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Abstract. Due to the popularity of mobile devices (e.g., cell phones, PDAs, etc.), location-based services have
become more and more prevalent in recent years. However, users have to reveal their location information to ac-
cess location-based services with existing service infrastructures. It is possible that adversaries could collect the
location information, which in turn invades user’s privacy. There are existing solutions for query processing on
spatial networks and mobile user privacy protection in Euclidean space. However there is no solution for solving
queries on spatial networks with privacy protection. Therefore, we aim to provide network distance spatial query
solutions which can preserve user privacy by utilizing K-anonymity mechanisms. In this paper, we propose an
effective location cloaking mechanism based on spatial networks and two novel query algorithms, PSNN and
PSRQ, for answering nearest neighbor queries and range queries on spatial networks without revealing private
information of the query initiator. The effectiveness of our cloaking mechanism and privacy protected algorithms
has been validated using real world road networks. In addition, we demonstrate the appeal of our technique using
extensive simulation results.
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1. Introduction

As a result of recent technological advances, mobile devices with significant computational
abilities, gigabytes of storage capacities, and wireless communication capabilities have be-
come increasingly popular. In addition, positioning techniques are embedded into more and
more mobile devices. Based on these advances, new mobile applications allow users to issue
location-dependent queries in a ubiquitous manner. Examples of such location-dependent
queries include ’find the nearest gas station’ and ’find the top three closest French restau-
rants’. To get location-dependent data, users have to reveal their current locations when
launching location-dependent queries. From the location-dependent query logs of location-
based service providers (LBSP), it is possible that adversaries could collect the location
history and monitor the behavior of some users, which in turn invades their privacy [23].
Therefore, with the popularity of location-based services (LBS), mobile user privacy pro-
tection becomes a very important research issue for future generation communication and
networking.

Recent research has explored the K-anonymity concept [21]1 in which one trusted server
is needed to cloak at least K users’ locations for protecting location privacy. In order to
implement K-anonymity, one trusted server is set up to collect user location information and
perform cloaking procedures in which the exact location of the query requester is blurred as

1 Note that we use the symbol K for the degree of anonymity and k for k nearest neighbor queries.
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a cloaked spatial area whose boundary is defined by the locations of K−1 other users. Then,
the trusted server will send the location-dependent query along with the cloaked spatial area
to location-based service providers to retrieve location-dependent data. Note that since the
query location is an area instead of a single query point, location-dependent service providers
should fetch those query results based on the cloaked spatial region. Prior work in [16]
proposed a framework for location-based services without compromising location privacy.
However, only a free space environment is considered, which is not fully applicable in real
world environments. On the other hand, recent research has produced novel mechanisms
to compute location-dependent queries on spatial networks. For example, executing nearest
neighbor queries based on the spatial network distance provides a more realistic measure
for applications where mobile user movements are constrained by underlying networks.
Though devising spatial query schemes in spatial networks, the prior works in [17, 13] did
not consider location privacy issues. Thus, we aim to provide spatial query (nearest neighbor
query and range query) solutions with privacy protection concerns in this study. With our
techniques location-based service users can enjoy high quality results without sacrificing
their privacy. The contributions of our study are as follows.

− We design an improved cloaking mechanism for spatial network search space.

− We propose a novel algorithm for solving privacy protected nearest neighbor queries on
spatial networks.

− We extend our nearest neighbor query solution to answer range queries with protection
of privacy.

− We demonstrate the feasibility and efficiency of our approaches through extensive sim-
ulations.

The rest of the paper is structured as follows. Section 2 surveys the related work of spatial
queries, location-based services, and privacy protection techniques for mobile applications.
The system architecture and the improved cloaking mechanism are illustrated in Section 3.
Our novel query processing algorithms are detailed in Section 4 and the experimental results
are presented in Section 5. Finally, Section 6 concludes the paper and outlines future research
directions.

2. Related Work

In this section, we introduce the background information and related research regarding
spatial queries, location-based services, and location privacy preservation.

