
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 2, FEBRUARY 2013 397

Privacy-Preserving Speaker Verification and

Identification Using Gaussian Mixture Models
Manas A. Pathak and Bhiksha Raj, Member, IEEE

Abstract—Speech being a unique characteristic of an individual
is widely used in speaker verification and speaker identification
tasks in applications such as authentication and surveillance
respectively. In this article, we present frameworks for pri-
vacy-preserving speaker verification and speaker identification
systems, where the system is able to perform the necessary oper-
ations without being able to observe the speech input provided
by the user. In a speech-based authentication setting, this privacy
constraint protect against an adversary who can break into the
system and use the speech models to impersonate legitimate users.
In surveillance applications, we require the system to first identify
if the speech recording belongs to a suspect while preserving the
privacy constraints. This prevents the system from listening in on
conversations of innocent individuals. In this paper we formalize
the privacy criteria for the speaker verification and speaker iden-
tification problems and construct Gaussian mixture model-based
protocols. We also report experiments with a prototype imple-
mentation of the protocols on a standardized dataset for execution
time and accuracy.

Index Terms—Secure multiparty computation, speaker identifi-

cation, speaker verification.

I. INTRODUCTION

A S speech is a unique characteristic of an individual, a

person’s voice and manner of speaking are his/her bio-

metric signatures. This property allow us to classify speech sam-

ples by their speakers using probabilistic representation such

as Gaussian mixture models (GMMs), and forms the under-

lying principle of speaker verification and speaker identification

tasks. In speaker verification, we authenticate a person based on

speech input. In speaker identification the objective is to iden-

tify which, if any, of a given set of speakers produced a given

speech sample.

In order to perform authentication, a speaker verification

system needs to store speech patterns of all enrolled users. This

leads to the system being vulnerable to attacks that other types

of authentication systems, such as password-based systems, are

subjected to. For instance, the verification system may itself be

compromised for phishing, i.e., made to act as a front to capture

users’ speech patterns when they enroll with the system. These
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voice patterns could then be used to impersonate users in other

voice authentication services. Alternatively, a malicious agent

may break into a system and gain access to stored voice patterns

and later apply them to generate fake voice data to impersonate

enrolled users. Each of these attacks lead to the disclosure of

the speech data provided by the users and therefore form a

breach of privacy.

However, no form of speech-based authentication is perfectly

secure. An obvious way of circumventing the authentication

process is by imitation. Imposters may attempt to imitate a sub-

ject’s voice, or produce speech similar to the user’s voice using

methods such as playing out recordings of the user’s voice, or

morphing their own voice into the user’s voice [2], [3]. Imita-

tion of a person’s speech, however, does not lead to the imposter

or the system gaining any additional information and therefore

does not result in a loss of privacy. We consider these form of

attacks as only security threats and not privacy issues.

Speaker identification, on the other hand, finds application in

audio surveillance applications. The audio-based surveillance

can be in the form of wiretapping, where the a security agency,

e.g., police, listens in on telephone conversations or the audio

captured by hidden microphones in public areas. A basic char-

acteristic of surveillance is that the agency needs to perform

it obliviously, i.e., the subjects under surveillance should not

know about it. Although listening in on personal conversations

either over the telephone or from physical sources is an effective

surveillance method to identify credible security threats, this di-

rectly infringes on the privacy of innocent individuals who may

not be intended targets of the surveillance. To prevent this, the

agency would first need to perform speaker identification to de-

termine if the speech input belongs to a speaker who is supposed

to be under surveillance. In order to perform speaker identifica-

tion using a conventional setup, the agency would need com-

plete access to the speech input, which itself would be a privacy

violation, resulting in a circular problem.

In this article we develop frameworks for privacy preserving

speaker verification and speaker identification tasks, where the

system performs verification or identification without being able

to observe the speech input. Our solution is based on securemul-

tiparty computation (SMC) protocols [4] that enables the system

to perform computation only on encrypted speech data without

requiring to observe in plaintext. We envision a client-server

model, where a user executes a client program on a network

computation device, such as a computer or smartphone, coupled

with a public key cryptosystem. The user retains its private key,

while the public key is shared with the system. We, therefore,

eliminate the possibility that the system could phish for a user’s

voice in speaker verification or listen in to the speech input in
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speaker identification. Secondly, in speaker verification, we re-

quire the system to store only encrypted speech patterns pro-

vided by enrolling users, thereby protecting against an adversary

who breaks into the system.We later present mechanisms where

system is able to perform verification over encrypted speech

input provided by the user against these encrypted speech pat-

terns.We assume that one adversary does not gain access to both

the user’s client device and the system at the same time. We dis-

cuss the detailed privacy criteria in the later sections.

