
Privacy-preserving record linkage using local
sensitive hash and private set intersection

Allon Adir1 , Ehud Aharoni1 , Nir Drucker1 , Eyal Kushnir1 , Ramy
Masalha1 , Michael Mirkin2? , and Omri Soceanu1

1 IBM Research - Haifa
2 Technion - Israel Institute of Technology

Abstract. The amount of data stored in data repositories increases ev-
ery year. This makes it challenging to link records between different
datasets across companies and even internally, while adhering to privacy
regulations. Address or name changes, and even different spelling used
for entity data, can prevent companies from using private deduplica-
tion or record-linking solutions such as private set intersection (PSI). To
this end, we propose a new and efficient privacy-preserving record link-
age (PPRL) protocol that combines PSI and local sensitive hash (LSH)
functions, and runs in linear time. We explain the privacy guarantees
that our protocol provides and demonstrate its practicality by executing
the protocol over two datasets with 220 records each, in 11−45 minutes,
depending on network settings.

Keywords: Privacy-Preserving Record Linkage, Entity Resolution, Pri-
vate Set Intersection, Local Sensitive Hash, Information privacy, Data
security and privacy, Secure two-party computations

1 Introduction

Entity resolution (ER) is the process of identifying similar entities in several
datasets, where the datasets may belong to different organizations. While these
organizations would like to join hands and analyzes the behavior of matching cus-
tomers, they may be restricted by law from sharing sensitive client-data such as
medical, criminal, or financial information. The problem of matching records in
two or more datasets without revealing additional information is called privacy-
preserving record linkage (PPRL) [11] or blind data linkage (BDL) [10] and is
the focus of this paper. A survey of PPRL methods is available in [18]. The
importance of finding efficient and accurate PPRL solutions can be observed,
for example, in the establishment of a special task team by the Interdisciplinary
Committee of the International Rare Diseases Research Consortium (IRDiRC)
to explore different PPRL approaches [1].

The PPRL problem is a generalization of the well-studied private set inter-
section (PSI) problem in which two parties with different datasets would like to

? The work for this paper was done while Michael Mirkin was with IBM Research.

ar
X

iv
:2

20
3.

14
28

4v
1

 [
cs

.C
R

]
 2

7
M

ar
 2

02
2

https://orcid.org/0000-0001-8128-6706
https://orcid.org/0000-0002-3647-1440
https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0001-6123-0297
https://orcid.org/0000-0002-6808-5675
https://orcid.org/0000-0002-7332-7667
https://orcid.org/0000-0002-7570-4366

2

know the intersection or the size of the intersection of these datasets without
revealing anything else about their data to the other party. Examples for PSI
solutions include [5,6,12,20,30,32]. With PSI, the two parties compute the inter-
section of their respective sets, which can be used to identify matches by looking
for records that share the same identifying field e.g., PSI over social security
numbers (SSNs). However, in reality, such identifying fields do not always exist,
and even when they do exist, their content may be entered incorrectly or differ-
ently. For example, consider two parties that perform PSI on entity names. A
single user may register himself in different systems under the names: ‘John doe’,
‘John P Doe’, ‘john doe’, just ‘John’, or even ‘Jon ode’ by mistake. A general
PPRL solution may attempt to consider all of the above names as matching.

In some cases, more than one data field is used to match two records, e.g.,
first name, last name, addresses, and dates of birth. These fields are known as
quasi-identifiers (QIDs), which may hold private information. In this paper, we
assume that the parties are allowed to learn data by matching QIDs. In other
cases, one can use a masking method e.g., as in [25] to maintain the users’
privacy.

Non-exact matching is commonly performed using ER solutions that employ
a local sensitive hash (LSH) function. Unlike cryptographic hash functions, this
technique permits collisions by deliberately hashing similar inputs to a single
digest. For example, consider a hash function that hashes all the above names to
a single digest value or to lists of digests with non-empty intersection. Different
LSH functions with different parameters allow us to fine-tune the results in
different ways. We provide more details in Section 2.2.

Unfortunately, few practical protocols exist that can securely perform such
“fuzzy” record linkage without revealing some private data of the parties, and
do so in a linear time frame. See Section 1.1 for a review of the different ap-
proaches. Many involve a third-party (e.g., [23]), which we aim to avoid, while
other works do not provide a thorough leakage analysis that would help evalu-
ate the security of the solution. To this end, we constructed a new and efficient
PPRL solution that runs in O(n). We describe its performance and discuss its
security characteristics.

The goal of our solution is to compose a PSI with an LSH function. The
dataset fields are first locally hashed by both parties using the LSH and then
checked for matches using PSI. The choice of PSI algorithm can only affect the
performance (latency and bandwidth) of our solution but does not affect the
amount of leaked information that can be tuned using the different parameters
of the LSH. Figure 1 illustrates a high-level view of our solution.

Our contribution. Our contributions can be summarized as follows:

– We introduce a novel and efficient PPRL protocol that combines LSH and
PSI, and analyze its security against semi-honest adversaries. It does not
involve third parties. Specifically, due to the use of LSH, our protocol has
a low probability of revealing the data of non-matched records and thereby
provides better privacy guarantees.

LSH-PSI PPRL 3

– We implemented the model and suggest several lower-level and higher-level
optimizations.

– We evaluated our implementation over a dataset with 220 records and demon-
strated its practical advantage when the execution took 11 − 45 minutes,
depending on network settings.

– Our program is freely available for testing at [35].

Fig. 1: A high level illustration of our PPRL protocol. The parties Ps and Pr
hold datasets Ds and Dr. They preprocess the data for every record and then
feed the results into an LSH that outputs an ordered list of digest vectors Ls
and Lr, respectively. These are fed into a PSI black box. Finally, Ps translates
the PSI output to the matching record IDs.

1.1 Related work

To demonstrate our solution, we use a PSI instantiation that uses public-key
cryptography; specifically, we use one that leverages the commutative properties
of the Diffie-Hellmann (DH) key agreement scheme. This PSI construction was
introduced in [20] with a similar construction even before that in [30]. Subse-
quent PSI works consider other, more complex cryptographic primitives such as
homomorphic encryption (HE) [6] and oblivious transfer (OT) [32]. While the
latter solutions may offer an interesting tradeoff in terms of performance and
security, we decided to stick with the basic DH-style protocol due to its simplic-
ity and the fact that its primitives were already standardized [2]. Because we
use PSI as a blackbox, we can also benefit from most of the advantages that the
other methods provide such as performance and security guarantees.

Our solution follows previous works in considering a balanced case, where the
two datasets are roughly equal in size. An example, for a PSI over unbalanced
sets was studied in [5]. In fact, there were attempts to use PSI for PPRL before

4

this paper. However, they were either noted to be inefficient [38] or relied on
a different techniques such as term frequency–inverse document frequency (TF-
IDF) [34], which is more appropriate for comparing documents, rather than short
record fields (such as names or addresses). Furthermore, the protocol of [34] can
only compare given record pairs. This implies the need for O(n2) operations, in
contrast to our method, which requires O(n) operations.

A complete survey of PPRL techniques and challenges is available at [18,38],
in which we observed solutions that use different cryptographic primitives. For
example, [14, 39] relies on HE, which is known for its high computational cost.
For example, [14] reports that it took somewhat less than two hours to evaluate
20, 000 patient records, which is less records than in our evaluations by several
orders of magnitude. Other works [4, 36] use garbled circuits, which can still be
inefficient, while other multi-party computation solutions such as [26] can incur
high communication costs [7]. Another example is the fuzzy volts approach,
which uses secure polynomial interpolations [31], but only reports results for
around 1, 000 records. Other solutions [19, 33] overcome the leakage issue by
using differential privacy, which anonymizes the data to maintain privacy. We
see it as an orthogonal approach to ours.