2.1. SPATIAL QUERIES

We focus on two common types of spatial queries, namely k nearest neighbor queries and
range queries. With R-tree [11] based spatial indices, depth-first search (DFS) [18] and best-
first search (BFS) [12] have been the prevalent branch-and-bound techniques for processing
nearest neighbor (NN) queries. The DFS method recursively expands the index nodes for
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searching nearest neighbor candidates. At each newly visited non-leaf node, DFS computes
the ordering metrics for all its child nodes and applies pruning strategies to remove unnec-
essary branches. When a leaf node is reached, the data objects are retrieved and the nearest
neighbor candidates are updated. In addition, the BFS technique utilizes a priority queue to
store nodes to be explored through the search process. The nodes in the queue are sorted
according to their minimum distance (MINDIST) to the query point. During search, the
BFS repeatedly dequeues the top entry in the queue and enqueues its child nodes with their
MINDIST into the queue. When a data entry is dequeued, it is inserted into the result set.
In order to increase the NN query accuracy, recent research proposed solutions based on
spatial networks. Kolahdouzan et al. [13] presented a novel approach to efficiently evaluate
k NN queries in spatial network databases using a first order Voronoi diagram. Papadias
et al. [17] proposed two algorithms, the Incremental Euclidean Restriction (IER) algorithm
and the Incremental Network Expansion (INE) algorithm to solve nearest neighbor queries
on spatial networks.

2.2. LOCATION PRIVACY PRESERVATION

With the popularity of LBS, privacy protection for mobile users has become an important
issue [10, 19]. Gruteser et al. [9] proposed a middleware architecture and algorithms for
maintaining location K-anonymity. Their algorithms adjust the resolution of location infor-
mation along spatial or temporal dimensions to fulfill the required anonymity constraints.
Based on the work in [9], a unified privacy personalization framework is proposed in [8]
to support different levels of anonymity according to the requests of users. However, these
previous research approaches mainly focused on the system architecture and the location
anonymizer design rather than query processing. Mokbel proposed to employ a trusted
third party, the location anonymizer, which expands the user location into a spatial region
for protecting user privacy [15]. Mokbel et al. also proposed related privacy-aware query
processing algorithms [16]. However their query processing solutions are based on Euclidean
metrics. In real life, mobile users cannot move freely in space but are usually constrained by
underlying networks (e.g., cars on roads, trains on tracks, etc.). Therefore, we need solutions
for processing privacy protected queries on spatial networks [14].

3. System Architecture

In this section, we describe the system architecture for supporting privacy protected spatial
queries with underlying spatial networks. Figure 1 depicts our operating environment with
three main entities: mobile users, the location cloaker, and location-based service providers.
We consider mobile clients such as cell phones, personal digital assistants (PDA), and lap-
tops, that are instrumented with global positioning systems (GPS) for continuous position
information. Furthermore, we assume that there are access points/base stations distributed
in the system environment for mobile devices to communicate with the location cloaker. All
users are mobile and travel on the underlying network and they also hold privacy policies
which specify the privacy requirements of each user. In this research we focus on three para-
meters, K-anonymous, the minimum cloaked region size – Rmin, and the minimum covered
network segments – Smin, that are included in the user privacy policies. A user can demand



4

Privacy Policies

Mobile User

Access Point

Mobile User

Mobile User

Location Cloaker

User location
updates and queries

Query results

Location-based
Service Providers

Spatial
Databases

Cloaked areas and
spatial queries

Query results

DB

DB

Figure 1. The system architecture.

the cloaked area to cover the locations of K − 1 closest peers for anonymizing its exact
location. In order to keep a reasonable size of the cloaked area in high user density regions,
the user decides the minimum acceptable size of Rmin. Since mobile users are running on
underlying spatial networks, the cloaked region has to cover a minimum number of road
segments, Smin, to avoid location tracking by adversaries. Based on privacy requirements at
different locations or time slots, a user can update his/her privacy policies at any time. Table I
summarizes the symbolic notation used throughout this paper.

Table I. Symbolic notations.