We should note that we do not aim to design superior speaker

verification and speaker identification algorithms for achieving

higher accuracy. We instead aim to create a mechanism to en-

sure the privacy of user’s speech data and the models learned by

the system while implementing existing verification and identi-

fication algorithms. Also, there is always a computational over-

head in the privacy-preserving mechanisms due to the time re-

quired to perform the encryption and decryption operations. We

also present experiments on a prototype implementation of the

protocols to analyze the execution time.

Although there has been substantial work on general tech-

niques for data processing with privacy constraints [5], [6],

including protocols for privacy-preserving biometric authen-

tication tasks such as face recognition [7] and fingerprint

recognition [8], privacy-preserving speech processing is a

nascent area of research. Smaragdis and Shashanka [9] propose

protocols for training and evaluating Gaussian mixtures and

hidden Markov models on speech data, under privacy con-

straints. Pathak, et al. [10] develop and implement an efficient

protocol for privacy-preserving HMM inference applied to

isolated word recognition. In this article, we extend some of

these techniques to develop protocols for speaker verification

and speaker identification.

II. PRELIMINARIES

A. Speaker Verification Using GMMs

We briefly overview the technique for text-independent

speaker verification. We outline the basic algorithm here; for a

detailed tutorial, please refer to [11].

In a speaker verification task, we attempt to authenticate an

individual based on the characteristics of his/her speech. We

parameterize the speech samples by the sequences of Mel-fre-

quency cepstral coefficients augmented by differences and

double differences, i.e., a recording consists of a sequence of

feature vectors. In the enrollment phase, we require each user

to submit a set of speech samples . We represent a

person’s speech characteristics by a Gaussian mixture model

(GMM) . The GMM has the following form:

where is the multivariate Gaussian distribu-

tion with mean and covariance . We learn these parame-

ters from the enrollment data using the expectation-minimiza-

tion (EM) algorithm.

Although we can potentially learn the speaker model from the

enrollment samples for the speaker, learning the GMM for the

imposter class is less obvious as an imposter could potentially

be from a very large set of speakers. We represent the generic

speaker by a universal background model (UBM) that is

trained on a large and diverse set of speakers.

In the verification phase, given a test speech sample , we

aim to check if it is likely to be uttered by the enrolled speaker

or by an imposter. Then we compute the probabilities of using

the speaker model and the (UBM) . We perform the veri-

fication using the following likelihood ratio test with respect to

a pre-calibrated threshold .

accept speaker,

reject speaker.
(1)

Model Adaptation: We mentioned above that we train the

speaker model , directly from the training data, but in prac-

tice the speaker models obtained from maximum a posteriori

(MAP) adaptation with the UBM empirically outperform the

models trained directly on the enrollment data [11], [12].

The MAP adaptation procedure comprises estimation of a

sample estimate of the speaker’s parameters, followed by inter-

polation with the UBM. Given set of enrollment speech samples

, we first compute the a posteriori probabilities of the

individual Gaussians in the UBM . For the mixture com-

ponent of the UBM,

(2)

Similar to the M-step of EM, we use the a posteriori prob-

abilities to compute new weights, mean, and second moment

parameters.

(3)

Finally, we obtain the parameters of the adapted model

from the convex combination of the above param-

eters and the UBM parameters as follows.

(4)

The adaptation coefficients control the amount of contribu-

tion of the enrollment data relative to the UBM.

B. Speaker Identification Using GMMs

Speaker identification can be considered to be the gener-

alization of speaker verification task to the case of multiple

speakers. We consider the setting where we already have a set

of speakers , and given a test speech sample,

we are interested in assigning it to one of the speakers. In

open-set speaker identification, we consider a default or none of
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the above case in which the speech sample does not correspond

to any of the speakers.

Similar to speaker verification, we represent the speakers by

GMMs , and the default case by the UBM .We

obtain the speaker models either by learning a GMM directly

from the speech data for that speaker or by adapting the UBM

to the training data for individual speakers.

In the identification step, we individually compute the prob-

abilities of all the speaker models with respect to the given test

speech sample . We choose the speaker corresponding to the

model having the highest probability.

C. Homomorphic Encryption

Homomorphic encryption schemes allow for operations to be

performed directly on encrypted data (ciphertext) without re-

quiring knowledge of their unencrypted data (plaintext). If the

homomorphic encryption scheme is asymmetric, i.e., provides

public and private keys, the party with private key “Alice” can

encrypt its input and transfer it to the party with the public key

“Bob,” who can perform the necessary operations on the en-

crypted data alone. The operations on encrypted data protect pri-

vacy as Bob cannot decrypt and observe the input provided by

Alice. This property is the foundation of our privacy preserving

mechanisms.