Many PPRL works use Bloom filter encodings [37], which use a locality pre-
serving hash (LPH) function over the data. The main advantage of the Bloom
filter is speed. The difference between LPH and LSH is that LPH is data-
dependent, i.e., for three records p, q, r, a metric d, and an LPH function lp

d(p, q) < d(q, r) =⇒ d(lp(p), lp(q)) < d(lp(q), lp(r))

This relation complicates the evaluation of the protocol leakage. The lack of a
formal analysis for Bloom filter based solutions caused several attacks on them
[8, 9, 27, 28]. A survey of attacks and countermeasures for this method can be
found in [15]. Our solution’s use of LSH has an advantage over Bloom filters as it
is data-independent and more robust against the above attacks. A method that
combines Bloom filters and LSH was presented in [16,24]. In contrast to this one,
our solution only uses LSH, which simplifies the privacy analysis. Moreover, our
use of PSI hides the LSH output and thus prevents offline attacks. In addition,
[24] requires use of a third-party and demonstrates a solution that took more
than an hour to match 300K records. Another recent example is [26], which runs
in O(n·polylog(n)) and proved to be cryptographically secure in the semi-honest
security model. However, the method analyzed 4, 096 records in 88 minutes and
it is not clear whether this method can scale to handle more than 100K records.

Organization. The paper is organized as follows. Section 2 provides some
background notation and describes the required preliminaries for this work. In
Section 3 we present and discuss several possible definitions of PPRL protocols.
We provide a high level description of our solution in Section 4 and provide
further details about our implementation in Appendix D. We report our exper-
imental setup and results in Section 5 and conclude in Section 6.

LSH-PSI PPRL 5

2 Preliminaries and notation

We denote the concatenation of two strings by s1 | s2. The function Eq(s, r)
returns 1 when two strings are equal and 0 otherwise. An ordered list of elements
A is marked with square brackets, e.g., A = [5, 3, 8] and we access its ith element
by A[i]. A permutation π can either return a permuted list when operating on an
ordered list, or the index of a permuted element within that list when the input
is another index. For example, let π : x 7→ x+1 (mod 4) be a permutation, then
π([5, 6, 7, 8]) = [8, 5, 6, 7], π(2) = 3, and π(3) = 0. Uniform random sampling

from a set U is denoted by u
$←− U .

2.1 Entity resolution (ER)

An ER method gets as input two datasets of Ns and Nr records from record
spacesR: Ds = {s1, s2, . . . , sNs} and Dr = {r1, r2, . . . , rNr}, respectively. It eval-
uates the similarity of every two records using a similarity measure µ : R×R →
[0, 1] and an associated similarity indicator

Iµt : R×R −→ {0, 1}

(s, r) 7−→

{
1 µ(s, r) ≥ t
0 otherwise

The ER method uses the similarity indicator to facilitate a bipartite graph
G = (U, V,E), where the nodes of U , V are the records of Ds, Dr, respectively,
and for every two nodes (u ∈ U , v ∈ V), an edge exists in E if Iµt (u, v) =1.

PPRL. Informally, a PPRL protocol is an ER method executed by two parties:
a sender Ps and a receiver Pr, who privately hold Ds and Dr, respectively. At
the end of the protocol, Pr learns the similarity edges E while Ps learns nothing.
We provide a formal definition in Section 3. Specifically, our PPRL solution uses
the LSH and PSI primitives, described next.

2.2 Local sensitive hash (LSH)

An LSH [29] is a hash function that deliberately hashes similar inputs to the
same output hash value. We are interested in the similarity of strings i.e., the
content of the record fields. Therefore, we use the LSH from [29], which is based
on the Jaccard index and on Min-Hashes, as demonstrated in Figure 2.

Jaccard index (a.k.a. the Jaccard similarity coefficient) is a similarity measure
for strings. The procedure for computing the Jaccard index of two inputs strings
(s, r) splits each normalized string into the set of all overlapping sub-strings of
given lengths, termed k-shingles (or k-grams), where k is the length of the sub-
strings. We use small letters to denote strings or the corresponding records, and
capital letters to denote their associated sets of k-shingles. The Jaccard index
for records s, r is

J(s, r) =
|S ∩R|
|S ∪R|

(1)

6

Fig. 2: Computing the LSH for a string: shingles are extracted from the normal-
ized string, and then min-hashes are evaluated and grouped into bands that are
hashed to a list of signatures.

when the context is clear we use J instead of J(s, r).

Example 1. Consider the strings:

s = ‘Sunset Blvd, Los Angeles’

r = ‘Sunet Blvd, Los Angeles’

that are normalized into

‘sunset blvd los angeles’

‘sunet blvd los angeles’

and then split into the set of 19 and 18 shingles of length k = 5, respectively:

S = {‘sunse’, ‘unset’, ‘nset ’, ‘set b’, ..., ‘ngele’, ‘geles’}
R = {‘sunet’, ‘unet ’, ‘net b’, ‘et bl’, ..., ‘ngele’, ‘geles’}

Here, the Jaccard index is J = 15
22 ≈ 0.68. Using longer shingles of length k = 11

would result in a lower Jaccard index of J = 0.56.

It is possible to instantiate a PPRL solution that relies on the Jaccard index.
The drawback of such a protocol is that it has quadratic complexity in the size
of the datasets. For linear complexity, we use Min-Hash.

Definition 1 (Min-Hash [29]). For a collision-resistant hash function H with
an integer output digest and an integer k, a Min-Hash function receives a string
s as input, converts it to a k-shingles set S, and returns

MinHHk (s) = min
e∈S

H(e)

LSH-PSI PPRL 7

When the context is clear we write MinH instead of MinHH
k .

Observation 1 ([29]) For two normalized records s and r, a collision resistant
hash function H, and k > 0, it follows that Pr

[
MinHH

k (s) = MinHH
k (r)

]
=

J(s, r).

An LSH involves applying P different Min-Hash functions to a string s. The
outputs are split into B bands of R digests (P = BR). The concatenation of the
R digests of each band is again hashed to produce the signature of the band,
where the same signature hash function is used for all bands. An LSH output is
a tuple with these band signatures.

Definition 2 (LSH). For k,R,B ∈ N, P = RB, distinct collision-resistant
hash functions Hi, 1 ≤ i ≤ P and another collision-resistant hash functions G,
a band bj, 1 ≤ j ≤ B over a string s is the concatenation

bj(s) = MinH
HR·(j−1)+1

k (s) | · · · | MinHHR·(j−1)+R

k (s)

and the LSH output over a string s is the ordered list

LSH(s) =
[
G
(
b1(s)

)
, G
(
b2(s)

)
, . . . , G

(
bB(s)

)]
Two LSH tuples are considered to be a match if they share at least one

common signature. We denote this by the indicator function

LSHMatch : R×R −→ {0, 1}

(s, r) 7−→

1 1 ≤
B∑
i=1

Eq
(
LSH(s)[i], LSH(r)[i]

)
0 otherwise

Observation 2 ([29]) For two records s, r,

Pr[LSHMatch(s, r) = 1] = 1− (1− JR)B (2)

Example 2. Figure 2 demonstrates an LSH with P = 100, B = 25, R = 4,
where MinHH1

5 (s1) = 17, MinHH2
5 (s1) = 43, etc. Subsequently, every sequence of

R digests is concatenated and hashed to produce a band signature, with a total of
B band signatures, which form the LSH of s1, LSH(s1) = (865, 1082, . . . , 172).
Repeating the process for s2, we observe a match in the signature of the second
band for the two compared strings; this means that the two LSHs match and
the strings match with a high probability.

2.3 Private set intersection (PSI)

PSI is a cryptographic protocol that allows two parties to compute the intersec-
tion of their private sets without revealing anything beyond this fact or beyond
the size of the intersected sets to the other party. PSI is a special case of PPRL,

8

which considers only exact matches. Some variations of PSI allow the parties to
learn just the cardinality of the intersection.

Many PSI solutions exist (see Section 1). In this work, we use a unidirectional
variant of the DH-PSI [30], as presented in Figure 3. The two parties Ps and
Pr first agree on a group G and a collision-resistant hash function H, and each
party generates its own secret key sks and skr, respectively. Subsequently, both
parties hash and encrypt their records using their private keys and send them
to the other party. In addition, Pr encrypts the output of Ps using its secret key
and sends the results back to Ps. Finally, Ps learns the intersection of the two
datasets.

