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Abstract:Outsourcing computation has gained significant popularity in recent years due to the development

of cloud computing and mobile services. In a basic outsourcing model, a client delegates computation of

a function f on an input x to a server. There are two main security requirements in this setting: guarantee-

ing the server performs the computation correctly, and protecting the client’s input (and hence the function

value) from the server. The verifiable computation model of Gennaro, Gentry and Parno achieves the above

requirements, but the resulting schemes lack efficiency. This is due to the use of computationally expensive

primitives such as fully homomorphic encryption (FHE) and garbled circuits, and the need to represent f as

a Boolean circuit. Also, the security model does not allow verification queries, which implies the server can-

not learn if the client accepts the computation result. This is a weak securitymodel that does notmatchmany

real life scenarios. In this paper, we construct efficient (i.e., without using FHE, garbled circuits and Boolean

circuit representations) verifiable computation schemes that provide privacy for the client’s input, and prove

their security in a strong model that allows verification queries. We first propose a transformation that pro-

vides input privacy for a number of existing schemes for verifiable delegation of multivariate polynomial f

over a finite field. Our transformation is based on noisy encoding of x and keeps x semantically secure under

the noisy curve reconstruction (CR) assumption. We then propose a construction for verifiable delegation of

matrix-vector multiplication, where the delegated function f is a matrix and the input to the function is a vec-

tor. The scheme uses PRFs with amortized closed-form efficiency and achieves high efficiency. We outline

applications of our results to outsourced two-party protocols.

Keywords: Cloud computing, outsourcing computation, verifiable computation, privacy preserving,

polynomials, matrices
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1 Introduction

Outsourcing computation has gained significant popularity in recent years due to the development of cloud

computing and mobile devices. Computationally weak devices such as smartphones and netbooks can out-

source expensive computations to powerful cloud servers.

The first security concern that arises in outsourcing is to guarantee that the cloud server correctly per-

forms the delegated computation. Cloud servers may have incentives, such as saving in computation time or

other malicious goals, to produce results that may be incorrect. The verifiable computation (VC) of Gennaro,

Gentry and Parno [18] allows a client to outsource the computation of a function f on an input x and then ver-

ify the correctness of the server’s work. The outsourcing is especially meaningful as long as the client’s work
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spent on preparing x for delegation and verifying the server’s results are substantially less than computing

f(x) locally. A second security concern is privacy of client’s data, including the input x and the output f(x).
Resolving both security issues simultaneously in an efficient way is a nontrivial problem. The proposals

in [18] and several followingworks [2, 4, 13] address both security concerns but use expensive cryptographic

primitives such as fully homomorphic encryption (FHE) and/or garbled circuits, and represent the function f

as a Boolean circuit. The result is inefficient verifiable computation schemes. From a security view point,

an important shortcoming is that these schemes can only tolerate adversaries that do not make verification

queries, i.e., the adversary is not allowed to learn if the client has accepted the computation result.

1.1 Our work

In this paper, we develop the first verifiable computation schemeswhere the client’s input is kept private from

the server; both the client and the server computations are free of FHE, garbled circuits and Boolean circuit

representations, and the security is proved in a strong model that allows verification queries. We achieve

these properties for two types of functions: multivariate polynomials and functions that are represented by

a matrix over a finite field.

A transformation for polynomial delegation schemes

Our first contribution is a transformation T that can be applied to a number of existing verifiable computation

schemes, resulting in the input x and the output f(x), to remain private (semantic security) from the server.

Our transformation works for all schemes in [6, 10, 16, 37] where the function f is a multivariate polynomial

over finite fields, does not use FHE, garbled circuits and Boolean circuits and allows verification queries if so

does the underlying scheme.

Verifiable delegation of high-degree polynomial computations on private inputs is highly nontrivial. On

one hand, the client has to provide a semantically secure encryption of x (say σx) to the cloud server. On the

other hand, the cloud server has to compute f on σx without knowing the decryption key and produce an

encoding σy of the output y = f(x). A generic way to enable such computations is to use FHE, which however

should be avoided in our schemes.

We resolve this difficulty using techniques from multivariate polynomial interpolation and reconstruc-

tion [12, 43]. Let f(x) = f(x1, . . . , xh) be an h-variate polynomial of degree ≤ d over a finite field 𝔽𝔽, and let

a = (a1, . . . , ah) ∈ 𝔽𝔽h be any input to the function. We observe that f(a) can be learned from the restriction

of f on a random (parametric) curve that passes through a. More precisely, let γ(z) = a + r1 ⋅ z + ⋅ ⋅ ⋅ + rk ⋅ zk
(r1, . . . , rk ∈ 𝔽𝔽h) be a degree-k parametric curve passing through a, and let g(z) = f(γ(z)) be the restriction
of f on the curve. Given any t > kd points {(zi , g(zi))}ti=1, one can interpolate g(z) and learn f(a) = g(0). The
t points {(zi , γ(zi))}ti=1 can be regarded as a noiseless encoding of a, where any ≤ k points perfectly hide a.
Distributing the t points to t different servers, one to each server, would enable each server to return a value

f(γ(zi)) = g(zi), and the t values jointly give f(a) in a way such that any ≤ k servers learn no information

about a.

Unfortunately, we cannot use the noiseless encoding to attain input privacy in VC, where the single

cloud server knows all t points {(zi , g(zi))}ti=1 and so is able to learn a. To overcome this difficulty, we mix

the t points of a noiseless encoding with n − t random points {(zj , uj)}nj=t+1 and form a noisy encoding of a

that consists of n points (with locations randomly permuted). The values of f on these points suffice to com-

pute f(a). The problem of decoding a from its noisy encoding (known as noisy curve reconstruction) has

been extensively studied in [7, 15, 23, 26, 40]. There is no known polynomial-time algorithm for the prob-

lem for t ≤ (nkh)1/(h+1) + k + 1. The noisy curve reconstruction (CR) assumption [26] is that the noisy curve

reconstruction problem is intractable when t = o((nkh)1/(h+1) + k + 1).
While noisy encoding gives a “semantically secure encryption” of a, it results in the long encoding of

the input and so significant efficiency loss. Fortunately, the noisy encoding can be extended to “encrypt”
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a polynomial number of inputs a1, . . . , as at the same time, resulting in an encoding of size O(n) elements

for s = O(n/t). With this extended noisy encoding, one can delegate computation of f(a1), . . . , f(as) simul-

taneously and significantly reduce the average cost of delegation. This inspires our transformation T that

extends polynomial delegation schemes to have input (and output) privacy: the cloud server computes f

on O(n) points of the noisy encoding of a1, . . . , as and gives the results to the client; the client computes

f(a1), . . . , f(as) using polynomial interpolation. Using a verifiable polynomial delegation scheme Σ, the O(n)
computations of f will be verifiable by the client, and this determines if the server has worked correctly.

Applying T to the existing schemes [6, 10, 16, 37] (without data privacy), results in schemes with input

(and output) privacy. Furthermore, T keeps additional properties, such as private/public verifiability of the

underlying schemes, unchanged. For example, applying T to [37] results in a publicly verifiable scheme that

allows efficient update of the function.

An input-private construction for matrix delegation

We interpret an n × n matrix M = (Mi,j) as a function that takes a vector x = (x1, . . . , xn) as input and out-

putsM ⋅ x󸀠󸀠, wherex󸀠󸀠 is the transpose ofx.Wepropose an input-private verifiable computation ofmatrix-vector

multiplications of the form M ⋅ x󸀠󸀠. The scheme provides security assuming an adversary with access to veri-

fication queries and provides very efficient verification by avoiding the second level of amortization as used

above.

The construction uses three primitives: a somewhat homomorphic encryption (SHE) adapted from [8],

a homomorphic hash from [17] and a PRF with closed-form efficiency from [17]. The input (and output)

privacy is obtained by the client encrypting x using the SHE and giving it to the server. The server has the

matrixM and a tag matrix T = (Ti,j) for the matrix elements, each computed using the PRF with closed-form

efficiency. The SHE scheme allows the server to perform homomorphic scalar multiplications and additions

on the elements ofM (in clear) and the ciphertext ofx, which gives an encrypted version ofM ⋅ x󸀠󸀠 for the client.
The server is able to compute the homomorphic hash digests on the SHE ciphertexts of x and combines these

digests with the tags of M to generate a proof of correctness for computation. The homomorphic property of

the hash, and the amortized closed-form efficiency of the PRF, makes the client’s verification significantly

faster than the computation ofM ⋅ x󸀠󸀠 from scratch. In particular, the verification can be done in constant time

after a one-time computation that is substantially more efficient than computing M ⋅ x󸀠󸀠.

Application

Our verifiable computation schemes could be used to outsourcing of two-party protocols. We show an exam-

ple of such applications to the outsourcing of private information retrieval (PIR). PIR [12] allows a client to

retrieve any block fi of a database f = (f1, f2, . . . , fN) from a server such that i ∈ [N] is not revealed to the

server. Outsourced PIR [25, 34] has been suggested to offload the PIR server computation [5] to cloud. Both

of our constructions give outsourced PIR with security against malicious cloud servers.

