to the client-cloud communication. Runtime is reported for single-threaded
execution. We report the percentage of reads aligned with a mapping quality greater than 10 (Q10) and
the percentage of incorrect alignments out of the Q10 mappings (Err). We considered a read to be mapped
correctly if its reported position was within 20-bp of the true position.

Fig. 3: Evaluation on 150-bp simulated reads.

The results in Table 1 and Figure 3 demonstrate that
BALAUR performs well in comparison to other aligners,
achieving similar high percentages of Q10 mapped reads
and low error rates (with BWA-MEM having a lead over
the other aligners). Examining the Q10 incorrect map-
pings, we found that many of them typically occur when
the true position of the read has not been evaluated in
the second phase of the alignment process, while another
alternative position was found to match the read fairly
well (e.g. in the case of a repeat). Setting bmin hits to 1
and disabling the filtering based on bbest hits, which would
examine every single contig that fell into the read buck-
ets, or increasing the index size, which would increase the
likelihood of the true position being in any of the read
buckets, can be expected to increase accuracy; however,
at the expense of slowing down the runtime. The BALAUR

results were obtained with MHG index parameters: L=128, T=78, b=2, M=18. We also used a kmer sam-
pling rate of ρ = 3, position bin size β = 20, and no contig batching (i.e. voting tasks composed of a read
and a single contig only). We do not incorporate initialization costs (e.g. the allocation of kmer transfer
buffers and MHG loading) into the reported runtime. To examine the effects of LRS kmer masking and
position binning, Figure 3 also shows the results for BALAUR-vanilla, which is a non-secure version of our
algorithm using a faster non-cryptographic hash function (namely, CityHash64 [1]), no repeat masking, and
no position binning. It can be seen that for the above datasets, kmer masking and position binning does not
have a significant impact on the accuracy of the alignment results. Further evaluation of these settings and
the effect of kmer sampling is shown in Supplementary Figure 1.

Fig. 4: Evaluation on simulated long reads with varying
sequencing error rates of 1 - 10%.

Long Reads. As suggested by the results on the
350-bp long read dataset, BALAUR can be substan-
tially faster than other aligners on longer read
lengths. Therefore, orthogonally to security guar-
antees we also explore its effectiveness as a long
read aligner. Several sequencing technologies can
currently produce low error long reads; for exam-
ple, the PacBio CCS reads are ≈3-kb long reads
generated by the single molecule real-time (SMRT)
PacBio RS platform with an approximate 2.5% error
rate [16]; similarly, Illumina TruSeq synthetic long
reads have an estimated error rate of only 0.0286%
per base [26]. However, typical long read datasets
contain higher error rates. In order to evaluate how
our aligner scales with increasing error rates, we sim-
ulated 1,000-bp and 10,000-bp read datasets of 100K
reads from the human genome reference GRCh37
using wgsim [19]. We used the wgsim default poly-
morphism parameters and set the base error rate to 1% and 2% for the 1,000-bp dataset and 4%, 8%, and 10%
for the 10,000-bp reads, respectively. Figure 4 and Supplementary Table 1 present the results. We compare
the results on the 10,000-bp reads with the BWA-MEM and BWA-SW [22] aligners only here since Bowtie2
took a significantly longer time to run on this data. For this experiment we used BALAUR-vanilla, kmer
length of 32-bp, and varying sampling rates and MHG index sizes (the specific configurations are presented

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

in Supplementary Table 1). It can be seen that BALAUR-vanilla achieves significant speedups (ranging from
4-40×) over the two aligners, while maintaining high accuracy.

Fig. 5: Evaluation on real read datasets.

Real Reads. We also assessed the performance of
BALAUR on the following two real read datasets: (1)
1M 150-bp HiSeq2500 reads of the NA12878/HG001
genome and (2) 1M 150-bp HiSeq2500 reads of the
NA24385/HG002 genome (with the same parameters used
for simulated read experiments). The results are shown in
Figure 5. Since we don’t know the true alignment position
of each read, we report the percentage of Q10 mappings
and the runtime. As in simulations, BALAUR achieves sim-
ilar Q10% results; furthermore, we have found that more
than 99.95% of its Q10 mappings are within 100-bp of the
BWA-MEM mapping results.

Runtime and Communication Cost Breakdown.