Ps (sks) Pr (skr)

D′s = {H(s)sks |s ∈ Ds}
D′s−−−−−−−−−−−−−−−−−−−−−−−−−−−→

D′r = {H(r)skr |r ∈ Dr}
D′′s = {(s′)skr |s′ ∈ D′s}

D′r and D′′s←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
D′′r = {(r′)sks |r′ ∈ D′r}

Output D′′s ∩D′′r Output {}

Fig. 3: One side DH-PSI

Informally, the security of these protocols against semi-honest adversaries is
guaranteed by the one-way property of the hash function, the computational
hardness of the decisional DH, and the one-more-DH [17] assumptions (see def-
initions in Appendix A). The decisional DH is used to hide the data in transit
from eavesdroppers, while the one-more-DH assumption is used to prevent Ps
from generating new records in the name of Pr.

One DH-PSI variant is the mutual DH-PSI, which includes one extra round:
Ps sends D′′r to Pr so that Pr can also compute the intersection. However, here
an eavesdropper learns both D′′s and D′′r and can therefore learn the cardinality
of the intersection D′′s ∩D′′r .

One issue with DH-PSI is that it is susceptible to man-in-the-middle attacks
[13]. To mitigate this attack and the leakage of the mutual DH-PSI’s intersection
cardinality,we assume that the transportation is encrypted and authenticated
using TLS 1.3.

3 PPRL

PPRL is an ER protocol between two parties Ps and Pr, with private datasets
Ds and Dr of sizes Ns and Nr, respectively; these records have a similarity
measure µ(·, ·), and some additional privacy requirements. These requirements
may lead to several security models and several formal definitions of PPRL.

LSH-PSI PPRL 9

The most intuitive way to define privacy for PPRL is by following the PSI
privacy notion: Ps only learns Nr and the intersection Ds ∩Dr, i.e., all records
that exactly match in all fields while Pr only learns Ns. Note that in both PSI
and PPRL, Ps and Pr need to share the nature of the information contained in
their datasets with each other to decide which QIDs they can validly compare.

The difference between PSI and PPRL is that PSI only returns exact matches
according to some uniquely identifying QIDs, while PPRL returns matching
records up to some similarity indicator and according to non-unique QIDs. For
example, a PSI protocol may rely on users’ SSNs, while a PPRL protocol may
compare first and last names. Thus, a PPRL may inadvertently match “David
Doe” with “Davy Don” even if they represent different entities (users).

Fig. 4: A Venn diagram of different ER outputs applied on two datasets Ds and
Dr. The ER methods are: matching only identical pairs of records (purple),
matching pairs of records with a Jaccard index above some threshold (green),
and matching pairs of records with matching LSH indicators (yellow).

Figure 4 shows a Venn diagram for the output of different ER solutions on
Ds and Dr datasets. With the exact matching method (Ds ∩ Dr) no privacy
risks occur since it only reveals the agreed-upon intersection3. In contrast, when
using the Jaccard similarity to compute the matches, the parties learn: a) records
in Ds ∩ Dr, which is ok; b) records outside Ds ∩ Dr that represent the same
entity (true-positive), which is also ok; c) records outside Ds∩Dr that represent
different entities (false-positive), which may break the privacy of the parties. In
general, any PPRL protocol must assume this kind of leakage, and should do its
best to quantify it, e.g., by assuming the existence of a bound τ on the similarity
false-positive rate.

3 In practice, if Ps learns that both parties share a record with the same SSN and at
a later stage learns that the other record fields do not match, then it may deduce
that Dr contains a record with a very close SSN that leaks information. Following
previous studies, we only consider leaks that occur as a result of the protocol itself.

10

Definition 3 (PPRL). A PPRL protocol P between two parties Ps, Pr with
datasets Ds, Dr, respectively, a similarity measure µ, a measure indicator Iµt
for a fixed threshold t with a false-positive rate bounded by τ , has the following
properties.

– Correctness: P is correct if it outputs to Ps the set

res = {(s, Enc(r)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1},

where Enc(r) is an encryption of r under a secret key of Pr.

– Privacy: P maintains privacy if Ps only learns res and Nr, and Pr only
learns Ns.

Corollary 1. The leaked information of Pr in P is bounded by τ · |res|Nr
.

Definition 3 assumes the existence of τ but only implicitly uses it. The reason
is that τ does not always exist. In many cases, it can be empirically estimated
based on prior data or based on perturbed synthetic data. However, relying solely
on empirical estimates increases the ambiguity of the privacy definition for such
protocols. Moreover, in many cases, τ depends on data from the two datasets
that have different distributions, which none of the parties know in advance.
Another reason for only implicitly relying on τ is that the leaked information in
Cor. 1 depends on res and can only be computed after running the protocol.

While τ bounds the privacy leak from above, there is still the issue of quan-
tifying the exact leakage after the protocol ends. It is not clear how the parties
can verify the number of false-positive cases without revealing private data. Usu-
ally, an ER protocol is used when the compared records do not include uniquely
identifying fields (such as an SSN) and thus the parties cannot compute the
exact matches using PSI. Consequently, their only way to verify matches is by
revealing their private data. To assist in this task, we define a protocol called a
revealing PPRL.

Definition 4 (Revealing PPRL). A revealing PPRL protocol P is a PPRL
protocol P ′, where Pr also learns u = {Enc(r) | (s, Enc(r)) ∈ P ′.res} and Ps
also learns

res′ = {(r, Enc(r)) | (s, Enc(r)) ∈ P ′.res},

In words, Pr learns which of its own records are matched, and Ps learns the
field content of the matched records of the other party. The simplest way to
achieve a revealing PPRL is for Ps to send u to Pr, who will then decrypt its
values and hand them back to Ps. The difference between Definitions 3 and 4
is that in the latter, Ps learns the values of Pr’s records instead of just their
encryption. While this definition leaks more data from Pr to Ps, it is easier to
analyze because now Ps can verify the matches with some probability and learn
the estimated number of false-positives. We also consider the definitions of the
associated mutual PPRL and the mutual revealing PPRL.

LSH-PSI PPRL 11

Definition 5 (Mutual PPRL). A PPRL protocol P between two parties Ps,
Pr with datasets Ds, Dr, respectively, a similarity measure µ, a measure indi-
cator Iµt for a fixed threshold t with a false-positive rate bounded by τ , has the
following properties.

– Correctness: P is correct if it outputs ress (resp. resr) to Ps (resp. Pr),
where

ress = {(s, Enc(r)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1}

resr = {(r, Enc(s)) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1},

and Enc(r) (resp. Enc(s)) is an encryption of r (resp. s) under a secret key
of Pr (resp. Ps).

– Privacy: P maintains privacy if Ps only learns ress and Nr, and Pr only
learns resr and Ns.

The mutual revealing PPRL is similarly defined. The difference between the
mutual PPRL and the revealing PPRL in terms of privacy is that in the mutual
PPRL, Pr can match the encryption of Ps records to its records and therefore
gains more information while Ps only learns the encryption of Pr records.

In the PPRL protocols described above, the two parties learn the intersection
of their datasets. However, in some scenarios, the parties merely need to learn
the number of matches and do not wish to reveal the identity of the matched
records to the other party. To this end, we define an N-PPRL protocol.

Definition 6 (N-PPRL). A PPRL protocol P between two parties Ps, Pr with
datasets Ds, Dr, respectively, a similarity measure µ, a measure indicator Iµt
for a fixed threshold t with a false-positive rate bounded by τ , has the following
properties.

– Correctness: P is correct if it outputs to Ps the value

Ns∩r = |{(s, r) | s ∈ Ds, r ∈ Dr, I
µ
t (s, r) = 1}|,

– Privacy: P maintains privacy if Ps, (resp. Pr) only learns Ns∩r, Nr (resp.
Ns).