1.2 Related work

Securely outsourcing computation dates back to the work on interactive proofs [3, 22], PCP-based efficient

arguments [29, 30], CS proofs [35] and the muggle proofs [21]. While these schemes are either interactive or

in the random oracle model, the verifiable computation of Gennaro, Gentry and Parno [18] is non-interactive

and in the standard model.

The verifiable computation schemes of [2, 4, 13, 18] attain input (and output) privacy and thus resolve

both security issues simultaneously. However, they have to use the expensive cryptographic primitives such

as FHE and/or garbled circuits and occasionally represent the function f as a Boolean circuit. As a result,
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these schemes are not efficient enough both in terms of server computation and in terms of client computa-

tion. Furthermore, these schemes are only secure against adversaries that do not make verification queries.

Goldwasser et al. [20] show how to construct reusable garbled circuits and obtain private schemes but again

make use of FHE. Ananth et al. [1] constructed a verifiable computation scheme achieving input (and output)

privacy using multiple servers, where FHE is not used but the security requires at least one of the servers is

honest.

Fiore, Gennaro and Pastro [17] consider verifiable computation schemes where the data on cloud server

(the function f in our setting) is kept private. In our schemes, the data on server is not necessarily encrypted,

but the client’s input x should be kept semantically secure in order to achieve input (and output) privacy.

That is, we are studying a problem orthogonal to [17]. The schemes of [27, 32] consider the same problem

as [17].

The verifiable computation schemes of [6, 9, 11, 14, 16, 21, 39] require the client to send its input to the

cloud server in clear and thus attain no input (or output) privacy.

2 Preliminaries

Let λ be a security parameter. We denote by poly(λ) an arbitrary polynomial function in λ. We denote by

negl(λ) an arbitrary negligible function in λ, i.e., any function ϵ(λ) from the natural numbers to the non-

negative real numbers such that, for any c > 0, there is an integer λc > 0 such that ϵ(λ) < λ−c for all λ ≥ λc.
Let A( ⋅ ) be any probabilistic polynomial-time (p.p.t.) algorithm. We denote by “y ← A(x)” the procedure
of running A on input x and assigning the output to y. Let Ω be any finite set. We denote by “y ← Ω” the

procedure of choosing an element y from Ω uniformly and at random. For every integer m > 0, we denote
[m] = {1, 2, . . . ,m}.

2.1 Verifiable computation

A verifiable computation scheme [6, 18] is a two-party protocol between a client and a server. The client

provides a function f and an input x to the server. The server is expected to compute f(x) and respond with
the (possibly encoded) output together with a proof that the output is correct. The client then verifies the

output is indeed correct. The goal of verifiable computation is to make the client’s verification as efficient as

possible, and in particular much faster than the computation of f(x) from scratch. In the amortized model of

[6, 18], the client is allowed to do an expensive preprocessing on f to produce a key pair and then use the

key pair to efficiently verify the server’s computation of f on many different inputs. The scheme is said to be

outsourceable if each individual verification is much faster than the corresponding computation.

A verifiable computation scheme VC = (KeyGen, ProbGen, Compute, Verify) for an admissible function

family F consists of four polynomial-time algorithms defined below.

∙ (PKf , SKf )← KeyGen(1λ , f): Based on the security parameter λ, the randomized key generation algorithm

generates a public key that encodes the target function f and the matching secret key. The public key is

provided to the server, and the secret key is kept private by the client.

∙ (σx, τx)← ProbGen(SKf , x): Theproblemgeneration algorithmuses the secret key SKf to encode the func-

tion input x as a public value σx which is given to the server, and a secret value τx which is kept private

by the client.

∙ σy ← Compute(PKf , σx): Using the client’s public key and the encoded input, the server computes an

encoded version (i.e., σy) of the function’s output y = f(x).
∙ {y,⊥}← Verify(SKf , τx, σy): Using the secret key SKf and the secret “decoding” value τx, the verification

algorithm converts the server’s encoded output into the output of the function, e.g., y = f(x), or outputs⊥
indicating that σy does not represent the valid output of f on x.
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We are interested in verifiable computation schemes that are correct, secure, private and outsourceable. The

scheme is said to be correct if the problem generation algorithm produces values that allow an honest server

to compute values that will verify successfully and be converted to the evaluation of f on the client’s input x.

Definition 1 (Correctness). The scheme VC is correct if, for any function f from the admissible function fam-

ilyF, the key generation algorithmproduces keys (PKf , SKf )← KeyGen(1λ , f) such that, for allx ∈ Domain(f),
if (σx, τx)← ProbGen(SKf , x) and σy ← Compute(PKf , σx), then Verify(SKf , τx, σy) = f(x).

Intuitively, a verifiable computation scheme is secure if a malicious server cannot persuade the verification

algorithm to accept an incorrect output. In other words, for a given function f and input x, a malicious server

should not be able to convince the verification algorithm to output a value ŷ such that ŷ ̸= f(x). This intuition
can be formalized by the following experiment.

∙ (PKf , SKf )← KeyGen(1λ , f);
∙ for ℓ = 1, . . . , L = poly(λ):

(a) xℓ ← A(PKf , x1, σx1 , b1, . . . , xℓ−1, σxℓ−1 , bℓ−1);
(b) (σxℓ , τxℓ )← ProbGen(SKf , xℓ);
(c) σ̂yℓ ← A(PKf , x1, σx1 , b1, . . . , xℓ−1, σxℓ−1 , bℓ−1, xℓ, σxℓ );
(d) ŷℓ ← Verify(SKf , τxℓ , σ̂yℓ );
(e) bℓ = 1 if ŷℓ ̸= ⊥; otherwise, bℓ = 0;

∙ if there exists ℓ ∈ [L] such that bℓ = 1 but ŷℓ ̸= f(xℓ), output “1”; otherwise, output “0”.

Figure 1: Experiment ExpVer
A
(VC, f, λ).

In the experiment ExpVer
A
(VC, f, λ), the adversaryA is given a polynomial number (i.e., L) of opportunities

to persuade the verification algorithm to accept the wrong output value for an input value. In each trial, the

adversary is given oracle access to generate the encoding of a problem instance, and also oracle access to

the result of the verification algorithm on an arbitrary string on that instance. The adversary succeeds if it

ever convinces the verification algorithm in a trial to accept the wrong output value for the input value. The

security of VC requires that the adversary succeeds only with negligible probability.

Definition 2 (Security). The scheme VC is secure if, for any function f ∈ F and for any probabilistic polyno-

mial-time adversaryA, there is a negligible function negl such that

Pr[ExpVer
A
(VC, f, λ) = 1] ≤ negl(λ).

Intuitively, a verifiable computation scheme is (input) private when the public outputs of the problem gen-

eration algorithm ProbGen for two different inputs are indistinguishable; i.e., nobody can decide which

encoding is the correct one for a given input. The input privacy can be defined based on a typical indis-

tinguishability argument and yields output privacy. Let PubProbGen(SKf , ⋅ ) be an oracle that computes

(σx, τx)← ProbGen(SKf , x) on any input x and returns only the public value σx. We formalize the intuition

(on input privacy) with the following experiment.

∙ (PKf , SKf )← KeyGen(1λ , f);
∙ (x0, x1)← A

PubProbGen(SKf ,⋅ )(PKf );
∙ b ← {0, 1};
∙ (σxb , τxb )← ProbGen(SKf , xb);
∙ b̂ ← A

PubProbGen(SKf ,⋅ )(PKf , x0, x1, σxb );
∙ if b̂ = b, output “1”, else “0”.

Figure 2: Experiment ExpPri
A
(VC, f, λ).
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Definition 3 (Privacy). The scheme VC is private if, for any function f ∈ F and for any probabilistic polyno-

mial-time adversaryA, there is a negligible function “negl” such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pr[Exp
Pri
A
(VC, f, λ) = 1] − 1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ negl(λ).

Informally, a verifiable computation scheme is outsourceable if the time to encode the input and verify the

output must be smaller than the time to compute the function from scratch.

Definition 4 (Outsourceable). The scheme VC is outsourceable if it permits efficient problem generation and

output verification. That is, for any x and any σy, the time required for ProbGen(SKf , x) plus the time required

for Verify(SKf , σy) is o(T), where T is the time required to compute f(x) from scratch.

We work in the amortized model of [6, 18], where the time required for KeyGen(1λ , f) is not included in the

above definition. In this model, computing the key pair (PKf , SKf ) is a one-time operation (per function)

that can be amortized over the computation of on many (in fact, any poly(λ) number of) different inputs.

Apart from this amortization, we also consider a second level of amortization occasionally, where a number

of different inputs, say x1, . . . , xs, are processed by ProbGen together and the delegation and verification of

the computations f(x1), . . . , f(xs) are done simultaneously.