A cryptosystem in which we can perform any operations on

the plaintext by performing operations on corresponding cipher-

text is called a fully homomorphic cryptosystem (FHE). The

first such cryptosystemwas proposed in a breakthrough work by

Gentry [13], [14]. Although the construction satisfies the neces-

sary properties for FHE, it is found to be computationally inef-

ficient to be used in practice [15], and developing computation-

ally practical FHE schemes is an active area of research [16].

There are well-established efficient partially homomorphic

encryption schemes that allow a few operations to be per-

formed on plaintext by performing operations on ciphertext,

e.g., unpadded RSA is multiplicatively homomorphic, El

Gamal [17] and Paillier [18] are additively homomorphic.

The Paillier cryptosystem allows us to compute inner prod-

ucts of an encrypted vector with a plaintext vector. Given a

ciphertext vector and a plaintext

vector , we can homomorphically compute

to obtain .

We can then homomorphically add these elements to obtain

which is the encrypted inner product

.

Being able to perform homomorphic addition alone on the ci-

phertext has its limitations; given two encrypted vectors

and , we are

not able to directly compute the inner product . Boneh-

Goh-Nissim (BGN) [19] is a homomorphic cryptosystem pro-

vides arbitrary number of additions along with one multiplica-

tion on ciphertexts. We can use it to directly compute the en-

crypted inner product from two encrypted vectors. The

homomorphic operations provided by the BGN cryptosystem

are a superset of those provided by the Paillier cryptosystem.

There is, however, a significant difference in performance. We

prefer to use the Paillier cryptosystem in constructing interac-

tive protocols. When we require the homomorphic computation

of inner products from ciphertexts in our privacy preserving

mechanisms, we use the BGN cryptosystem.

Interactive and Non-Interactive Protocols: If we need to

perform operations on ciphertexts beyond those provided by

the partially homomorphic cryptosystem, we need to construct

interactive protocols, where both the parties Alice and Bob

perform part of the computation. In interactive protocols, Alice

encrypts the data using her public key and transfers it to Bob.

Using the operations provided by the homomorphic cryp-

tosystem, Bob obtains the necessary intermediate results, and

sends randomly perturbed ciphertexts back to Alice, typically

perturbed by additive or multiplicative blinding. Alice decrypts

the data using her private key, performs some intermediate

operations, encrypts the results and sends it back to Bob. In this

way, Alice and Bob each perform part of the computation till

they obtain the required output. On the other hand, in non-in-

teractive protocols, Bob requires no assistance from Alice

beyond receiving the input ciphertexts and directly obtains the

output by performing the necessary computation himself. As

we shall see in Section III-C, we use the Paillier cryptosystem

to constuct interactive protocols and the BGN cryptosystem to

construct non-interactive protocols.

III. PRIVACY-PRESERVING SPEAKER VERIFICATION

In this section, we develop our framework for privacy-pre-

serving speaker verification system. The system uses UBM and

adapted GMMs (Section II-A) to represent the speakers.We dis-

cuss the privacy issues of our framework by considering the

adversarial roles of the various parties. We then present the

system architecture along with the enrollment and verification

protocols.

A. Adversarial Model

We assume the user and the system to be independent par-

ties that have access to separate computing devices operating

in a client-server framework. We assume the parties to be com-

putationally bounded, i.e., we consider that the parties cannot

directly break the encryption to obtain plaintext from ciphertext

without the decryption key.

In SMC, we consider two types of adversarial behavior of

parties: semi-honest and malicious. We consider a semi-honest

party to follow the steps of the protocol correctly, but keep a

record of all intermediate results while trying to gain as much

information as possible about the input data belonging to other

parties. A malicious party, in addition to the semi-honest be-

havior, takes active steps in disrupting the protocol by using

fraudulent input data to gain information about the input data

belonging to other parties, and to obtain an unrealistic result.

Our main privacy constraint is that the system should not

be able to observe the speech samples belonging to the user

both during the enrollment and verification phases. In order to

achieve this, we require that users submit encrypted adapted

models in the enrollment phases and encrypted test speech data

in the verification phase, where the encryption is performed

with the private key belonging to the user. In the verification

phase, the system needs to perform all the necessary operations
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Fig. 1. Enrollment protocol: user has enrollment data and system has the
UBM . System obtains encrypted speaker model .

over this encrypted data using the homomorphic operations de-

scribed in Section II-C, which we refer to as the verification pro-

tocol. The only malicious behavior the system can exhibit in the

verification protocol is to modify the steps of the procedure to

obtain incorrect output. As the system never observes the speech

input in plaintext, this will not help it in anyway to obtain any

information about the input. On the other hand, a system giving

arbitrary accept/reject decisions will only antagonize the users

and accepting false users would lead to a security problem, but

not a loss in privacy. For the same reasons, we assume that the

system provides the user with the correct copy of the algorithm

which we assume to be public. We therefore assume that the

system to be semi-honest.