The mutual N-PPRL protocol is similarly defined.

4 Our solution

Our PPRL solution (hereafter: LSH-PSI PPRL) is an ER protocol that uses
LSHMatch as its similarity indicator, where for privacy reasons, the parties cannot
directly share the LSH results. The reason depends on whether the LSH is a
preimage-resistant hash function or not. When it is not, Pr and Ps can simply
inverse the LSH results for records that are not in the intersection and reveal
private information of Ps, Pr, respectively. But even when it is, the solution’s
privacy depends on the LSH input entropy, where the parties can maintain an
offline brute force attack against the LSH records of the other party.

12

Fig. 5: Schematic of the LSH-PSI PPRL protocol.

To mitigate the privacy issue, we use a PSI protocol. The two parties first
compute the LSH band signatures of all their records and then apply a PSI
protocol over these signatures. Finally, Ps maps back the intersected signatures
to the original records to learn the set of similar records. The concrete properties
of LSHMatch can be tuned using the B and R LSH parameters. Figure 6 presents
the LSH-PSI protocol, and Figure 5 illustrates it schematically.

Our protocol is defined against semi-honest (honest-but-curious) adversaries,
where all parties do not deviate from the protocol, and their inputs are genuine.
Nevertheless, they may record and analyze all the intermediate computations
and messages from the other parties to get more information.

Remark 1. The two parties must use the same preprocessing techniques to in-
crease the efficiency of the underlying ER method. In addition, the LSH-PSI
protocol assumes that the pre-processing phase runs some deduplication proto-
col on the dataset of every party. Otherwise, Ps can extract information from
pairs of matching records s1, s2 ∈ Ds, where s1 matches a record in Dr but s2
does not.

Remark 2. The PSI protocol is executed for all records at once and not per
record, therefore it is critical to preserve the order of the signatures exchanged
between the parties, i.e., of L

′

s and L
′′

s in Figure 5. Otherwise, it will be impossible
to match the records in Step 4 of Figure 6. In Section 4.1, we discuss the case
where Pr does not preserve the order of Ps encrypted signatures.

The purpose of using the permutation πp in Step 1b is to avoid the case
where the other party learns information about “missing” records. For example,
suppose that the records in Dr are ordered alphabetically according to a first
name QID, and that Ps learns that Jerry and Joseph are in the intersection. If
Jerry and Joseph happen to belong to adjacent records in Dr, then an honest

LSH-PSI PPRL 13

1. For every party p ∈ {s, r}
(a) Pp pre-processes the records in Dp by using standard techniques and

canonizations such as dropping non-important fields, converting texts to
lower-case letters, and removing non-alphanumeric characters or super-
fluous white spaces.

D1
p = preprocess(Dp)

(b) Pp chooses a random permutation πp on D1
p and computes the B LSH

band signatures for every record in D1
p. The outputs are concatenated in

an array Lp of size B ·Np according to πp as follows

Lp[B · (i− 1) + 1 : B · (i− 1) +B] = LSH(D1
p(πp(i))) 1 ≤ i ≤ Np

2. The two parties run a DH-PSI protocol over their respective band signatures
so that Pr only learns Ns, and Ps only learns Nr and

L′′s =
[
H(s)sksskr | s ∈ Ls

]
L′′r =

[
H(r)sksskr | r ∈ Lr

]
3. Ps generates the array

M [i] =

{
1 L

′′
s [i] ∈ L

′′
r

0 otherwise,
1 ≤ i ≤ |L

′′
s |

4. Ps returns the matching records

ress = {r | r = Ds[π−1
s (i)], 1 ≤ i ≤ Ns, 1 ≤

B∑
j=1

M [B · (i− 1) + j]}

Fig. 6: The LSH-PSI PPRL protocol.

but curious Ps learns that Pr has no record for John. When using a permutation,
the only way for Ps to deduce the same information is by learning all the records
in Dr. A concrete example of Steps 1.b - 3 is given in Appendix B.

Theorem 1. The LSH-PSI PPRL protocol is a PPRL protocol according to
Definition 3 where the similarity indicator is LSHMatch. This protocol is secure
against semi-honest adversaries.

Proof. Correctness. The correctness of the protocol follows from the fact that
the intersection Ls ∩ Lr has a one-to-one correlation with the encrypted band
signatures L′′s ∩ L′′r .

Privacy of Ps. By the discrete-log assumption, Pr only gets to see Ns ele-
ments that are indistinguishable from random values. Thus, Pr only learns Ns.

Privacy of Pr. Ps gets from Pr the values of L′s and Lr raised to the power
of Pr’s secret key. By the discrete-log assumption, these values are indistinguish-
able from random to Ps. Except that Ps can raise L′r values to the power of

14

its own secret key and then intersect the results with L′′s . This intersection of
random values is used by Ps to identify matching signatures, which is expected
by Definition 3. Because Ps learns nothing from values outside the intersection,
we say that it only learns res and Nr as expected. ut

Remark 3. Similar to the DH-PSI case, the use of TLS 1.3 allows the parties
to mutually authenticate themselves and to avoid the attack presented in [13].
Still, as a defense-in-depth mechanism, the parties in every PPRL session should
avoid reusing secret keys to avoid man-in-the-middle attacks.

4.1 PPRL variants

Based on the above protocol, we construct three other protocols: a mutual PPRL
protocol, an N-PPRL protocol, and a revealing PPRL protocol, where the latter
immediately follows the definition.

A mutual PPRL protocol. To establish a mutual PPRL protocol, we modify
Step 2 of Figure 6 to use the mutual DH-PSI protocol of Section 2.3. The security
of the protocol follows from either the security of the mutual DH-PSI, or from
the fact that the mutual protocol is equivalent to running the original PPRL
protocol twice: first between Ps and Pr, and subsequently between Pr and Ps.
Note that Ps cannot reduce the communication by sending only records that are
in the intersection because then an eavesdropper can learn the intersection size.
This claim is valid even when using a secure communication channel (e.g., TLS
1.3).

An N-PPRL protocol. To achieve an N-PPRL protocol, we could have sim-
ply counted the number of elements in the intersection set res, but this would
reveal to Ps more information beyond Ns∩r. Instead, we suggest reordering the
encrypted band signatures during the DH-PSI in a way that hides the identity
of the matched records but still enables them to be counted. Specifically, we ask
Pr to apply a secret permutation to L′′s before sending it to Ps. This permu-
tation has a special property that permutes together the groups of adjacent B
signatures that originate from the same record, otherwise, Ps will not be able to
distinguish between the cases

1. |LSH(s1) ∩ LSH(r1)| = 1 and |LSH(s2) ∩ LSH(r2)| = 1
2. |LSH(s1) ∩ LSH(r1)| = 2 and |LSH(s2) ∩ LSH(r2)| = 0

We call the above permutation an intra-permutation of records. In addition,
we apply an inter-permutation of records, where we separately permute the B
signatures in each group of signatures in L′′s that originate from the same record.

5 Experiments

Experimental setup. We carried out the experiments on two machines that
are located in different local area networks (LANs). We measured an average of
65 ms round-trip latency between them.

LSH-PSI PPRL 15

Table 1: Accuracy of our PPRL protocol over the NCVR snapshots.
Set size FN FP TP Precision (%) Recall (%) F1 (%)

104 19 21 653 96.88 97.17 97.03
105 1,369 1,665 55,682 97.1 97.6 97.35
106 22,233 19,365 847,724 97.77 97.44 97.61

– Machine A has an Intel® Xeon® CPU E5-2620 v3 @ 2.40GHz, with 12
physical cores and 377 GB of RAM.

– Machine B has an Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz, with 44
physical cores and 744 GB of RAM.