3 Adding privacy to polynomial delegation

In this section, we show a transformation that can add (input and output) privacy to a verifiable computa-

tion scheme whose admissible function family consists of multivariate polynomials over a finite field. Our

transformation is based on the noisy curve reconstruction assumption.

3.1 Noisy curve reconstruction assumption

The noisy curve reconstruction assumption generalizes the noisy polynomial reconstruction assumption [28,

36], which was widely used in protocol design [26, 42] and is based on the hardness of noisy polynomial list

reconstruction problems.

Definition 5 (Noisy polynomial list reconstruction). Let 𝔽𝔽 be a finite field, and let n, k, t > 0 be integers. Let

(z1, y1), . . . , (zn , yn) ∈ 𝔽𝔽2. The noisy polynomial list reconstruction problemwith input (n, k, t, {(zi , yi)}ni=1) is
the problem of finding all polynomials γ(z) of degree ≤ k such that γ(zi) = yi for ≥ t values of i ∈ [n].

When t ≥ n+k
2
, the noisy polynomial list reconstruction problem has a unique solution and can be solved in

polynomial time by Berlekamp and Massey’s algorithm [33]. Goldreich, Rubinfeld and Sudan [19] showed

that, for t > √kn, the noisy polynomial list reconstruction problem has ≤ poly(n) solutions. Sudan [41] and
Guruswami and Sudan [24] proposed polynomial-time algorithms for t ≥ √2kn and t ≥ √kn, respectively.
For t ≤ √kn, no polynomial-time algorithms are known. Naor and Pinkas [36] introduced the noisy polyno-

mial reconstruction assumption, which asserts that, for appropriately chosen n = n(λ), k = k(λ), t = t(λ) and
𝔽𝔽 = 𝔽𝔽(λ), the output distribution of the following procedure keeps a ∈ 𝔽𝔽 semantically secure:

∙ randomly choose

– a polynomial γ(z) ∈ 𝔽𝔽[z] of degree ≤ k such that γ(0) = a,
– n nonzero field elements z1, z2, . . . , zn ∈ 𝔽𝔽 such that they are distinct,
– a subset T ⊆ [n] of cardinality t and set yi = γ(zi) for every i ∈ T,
– a field element yi ∈ 𝔽𝔽 for every i ∈ [n] \ T;

∙ output {(zi , yi)}ni=1.
Ishai, Kushilevitz, Ostrovsky and Sahai [26] considered a multi-dimensional variant of the noisy polynomial

list reconstruction problem and introduced the noisy curve reconstruction (CR) assumption.
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Definition 6 (CR assumption). Let k be a degree parameter, which will also serve as a security parameter.

Given functions 𝔽𝔽(k) (field), h(k) (dimension), t(k) (the number of points on the curve) and n(k) (the total
number of points), the CR assumption holds with parameters (𝔽𝔽, h, t, n) if the output distributionD

a
n,k,t,h

of

the following procedure keeps a = (a1, . . . , ah) ∈ 𝔽𝔽(k)h(k) semantically secure:

∙ randomly choose

– h polynomials γ1(z), . . . , γh(z) ∈ 𝔽𝔽[z] of degree ≤ k such that (γ1(0), . . . , γh(0)) = (a1, . . . , ah),
– n nonzero field elements z1, z2, . . . , zn ∈ 𝔽𝔽 \ {0} such that they are distinct,
– a subset T ⊆ [n] of cardinality t, and for every i ∈ T, set yi = (γ1(zi), . . . , γh(zi)),
– a vector yi ∈ 𝔽𝔽h for every i ∈ [n] \ T;

∙ output {yi}ni=1.
Formally, the CR assumption holds if, for any points a0, a1 ∈ 𝔽𝔽(k)h(k), for any probabilistic polynomial-time

algorithmA, there is a negligible function “negl” such that

|Pr[A(Da0
n,k,t,h
) = 1] − Pr[A(Da1

n,k,t,h
) = 1]| ≤ negl(k).

An augmented version of the CR problem requires one to learn a from {(zi , yi)}ni=1 (instead of {yi}ni=1) and was
resolved in [15] when t > (nkh)1/(h+1) + k + 1. The problem remains hardwhen t = o((nkh)1/(h+1)), and the CR
assumption remains plausible despite of the progress in list decoding [7, 15, 23, 26, 40].

3.2 Multivariate polynomial interpolation and noisy encoding

Multivariate polynomial interpolation allows one to learn the value of a multivariate polynomial at a point,

given its restriction on a parametric curve passing through that point. Let h, d > 0 be integers. For any vector
i = (i1, . . . , ih) of non-negative integers, we denote wt(i) = i1 + ⋅ ⋅ ⋅ + ih as the weight of i. Let 𝔽𝔽 be any finite
field. We denote by 𝔽𝔽[x] = 𝔽𝔽[x1, . . . , xh] the ring of all polynomials in the h variables x = (x1, . . . , xh) and
denote by xi = xi1

1
⋅ ⋅ ⋅ xih

h
the monomial of multidegree i (and degree wt(i)) in x. Let f(x) = ∑i:wt(i)≤d fi ⋅ xi be

any h-variate polynomial of degree ≤ d over 𝔽𝔽, and let a = (a1, . . . , ah) ∈ 𝔽𝔽h. The multivariate polynomial

interpolation technique of learning f(a) can be described as the following procedure:
∙ choose r1, . . . , rk ← 𝔽𝔽h; define a parametric curve γ(z) = a + r1 ⋅ z + ⋅ ⋅ ⋅ + rk ⋅ zk;
∙ learn f(γ(zi)) for t ≥ kd + 1 distinct nonzero field elements z1, . . . , zt ∈ 𝔽𝔽 \ {0};
∙ interpolate the polynomial g(z) = f(γ(z)) of degree ≤ kd with {(zi , f(γ(zi)))}ti=1;
∙ output g(0) (which is equal to f(γ(0)) = f(a)).
This procedure allows one to hide a from a subset of the players in distributed protocols for evaluating amul-

tivariate polynomial f(x), such as in the private information retrieval (PIR) protocols [12, 43], where a client

gives t points γ(z1), . . . , γ(zt) to t servers such that no k or less servers can learn any information about a,

the i-th server returns g(zi) and the client recovers f(a) from the t values g(z1), . . . , g(zt). We consider the

t points γ(z1), . . . , γ(zt) as a noiseless encoding of a, which leaks absolutely no information about a to any

adversary that observes ≤ k of the t points.
We shall construct verifiable computation schemes where the client’s input a is kept private from a sin-

gle cloud server. While sending a noiseless encoding (γ(z1), . . . , γ(zt)) of a to the server simply reveals a to

that server, the CR assumption allows us to develop a noisy encoding {yi}ni=1 of a (as in the procedure of Def-
inition 6) that keeps a semantically secure. Unfortunately, we cannot directly use this noisy encoding in the

constructions due to efficiency loss. On one hand, the CR assumption requires that t ≤ (nkh)1/(h+1) + k + 1.
On the other hand, one has to choose t ≥ kd + 1 to enable the interpolation of g(z) = f(γ(z)). As a result,

n ≥ (d − 1)h+1 ⋅ k and is comparable to (h+dd ), the number coefficients of f . And the noisy encoding only yields

a scheme that is not outsourceable.

We bypass this difficulty with a second level of amortization, i.e., by processing multiple function inputs

a1, . . . , as together such that the average encoding length of each input is short and thus results in out-

sourceable schemes. In [26], it was shown that if n − t noisy points suffice to keep one point semantically

secure, then, for any s = poly(k), they suffice to keep s points semantically secure. With this observation, we

describe an extended noisy encoding algorithm (pka⃗, rka⃗)← NEnc(k, a⃗) that takes a⃗ = (a1, . . . , as) ∈ (𝔽𝔽h)s as
input and outputs a public noisy encoding pka⃗ and a private value rka⃗ for reconstruction use as follows.
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∙ for every ℓ ∈ [s], randomly choose h polynomials γℓ,1(z), . . . , γℓ,s(z) ∈ 𝔽𝔽[z] of degree ≤ k such that

aℓ = (γℓ,1(0), . . . , γℓ,h(0));
∙ randomly choose m = ts + n − t nonzero distinct field elements z1, . . . , zm ∈ 𝔽𝔽 \ {0};
∙ randomly choose s pairwise disjoint subsets T1, . . . , Ts ⊂ [m], each of cardinality t;
∙ for every ℓ ∈ [s] and j ∈ Tℓ, set cj = (γℓ,1(zj), . . . , γℓ,h(zj));
∙ set T0 = [m] \ (T1 ∪ T2 ∪ ⋅ ⋅ ⋅ ∪ Ts); for every j ∈ T0, randomly choose a vector cj ∈ 𝔽𝔽h;
∙ output pka⃗ = {cj}mj=1 and rka⃗ = {Ti}si=0.