We also assume that the user is semi-honest during the enroll-

ment phase. By maliciously submitting false adapted models,

the user will only help in creating a weak authentication system,

and there is no incentive for the user to do so. In the verification

phase, however, the user could possibly be an imposter who is

an adversary using a compromised device belonging to the user.

We therefore assume that the user is malicious. In this model,

we cannot make assumptions about the correctness of the input

data provided by the user. In order to counter such an adversary,

we require that the system apply the same input data for both the

UBM and the adapted models.

B. System Architecture

As an initialization step, the user generates a public/private

key pair and sends the public key to the system. We assume

that the system trains a UBM on publicly available data

and stores it with itself as plaintext. In the enrollment protocol

(Fig. 1), the system sends the UBM to the user in plaintext and

the user performs the adaptation. The user then encrypts the

adapted model with its key and sends it to the system. After

executing the enrollment protocol with all users, the system has

encrypted models for all users along with the UBM. At the end

of the protocol, we require the user to delete the enrollment data

from its computation device in order to protect it from an ad-

versary who might gain unauthorized access to it. The user de-

vice stores the encryption and decryption keys. Similarly, as the

server stores only the encrypted speaker models, it is also pro-

tected against an adversary who might compromise the system

to gain the speaker models, in order to impersonate the user

later. If an adversary compromises the user device as well as

the system, we consider the system to be completely compro-

mised as the adversary can use the decryption key to obtain the

speaker model in plaintext.

In the verification protocol (Fig. 2), the user produces a test

speech sample and encrypts it using its key and sends it to

the system along with the claimed identity. The system evalu-

ates the encrypted test sample with the UBM and the encrypted

model for the claimed speaker it had obtained in the enrollment

Fig. 2. Verification protocol: user has test data and system has the UBM
and encrypted speaker model . The user submits encrypted data and the
system outputs an accept/reject decision.

protocol using the homomorphic operations and obtains two en-

crypted scores. The system makes its decision by comparing the

difference between the two encrypted scores with a threshold

using the compare protocol.

C. Speaker Verification Protocols

We now describe the enrollment and verification protocols in

detail. We use the following construction from [9]: the multi-

variate Gaussian computed on any -dimensional

vector can be represented in terms of of a

matrix .

(5)

This implies , where is an extended

vector obtained by concatenating 1 to . As suggested by [10],

we reduce this computation to a single inner product ,

where the extended feature vector consists of all pairwise

product terms and is obtained by unrolling

into a vector. In this representation, we have

(6)

We assume that the user computes MFCC features from the

speech samples. In the following discussion, we refer to the

MFCC features as the speech sample itself.

1) Private Enrollment Protocol: We assume that the system

already has access to the UBM, trained on a collection

of publicly available speech data. The speaker verification

algorithm requires a speaker model obtained from adapting

the UBM to the enrollment data provided by the speaker. We

require that the speaker model is kept with the system only

after it is encrypted by the user’s key using an additively ho-

momorphic encryption scheme like the Paillier cryptosystem.

We outline this enrollment protocol below.

Private Enrollment Protocol.

Inputs:

(a) User has the enrollment samples and both

encryption key and decryption key .

(b) System has the UBM for ,

mixing weight , and the encryption key .

Output: System has the encrypted user model ,

for .

(i) The system sends the UBM to the user.
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(ii) User performs the model adaptation of with the

enrollment samples (see Section II-A) to

obtain the adapted model .

(iii) The user represents the mixture components of the

adapted model using the matrix representation

described above.

(iv) The user encrypts using its encryption key and sends

it to the system.

Although this arrangement, where the user performs the adap-

tation, is adequate in most applications, we also construct a pro-

tocol for the system to perform the adaptation over encrypted

enrollment data to obtain the encrypted speaker models.

2) Private Verification Protocols: In the verification pro-

tocol, the system needs to evaluate the probabilistic score of the

given test sample using the UBM and the adapted model .

This score is evaluated for all frames of the test sample; for a test

sample and the model , this score is given

by

We compute this score in the log domain to prevent numerical

underflow,

(7)

using the matrix representation from (6).

In our privacy model, we assume that the user has the speech

sample and the system has the encrypted matrices . Private

verification protocol proceeds as follows: the user sends the en-

crypted frame vectors to the system and which is then

used to compute the inner products using the homo-

morphic properties of the Paillier cryptosystem. In order to use

the inner products to compute the log scores, we need to perform

an exponentiation operation on ciphertext. As our cryptosystem

only supports homomorphic additions and a single multiplica-

tion, it is not possible to do this directly, and we therefore use the

logsum protocol which requires user participation in the inter-

mediate steps. We outline this interactive verification protocol

below.

Interactive Private Verification Protocol.

Inputs:

(a) User has the test sample with frame vectors

and both encryption key and

decryption key .

(b) System has , for , and the

encryption key .