We set machine A to run Ps and machine B to run Pr with Ns ≈ Nr.
Our code is written in C++ and runs on Ubuntu 20.04. It uses OpenSSL

version 1.1.1f to establish secure TLS 1.3 connections between the two par-
ties. In addition, it uses OpenSSL hash function implementation (concretely,
H=SHA256) and DH operations (concretely, elliptic curve DH operations over
the NIST P-256 curve). We report communications in KB and running time
in seconds. We also provide a breakdown of the different running time phases:
communication and computations per party. For the measurements, we sepa-
rated the communication phases from the computation phases, which in a real
scenario can be pipelined to run in parallel.

For the evaluations, we considered two dataset cases: a) The North Carolina
voter register (NCVR) dataset4, which is commonly used for PPRL evaluations;
b) a synthetic dataset that we generated and made available in [35].

NCVR datasets. We used the November 2014 and November 2017 snapshots
of the NCVR datasets. Prior to running the PPRL protocol, we deduplicated
the snapshots by eliminating duplicate records with identical “NCID” or with
identical values in the ‘first name’, ‘last name’, ‘midl name’, ‘birth place’ and
‘age’ fields. Subsequently, we removed the NCID field from the two snapshots,
and ran our PPRL protocol on the two snapshots. A reported matching pair
was considered to be a true-positive event if the two reported records share
the same NCID value. Table 1 shows the accuracy breakdown of the LSH we
used by reporting the number of false-negative (FN), false-positive (FP), and
true-positive (TP) events, together with the precision, recall, and F1 results
when sampling sets of fixed sizes from the above snapshots. Note that while the
precision is high, the absolute number of false-positives may be regarded as too
high for some users. See Section C.1 for ways to tune the process and balance the
number of false positive and false negative cases while considering the protocol
performance.

Synthetic dataset. We generated two synthetic datasets using IBM InfoSphere®

OptimTM Test Data Fabrication [21] with the following fields: ‘first name’, ‘last
name’, ‘email’, ‘email domain’, ‘address number’, ‘address location’, ‘address

4 https://www.ncsbe.gov/results-data/voter-registration-
data,lastaccessedMar2022.

https://www.ncsbe.gov/results-data/voter-registration-data, last accessed Mar 2022.
https://www.ncsbe.gov/results-data/voter-registration-data, last accessed Mar 2022.

16

Table 2: Performance results on the synthetic dataset for different samples of
the original dataset.

Set sizes Comm. (KB) Comm. time (s) Offline time (s) Total time (s)

28 5.68 · 103 3 1 4
212 9.04 · 104 17 2 19
216 1.44 · 106 237 36 273
220 1.19 · 107 1,959 608 2,567

line’, ‘city’, ‘state’, ‘country’, ‘zip base’, ‘zip ext’, ‘phone area code’, ‘phone
exchange code’ and ‘phone line number’, where Ns ≈ Nr ≈ 1, 000, 000. We gen-
erated the datasets in a way that only 100 records in the two datasets represent
identical entities. The pairs of records that describe these shared entities some-
times have identical fields and sometimes fields with minor typos, different styles,
and other types of minor differences, which are still small enough to warrant the
assumption that the similar records in fact describe the same entity. Our PPRL
protocol identified all the matching records. The performance evaluation of the
protocol is given in Table 2.

6 Conclusion

We presented a novel PPRL solution that relies on LSH to identify similar records
while using PSI to ensure privacy. We formally defined the privacy guarantees
that such a protocol provides and evaluated its efficiency. Our results show that
it takes 11−45 minutes (depending on the network settings) to perform a PPRL
solution comparing two large datasets with 220 records per dataset. Note that
none of the results presented in Section 1.1 reported comparable speeds for such
large datasets. This makes our solution practical and attractive for companies
and organizations. We made our implementation available for testing at [35].

We proposed a PPRL framework that can use different PSI protocols as long
as they provide the same security guarantees defined above. We demonstrated
our solution using an ECDH PSI protocol. It may be an interesting direction to
implement and test the protocol using other solutions that can further improve
its performance and overall bandwidth.

References

1. Baker, D.B., Knoppers, B.M., Phillips, M., van Enckevort, D., Kaufmann, P.,
Lochmuller, H., Taruscio, D.: Privacy-Preserving Linkage of Genomic and Clinical
Data Sets. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 16(4), 1342–1348 (2019). https://doi.org/10.1109/TCBB.2018.2855125

2. Barker, E., Chen, L., Moody, D.: Recommendation for Pair-Wise Key- Estab-
lishment Schemes Using Integer Factorization Cryptography (Revision 1) (2014).
https://doi.org/10.6028/NIST.SP.800-56Br1

https://doi.org/10.1109/TCBB.2018.2855125
https://doi.org/10.1109/TCBB.2018.2855125
https://doi.org/10.6028/NIST.SP.800-56Br1
https://doi.org/10.6028/NIST.SP.800-56Br1

LSH-PSI PPRL 17

3. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of com-
puter and system sciences 18(2), 143–154 (1979)

4. Chen, F., Jiang, X., Wang, S., Schilling, L.M., Meeker, D., Ong, T., Matheny,
M.E., Doctor, J.N., Ohno-Machado, L., Vaidya, J.: Perfectly secure and efficient
two-party electronic-health-record linkage. IEEE Internet Computing 22(2), 32–41
(2018). https://doi.org/10.1109/MIC.2018.112102542

5. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. p. 1223–1237. CCS ’18, Asso-
ciation for Computing Machinery, New York, NY, USA (2018). https://doi.org/
10.1145/3243734.3243836

6. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic en-
cryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. p. 1243–1255. CCS ’17, Association for Computing Ma-
chinery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134061

7. Chen, Y.: Current approaches and challenges for the two-party privacy-preserving
record linkage (pprl). Collaborative Technologies and Data Science in Artificial
Intelligence Applications pp. 108–116 (2020), https://codassca2020.aua.am/wp-
content/uploads/2020/09/2020 Codassca Chen.pdf

8. Christen, P., Ranbaduge, T., Vatsalan, D., Schnell, R.: Precise and Fast Crypt-
analysis for Bloom Filter Based Privacy-Preserving Record Linkage. IEEE Trans-
actions on Knowledge and Data Engineering 31(11), 2164–2177 (2019). https:

//doi.org/10.1109/TKDE.2018.2874004
9. Christen, P., Schnell, R., Vatsalan, D., Ranbaduge, T.: Efficient Cryptanalysis

of Bloom Filters for Privacy-Preserving Record Linkage. In: Kim, J., Shim, K.,
Cao, L., Lee, J.G., Lin, X., Moon, Y.S. (eds.) Advances in Knowledge Discovery
and Data Mining. pp. 628–640. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-57454-7 49

10. Churches, T., Christen, P.: Blind data linkage using n-gram similarity comparisons.
In: Dai, H., Srikant, R., Zhang, C. (eds.) Advances in Knowledge Discovery and
Data Mining. pp. 121–126. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24775-3 15

11. Clifton, C., Kantarcioundefinedlu, M., Doan, A., Schadow, G., Vaidya, J., Elma-
garmid, A., Suciu, D.: Privacy-preserving data integration and sharing. In: Pro-
ceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery. p. 19–26. DMKD ’04, Association for Computing Ma-
chinery, New York, NY, USA (2004). https://doi.org/10.1145/1008694.1008698

12. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled psi from homomorphic encryption with reduced computation
and communication. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. p. 1135–1150. CCS ’21, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484760

13. Cui, H., Yu, Y.: A not-so-trival replay attack against dh-psi. Cryptology ePrint
Archive, Report 2020/901 (2020), https://ia.cr/2020/901

14. Essex, A.: Secure Approximate String Matching for Privacy-Preserving Record
Linkage. IEEE Transactions on Information Forensics and Security 14(10) (2019).
https://doi.org/10.1109/TIFS.2019.2903651