3.3 The transformation

The algorithm NEnc allows one to hide s function inputs, say a⃗ = (a1, . . . , as), with a public noisy encoding
pka⃗ such that no information about a⃗ will be leaked (under the CR assumption). Let Σ be a non-private ver-

ifiable computation scheme [6, 10, 16, 37] with an admissible function family of multivariate polynomials

over a finite field. We shall present a transformation T that adds (input and output) privacy to Σ. The idea of

our transformation is letting the client encode a⃗ as pka⃗ and give pka⃗ to the server; the server runs Σ.Compute

on every element (which is a point) of pka⃗ and provides the public values of evaluating the polynomial f on

all points to the client; at last the client runs Σ.Verify to both verify the server’s work and recover the results

f(a1), . . . , f(as). This idea gives a new scheme Π = T(Σ) as below.
∙ (PKf , SKf )← Π.KeyGen(1k , f): Given f = f(x) ∈ 𝔽𝔽[x1, . . . , xh], an h-variate polynomial of degree≤ d, run

Σ.KeyGen(1k , f) to generate a public key pkf and the matching secret key skf ; output PKf = pkf and
SKf = skf .

∙ (σa⃗, τa⃗)← Π.ProbGen(SKf , a⃗): Given a⃗ = (a1, . . . , as) ∈ (𝔽𝔽h)s, a set of s inputs from Domain(f), run
NEnc(k, a⃗) to generate both a public noisy encoding pka⃗ of a⃗ and a private value rka⃗ for the recon-

struction use. Parse pka⃗ as {cj}mj=1 ⊆ 𝔽𝔽h, a set of m points. For every j ∈ [m], run Σ.ProbGen(SKf , cj)
to generate both a public encoding σcj of cj and a private value τcj for verification use. At last, output

σa⃗ = {σcj }mj=1 as the public encoding of a⃗, and output τa⃗ = (rka⃗, {τcj }mj=1), the private values for verification
and reconstruction.

∙ σy ← Π.Compute(PKf , σa⃗): Parse σa⃗ as {σcj }mj=1, the set of s public encodings, one for each element in

pka⃗. For every j ∈ [m], run Σ.Compute(PKf , σcj ) to compute an encoded version σf(cj) of the function’s
output f(cj). At last, output σy = {σf(cj)}mj=1 as the encoded version of the function’s outputs on all s inputs,
i.e., f(a1), . . . , f(as).

∙ {y,⊥}← Π.Verify(SKf , τa⃗, σy): Parse τa⃗ as (rka⃗, {τcj }mj=1), where {τcj }mj=1 is for verificationuse and rka⃗ is for
reconstruction use. Parse σy as {σf(cj)}mj=1, an encoded version of the s function outputs f(a1), . . . , f(as).
For every j ∈ [m], run Σ.Verify(SKf , τcj , σf(cj)) to verify the server’s work of computing f(cj) and out-

put vj, where vj = f(cj) or vj = ⊥ (indicating that σf(cj) is not a valid encoding of f(cj)). If there exists
j ∈ [m] such that vj = ⊥, then output ⊥ to indicate that σy is not a valid encoding of the s function out-

puts. Otherwise, parse rka⃗ as (T0, T1, . . . , Ts), where T1, . . . , Ts ⊆ [m] are pairwise disjoint t-subsets
and T0 = [m] \ T1 ∪ ⋅ ⋅ ⋅ ∪ Ts; for every ℓ ∈ [s], interpolate a polynomial Qℓ(z) = f(γℓ,1(z), . . . , γℓ,h(z)) of
degree ≤ t from the t points {(zj , vj)}j∈Tℓ

. At last, output y = (Q1(0), . . . , Qs(0)).

Correctness: The correctness of Σ implies that vj = f(cj) for every j ∈ [m]. For every ℓ ∈ [s], the points {cj}j∈Tℓ

are on the parametric curve γℓ(z) = (γℓ,1(z), . . . , γℓ,h(z)). Then {vj}j∈Tℓ
are values of Qℓ(z) = f(γℓ(z)) at t = |Tℓ|

distinct points {zj}j∈Tℓ
, where deg(Qℓ(z)) ≤ k ⋅ deg(f) ≤ kd. If the parameters t, k, d are chosen such that

t ≥ kd + 1, then the t points {(zj , vj)}j∈Tℓ
suffice to interpolate the univariate polynomial Qℓ(z) of degree ≤ kd

and give

Qℓ(0) = f(γℓ(0)) = f((γℓ,1(0), . . . , γℓ,h(0))) = f(aℓ).
Hence, the scheme Π = T(Σ) is correct when t ≥ kd + 1.

Privacy: In the schemeΠ, a⃗ = (a1, . . . , as) is encodedwithNEnc and then given to the server. The CR assump-

tion implies that a⃗ will be kept semantically secure against the server as long as t = o((nkh)1/(h+1) + k + 1).
Therefore, Π achieves input privacy (and thus output privacy) under the CR assumption.
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Security: The security of Π requires that no adversary running in probabilistic polynomial-time should be

able to persuade the verification algorithm to accept and output incorrect values on the input values. The

proof of the following theorem is straightforward and left to Appendix A.

Theorem 1. If the scheme Σ is secure under Definition 2, thenΠ is a secure verifiable computation scheme under

this security definition.

Efficiency: A verifiable computation scheme is outsourceable if the time to encode the input and verify the

output is smaller than the time to compute the function from scratch. The existing verifiable computation

schemes [6, 18] are in an amortized model, where the one-time cost of KeyGen(1λ , f) is amortized over many

different inputs. And for each input x, the total time required for ProbGen(SKf , x) and Verify(SKf , τx, σy) is
substantially less than the time required for computing f(x) from scratch.

The scheme Π works in two levels of amortization. At the first level, the one-time cost of Π.KeyGen(1λ , f)
is amortized over the executions of the scheme on many different sets of inputs. At the second level, in

every execution of Π.ProbGen(SKf , a⃗) and Π.Verify(SKf , τa⃗, σy), the client can process s function inputs

a⃗ = (a1, . . . , as) together; and the total time required for both algorithms, when averaged over the s func-

tion inputs, allows Π to be outsourceable. More precisely, a⃗ is encoded as a set of m = n − t + ts points. The
time spent on Π.ProbGen(SKf , a⃗) is equal to the time spent on NEnc(k, a⃗), which is dominated by m com-

putations of h-dimensional curve of degree k plus the total time spent on m executions of Σ.ProbGen. The

average time spent on processing each function input is dominated bym/s curve computations andm/s exe-
cutions of Σ.ProbGen. The time spent onΠ.Verify(SKf , τa⃗, σy) is equal to the total time spent onm executions

of Σ.Verify plus the total time spent on interpolations of s polynomials of degree ≤ t. Therefore, the average
time spent on verifying each output is dominated by the time spent on m/s executions of Σ.Verify plus the
time spent on interpolation of a polynomial of degree ≤ t.

There is a tradeoff between the number s of simultaneously delegated function inputs and the average

time ̄T spent on processing each function input and verifying its output. If we choose s = O(n/t), then ̄T will

be dominated by O(t) curve evaluations, O(t) executions of Σ.ProbGen, O(t) executions of Σ.Verify and inter-
polation of a degree ≤ t univariate polynomial. For Π to be correct and secure, n, k, t, h, d should be chosen

such that kd < t ≤ (nkh)1/(h+1) + k + 1. As a result, onemust have that n ≥ (d − 1)h+1 ⋅ k, which is comparable

to N = (h+d
d
), the number of coefficients of f . There are many ways to choose n, k, t, h, d such that ̄T = o(N).

As an example, if we choose

h = O(1), d = poly(k), t = O(kd log k) = o(N), n = O(kh+2dh+1 logh+1 k),

̄T will be dominated by O(kd log k) curve computations, O(kd log k) executions of Σ.ProbGen, O(kd log k)
executions of Σ.Verify and interpolation of a polynomial of degree ≤ t. Since Σ is outsourceable, Π is out-

sourceable as well.

Our transformation gives efficient verifiable computation schemes that enable the delegation of high-

degree polynomial computations on private (encrypted) function inputs. In particular, our scheme neither

relies on the expensive primitives such as fully homomorphic encryption (FHE) and garbled circuits nor has

to represent the function f as a Boolean circuit. Even for very small k and d, our schemes are the first ensur-

ing security and privacy without using expensive primitives. We can easily extend T such that it is not only

applicable to privately verifiable schemes [6] but also applicable to publicly verifiable schemes [10, 16, 37].

Furthermore, T never changes the verifiability of the underlying scheme Σ.