Output: System obtains the score .

(i) The user encrypts the frame vectors and sends it to

the system.

(ii) For each mixture matrices and each frame vector

, the system computes the inner product .

(iii) The system and the user then participate in the logsum

protocol to obtain .

(iv) The system adds the logsums homomorphically to obtain

the .

As the system has access to the UBM in plaintext, the user

and the system can execute the private mixture of Gaussians

evaluation protocol (MOG) given by [9]. However, we observe

that the above protocol is substantially faster than MOG using

unencrypted models. This is because in the above protocol, the

user computes part of the inner products in plaintext. We

therefore repeat the above protocol with the encrypted UBM

to obtain the encrypted probability .

The system and the user can finally execute the millionaire pro-

tocol [4], to privately compute if

and the system uses this as the decision to authenticate the

user.

Throughout this protocol, the system never observes the

frame vectors in plaintext. The various supplementary

protocols require the system to send encrypted partial results to

the user. While doing so the system either adds or multiplies

the values it sends to the user by a random number. This also

prevents the user from learning anything about the partial

results obtained by the system. Even after satisfying these

privacy constraints, the system is able to make the decision on

authenticating the user.

A drawback of the above protocol is that it requires partici-

pation from the user in the intermediate steps. Apart from the

computational and data transfer overhead incurred, this also re-

sults in a privacy vulnerability. A malicious user can provide

fake inputs in the logsum step to disrupt the protocol and try to

authenticate itself without having a speech sample belonging to

a genuine user. To prevent this, we construct a non-interactive

protocol, where the user needs to submit the encrypted speech

sample and the system directly computes the probability scores.

As this is not possible due to the exponentiation involved in (7),

we modify the score function itself by alternating the log and

sum functions.

(8)

This has the advantage that using homomorphic multipli-

cation provided by the BGN cryptosystem, the system can

by itself compute the inner products for both the

speaker model and the UBM for the same encrypted input

provided by the user. Beyond that, the system only needs ho-

momorphic addition to compute the score without requiring any

user participation. We experimentally observe that the accuracy

of this score is close to that of the original probabilistic score.

We outline the non-interactive verification protocol below.

Non-Interactive Private Verification Protocol.

Inputs:

(a) User has the test sample with frame vectors

and both encryption key and

decryption key .

(b) System has , for , and the

encryption key .

Output: System obtains the score .
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(i) The user encrypts the frame vectors and sends it to

the system.

(ii) For each mixture matrices and each frame vector

, the system computes the inner product

homomorphically.

(iii) The system adds the inner products homomorphically to

obtain the .

The system executes the same protocol using the adapted

model and the UBM using the same inputs it receives from the

user in step (i). The system never observes the frame vectors in

plaintext in this protocol as well. As there is no user participa-

tion after the initial encrypted frame vectors are obtained, there

is no loss of privacy of the user data.

IV. PRIVACY-PRESERVING SPEAKER IDENTIFICATION

In this section, we develop our framework for privacy-pre-

serving speaker identification. Similar to the speaker verifica-

tion framework, we use the GMMs to represent the speakers

(Section II-B). We discuss the privacy issues of our framework

by considering the adversarial roles of the various parties. We

then present the system architecture along with the enrollment

and verification protocols.

A. Adversarial Model

We consider speaker identification with two parties: the client

who has access to the test speech sample and the server who has

access to the speaker models and is interested in identifying the

most likely speaker corresponding to the test sample. For con-

creteness, we consider the setting of a surveillance operation as

an application scenario for our framework. In case of surveil-

lance, the server would be the security agency, and the client

would be the telephone company that has access to the conver-

sations of all subscribers. It is important to note that we do not

consider the individual phone users as the client as these individ-

uals should be unaware about being subjected to surveillance, as

no user would willingly participate in such an activity.

The agency has access to the speaker models for the indi-

viduals it already has wiretapping warrants against. The agency

directly deals with the telephone company in order to identify

if any such individual is participating in a telephone conversa-

tion. If that is found to be the case, the agency would follow the

necessary legal procedure to obtain the phone recording. The

same analogy also holds for the case of physical surveillance;

e.g., a supermarket installs hidden security cameras with micro-

phones in their premises, and the police might want the audio

recordings to gain evidence about criminal activity. In this case

the supermarket would be the client and the police would be the

server.

Although we aim to construct mechanisms to protect the pri-

vacy of the client data, we assume that the client cooperates

with the server. In the speaker identification task, it is possible

that the client can refuse the server by simply not providing

the speech input or providing white noise or speech from some

other source as input. In this case, it will not be possible for

the server to perform surveillance. In order to prevent this, the

server can legally require the client to use only the correct data

as input. We also assume that the server already knows the

speakers it is looking to identify. The server uses the publicly

available data for the speakers to train the corresponding

speaker models without requiring the participation of the client.