Symbol Meaning

Ac A cloaked area

K The degree of anonymity

Rmin The minimum cloaked region size

Smin The minimum road segment number within a cloaked region

q A query mobile user

Q A priority queue

Segi The network segments inside the cloaked area

Sego The network segments outside the cloaked area

T The set of all the points that intersect between the cloaked area Ac and the underlying
networks

Dist(a, b) The network distance between objects a and b

|A| The cardinality of set A

3.1. THE LOCATION CLOAKER

Compared with location-based service providers, the location cloaker is an intermediate
agent which can be trusted by mobile users. The location cloaker receives continuous lo-
cation updates from mobile users and blurs their exact locations into cloaked areas Ac

according to individual user privacy policies before forwarding the information to location-
based service providers (e.g., for buddy searching services). In addition, the location cloaker
also anonymizes the location of any query requesting user q to a cloaked region before
forwarding the query to related location-based service providers. Note that any user identity
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related information in the query is also removed by the location cloaker during the cloaking
process.

According to previous research [16, 9, 8, 10] there are several different mechanisms to
support location anonymization. Compared with existing solutions, the location anonymiz-
ing technique proposed by Mokbel et al. [16] has prominent efficiency (low cloaking time)
and flexibility (user defined privacy profile) for the cloaking process in free space environ-
ments. However, the proposed location anonymizer does not consider the characteristics of
spatial network environments. Figure 2 demonstrates an example. The cloaking region in
Figure 2a is generated without considering the underlying spatial networks and there is only
one road segment (i.e., the W 35th Street) covered in Ac. Advisories with the map of this city
can easily infer that the mobile user is currently driving on the W 35th Street. Consequently,
the effect of the location anonymizing mechanism proposed in [16] is drastically weakened
in spatial network environments.

In our system, we adopt the grid-based pyramid data structures proposed in [22, 1] for
managing the locations of mobile users. The pyramid structure is dynamically maintained for
monitoring the current number of mobile users within each unit space of the whole spatial
area [16]. Consequently, the size of the cloaked region can be efficiently figured out. In
order to avoid the aforementioned drawbacks, users have to define a minimum number of
road segments which should be covered in the cloak region. The updated cloaked region
after taking Smin into account is demonstrated in Figure 2b (Smin = 3). With a minimum
number of road segments within Ac, mobile user privacy can be positively secured.

Ac Ac

Fig. 2a. Location cloaking without con-
sidering of underlying spatial networks.

Fig. 2b. Location cloaking with consider-
ing of underlying spatial networks.

Figure 2. Location cloaking in spatial network environments.

3.2. LOCATION-BASED SERVICE PROVIDERS

Location-based service providers play the role of spatial data maintainers and spatial query
processors in our system. In order to handle privacy protected spatial queries, location-
based service providers implement privacy protected query processors in their databases.
The privacy protected query processor has the ability to process cloaked spatial queries
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efficiently and retrieves the inclusive result set (i.e., the minimal set which covers all the
possible answers) for query requesters. After receiving the result set, mobile users can distill
the exact answers from their locations in linear time. The privacy policies of a user determine
the computational complexity of his/her spatial queries. Strict privacy requirements (i.e.,
large K, Rmin, and Smin values) increase the complexity of processing the query.

In addition to a privacy protected data processor, a LBSP also needs to maintain spatial
databases for storing (cloaked) user locations, spatial data and road networks. The stored
spatial data can be categorized as public data and private data. Public data covers static
objects such as restaurants, hotels, and gas stations and also the dynamic information (e.g.,
real-time bus locations) which are directly open to public queries. In contrast, private data
mainly comprise cloaked mobile user locations from the location cloaker. Based on the two
data categories, the spatial queries submitted to a LBSP can be classified as four types: (1)
public queries over public data, (2) public queries over private data, (3) private queries over
public data, and (4) private queries over private data. For the first query type, there were
already existing solutions proposed in [17, 13]. Because the movement of mobile users is
limited by the underlying road networks, we can easily extend the mechanisms proposed
in [17, 13] for solving queries of the second query type (e.g., Figure 3a) with probability
density functions [5]. To the best of our knowledge, there is no existing solution for the third
query type. Similarly the fourth query type (e.g., Figure 3b) can be answered by extend-
ing the algorithms of the third query type. Therefore, we propose our novel techniques for
solving private queries over public data on spatial networks in Section 4.