Finally we evaluate how much computation can be outsourced to the cloud for each read dataset and
the costs associated with each alignment phase. Figure 6 and Supplementary Table 2 present the break-
down of Phase 1 and Phase 2 costs and the required bandwidth for each examined dataset. The reported
“encryption” time includes both kmer hashing and repeat masking, while the “reporting” time represents
the post-processing of the voting results on the client (i.e. selecting the best alignment positions and SAM
output file I/O). It can be seen that the voting step, which can be securely outsourced to the cloud, accounts
for a high percentage of the total runtime, varying across read lengths and sequencing error rates. Since by
design our algorithm must send both the encrypted read and contig kmers as part of each voting task, we
must ensure that our protocol imposes practical communication overheads. From this consideration, the LSH
step is critical since it allows us to narrow down the number of contigs (and hence kmers) sent per read. In
the simulated 150-bp 1% read length experiment, we sent 2.8M contigs total for the read dataset; together
with the read kmers (with 64bits of data per kmer) this required 4.9GB bandwidth. We find this cost to be
high but still practical for current networking speeds, although additional heuristics need to be explored to
drive down the cost further; for example, it would take 40 seconds to transfer this data on a fast 1 Gbps link.
Moreover, this communication delay can be hidden by overlapping the data transfer with computation at
the client side (i.e. the client can encrypt the next batch of reads while a previous batch is being transmitted).

5 Conclusion

Fig. 6: Runtime breakdown.

BALAUR is a practical secure read-mapping algorithm
for hybrid clouds, based on LSH and kmer voting,
and is highly competitive with non-cryptographic
state-of-the-art read aligners in both accuracy and
performance. It incorporates an efficient technique
to index the reference genome using the MinHash
algorithm, which is effective in reducing the com-
putation and communication costs of its secure vot-
ing scheme. Orthogonally, it is highly effective for
long read alignment, achieving significant runtime
speedups over existing tools on longer read lengths.
In this paper we analyzed the security guarantees of
our approach, describing what information it leaks
to the cloud and addressing any adversarial attacks known to us. We leave several interesting directions for
future work. In particular, currently our MinHash and voting schemes use a simple kmer generation principle
(i.e., all overlapping kmers of a certain length); however, more sophisticated kmer designs could be explored
to improve sensitivity (e.g., sparse patterns). Furthermore, a statistical analysis of the risks associated with
batching multiple contigs per voting task can be performed to devise an optimal batching scheme, which
minimizes the number of tasks per read (thus decreasing the bandwidth requirements) while maintaining
appropriate security guarantees.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgement

We thank Stephen Miller and Valeria Nikolaenko for their useful feedback and advice.

References

1. https://code.google.com/p/cityhash/
2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In:

Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. pp. 459–468. IEEE (2006)
3. Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons. In: Proceedings of the 2003

ACM workshop on Privacy in the electronic society. pp. 39–44. ACM (2003)
4. Batzoglou, S.: Algorithmic challenges in mammalian genome sequence assembly. Encyclopedia of genomics, pro-

teomics and bioinformatics, John Wiley and Sons, Hoboken (New Jersey) (2005)
5. Berlin, K., Koren, S., Chin, C.S., Drake, J., Landolin, J.M., Phillippy, A.M.: Assembling large genomes with

single-molecule sequencing and locality sensitive hashing. bioRxiv p. 008003 (2014)
6. Brinza, D., Schultz, M., Tesler, G., Bafna, V.: Rapid detection of gene–gene interactions in genome-wide associ-

ation studies. Bioinformatics 26(22), 2856–2862 (2010)
7. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. Journal of

Computer and System Sciences 60(3), 630–659 (2000)
8. Chen, Y., Peng, B., Wang, X., Tang, H.: Large-scale privacy-preserving mapping of human genomic sequences

on hybrid clouds. In: NDSS (2012)
9. Erlich, Y., Narayanan, A.: Routes for breaching and protecting genetic privacy. Nature Reviews Genetics 15(6),

409–421 (2014)
10. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC. vol. 9, pp. 169–178 (2009)
11. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying personal genomes by surname

inference. Science 339(6117), 321–324 (2013)
12. Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., Pearson, J.V., Stephan, D.A.,

Nelson, S.F., Craig, D.W., et al.: Resolving individuals contributing trace amounts of dna to highly complex
mixtures using high-density snp genotyping microarrays. PLoS Genet 4(8), e1000167 (2008)

13. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX
Security Symposium. vol. 201 (2011)

14. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing. pp. 604–613. ACM (1998)

15. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic computation. In: Security and Privacy,
2008. SP 2008. IEEE Symposium on. pp. 216–230. IEEE (2008)

16. Jiao, X., Zheng, X., Ma, L., Kutty, G., Gogineni, E., Sun, Q., Sherman, B.T., Hu, X., Jones, K., Raley, C., et al.:
A benchmark study on error assessment and quality control of ccs reads derived from the pacbio rs. Journal of
data mining in genomics & proteomics 4(3) (2013)