The server trains a UBM as a speaker model corresponding to

above case, that is the input speech not matching any of the

speakers. In the process of performing speaker identification

with these models, our privacy criteria are:

1) The server should not observe the speech data belonging

to the client.

2) The client should not observe the speaker models be-

longing to the server.

The first criterion follows directly from the discussion above,

the server being able to observe the speech data causes the viola-

tion of client privacy. The client, i.e. phone company, can also

include in its privacy policy that the user privacy will be pro-

tected because if an agency needs to perform surveillance, it will

do so using a privacy-preserving speaker identification system.

The second criterion is important because it is possible to iden-

tify the speaker by reverse-engineering the speaker models. The

client might do this to gain information about the blacklisted in-

dividuals the server is performing surveillance on. This would

cause problems in the investigation process as the client can

convey this information to those individuals.

We consider the adversarial behaviors of the client and the

server below. In the speaker identification task, the server tries

to gain as much information as possible from the input provided

by the client. The server cannot do much to disrupt the protocol,

the server can use incorrect speaker models, but that would only

result in incorrectly identified speaker. As that is not in the in-

terest of the server, we assume that the server is semi-honest.

Similarly, the client tries to gain information about the server

models from the intermediate steps of the protocol. As discussed

above, we assume that the client cooperates in the speaker iden-

tification task by submitting the correct input, and therefore we

also require the client to be semi-honest.

B. System Architecture

We assume that the server knows the set of speakers

that it is interested in identifying and has access

to data for each speaker. This data could be publicly available

or extracted by the server in its previous interactions with the

speakers. The server uses a GMM to represent each speaker

and also a UBM . We consider the UBM to represent

none of the above case, where the test speaker is outside the

set . The server obtains GMMs for individual

speakers by either training directly over the

data for that speaker or by performing MAP adaptation with

the UBM. The client has access to the speech sample, that it

represents using MFCC features. To perform identification, the

server needs to evaluate the GMMs

over the speech sample. The server assigns the speaker to the

GMM that has the highest probability score, .

Our design of the first variant of the speaker identification

framework is shown in Fig. 3 where the client sends speech

samples to the server. Initially, the client generates a public/pri-

vate key pair for the homomorphic cryptosystem

and sends the public key to the server. The client will then en-

crypt the speech sample and send it to the server. The server
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Fig. 3. GMM-based speaker identification: client sends encrypted speech
sample to the server.

Fig. 4. GMM-based speaker identification: server sends encrypted models to
the client.

uses the GMM evaluation protocol for each speaker model to

obtain the encrypted probability scores. The server and

client then engage in the private maximum computation pro-

tocol where only the server knows the model having the highest

score at the end.

In the second variant of the speaker identification framework

denoted in Fig. 4, the server sendsmodels to the client. To do this

privately, the server as opposed to the client creates a public/pri-

vate key pair for the homomorphic cryptosystem

and sends the public key to the client. The server encrypts all

GMMs using this key and sends it to the client. The client eval-

uates all the GMMs over the speech sample it has and obtains

encrypted scores. The client and the server then partici-

pate in the private maximum computation protocol where only

the server will know the model having maximum score at the

end.

C. Speaker Identification Protocols

We reuse the construction for representing a Gaussian as

given by (6):

We construct the following GMM evaluation protocols using

the additively homomorphic Paillier cryptosystem for the two

cases: evaluating over private speech data and evaluating over

private speaker models and later use the protocols in the speaker

identification protocols.

1) Case 1: Client Sends Encrypted Speech Sample to the

Server:

GMM Evaluation Protocol with Private Speech Sample.

Inputs:

(a) Client has the test sample with frame vectors

and both encryption key and

decryption key .

(b) Server has the GMM with mixture components

and the encryption key .

Output: Server obtains the encrypted score .

(i) The client encrypts the frame vectors and sends

it to the server.

(ii) For each Gaussian matrix and each frame vector

, the server computes the

inner product homomorphically as

(iii) The server and the client then participate in the logsum

protocol to obtain .

(iv) The server adds the logsums homomorphically to obtain

the .

By using this protocol, the server is able to privately eval-

uate a GMM it has in plaintext over speech data belonging

to the client. As the server does not have the private key,

it is not able to observe the encrypted speech sample pro-

vided by the client and the final encrypted probability score.

The server executes this protocol for all the GMMs

, including the UBM and obtains the encrypted

scores and the server

needs to find the GMM having the maximum probability score.

The server and the client participate in the private maximum

computation protocol for this purpose. Our construction is based

on the SMAX protocol of [9] and the blind and permute protocol

of [20].

2) Case 2: Server Sends Encrypted Speaker Models to the

Client:

GMM Evaluation Protocol with Private Speaker Model.