Implementation: Applying our transformation to the privately delegatable and verifiable computation

scheme Σbgv for multivariate polynomials of bounded total degree from Benabbas, Gennaro and Vahlis [6]

gives a new scheme Πbgv that achieves input and output privacy for the client. We implemented Πbgv with

a cyclic group of order ≥ 21024, where strong DDH [6] is supposed true. Let Tc( ⋅ ) and Ts( ⋅ ) denote the aver-
age client running time and server running time. Our implementation shows that Tc(Πbgv) = O(Tc(Σbgv)) and
Ts(Πbgv) = O(Ts(Σbgv)), where the constants hidden in O depend on k and d. The moderate efficiency loss

stems from T, which adds privacy to Σbgv. In contrast, the FHE-based schemes [2, 4, 13, 18] achieve input

privacy but provide no implementations for polynomial computations. More precisely, we implemented Πbgv
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on a Dell Optiplex 9020 desktop with Intel Core i7-4790 Processor running at 3.6GHz, on which we run

Ubuntu 16.04.1 with 4GB of RAM and the g++ compiler version 5.4.0. All our programs are single-threaded

and built on top of NTL (and GMP). In order to achieve 128-bit security, the underlying scheme Πbgv requires

a cyclic group of order ≥ 21024, where strong DDH assumption [6] is supposed to be true. We consider the

computation of a 4-variate polynomial of total degree ≤ 6 at 504 points. The test shows that the client-

side computations (Πbgv.ProbeGen and Πbgv.Verify) can be done very efficiently with total running time

27.616 seconds, and the average client’s work for each of the 504 delegated computations is ≤0.88 milli-

seconds; the one-time work of running Πbgv.KeyGen takes 0.636 seconds. On the other hand, the server’s

work of running Πbgv.Compute takes 4444.24 seconds, which gives an amortized cost of 8.818 seconds for

each of the 504 function inputs. Compared with the cost of 0.142 seconds in the non-private scheme, this

high cost is the price of converting a non-private scheme to one that achieves privacy. This cost will become

reasonable if thework of executingΠbgv.Compute is done in parallel. The performance of our implementation

shows that the resulting schemes of our transformation in this section is potentially practical.

4 Private delegation of matrix-vector multiplication

We interpret any matrixM = (Mi,j) as a function that takes a vector x as input and outputsM ⋅ x󸀠󸀠, where x󸀠󸀠 is
the transpose of x. In this section, we present a verifiable computation scheme with an admissible function

family of allmatrix functions over a finite field, where the function input and output are kept private. Our con-

struction is based on the somewhat homomorphic encryption, homomorphic hash and PRF with amortized

closed-form efficiency.

4.1 Somewhat homomorphic encryption

A somewhat homomorphic encryption scheme allows one to evaluate low-degree polynomials on encrypted

data. Fiore, Gennaro and Pastro [17] described a slight variation HE = (ParamGen, KeyGen, Eval, Enc, Dec) of
the somewhat homomorphic encryption scheme by Brakerski and Vaikuntanathan [8], based on the hard-

ness of the polynomial learning with error (LWE) problem. The variation is specialized to evaluate circuits of

multiplicative depth 1 and sketched as below:

∙ HE.ParamGen(λ): Given the security parameter λ, generate

– a message space M = ℤp[X]/Φm(X), where Φm(X) ∈ ℤ[X] is the m-th cyclotomic polynomial of

degree ϕ(m), where ϕ( ⋅ ) is the Euler totient function,
– a ciphertext space C ⊆ ℤq[X, Y] that consists of two kinds of elements:

– level-0 ciphertext: c = c0 + c1Y with c0, c1 ∈ ℤq[X]/Φm(X), where q > p, gcd(p, q) = 1 and

degX(ci) ≤ ϕ(m) − 1 for i ∈ {0, 1},
– level-1 ciphertext: c = c0 + c1Y + c2Y2, where c0, c1, c2 ∈ ℤq[X] and degX(ci) ≤ 2(ϕ(m) − 1) for

i ∈ {0, 1, 2},
– two distributions: Dℤn ,σ and ZOn.

∙ HE.KeyGen(1λ): Choose a ← ℤq[X]/Φm(X) and s, e ← Dℤn ,σ; compute b ← as + pe; output dk = s and
pk = (a, b).

∙ HE.Encpk(m, r): Given m ∈M and r = (u, v, w)← (ZOn , Dℤn ,σ , Dℤn ,σ), compute c0 ← bu + pw + m and

c1 ← au + pv; output c = c0 + c1Y.
∙ HE.Evalpk(f, a, b): Given a, b ∈ C, where a = a0 + a1Y + a2Y2, b = b0 + b1Y + b2Y2, homomorphic addi-

tions and multiplications (when a2 = b2 = 0) are done overℤq[X, Y]:
– (a0 + a1Y + a2Y2) + (b0 + b1Y + b2Y2) = (a0 + b0) + (a1 + b1)Y + (a2 + b2)Y2,

– (a0 + a1Y) ⋅ (b0 + b1Y) = a0b0 + (a0b1 + a1b0)Y + a1b1Y2.

∙ HE.Decdk(c): Given c = c0 + c1Y + c2Y2 ∈ C, compute c󸀠󸀠i = ci mod Φm(X) for i = 0, 1, 2; compute t ∈ Rq

as t ← c󸀠󸀠
0
− s ⋅ c󸀠󸀠

1
− s2 ⋅ c󸀠󸀠

2
; output (t mod p).
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4.2 Homomorphic hash

A keyed homomorphic hash (H.KeyGen, H, H.Eval) is defined by three algorithms, where H.KeyGen generates

two keys K (public) and κ (private), H uses K or κ to map any input μ ∈ D to a digest HK(μ) ∈ R and H.Eval

allows homomorphic computations (addition “+”, multiplication “∗” and scalar multiplication “⋅”) over R.
Let bgpp = (q,𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , e, g, h) be a tuple of bilinear group parameters, and let

D = {μ ∈ ℤq[X, Y] : degX(μ) ≤ 2(ϕ(m) − 1), degY (μ) ≤ 2}.

The following homomorphic hash with domainD and range R = 𝔾𝔾1 ×𝔾𝔾2 (or𝔾𝔾T) is from [17].

∙ H.KeyGen(1λ): Choose α, β ← ℤq; output a public key

K = {(gαiβj , hαiβj ) : i ∈ {0, 1, 2}, j ∈ {0, 1, . . . , 2(ϕ(m) − 1)}}

and a matching secret key κ = (α, β); both allow the computation of hash digest, and the latter usually

makes the computation more efficient.

∙ HK(μ): Given an input μ ∈ D, if degY (μ) ≤ 1, then output (gμ(β,α), hμ(β,α)) as the digest; if degY (μ) = 2,
then output e(g, h)μ(β,α) as the digest. In particular, when degY (μ) ≤ 1, we denote [HK(μ)]1 = gμ(β,α) and
[HK(μ)]2 = hμ(β,α).

∙ H.Eval(f, ν1, ν2): This algorithm enables the homomorphic computations of arithmetic circuits f of

degree ≤ 2 as below:
– ν1 = (t1, u1), ν2 = (t2, u2) ∈ 𝔾𝔾1 ×𝔾𝔾2, f = “+”: output (t1t2, u1u2);
– ν1 = (t1, u1) ∈ 𝔾𝔾1 ×𝔾𝔾2, ν2 = c ∈ ℤq, f = “ ⋅ ”: output (tc1, uc1);
– ν1 = (t1, u1), ν2 = (t2, u2) ∈ 𝔾𝔾1 ×𝔾𝔾2, f = “∗”: output e(t1, u2) ∈ 𝔾𝔾T ;
– ν1, ν2 ∈ 𝔾𝔾T , f = “+”: output ν1ν2 ∈ 𝔾𝔾T ;
– ν1 ∈ 𝔾𝔾T , ν2 = c ∈ ℤq, f = “ ⋅ ”: output νc1 ∈ 𝔾𝔾T .

The homomorphic hash H was shown collision-resistant under the ℓ-BDHI assumption. That is, when

ℓ ≥ max{2(ϕ(m) − 1), 2}, for any (K, κ)← H.KeyGen(1λ), for any adversary A running in probabilistic poly-

nomial time,

Pr[(μ ̸= μ󸀠󸀠) ∧ (HK(μ) = HK(μ󸀠󸀠)) : (μ, μ󸀠󸀠)← A(K)] ≤ negl(λ).

4.3 PRFs with amortized closed-form efficiency

A pseudorandom function (F.KG, F) is defined by two algorithms, where the key generation algorithm F.KG

takes as input the security parameter1λ andoutputs a secret key k and somepublic parameterspp that specify

domain X and range R of the function, and the function Fk(x) takes input x ∈ X and uses the secret key k to

compute a value R ∈ R. The PRF (F.KG, F) is said to be secure (satisfy the pseudorandomness property) if, for

any p.p.t. adversaryA,

|Pr[AFk( ⋅ )(1λ , pp) = 1] − Pr[AΦ( ⋅ )(1λ , pp) = 1]| ≤ negl(λ),

where (k, pp)← F.KG(1λ) and Φ : X→ R is a random function.