17. King, T.E., Jobling, M.A.: What’s in a name? y chromosomes, surnames and the genetic genealogy revolution.
Trends in Genetics 25(8), 351–360 (2009)

18. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nature methods 9(4), 357–359 (2012)
19. Li, H.: wgsim-read simulator for next generation sequencing (2011)
20. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint

arXiv:1303.3997 (2013)
21. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics

25(14), 1754–1760 (2009)
22. Li, H., Durbin, R.: Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics 26(5),

589–595 (2010)
23. Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., Wang, J.: Soap2: an improved ultrafast tool for

short read alignment. Bioinformatics 25(15), 1966–1967 (2009)
24. Liao, Y., Smyth, G.K., Shi, W.: The subread aligner: fast, accurate and scalable read mapping by seed-and-vote.

Nucleic acids research 41(10), e108–e108 (2013)
25. Malin, B.: Re-identification of familial database records. In: AMIA Annual Symposium Proceedings. vol. 2006,

p. 524. American Medical Informatics Association (2006)
26. McCoy, R.C., Taylor, R.W., Blauwkamp, T.A., Kelley, J.L., Kertesz, M., Pushkarev, D., Petrov, D.A., Fiston-

Lavier, A.S.: Illumina truseq synthetic long-reads empower de novo assembly and resolve complex, highly-
repetitive transposable elements. PloS one 9(9), e106689 (2014)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Advances in cryptology—
EUROCRYPT’99. pp. 223–238. Springer (1999)

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

28. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core processor parallelism. ” O’Reilly
Media, Inc.” (2007)

29. Sweeney, L.: Simple demographics often identify people uniquely. Health (San Francisco) 671, 1–34 (2000)

30. Sweeney, L., Abu, A., Winn, J.: Identifying participants in the personal genome project by name (a re-
identification experiment). arXiv preprint arXiv:1304.7605 (2013)

31. Wang, R., Li, Y.F., Wang, X., Tang, H., Zhou, X.: Learning your identity and disease from research papers:
information leaks in genome wide association study. In: Proceedings of the 16th ACM conference on Computer
and communications security. pp. 534–544. ACM (2009)

32. Wijaya, E., Rajaraman, K., Brahmachary, M., Bajic, V., Yuan, S.: A hybrid algorithm for motif discovery from
dna sequences. In: 3rd Asia-Pacific Bioinformatics Conference. Citeseer (2005)

33. Zhou, X., Peng, B., Li, Y.F., Chen, Y., Tang, H., Wang, X.: To release or not to release: Evaluating information
leaks in aggregate human-genome data. In: Computer Security–ESORICS 2011, pp. 607–627. Springer (2011)

Appendix

Error, Len Program Q10% Err% Time (s) Speedup

1%, 1K

balaur-v (1) 99.2 0 69
balaur-v (2) 99.2 0 80
bwa-mem 99.2 0 495 7.2/6.2
bowtie2 97.9 0.002 2,781 40.3/34.8
bwa-sw 98.3 0.002 1,026 14.9/12.8

2%, 1K

balaur-v (1) 99.1 0.020 71
balaur-v (2) 99.1 0.008 106
bwa-mem 99.1 0 702 9.9/6.6
bowtie2 97.4 0.002 2,659 37.5/25.1
bwa-sw 98.2 0.004 948 13.4/8.9

4%, 10K

balaur-v (1) 99.4 0.003 471
balaur-v (2) 99.5 0 555
bwa-mem 99.9 0 7,781 16.5/14.0
bwa-sw 99.2 0.002 6,094 12.9/11.0

8%, 10K

balaur-v (3) 99.4 0.003 677
balaur-v (4) 99.4 0.004 1,132
bwa-mem 99.8 0 7,507 11.1/6.6
bwa-sw 99.2 0 5,284 7.8/4.7

10%, 10K
balaur-v (5) 99.4 0.015 1,311
bwa-mem 99.8 0 7,024 5.4
bwa-sw 99.2 0.001 5,056 3.9

Supplementary Table 1: Evaluation on simulated long reads. (1) MHG0, bm = 2; (2) MHG0, bm = 1; (3)
MHG2, bm = 4; (4) MHG1, bm = 1; (5) MHG2, bm = 1. ρ = 4 (1K); ρ = 8 (10K, 4%); ρ = 2 (10K, 8% and
10 %). bm stands for bmin hits. MHG0: (L=128, T=78, b=2, M=18); MHG1: (L=256, T=512, b=2, M=16),
6.7GB; MHG2: (L=256, T=1024, b=2, M=16), 14GB.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Length
Phase 1 Runtime (s) Phase 2 Runtime (s) Total Bandwidth
MinHash Merge Encryption Voting Reporting Time (s) Up (MB) Down (MB)