Inputs:

(a) Client has the test sample with frame vectors

and the encryption key .

(b) Server has the GMM with mixture components

and both encryption key and

decryption key .

Output: Client obtains the encrypted score .

(i) The server encrypts the Gaussian matrices

and sends it to the client.

(ii) For each frame vector and each encrypted Gaussian

matrix, the client computes the inner product

homomorphically as

(iii) The client and the server then participate in the logsum

protocol to obtain .

(iv) The client adds the logsums homomorphically to obtain

the .

The client uses the above protocol to evaluate GMMs

provided by the server in ciphertext on its speech data. The client

obtains probability scores encrypted by the server at the end of

the protocol. To perform speaker identification, only the server

needs to find the GMM having the maximum score. The client

cannot transfer the scores to the server, as that would lead to the

loss of privacy of the client speech data. We instead construct

the following protocol that uses another set of keys generated
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by the client and then reuse the private maximum computation

protocol we discussed above. We cannot directly use the pri-

vate maximum computation protocol with the parties reversed,

i.e., the client as the server and the server as the client. This is

because our privacy criteria require that only the server should

know about the identified speaker.

Comparison of the Two System Configurations: In the first

variant of the system architecture described in Case 1, the main

computation and communication overhead is due to the client

encrypting its speech sample. This overhead is directly propor-

tional to the length of the sample , with 100 frames per second.

In the remainder of the GMM evaluation and private maximum

computation protocols, the client and server exchange small

vectors that are independent of the sample length.

In the second variant described in Case 2, the main over-

head is due to the server encrypting its speaker models. As dis-

cussed above, we represent the speaker model using matrices

representing a single mixture component. Each

matrix is of size , where is the dimension-

ality of the frame vector. In our implementation, we use

with MFCC features with . This size is independent of

the sample length. The client evaluates these models on its own

unencrypted speech data. Similar to the first variant, the over-

head from the remainder of the private computation is relatively

small.

In this way, the cost of using the two configurations is de-

pendent on the length of the speech sample. If the length is

typically smaller than the matrix size , it is

advantageous to use the first variant, where the client encrypts

the speech sample. If is larger than the product, it is advan-

tageous to use the second variant. As compared to speaker ver-

ification, speaker identification is performed on relatively large

amount of speech input, often multiple minutes long in prac-

tical scenarios such as surveillance. In these situations, it is sig-

nificantly more efficient to use the second variant. On the other

hand the speech input can be only a few seconds long in prob-

lems where speaker identification is used as an initial step for

other speech processing tasks. In these situations, it is efficient

to use the first variant.

V. EXPERIMENTS

We present the results of experiments with the privacy pre-

serving speaker verification and speaker identification proto-

cols described above. We created prototype implementations of

the interactive and non-interactive verification protocols in C++

using the pairing-based cryptography (PBC) library [21] to im-

plement the BGN cryptosystem and OpenSSL library [22] to

implement the Paillier cryptosystem. We performed the experi-

ments on a 2 GHz Intel Core 2 Duo machine with 3 GB RAM

running 64-bit Ubuntu.

A. Speaker Verification Experiments

Both interactive and non-interactive protocols constructed

using homomorphic encryption achieved the same final prob-

ability scores as the non-private verification algorithm up to 5

digits of precision.

1) Accuracy: We used the YOHO dataset [23] to measure the

accuracy of the two speaker verification protocols. We trained a

TABLE I
EXECUTION TIME FOR THE INTERACTIVE PROTOCOL

WITH PAILLIER CRYPTOSYSTEM

UBMwith 32Gaussianmixture components on a random subset

of the enrollment data and performed MAP adaptation with the

enrollment data for individual speakers to obtain the speaker

models. We evaluate the UBM and the speaker models on the

verification data for the speaker as the true samples and the ver-

ification data for all other speakers as the imposter samples. We

use EER1 as the evaluationmetric.We observed an EER of 3.1%

for the interactive protocol and 3.8% for the non-interactive pro-

tocol. This implies that there is only a marginal reduction in per-

formance by modifying the scoring function.

Although the above EERs are acceptable to be used in most

verification applications, they should be considered to be pre-

liminary and indicative of the feasibility of the two protocols.

The interactive protocol essentially follows the UBM-GMMap-

proach [11], and by using 1024 mixture components and more

discriminative features, the EER can be reduced to less than 2%

[23], [24]. We hypothesize that the EER for the non-interactive

protocol can also be reduced similarly.

2) Execution Time: We measured the execution times for

the verification protocols using BGN encryption keys of sizes

256 and 512-bits.2 In practice, 512-bit keys are used for strong

security [25]. We use 256 and 1024 bit keys for Paillier cryp-

tosystem. We perform the verification of a 1 second speech

sample containing 100 frame vectors using the UBM and the

speaker models each containing 32 mixture components. The

non-private verification algorithm required 13.79 s on the same

input.