Let C be a computation that takes as input n random values R1, . . . , Rn ∈ R and a vector of m arbitrary

values z = (z1, . . . , zm), and assume that the computation of C(R1, . . . , Rn; z1, . . . , zm) requires time t(n,m).
Let L = ((ξ, η1), . . . , (ξ, ηn)) ∈ Xn and η = (η1, . . . , ηn). The PRF (F.KG, F) is said to satisfy the amortized

closed-form efficiency for (C, L) if there exist two polynomial-time algorithms CFEvaloffC,η and CFEvalonC,ξ such

that

(1) for any ω ← CFEvaloffC,η(k, z), CFEvalonC,ξ (k, ω) = C({Fk(ξ, ηj)}nj=1; z),
(2) the running time of CFEvalonC,ξ (k, ω) is o(t).
Let f(x1, . . . , xn) = ∑ni,j=1 αi,jxixj +∑ni=1 βixi be a degree-2 arithmetic circuit defined by f = {αi,j , βi}ni,j=1. Let
C : (𝔾𝔾1 ×𝔾𝔾2)n ×ℤn

2+n
q → 𝔾𝔾T be a computation defined by

C({(Xi , Yi)}ni=1, f ) =
n

∏
i,j=1

e(Xi , Yj)αi,j ⋅
n

∏
i=1

e(Xi , h)βi .
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Let bgpp = (q,𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , e, g, h) be a tuple of bilinear group parameters, and let F󸀠󸀠 be a PRF with domain

{0, 1}∗ and range ℤ2q. Fiore, Gennaro and Pastro [17] proposed a PRF with amortized closed-form efficiency

for (C, L).
∙ F.KG(1λ): Choose two secret keys k1, k2 for the PRF F󸀠󸀠; output k = (k1, k2) and pp, where pp defines the

domain X = ({0, 1}∗)2 and the range R = 𝔾𝔾1 ×𝔾𝔾2 (or𝔾𝔾T).
∙ Fk(ξ, η): Compute (u, v)← F󸀠󸀠k1 (η), (a, b)← F󸀠󸀠k2 (ξ); output (g

ua+vb , hua+vb); in particular, we denote

[Fk(ξ, η)]1 = gua+vb , [Fk(ξ, η)]2 = hua+vb .

∙ CFEvaloffC,η(k, f ): Compute (ui , vi)← F󸀠󸀠k1 (ηi) for all i ∈ [n]; let

ω(z1, z2) = f(u1 ⋅ z1 + v1 ⋅ z2, . . . , un ⋅ z1 + vn ⋅ z2);

output the bivariate polynomial ω.

∙ CFEvalonC,ξ (k, ω): Compute (a, b)← F󸀠󸀠k2 (ξ); output e(g, h)
ω(a,b).

4.4 The construction

In this section, we present a private verifiable computation scheme Γwith an admissible function family of all

matrix functions over a finite field. In this scheme, the function to be delegated is a squarematrixM = (Mi,j) of
order n, and the input is a vector x = (x1, . . . , xn) of dimension n; the server is required to compute and reply

with an encoding ofM ⋅ x󸀠󸀠, wherex󸀠󸀠 is the transpose ofx. The input (and output) privacy of Γ is attained by the
client encrypting x (as HE.Enc(x)) and then giving it to the server. The somewhat homomorphic encryption

scheme used here allows the server to perform homomorphic scalar multiplications and additions on the

elements ofM (in clear) and the ciphertext of x, which gives an encrypted version ofM ⋅ x󸀠󸀠 for the client. The
server is able to compute the homomorphic hash digests of HE.Enc(x) and combine these digests with the

tags of M to generate a proof that its computation is correct. The homomorphic property of the hash and the

amortized closed-form efficiency property of the PRF makes the client’s verification significantly faster than

the computation of M ⋅ x󸀠󸀠 from scratch. Below is the description of Γ.

∙ (PKM , SKM)← Γ.KeyGen(1λ ,M):
– run HE.ParamGen(1λ) to choose message and ciphertext spacesM=ℤp[X]/Φm(X) and C⊆ℤq[X, Y].
– run HE.KeyGen(1λ) to generate an encryption key pk and a decryption key dk for the encryption

scheme HE;

– choose a tuple bgpp = (q,𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , e, g, h) of bilinear map parameters;

– run H.KeyGen(1λ) to choose two keys K (public) and κ (private) for the homomorphic hash H;

– run F.KG(1λ) to generate a secret key k = (k1, k2) for the PRF F; choose a ← ℤq;
– compute Ti,j = gaMi,j ⋅ [Fk(i, j)]1 for all (i, j) ∈ [n]2;
– output PKM = (p,m, n, bgpp, pk, K,M, T = (Ti,j)), SKM = (dk, κ, k, a).

∙ (σx, τx)← Γ.ProbGen(SKM , x): let x = (x1, . . . , xn) ∈ ℤnq;
– for every j ∈ [n], compute μj ← HE.Encpk(xj);
– parse κ as (α, β) ∈ ℤ2q; compute ω = ∑nj=1 μj(β, α) ⋅ F󸀠󸀠k1 (j) ∈ ℤ

2
q;

– let μ = (μ1, . . . , μn); output σx = μ and τx = ω.
∙ σy ← Γ.Compute(PKM , σx): parse σx as μ = (μ1, . . . , μn) ∈ Cn;

– for every i ∈ [n], compute γi = ∑nj=1 Mi,j ⋅ μj;
– for every i ∈ [n], compute δi = ∏n

j=1 e(Ti,j , [HK(μj)]2);
– let γ = (γ1, . . . , γn); let δ = (δ1, . . . , δn); output σy = (γ, δ).

∙ {y,⊥}← Γ.Verify(SKM , τx, σy):
– for every i ∈ [n], letWi = e(g, h)⟨ω,F

󸀠󸀠

k2
(i)⟩

, where ⟨ω, F󸀠󸀠k2 (i)⟩ is the dot product of ω and F󸀠󸀠k2 (i); check if
the following identity holds:

δi = e(g, h)a⋅γi(β,α) ⋅Wi; (*)

– if there is an i ∈ [n] such that (*) does not hold, then output ⊥; otherwise, output

y = (HE.Decdk(γ1), . . . , HE.Decdk(γn)).
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Correctness: The correctness of Γ requires that, for any matrix function M, any key pair

(PKM , SKM)← Γ.KeyGen(1λ ,M),

any function input x, any (σx, τx)← ProbGen(SKM , x), if σy is output by the algorithm Compute(PKM , σx),
then Verify(SKM , τx, σy) will always accept and output M ⋅ x󸀠󸀠. For every i ∈ [n], if Compute was honestly

executed, then it is not hard to verify that

δi =
n

∏
j=1

e(gaMi,j ⋅ g⟨F
󸀠󸀠

k1
(j),F󸀠󸀠

k2
(i)⟩

, hμj(β,α)) = e(g, h)a⋅γi(β,α) ⋅ e(g, h)⟨ω,F
󸀠󸀠

k2
(i)⟩

.

Hence, the n equalities always hold, and σy will be accepted. Then the decryption correctness of HE gives

(HE.Decdk(γ1), . . . , HE.Decdk(γn)) = M ⋅ x󸀠󸀠.

Privacy: In the scheme Γ, the client’s input x is encrypted using HE, the slight variation of the somewhat

homomorphic encryption scheme by Brakerski and Vaikuntanathan [8]. The encryption scheme is seman-

tically secure based on the hardness of the polynomial learning with error (LWE) problem. The input (and

output) privacy of Γ follows from HE’s semantic security.

Security: The security of Γ requires that no adversary running in probabilistic polynomial timewould be able

to persuade the verification algorithm to accept and output wrong results.

Theorem 2. If F is a secure PRF and H is a collision-resistant homomorphic hash, then Γ is a secure verifiable

computation scheme.

Proof. Let λ be any security parameter. Let M = (Mi,j) be any n × n matrix. Let A be any p.p.t. adversary. We

define the following security experiments.

E0: This is the standard security experiment ExpVer
Γ,A
(M, λ) of Definition 2.

E1: This experiment is identical to E0, except that, at step (d) of the standard security experiment, the Wi

is computed as Wi = ∏n
j=1 e(Fk(i, j), h)μj(β,α) for every i ∈ [n], instead of using the key ω for efficient

verification (and therefore avoid the use of CFEvalon).

E2: This is identical to E1, except that the Fk is replaced with a random function R : ({0, 1}∗)2 → 𝔾𝔾1 ×𝔾𝔾2.
Below is the description of E2.

∙ (PKM , SKM)← KeyGen(1λ ,M):
– run HE.ParamGen(1λ) to generate (p, q,M, C), where q > p, gcd(p, q) = 1, M = ℤp[X]/Φm(X) and

C ⊆ ℤq[X, Y] is the ciphertext space;
– run HE.KeyGen(1λ) to generate (pk, dk);
– choose bgpp = (q,𝔾𝔾1,𝔾𝔾2,𝔾𝔾T , e, g, h)← G(1λ);
– run H.KeyGen to generate keys (K, κ) for the homomorphic hash H;

– choose a random function R : ({0, 1}∗)2 → 𝔾𝔾1 ×𝔾𝔾2; choose a ← ℤq;
– compute Ti,j = gaMi,j ⋅ [R(i, j)]1 for all (i, j) ∈ [n]2; let T = (Ti,j);
– output PKM = (p,m, n, bgpp, pk, K,M, T) and SKM = (dk, κ, R, a).