15. Franke, M., Rahm, E.: Evaluation of Hardening Techniques for Privacy-Preserving
Record Linkage (2021)

https://doi.org/10.1109/MIC.2018.112102542
https://doi.org/10.1109/MIC.2018.112102542
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://codassca2020.aua.am/wp-content/uploads/2020/09/2020_Codassca_Chen.pdf
https://codassca2020.aua.am/wp-content/uploads/2020/09/2020_Codassca_Chen.pdf
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1007/978-3-319-57454-7_49
https://doi.org/10.1007/978-3-319-57454-7_49
https://doi.org/10.1007/978-3-540-24775-3_15
https://doi.org/10.1007/978-3-540-24775-3_15
https://doi.org/10.1145/1008694.1008698
https://doi.org/10.1145/1008694.1008698
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://ia.cr/2020/901
https://doi.org/10.1109/TIFS.2019.2903651
https://doi.org/10.1109/TIFS.2019.2903651

18

16. Franke, M., Sehili, Z., Rahm, E.: Parallel Privacy-Preserving Record Linkage
using LSH-based blocking. International Conference on Internet of Things, Big
Data and Security (IoTBDS) (2018), https://www.scitepress.org/Papers/2018/
66827/66827.pdf

17. Freeman, D.: Pairing-based identification schemes. Cryptology ePrint Archive, Re-
port 2005/336 (2005), https://ia.cr/2005/336

18. Gkoulalas-Divanis, A., Vatsalan, D., Karapiperis, D., Kantarcioglu, M.: Modern
privacy-preserving record linkage techniques: An overview. IEEE Transactions
on Information Forensics and Security 16, 4966–4987 (2021). https://doi.org/
10.1109/TIFS.2021.3114026

19. He, X., Machanavajjhala, A., Flynn, C., Srivastava, D.: Composing Differential Pri-
vacy and Secure Computation: A Case Study on Scaling Private Record Linkage.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1389–1406. CCS ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134030

20. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce.
p. 78–86. EC ’99, Association for Computing Machinery, NY, USA (1999). https:
//doi.org/10.1145/336992.337012

21. IBM: Ibm infosphere® optim™ test data fabrication (2022), https://www.ibm.com/
products/infosphere-optim-test-data-fabrication

22. Ioffe, S.: Improved consistent sampling, weighted minhash and l1 sketching. 2010
IEEE International Conference on Data Mining pp. 246–255 (2010)

23. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: FEDERAL: A Frame-
work for Distance-Aware Privacy-Preserving Record Linkage. IEEE Transactions
on Knowledge and Data Engineering 30(2), 292–304 (2018). https://doi.org/
10.1109/TKDE.2017.2761759

24. Karapiperis, D., Verykios, V.S.: A distributed near-optimal LSH-based framework
for privacy-preserving record linkage. Computer Science and Information Systems
11(2), 745–763 (2014). https://doi.org/10.2298/CSIS140215040K

25. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturbation
techniques and privacy-preserving data mining. Knowledge and Information Sys-
tems 7(4), 387–414 (May 2005). https://doi.org/10.1007/s10115-004-0173-6

26. Khurram, B., Kerschbaum, F.: SFour: A Protocol for Cryptographically Se-
cure Record Linkage at Scale. In: 2020 IEEE 36th International Conference
on Data Engineering (ICDE). pp. 277–288 (2020). https://doi.org/10.1109/
ICDE48307.2020.00031

27. Kroll, M., Steinmetzer, S.: Automated cryptanalysis of bloom filter encryptions of
health records. In: Proceedings of the International Joint Conference on Biomed-
ical Engineering Systems and Technologies - Volume 5. p. 5–13. BIOSTEC 2015,
SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT (2015).
https://doi.org/10.5220/0005176000050013

28. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction
cryptanalysis of bloom filters in private record linkage. In: Proceedings of the
11th International Conference on Privacy Enhancing Technologies. p. 226–245.
PETS’11, Springer-Verlag, Berlin, Heidelberg (2011)

29. Leskovec, J., Rajaraman, A., Ullman, J.D.: Finding similar items. Mining of mas-
sive datasets pp. 73–130 (2014), http://infolab.stanford.edu/~ullman/mmds/
ch3a.pdf

https://www.scitepress.org/Papers/2018/66827/66827.pdf
https://www.scitepress.org/Papers/2018/66827/66827.pdf
https://ia.cr/2005/336
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://www.ibm.com/products/infosphere-optim-test-data-fabrication
https://www.ibm.com/products/infosphere-optim-test-data-fabrication
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.2298/CSIS140215040K
https://doi.org/10.2298/CSIS140215040K
https://doi.org/10.1007/s10115-004-0173-6
https://doi.org/10.1007/s10115-004-0173-6
https://doi.org/10.1109/ICDE48307.2020.00031
https://doi.org/10.1109/ICDE48307.2020.00031
https://doi.org/10.1109/ICDE48307.2020.00031
https://doi.org/10.1109/ICDE48307.2020.00031
https://doi.org/10.5220/0005176000050013
https://doi.org/10.5220/0005176000050013
http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf
http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf

LSH-PSI PPRL 19

30. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on Se-
curity and Privacy. pp. 134–134 (1986). https://doi.org/10.1109/SP.1986.10022

31. Mullaymeri, X., Karakasidis, A.: A Two-Party Private String Matching Fuzzy
Vault Scheme. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing. pp. 340–343. Association for Computing Machinery, NY, USA (2021).
https://doi.org/10.1145/3412841.3442079

32. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: 23rd USENIX Security Symposium (USENIX Security 14). pp. 797–
812. USENIX Association, San Diego, CA (Aug 2014), https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/pinkas

33. Rao, F.Y., Cao, J., Bertino, E., Kantarcioglu, M.: Hybrid Private Record Linkage:
Separating Differentially Private Synopses from Matching Records. ACM Trans.
Priv. Secur. 22(3) (apr 2019). https://doi.org/10.1145/3318462

34. Ravikumar, P., Cohen, W.W., Fienberg, S.E.: A secure protocol for computing
string distance metrics. PSDM held at ICDM (2004), https://www.cs.cmu.edu/
afs/cs.cmu.edu/Web/People/wcohen/postscript/psdm-2004.pdf

35. Research, I.: Helayers (2022), https://hub.docker.com/r/ibmcom/helayers-
pylab

36. Saleem, A., Khan, A., Shahid, F., Masoom Alam, M., Khan, M.K.: Recent ad-
vancements in garbled computing: How far have we come towards achieving secure,
efficient and reusable garbled circuits. Journal of Network and Computer Applica-
tions 108(January), 1–19 (2018). https://doi.org/10.1016/j.jnca.2018.02.006

37. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using
Bloom filters. BMC Medical Informatics and Decision Making 9(1), 41 (2009).
https://doi.org/10.1186/1472-6947-9-41

38. Vatsalan, D., Sehili, Z., Christen, P., Rahm, E.: Privacy-Preserving Record Link-
age for Big Data: Current Approaches and Research Challenges. In: Zomaya, A.Y.,
Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 851–895. Springer Inter-
national Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-49340-
4 25

39. Wong, K.S.S., Kim, M.H.: Privacy-preserving similarity coefficients for binary data.
Computers and Mathematics with Applications 65(9), 1280–1290 (2013). https:
//doi.org/10.1016/j.camwa.2012.02.028

A Security assumptions

Definition 7 (Decisional DH (DDH)). For a cyclic group G, a generator g,
and integers a, b, c ∈ Z, the decisional DH problem is hard, if for every proba-
bilistic polynomial-time (PPT) adversary A

|Pr[A(g,ga, gb, gab] = 1)−
Pr[A(g, ga, gb, gc) = 1]| < negl(),

where the probability is taken over (g, a, b, c).

Definition 8 (Computational DH (CDH)). For a cyclic group G, a gener-
ator g, and integers a, b ∈ Z, the computational DH problem is hard, if for every
PPT adversary A

Pr[A(g, ga, gb] = gab) < negl(),

https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1145/3412841.3442079
https://doi.org/10.1145/3412841.3442079
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://doi.org/10.1145/3318462
https://doi.org/10.1145/3318462
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/wcohen/postscript/psdm-2004.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/wcohen/postscript/psdm-2004.pdf
https://hub.docker.com/r/ibmcom/helayers-pylab
https://hub.docker.com/r/ibmcom/helayers-pylab
https://doi.org/10.1016/j.jnca.2018.02.006
https://doi.org/10.1016/j.jnca.2018.02.006
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1016/j.camwa.2012.02.028
https://doi.org/10.1016/j.camwa.2012.02.028
https://doi.org/10.1016/j.camwa.2012.02.028
https://doi.org/10.1016/j.camwa.2012.02.028

20

where the probability is taken over (g, a, b).