We use the Paillier cryptosystem for the interactive protocol

and the BGN cryptosystem for the non-interactive protocol, as

the private inner product is needed in the latter. We summarize

the results in Tables I and II for the interactive and non-interac-

tive protocols respectively. Also, the execution time varies lin-

early with the utterance length. We observe that the interactive

protocol is faster than the non-interactive protocol. This is due to

the execution of the private inner product for each frame vector

needed for the non-interactive protocol. The system requires to

perform multiplicative homomorphic operations to obtain the

inner product. These operations in turn require the computation

of a bilinear pairing which is much slower than homomorphi-

cally multiplying plaintexts with ciphertexts as we do in the in-

teractive protocol.

In both protocols, we observe that the UBM evaluation is sig-

nificantly faster than the speaker model evaluation: this is be-

cause the UBM is available in plaintext with the system and the

inner product requires only additive homomorphic operations.

1Equal error rate of implies that when the false accept rate is , the
false reject rate is also .

2For 512-bit keys, we choose the two prime numbers and each of 256-
bits, such that that their product is a 512-bit number.
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TABLE II
EXECUTION TIME FOR THE NON-INTERACTIVE PROTOCOL

WITH BGN CRYPTOSYSTEM

TABLE III
GMM-BASED SPEAKER IDENTIFICATION: EXECUTION TIME. CASE 1: CLIENT

SENDS ENCRYPTED SPEECH SAMPLE TO THE SERVER

TABLE IV
GMM-BASED SPEAKER IDENTIFICATION: EXECUTION TIME. CASE 2: SERVER

SENDS ENCRYPTED SPEAKER MODELS TO THE CLIENT

This is in contrast to evaluating the speaker model that is only

available in ciphertext.

B. Speaker Identification Experiments

The precision for the speaker identification protocols was the

same as the speaker verification protocols.

1) Accuracy: We also used the YOHO dataset [23] to mea-

sure the accuracy of the speaker identification task. We used the

experimental setup similar to [26]. We observed the same accu-

racy for the two variants of the speaker identification protocol as

they both resulted in the same speaker scores.We trained aUBM

on a random subset of the enrollment data and performed MAP

adaptation with the enrollment data for speakers to obtain the

speaker models. We evaluated the UBM and the speaker models

on the test data for the speakers, in addition to the speakers

outside the set representing the none of the above case. We used

identification accuracy, i.e., the fraction of the number of times

a test speaker was identified correctly. For a 10-speaker classi-

fication task, we observed 87.4% accuracy.

2) Execution Time: We measured the execution times for

the verification protocols using Paillier encryption keys of sizes

256 and 1024-bits. We identify a 1 second speech sample con-

taining 100 frame vectors using speaker models each

containing 32 mixture components using the two variants of the

speaker identification protocol.We report time for evaluating 10

speaker models. As the time required for evaluating each model

is approximately the same, these numbers can be appropriately

scaled to obtain estimated execution time for other number of

speakers. We summarize the results in Tables III and IV.

VI. CONCLUSION AND FUTUREWORK

In this article we developed the privacy-preserving pro-

tocol for GMM-based algorithm for speaker verification using

homomorphic cryptosystems such as BGN and Paillier en-

cryption. The system observes only encrypted speech data,

and hence, cannot obtain information about the user’s speech.

We constructed both interactive and non-interactive variants

of the protocol. The interactive variant is relevant in the case

of semi-honest adversary and the non-interactive variant is

necessary in the case of malicious adversary. During the

exchanges required by the protocols, the user only observes

additively or multiplicatively masked data, and does not gain

any information about the user’s speech from it. The proposed

protocols are also found to give results which are same up to

a high degree of precision compared to a non-private GMM

adaptation based scheme. The interactive protocol is more

efficient than the non-interactive protocol as the latter requires

homomorphic multiplication using BGN cryptosystem.

We also developed a framework for privacy-preserving

speaker identification using GMM and Paillier cryptosystem.

In this model, the server is able to identify which of the

speakers best correspond to the speech input provided by the

client without being able to observe the input. We present two

variants of the framework, where either the client submits

encrypted speech to the server or the server submits encrypted

speaker models to the client. The first variant of the protocol is

faster than the second variant, but the bandwidth requirement

of the latter is independent of the sample length.

In the timing experiments for both speaker verification and

speaker identification, we observe that the parties spend a large

amount of time performing encryption operations. This could

be substantially reduced by using a parallel computation frame-

work such as graphics processing units (GPUs). We can also

leverage the tools and techniques used in this paper to create

privacy-preserving protocols for other speaker recognition algo-

rithms, e.g., supervectors with NAP [27] and GMM-UBM with

JFA [28]. We leave these directions for future work.
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