∙ For ℓ = 1 to L = poly(λ):
(a) xℓ ← A(PKM , {(xu , σxu , bu)}ℓ−1u=1): Based on the current view,A chooses a new function input

xℓ = (xℓ,1, . . . , xℓ,n) ∈ ℤnq .

(b) (σxℓ , τxℓ )← ProbGen(SKM , xℓ): An encoding and the associated verification key for xℓ are generated
as below:

– for every j ∈ [n], compute μℓ,j ← HE.Encpk(xℓ,j);
– let μℓ = (μℓ,1, . . . , μℓ,n); output σxℓ = μℓ and τxℓ = ⊥.
Note that τxℓ is neither computed nor used in experiment E2.

(c) σ̂yℓ ← A(PKM , {(xu , σxu , bu)}ℓ−1u=1, xℓ, σxℓ ): Based on the current view,A provides a response σ̂yℓ that

consists of an encoding ̂γℓ = ( ̂γℓ,1, . . . , ̂γℓ,n) of the result and a proof δ̂ℓ = ( ̂δℓ,1, . . . , ̂δℓ,n) in order to
persuade Verify to accept and output a wrong result.
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(d) ŷℓ ← Verify(SKM , τxℓ , σ̂yℓ ): The response σ̂yℓ is verified as below:
– parse SKM as (dk, κ, R, a); parse σ̂yℓ as ̂γℓ = ( ̂γℓ,1, . . . , ̂γℓ,n) ∈ ℤq[X, Y], and

δ̂ℓ = ( ̂δℓ,1, . . . , ̂δℓ,n) ∈ 𝔾𝔾nT ;

– for every i ∈ [n], computeWi = ∏n
j=1 e([R(i, j)]1, h)μℓ,j(β,α); check if
̂δℓ,i = e(g, h)a⋅ ̂γℓ,i(β,α) ⋅Wi; (*)

– if there is an i ∈ [n] such that (*) is not true, then output ŷℓ = ⊥; otherwise, output

ŷℓ = (HE.Decdk( ̂γℓ,1), . . . , HE.Decdk( ̂γℓ,n)).

(e) Set bℓ = 1 if ŷℓ ̸= ⊥; otherwise, set bℓ = 0.
∙ Output 1 if there exists ℓ ∈ [L] such that bℓ = 1 but ŷℓ ̸= Mx󸀠󸀠ℓ; otherwise, output 0.
Let Pr[E0 = 1], Pr[E1 = 1] and Pr[E2 = 1] be the probabilities that A wins in E0, E1 and E2, respectively. We

need to show that Pr[E0 = 1] ≤ negl(λ). The only difference between E1 and E0 is that, in E1, the algorithm

CFEvalon is not used. This will not change the probability that A wins. Therefore, Pr[E1 = 1] = Pr[E0 = 1].
The only difference between E2 and E1 is that, in E2, the function Fk is replaced with a random func-

tion R. The security of F implies that E1 and E2 are computationally indistinguishable. Therefore, we have

|Pr[E1 = 1] − Pr[E2 = 1]| ≤ negl(λ). To prove Pr[E0 = 1] ≤ negl(λ), it suffices to show that Pr[E2 = 1] ≤ negl(λ).
For every ℓ ∈ [L], let E2,ℓ = 1 be the event that yℓ ∉ {⊥,Mx󸀠󸀠ℓ}, i.e., the event thatA’s response

σ̂yℓ = (( ̂γℓ,1, . . . , ̂γℓ,n), ( ̂δℓ,1, . . . , ̂δℓ,n))

for xℓ suffices to persuade Verify to accept and output a wrong result for the computation of Mx󸀠󸀠ℓ. More
formally, E2,ℓ occurs if and only if
∙ ̂δℓ,i = e(g, h)a⋅ ̂γℓ,i(β,α) ⋅∏n

j=1 e([R(i, j)]1, h)μℓ,j(β,α) for every i ∈ [n],
∙ but ŷℓ = (HE.Decdk( ̂γℓ,1), . . . , HE.Decdk( ̂γℓ,n)) ̸= Mx󸀠󸀠ℓ.
Then E2 = 1 occurs only if there is at least one ℓ ∈ [L] such that E2,ℓ occurs.

For xℓ ∈ ℤnq and its encoding σxℓ = μℓ = (μℓ,1, . . . , μℓ,n) ∈ Cn, let

σyℓ = (γℓ, δℓ) = ((γℓ,1, . . . , γℓ,n), (δℓ,1, . . . , δℓ,n))

be the (correct) result, and proof which could be computed by faithfully running Compute(PKM , σxℓ ). Then
the correctness of Γ guarantees that

∙ δℓ,i = e(g, h)a⋅γℓ,i(β,α) ⋅∏n
j=1 e([R(i, j)]1, h)μℓ,j(β,α) for every i ∈ [n],

∙ yℓ = (HE.Decdk(γℓ,1), . . . , HE.Decdk(γℓ,n)) = Mx󸀠󸀠ℓ.
For every ℓ ∈ [L], let Fℓ be the event that
∙ ̂δℓ,i/δℓ,i = e(g, h)a⋅( ̂γℓ,i(β,α)−γℓ,i(β,α)) for every i ∈ [n],
∙ but ŷℓ ̸= yℓ.
For every ℓ ∈ [L], the event E2,ℓ = 1 occurs only if the event Fℓ occurs. For every ℓ ∈ [L] and j ∈ [n], let Gℓ,j be
the event that

∙ ̂δℓ,i/δℓ,i = e(g, h)a⋅( ̂γℓ,i(β,α)−γℓ,i(β,α)) for every i ∈ [n],
∙ but HE.Decdk( ̂γℓ,j) ̸= HE.Decdk(γℓ,j).
Then Fℓ occurs only if there is at least one j ∈ [n] such that Gℓ,j occurs. For every ℓ ∈ [L] and j ∈ [n], let Hℓ,j
be the event that

∙ ̂δℓ,i/δℓ,i = e(g, h)a⋅( ̂γℓ,i(β,α)−γℓ,i(β,α)) for every i ∈ [n],
∙ but ̂γℓ,j ̸= γℓ,j.
Then Gℓ,j occurs only if Hℓ,j occurs. For every ℓ ∈ [L] and j ∈ [n], let H0

ℓ,j be the event that ̂γℓ,j ̸= γℓ,j
and ̂γℓ,j(β, α) = γℓ,j(β, α). Let H1

ℓ,j be the event that
̂δℓ,i/δℓ,i = e(g, h)a⋅( ̂γℓ,i(β,α)−γℓ,i(β,α)) for every i ∈ [n], but

̂γℓ,j(β, α) ̸= γℓ,j(β, α). Then it is clear that Hℓ,j occurs only if at least one of H0
ℓ,j or H

1
ℓ,j occurs.

Let Xc be a random variable that denotes the first index (ℓ, j) ∈ [L] × [n] such that Hc
ℓ,j occurs for every

c ∈ {0, 1}. In both cases, we rank the elements (ℓ, j) ∈ [L] × [n] as

(1, 1) < ⋅ ⋅ ⋅ < (1, n) < (2, 1) < ⋅ ⋅ ⋅ < (2, n) < ⋅ ⋅ ⋅ < (L, n).
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Due to the union bound, we have that

Pr[E2 = 1] ≤
L

∑
ℓ=1

Pr[E2,ℓ] ≤
L

∑
ℓ=1

Pr[Fℓ] ≤
L

∑
ℓ=1

n

∑
j=1

Pr[Gℓ,j] ≤
L

∑
ℓ=1

n

∑
j=1

Pr[Hℓ,j]

≤
L

∑
ℓ=1

n

∑
j=1

1

∑
c=0

Pr[Hc
ℓ,j] ≤

L

∑
ℓ=1

n

∑
j=1

1

∑
c=0
∑

(ϕ,ψ)≤(ℓ,j)
Pr[Xc = (ϕ, ψ)].

Note that X0 = (ϕ, ψ)means that (ϕ, ψ) is the first index such that a collision of HK is found by the adversary.

AsH is collision resistant, wemust have that Pr[X0 = (ϕ, ψ)] ≤ negl(λ). On the other hand, X1 = (ϕ, ψ)means

that (ϕ, ψ) is the first index such that an equation about a is determined by A and thus gives a when A is

computationally unbounded. Note that a computationally unboundedA can rule out one possibility of a via

any one of the inequalities of the form ̂δℓ,i/δℓ,i ̸= e(g, h)a⋅( ̂γℓ,i(β,α)−γℓ,i(β,α)). Therefore,

Pr[X1 = (ϕ, ψ)] ≤
1

q − ((ϕ − 1)n + ψ − 1) .

It follows that

Pr[E2 = 1] ≤
L

∑
ℓ=1

n

∑
i=1
∑

(ϕ,ψ)≤(ℓ,i)
(negl(λ) + 1

q − ((ϕ − 1)n + ψ − 1)),

which is negligible in λ as q ≈ 2λ, n = poly(λ) and L = poly(λ).