In addition, as discussed in [17], we assume that the spatial network database supports
the following primitive operations:

− inside segments(Ac): returns a set of subsegments of a network N which intersects
with the cloaked area Ac.

− find objects(segmentx): returns the data objects which fall on the input network
segment segmentx.

u12
u5

u17
u33

q

Cloaked Area Ac

u12
u5

u17
u33

Fig. 3a. Public query over private data. Fig. 3b. Private query over private data.

Figure 3. Two novel query types.
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− Dist(p1, p2): calculates the network distance of two input points, p1 and p2, in the
underlying network by applying an algorithm (e.g., Dijkstra’s algorithm [6]) to compute
the shortest path between p1 and p2.

4. Privacy Protected Query Processing

We illustrate our mechanisms for solving private queries over public data on road networks
in this section. We focus on two popular query types, nearest neighbor queries and range
queries.

4.1. PRIVACY PROTECTED NEAREST NEIGHBOR QUERY ON SPATIAL NETWORKS

Given a query point q and an object data set S, a network k nearest neighbor query retrieves
the k objects of S closest to q based on the network distance. Papadias et al. [17] proposed
two algorithms (incremental euclidean restriction and incremental network expansion) to
efficiently solve nearest neighbor queries with spatial network databases. However in order
to protect user privacy, a location-based service provider can only receive cloaked spatial
areas from users. Therefore, LBSPs need to have a competent mechanism for retrieving an
inclusive query result set based on the input cloaked area and the underlying spatial network.
We design a privacy protected spatial network nearest neighbor query (PSNN) algorithm by
extending the incremental network expansion solution [17].

PSNN first locates all the intersection points between the edges of the input cloaked area
Ac and the spatial network as a point set T by executing primitive database operations. If T

is not empty, Ac covers at least one network segment. We denote these network segment(s)
within Ac as Segi and the segments outside Ac as Sego. According to the network topology,
the network edges inside Ac can be fully connected or comprise several separate subgroups.
Figure 4 illustrates the two cases. Since we designed efficient solutions for the case in which
the network edges inside Ac are fully connected, we can utilize the divide and conquer
strategy to handle the case demonstrated in Figure 4b. Consequently, we perform a pre-
process for splitting the input cloaked area until each subregion contains only one connected

Ac Ac

Fig. 4a. The network segments in Ac are
totally connected.

Fig. 4b. The network segments in Ac

comprise two separate subgroups.

Figure 4. The two possible connection statuses of the network segments inside a cloaked area Ac.
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Figure 5. Searching k network nearest neighbors with PSNN where the cloaked area contains k objects (k = 1
in this example).

network segment set. Then we execute our algorithms on each subregion separately and
merge their results after the whole computation. For ease of presentation, we assume the
pre-process has been done in the following sections.

We observe that the number of data objects inside a cloaked area Ac can meet one of
two conditions: (i) there are at least k objects inside Ac or (ii) there are fewer than k objects
within Ac.

4.1.1. The Cloaked Area Contains at Least k Objects
Since Segi contains a limited number of network segments, PSNN starts the search on Segi

for retrieving data objects inside Ac. If Segi covers more than or equal to k data objects, the
search can be finished by expanding the intersection points in T. First PSNN includes the
data objects within Ac into the result set R. Next, for each point ti in T, PSNN calculates
the distance from ti to its kth nearest object inside Ac as Dist(ti, nk), and then expands
outward from point ti to search for data objects on Sego within distance Dist(ti, nk) (the
search upper bound). Consequently, we can cover the special case when q is located exactly
at ti. All the newly discovered data objects are inserted into the result set R.