Definition 9 (One-more-DH (OMDH) [17]). Let G be a cyclic group. The
one-more-DH problem is hard, if for every PPT adversary A that gets a generator
g ∈ G together with some power ga and who has access to two oracles: ha =

CDHg,ga(h) for some h ∈ G, and r
$←− C() a challenge oracle that returns a

random challenge point r ∈ G and can only be invoked after all calls to the
CDHg,ga , it follows that

Pr[A(g, ga, r ← C()) = ra] < negl()

where the probability is taken over (g, a).

B Example of the LSH-PSI protocol

A concrete example of Steps 1.b - 3 of the LSH-PSI PPRL protocol (Figure 6)
is given in Figure 7. Suppose that v = H(455)sksskr then Ps learns via the PSI
process that Pr also has a band signature with the same value 455. Pr took care
to preserve the order of Ps’s encrypted band signatures during the PSI, so Ps
can map the shared value v back to the band signature for Band 1 of record Ns,
and deduce that Pr has some unknown record that is similar to her own record
Ns.

Fig. 7: Steps 1.b - 3 of our protocol. Ps learns via the PSI protocol that the
signature for Record Ns Band 1 is shared with Pr.

LSH-PSI PPRL 21

C Using the Jaccard indicator

Theorem 1 shows that the LSH-PSI PPRL protocol follows Definition 3 when
considering the LSH as the similarity indicator. This means that security re-
viewers need to accept the privacy leakage that occurs when using an LSH,
something that is already done by many organizations that perform RL. How-
ever, some reviewers may instead prefer to trust the Jaccard index due to its
wide acceptance.

Figure 4 shows two ways to define LSH false-positive events: in relation to
exact matches of entire records as in the LSH-PSI PPRL, or in relation to the
method of matching pairs of records with a high enough Jaccard index. Thus
according to the latter definition an LSH false-positive happens only when a
pair of records are matched due to having at least one shared LSH band, and
yet they do not have a high enough Jaccard index to justify a claim of similarity.
Bounding the false-positive events rate τ ′ based on the latter definition will allow
us to define an LSH-PSI PPRL related to the Jaccard index metric but with a
different bound τ · τ ′, where τ is the Jaccard original false-positive bound. In
this section, we further discuss the relation between the LSH and the Jaccard
index.

For two records s, r with Jaccard index J , Figure 8 shows the probability
for an LSHMatch = 1 event according to Equation 2 with R = 200 and B = 20.
In standard ER solutions, it is the role of the domain expert to decide the
specific Jaccard index that would indicate enough similarity between the two
records. For example, in the figure the targeted Jaccard index is 0.78. The figure
shows the cumulative probability of getting true-positives (J(s, r) > 0.78 and
LSHMatch(s, r) = 1), true-negatives (J(s, r) ≤ 0.78 and LSHMatch(s, r) = 0), and
the corresponding false-positive and false-negative cumulative probabilities.

The above example shows that when B = 20 and R = 200, it is possible to
close the gap between the Jaccard index and the LSH by choosing the Jaccard
threshold to be below 0.5. In that case, the probability for a false-positive event
is less than 0.0001, which means that one in every ten-thousand records leaks.
However, using such a Jaccard threshold will yield many false-positive cases
relative to exact record matching, which is less desirable in terms of privacy.

It turns out that it is possible to tune the slope of the accumulated probability
function. Figure 9 compares the probability functions in four different setups
B = 20, R = 200 (setup 1) B = 100, R = 100 (setup 2) B = 14, R = 30 (setup
3) and B = 120, R = 18 (setup 4). Here, we see that replacing setup 1 with
setup 2 allows us to set the Jaccard threshold at 0.78 while reducing the LSH
false-positive rate to as low as 10−8. However, setup 2 dramatically increases the
LSH false-negative rate. Note however that false negatives affect the security
less than false-positives, and in addition, users are often much more reluctant to
report false positives than to miss reports due to false negatives. Setup 2 may
also increase the overall performance of the protocol relative to setup 1 because
there are many more bands to encrypt and communicate, as described in the
following section.

22

Fig. 8: The function F (J) = 1 − (1 − JR)B from Eq. 2, where R = 20 and
B = 200. The black vertical line is the Jaccard index threshold.

C.1 Optimizing the protocol

Setup 4 in Figure 9 probably results in more false-positive and false-negative
cases than setup 1, and the low slope of the curve implies a larger region of
uncertainty. However, the PSI for setup 4 runs more than 6 times faster than
the PSI for setup 1, because there are just 20 rather than 180 band signatures
that need to be encrypted and communicated. The change in the R parameter
does not affect the performance as much, since it merely determines the number
of Min-Hashes that need to be computed locally. It turns out that computing
a Min-Hash (like the highly optimized SHA-256 operation) is much faster than
computing the power in the the underlying groups of the DH protocol. Moreover,
there are known methods for quickly producing R different permutations out of
a single SHA-256 call such as the Mersenne twister [3]. Finally, the value of R
does not affect the size of the communication.

We use the B and R parameters to control the curve, which in turn affects
the protocol’s accuracy and performance. Reducing B makes it less likely to find
a matching band signature, thus increasing the false-negative probability, but
improving performance. The rate of false-negatives can be reduced by decreasing
R, thus making it more probable for two bands to match. Conversely, if the false-
positive rate is too high, then one can increase R with little performance penalty.
We therefore optimize the process by searching for values of B and R that have
the minimal B value (for best performance) while more or less preserving the
targeted curve shape.

Suppose for example that setup 1 has the targeted probability function. The
figure shows the probability function for setup 3, which runs almost twice as
fast as setup 1 and has an almost identical probability function. Setup 4 has an

LSH-PSI PPRL 23

Fig. 9: A comparison of four probability functions F (J) = 1 − (1 − JR)B (see
Eq. 2) with different B and R values.

almost identical curve as setup 3 so it gives an almost identical accuracy, but it
runs much slower because it requires almost 8 times more bands.

C.2 Scoring the reported matches

When a PPRL protocol relies on the Jaccard index but its implementation uses
LSH, it may be in the users’ interest to quantify the number of false-positive
events. To this end, we present a way to estimate the Jaccard index based on
the LSH results.

Estimating the Jaccard index for matching pairs When using LSH with
B band signatures, it is possible to estimate the actual Jaccard index J by using
a binomial confidence interval. By observation 1, the probability for a matching
band (i.e. the probability for a match in all R Min-Hashes of the band) is p = JR.
Suppose that Ps learns that there are h matching band signatures and t = B−h
non-matching band signatures. Using a 95% confidence interval, the Jaccard
index lies in the range R

√√√√∣∣∣∣∣ hB − 1.96

√
t
h

B3

∣∣∣∣∣, R

√√√√∣∣∣∣∣ hB + 1.96

√
t
h

B3

∣∣∣∣∣
 (3)

In some cases this interval is too wide, and the users may prefer using a
different approach, such as a revealing PPRL. In a revealing PPRL, the two
parties learn the intersection of their datasets as in a standard PPRL but they
also learn the records of the other parties that are involved in of the intersection.
Thus, the leaked information in a revealing PPRL is higher than in a PPRL.

24

Below, we propose an approach with privacy leakage that lies between the leakage
of a revealing PPRL and a PPRL, where we compute the Jaccard index only for
matching pairs, without revealing the exact shingles.