Efficiency: AVC scheme is outsourceable if the time to encode the input and verify the output is smaller than

the time to compute the function from scratch. For everyx ∈ ℤnq, the time spent on Γ.ProbGen(SKM , x) is equal
to the time of computing {HE.Encpk(xi)}ni=1 plus the time of computing ω (n PRF computations and O(n) field
operations). For every σy, the time cost of Γ.Verify(SKM , τx, σy) is dominated by O(n) group operations and
n executions ofHE.Decsk. Note thatM ⋅ x󸀠󸀠 requires O(n2) field operations.When n is large enough, the client’s

cost of running Γ.ProbGen and Γ.Verify is o(n2) and substantially less than that of computing M ⋅ x󸀠󸀠 from
scratch. Hence, Γ is outsourceable.

Implementation: We implemented the scheme Γ on a Dell Optiplex 9020 desktop with Intel Core i7-4790

Processor running at 3.6GHz, on which we run Ubuntu 16.04.1 with 4GB of RAM and the g++ compiler

version 5.4.0. All our programs are single-threaded and built on top of GMP. We consider the multiplication

between a random square matrix of n rows (columns) over a finite field of order > 2256 and a random vec-

tor of dimension n over the same field, for n = 100, 200, . . . , 1000. We record the client’s time of running

Γ.ProbGen and Γ.Verify, and get Figure 3.

The experiment shows that, for n = 100, the client-side computation can be done in 0.89 seconds. If we

use the scheme Γ in a natural way to delegate the multiplication of two 100 × 100matrices, then the client-

side computation can be done in at most 89 seconds. Parno, Howell, Gentry and Raykova [38] implemented

the scheme of [18] to delegate the same computation. Their experiment shows that the client in [18] has to

spend at least 1011 seconds on problem generation and result verification. Compared with [18], the client

in our scheme is faster with an order of 9. The performance of our implementation shows that the resulting

schemes of our transformation in this section is nearly practical.

5 Application

Our verifiable computation schemes have interesting applications in the design of outsourced two-party pro-

tocols such as outsourced private information retrieval (PIR). PIR [12] allows a client to retrieve any block fi of

a database f = (f1, f2, . . . , fN) from a server such that i ∈ [N] is not revealed to the server. PIR can be achieved
by the client downloading f but that requires a communication cost of O(N). There are PIR schemes [12, 31]

in the semi-honest server model which achieve nontrivial communication cost o(N). Recently, outsourced
PIR [25, 34] has been suggested to offload the PIR server computation [5] to cloud. Outsourcing requires PIRs

that are secure against untrusted cloud servers which may not faithfully execute the schemes.
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Figure 3: Performance of the matrix delegation scheme.

Solution based onT: Wemodel the database as a bit string f = (f1, f2, . . . , fN) ∈ {0, 1}N . Let E : [N]→ {0, 1}h
be an injection such that, for every i ∈ [N], wt(E(i)) = d = ⌊ t−1

k
⌋, where the integers h and d are chosen such

that (hd) ≥ N. The database (bit string) f is interpreted as an h-variate polynomial

f(x) = f(x1, x2, . . . , xh) =
N

∑
j=1

fj ⋅ ∏
ℓ:E(j)ℓ=1

xℓ.

It is trivial to see that f(E(j)) = fj for every j ∈ [N]. Suppose a number of clients are to retrieve s bits of

the database, say fi1 , . . . , fis , where i1, . . . , is ∈ [N]. The encodings a1 = E(i1), . . . , as = E(is) form a set

of s function inputs. Our scheme T(Σ) from Section 3.3 allows the clients to produce a noisy encoding of

a⃗ = (a1, . . . , as) and delegate the computations of {fij }sj=1 = {f(aj)}sj=1 to a PIR server such that a⃗ is kept pri-

vate and any incorrect responses from the server will be detected. The amortized communication cost for

each of the s retrievals is dominated by O(t) vectors from 𝔽𝔽h, which gives a nontrivial outsourced PIR.

Solution based on Γ: We model the database as an n × n matrix M = (Mi,j). Suppose that the client is inter-
ested in Mi,j. Then it suffices for the client to retrieve the i-th row of M, i.e., (Mi,1, . . . ,Mi,n). This retrieval
can be captured byM ⋅ x󸀠󸀠 with x = ei = (0, . . . , 1i , . . . , 0), the vector whose i-th component is 1 and all other

components are 0. The scheme Γ allows the client to delegate the computation of M ⋅ x󸀠󸀠 with x being kept

private and then verify the server’s response efficiently. In particular, the client and the server only need to

communicate O(n) = o(n2) HE ciphertexts, which gives a nontrivial outsourced PIR.

Extension: By applying T to the publicly delegatable and verifiable schemes of [37], one would obtain

schemes that are publicly delegatable and verifiable as well. These schemes would allow one to store f on

a cloud server, and later, any client can freely retrieve a block of f on its own. Our schemes can be also used

in other two-party protocols, such as oblivious polynomial evaluation and oblivious transfer [36], in order to

obtain schemes against malicious parties.

6 Conclusion

In this paper, we proposed a transformation that adds privacy to a number of existing verifiable outsourcing

schemes for the function family of multivariate polynomials over finite fields. The transformation is based on

a noisy encoding of inputs and gives the first nearly practical verifiable computation scheme that has input

(and output) privacy and does not limit the degree of the delegated polynomials. We also gave a verifiable
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computation scheme for delegation of matrix-vector multiplication which has very efficient verification. We

show an application of our schemes to the outsourcing of PIR. Applications of the schemes to other problems

such as oblivious polynomial evaluation, and oblivious transfer, are interesting directions for future work.

A Security proof for the transformation T

Let f(x1, . . . , xh) be any h-variate polynomial, and let k be a security parameter. Consider the security defini-

tion, Definition 2. LetA be any p.p.t. adversary attacking Γ, and let ϵ = Pr[ExpVer
Γ,A
(f, k) = 1]. We need to show

that ϵ is a negligible function of k. This can be done by constructing a p.p.t adversary B that executes A as

a subroutine and attacks Σ successfully at least with the same probability, i.e., Pr[ExpVer
Σ,B
(f, k) = 1] ≥ ϵ. Given

(f, k), the adversaryB simply works as below:

∙ first of all,B’s challenger computes (pkf , skf )← Σ.KeyGen(1k , f) and then gives pkf toB;
∙ the adversaryB invokesAwith PKf = pkf ;
∙ for i = 1 to q = q(k), the adversariesB,A and the challenger ofB proceed as below:

– based on its current view, i.e., (PKf , {a⃗j , σa⃗j , bj}i−1j=1), the adversaryA produces a new set

a⃗i = (ai,1, . . . , ai,s) ∈ (𝔽𝔽h)s

of points and gives the set toB;

– the adversaryB computes (pka⃗i , rka⃗i )← NEnc(1k , a⃗i) and parses pka⃗i as {ci,j}
m
j=1;

– for j = 1 to m: the adversaryB gives ci,j to its challenger; the challenger computes

(σci,j , τci,j )← Σ.ProbGen(skf , ci,j)

and gives σci,j toB;

– the adversaryB gives σa⃗i = {σci,j }mj=1 to the adversaryA;
– based on its current view, i.e., (PKf , {a⃗j , σa⃗j , bj}i−1j=1, a⃗i , σa⃗i ), the adversaryA produces {σ̂f(ci,j)}mj=1 and

gives it toB;

– for j = 1 tom:B gives σ̂f(ci,j) to its challenger; the challenger gives ̂vi,j← Σ.Verify(skf , τci,j , σ̂f(ci,j)) toB;
– if there exists j ∈ [m] such that ̂vi,j = ⊥, then B gives the bit bi = 0 to A; otherwise, B gives the bit

bi = 1 toA.
AdversaryBmakes qm verification queries, i.e., {σ̂f(ci,j)}i∈[q],j∈[m], to its challenger. The event ExpVerΣ,B

(f, k) = 1
occurs if and only if there exist i ∈ [q] and j ∈ [m] such that ̂vi,j ∉ {f(ci,j),⊥}. The latter event occurs if there
exists i ∈ [q] such that (1) bi = 1 and (2) there is an ℓ ∈ [s] such that Qi,ℓ(0) ̸= f(ai,ℓ), where Qi,ℓ(z) is the
polynomial interpolated from { ̂vi,j}j∈Ti,ℓ ((Ti,0, Ti,1, . . . , Ti,s) = rka⃗i form a partition of [m]). We denote by E

the last event. WhatA observes in the experiment above is exactly identical to what it should observe in the

standard security experiment of Definition 2, i.e., ExpVer
Γ,A
(f, k). Therefore,

ϵ = Pr[ExpVer
Γ,A
(f, k) = 1] = Pr[E] ≤ Pr[ExpVer

Σ,B
(f, k) = 1].

Due to the security of Σ under Definition 2, the function ϵ must be negligible in k, the security parameter.
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