150-bp, 1% 2.9 7.4 10.3 39.3 2.0 61.9 4,930 110

150-bp, 2% 2.9 7.0 14.3 59.0 2.0 85.2 7,507 168

350-bp, 1% 7.0 5.6 12.7 40.9 4.4 70.6 4,651 44

350-bp, 2% 7.0 5.4 17.2 71.8 4.4 105.8 8,323 80

NA12878 27.7 76.4 64.3 194.4 20.3 383.1 24,613 554

NA24385 28.7 75.0 70.6 223.0 20.5 418.0 28,423 641

Supplementary Table 2: Runtime and bandwidth breakdown by alignment phase.

Supplementary Figure 1: Evaluation of position binning, kmer sampling, and kmer masking on 150-bp
1% (left) and 2% (right) error read datasets.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Privacy Considerations of Phase1: MinHash Fingerprinting

Although the MinHash fingerprints can be computed from a set of encrypted unique kmers (since the
minimum value does not change due to the presence of identical elements in the set or their order), equal
kmers across all the reads and the reference must be hashed to the same value to determine set similarities
and use the MinHash index. As previously discussed, this would allow the adversary to perform the GRS

frequency attack by counting repeats. Furthermore, we would also have to leak kmer linkage information,
since the minimum value must be computed with respect to each read kmer set, significantly strengthening
the frequency attack. Therefore, our scheme currently avoids exposing this data to the cloud at the expense
of performing this step on the client (and of course when reads are very long or L is very large, the overhead
of this computation will become more significant). There are a couple of possible solutions to remedy the
frequency attack here although these are left for future work. The main observation is that the set of features
chosen to represent each read and reference window when computing the MinHash fingerprints does not need
to be the set of all contiguous overlapping kmers. We can represent a read as a set of more complex features
(e.g. sparse kmers, where the sparsity is nondeterministic and unknown to the cloud), making it more difficult
for the cloud to compare the frequency of such features with what it can precompute from the reference
genome.

B. Voting Protocol using HOM Kmers and Positions.

To hide how many read kmers matched the candidate contig, we can encrypt the kmers using a non-
deterministic scheme, which produces different ciphertexts for the same plaintexts. In particular, we can
use an additive homomorphic encryption scheme (AddHOM), such as the Paillier [27] cryptosystem, to
encrypt the kmers and their positions, while still being able to determine whether two kmers matched and
what position they voted for upon decryption. AddHOM allows us to find the sum of two plaintext values
by computing the product of their ciphertexts. Let sRi and sCj be two plaintext read and contig kmer values,

then sRi − sCj = 0 iff sRi = sCj . Therefore, we know we have a kmer match if EK(sRi)× EK(−sCj) = EK(0),

where EK(·) is an AddHOM scheme. Similarly, let EK(−pRi) and EK(pCj) be the encrypted positions of two
kmers in the read and contig, respectively, then the encrypted alignment position for which these kmers vote
is EK(φ(i,j)) = EK(pCj) × EK(−pRi). This allows us to formulate the voting protocol as follows. First the
client encrypts all kmers and their positions using AddHom and sends them to the cloud. The cloud then
computes the tuple (EK(sRi) × EK(−sCj), EK(pCj) × EK(−pRi)) for each pair of encrypted read and contig
kmers and sends these back to the client. Finally, the client decrypts each tuple and records its vote when
DK(EK(sRi) × EK(−sCj)) = 0, where DK(·) is the decryption procedure. It can then compute V̄ and find
the position with the maximum number of votes as described above.

While this scheme does not leak any mapping information to the cloud, it increases the complexity of
the voting scheme and requires the client to perform elaborate post-processing (including the decryption of
the voting results). More specifically, under the DET protocol we can find the kmer matches in O(nlogn)
time by sorting the read and contig kmer lists and then merging the results to find the hits. Under the HOM
protocol, however, we have to compute and transfer O(n2) pairwise tuples since we can no longer determine
the matches on the cloud. This can be mitigated in a hybrid approach that encrypts kmers with DET and
only the positions with AddHOM. That being said, the biggest limitation of a scheme using HOM is the
additional communication cost it would impose. For example, the Paillier cryptosystem requires 2048 bits
per ciphertext, which would result in a highly prohibitive data transfer overhead.

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046920doi: bioRxiv preprint

https://doi.org/10.1101/046920
http://creativecommons.org/licenses/by-nc-nd/4.0/