Computing the precise Jaccard index for matching pairs Suppose that at
the end of the LSH-PSI PPRL protocol, Ps learns the matching pair (s, Enc(r)).
Ps can ask Pr to participate in another PSI process over the set of shingles
of (s, r), where Ps knows s and Pr knows r. In this PSI, Ps only learns the
intersection size of the associated shingles |S ∩ R| and the size |R|, so it can

compute J(s, r) = |S∩R|
|S|+|R|−|S∩R| . Note that learning only the intersection size

and not the intersection itself makes it harder for Ps to guess Pr’s record.
These additional PSIs are relatively expensive in terms of performance, but

we only need to carry them out for the reported matches, which are presumably
only a very small fraction of all possible pairs of records. Ps and Pr can decide
to perform such PSIs for every matching pair or for selected pairs of special
interest, or for pairs selected after estimating the Jaccard index as described
above. As mentioned in Section 3 performing a selective PSIs leaks the size of
the selection to an eavesdropper and this should be taken into account in
the application threats model.

D Our implementation

For reproducibility, we provide concrete details about our LSH implementation.
We start by explaining the concept of relative weighting of the record fields.

D.1 Relative weighting of the record fields

Some record fields may be more indicative of identity than other fields. For
example, an SSN field is very indicative (though it may also include typos), and
a similarity of the full names is more indicative of identity than the similarity
of zip codes. A simple method of weighting the effect of the different fields on
the matching process is to duplicate the shingles originating from a field for a
predefined number of times. We call this number the field weight. For example,
consider a PPRL that operates over records with two fields: name and zip code.
We use k=6 and k=7 shingles for these fields and set their weights to be 3
and 1, respectively. Then, the 6-shingle ‘John S’ extracted from the name field
‘John Smith’ will be duplicated into three separate shingles ‘John S1’, ‘John S2’,
‘John S3’, whereas the zip-code 7-shingle ‘2304170’ will not be duplicated. This
causes shingles originating from the name to be three times more likely than
zip-code shingles to be the minimum value used by the Min-Hashes of the LSH
(see Section 2.2). This will make the band signatures more likely to match if
name shingles are identical than if zip-code shingles are identical.

The problem with this shingle duplication weighting method is that the extra
shingles slow down the PPRL process because more shingles need to be hashed

LSH-PSI PPRL 25

by the many Min-Hashes. To this end, we present a novel method for weighting
the shingles, which yields the same results as the shingle duplication method
but is much faster. The idea is to reduce the hash value of a shingle according
to the shingle’s weight, to directly increase its chance of being the shingle that
receives the minimal value by the Min-Hashes.

We view the hash code h of a shingle as a discrete random variable with
uniform distribution over some integer range [0,maxV al]. Thus, x = h/maxV al
is approximately a random variable with a continuous uniform distribution over
[0, 1]. Our method relies on this being a good approximation.

Our method is as follows: instead of duplicating a shingle w times, we com-
pute the shingle’s hash-code h, normalize it x = h/maxV al, then apply the
transformation y = 1− (1− x)1/w, and finally return back to the original scale
h′ = by ∗maxV alc. Lemma 1 shows that this results with a variable h′ whose
distribution is the same as the minimum of w independent hashes.

Lemma 1. Let H1, H2, . . . , Hn be i.i.d. random variables with uniform distri-
bution over [0, 1]. Let Y = min(H1, H2, . . . ,Hw). Then X = 1− (1−H1)1/w has
the same distribution as Y .

Proof. Let FH be the cumulative distribution function (CDF) of each Hi, i.e.,
FH(h) = h in the range [0, 1]. Let FY be the CDF of Y , i.e., FY (y) = 1 −
(1 − FH(y))w = 1 − (1 − y)w and its inverse is F−1Y (p) = 1 − (1 − p)1/w, so
X = F−1Y (H1). The CDF of X is therefore

FX(x) = P (X ≤ x) = P (F−1Y (H1) ≤ x) = P (H1 ≤ FY (x)).

Since H1 is a uniform variable over [0, 1], this means FX(x) = FY (x). ut

We observed a 9% speedup when comparing the computation time (ignoring
communications) of our PPRL solution using the shingle duplication method
versus the above hash-dropping method.

Remark 4. The work in [22] also describes a method of computing a ‘Weighted
MinHash’ over multisets with duplicated elements, but the universe of all possible
items (or dimension for vectors) is assumed to be known in advance.

E LSH description

We are now ready to describe our LSH implementation. The algorithms below
use a data structure that we call the field-group data structure FG, which is
a list of tuples (s, k, w), where s is a string, k ∈ N is the shingles length, and
w ∈ N is a vector with the shingles’ weights, respectively. Algorithm 1 computes
the LSH for a given record record. First, it concatenates together strings from
fields that belong to the same group according to the configuration variable conf
(Lines 5-6). Then, it attaches to every concatenated string the k,w values of its
group as defined by conf (Line 7). The algorithm returns the output of the
LshFG function on the generated field-group data structure FG (Line 8).

26

The LshFG algorithm uses the auxiliary functions getWeigthedShingles,
which we describe in Algorithm 2. Its input is a field-group data structure and
its output is a list of pairs of k-shingles and their respective weights.

Algorithm 1 Compute the LSH for a given DB record

Input: record, a map of fields to values (strings) and conf a list of tuples (F, k, w)
where F is a set of field names, and k,w ∈ N are the shingles length and the fields
weight, respectively.
Output: lsh = [b1, b2, . . . , bB].

1: procedure LSH(record, conf)
2: FG = ∅
3: for t ∈ conf do
4: s =“”
5: for f ∈ t.F do
6: s = s | record[f]

7: FG = FG ∪ (s, t.k, t.w)

8: return LshFG(FG)

Algorithm 2 Returns weighted shingles for given strings

Input: FG a field-group data structure.
Output: res an ordered list of pairs (sh,w) where sh is a string and w ∈ N.

1: procedure getWeigthedShingles(FG)
2: res = ∅
3: for (s, k, w) ∈ FG do
4: S = getShingles(s, k) . Returns an ordered list of the k-shingles of s.
5: res = res.append

(
[(sh,w) | sh ∈ S]

)
6: return res

Algorithm 3 describes the function LshFG, which basically follows the LSH
definition. First, the strings are converted to shingles by invoking Algorithm 2.
The loop of lines 8-14 generates the signature bands in M . It starts by comput-
ing a 32-bit hash for every shingle (lines 10-11), and then uses them to construct
R different hashes for each of the shingles. The R hash values are then reduced
according to the shingle weight using the function CalcH. This function is based
on Lemma 1, where the equation in Line 3 can be modified when w ≤ 2 to avoid
the division and save computations. The resulting R minimal hash values are
kept in the M array. To generate fast hash values, we replaced the intermediate
SHA256 calls with a Mersenne twister, which uses random numbers. The algo-
rithm generates and holds these numbers in the arrays C and D. Finally, using
SHA256, we concatenate and hash the values of M to create the band signature
(Line 14).

LSH-PSI PPRL 27

Algorithm 3 Compute the LSH for a given record field group

Constants: MP = 261 − 1, a Mersenne prime, and maxV al = 232

Input: h, c, d, w ∈ N.
Output: an integer.

1: procedure CalcH(h, c, d, w)
2: h =

[
h · c+ d (mod MP)

]
(mod maxV al)

3: return maxV al ·
(

1− (1− h
maxV al

)
1
w

)
. based on Lemma 1.

Input: B,R ∈ N, and FG a field-group data structure.
Output: L = [b1, b2, . . . , bB].

4: procedure LshFG(B,R, FG)

5: C
$←− {1, . . . ,MP}R

6: D
$←− {0, . . . ,MP}R

7: wS = getWeightedShingles(FG)
8: for b = 1, . . . , B do
9: i = 1

10: for (sh,w) ∈ wS do
11: H[i+ +] = (Trunc32(SHA256(sh)), w)

12: for r = 1, . . . , R do
13: M [r] = mini{CalcH(H[i].sh, C[r], D[r], H[i].w)}
14: L[b] = SHA256(M)

15: return L

	Privacy-preserving record linkage using local sensitive hash and private set intersection