Figure 5 demonstrates an example where the circles represent the nodes in the modeling
graph, triangles indicate data objects, and the gray rectangle stands for the cloaked area.
Assuming that only one nearest neighbor is queried (k = 1), PSNN first retrieves n1 by
searching the network segments inside Ac. Since the number of data objects found in Ac is
equal to 1, PSNN computes the network distance from t1, t2, and t3 to n1 as 2, 5, and 6
respectively. Afterwards, PSNN expands the search space outbound from the three intersec-
tion points according to their distance to n1. No data object is found from the expansion of
t1 and t3. The expansion of t2 reaches n2 and it is inserted into the result set. Consequently,
the final search result set covers objects n1 and n2.
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Figure 6. Searching k network nearest neighbors with PSNN where the cloaked area contains fewer than k
objects (k = 2 in this example).

4.1.2. The Cloaked Area Contains Fewer than k Objects
If there are fewer than k data objects found on Segi, PSNN has to search the network
segments which are outside of Ac. Since the points in T are all on the boundary of Ac,
they determine the network search expansion upper bound. Consequently, PSNN executes
the network expansion from all the intersection points for retrieving an inclusive result set.
For every point ti in T, the PSNN algorithm first retrieves the network segment pmpn which
passes through ti and searches all data objects on this segment. In the mean time, the two
end points pm and pn are inserted into a queue Q with their distance to ti. Afterward, if the
search found fewer than k objects on pmpn or the search retrieved no fewer than k objects
but one end point of pmpn whose distance to ti is shorter than Dist(ti, nk) (nk is the kth

nearest neighbor of ti), the end point px which is closer to ti will be popped from Q and
expanded. For each non-visited adjacent point py of px, PSNN searches pxpy, updates the
result set, and inserts py with its distance to ti into Q. Then the point in Q with the shortest
distance to ti is de-queued. The procedure repeats until k nearest neighbors of ti are found
and the k objects are inserted into the result set R. PSNN repeats the whole process until it
has expanded all the points in T.

Assuming k is equal to two, Figure 6 illustrates an example. PSNN retrieves only n1

inside Ac and it has to expand the three intersection points, t1, t2, and t3 outward. First,
PSNN locates the segment p1p2 which covers t1 and the segment p1p2 only covers object n1.
Since p2 is closer to t1 than p1, it is expanded and p1 is inserted into Q with its distance to t1.
The expansion of p2 reaches p3 and p4, and object n3 is found on p2p4. At this moment, since
Q contains 〈(p1, 4), (p3, 6), (p4, 6)〉 and since Dist(t1, n3) = 4, the search terminates. The
top two nearest neighbors of t1 are n1 and n3 and they are inserted into R. PSNN continues
the process with t2 and retrieves the top two nearest neighbors of t2 as n2 and n1. The search
of t3 demonstrates why we have to expand the joint road segments until we reach the search
bound. The search on p1p5 retrieves n4 and we know Ac covers n1, however n4 and n1 are
not the true top two nearest neighbors of t3. After finishing the complete search procedure,
we can retrieve the correct nearest neighbor set of t3 as n4 and n5. The final result set R
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Algorithm 1 PSNN (q, k, Ac)
1: initialize Ri

2: locate the intersection points between Ac and the underlying network as T = {t1, . . . , tm}
3: Segi = inside segments(Ac)
4: search objects on Segi and insert the retrieved objects into R

5: if Segi covers ≥ k objects then
6: for ∀ti ∈ T do
7: expand ti outward Ac for searching objects within distance Dist(ti, nk)
8: insert any discovered objects into R

9: end for
10: else
11: for ∀ti ∈ T do
12: pmpn = find segment(ti)
13: Ri = Ri ∪ find objects(pm, pn)

/* {n1, . . . , nk} = the k nearest objects in Ri sorted in ascending order, nj , nj+1 . . . , nk may be ∅,
if |Ri| < k */

14: Distmax = Dist(ti, nk)
/* Distmax = ∞, if nk = ∅ */

15: Q = 〈(pm, Dist(pm, ti)), (pn, Dist(pn, ti))〉
16: de-queue the node p in Q with smaller Dist(p, ti)
17: while Dist(p, ti) < Distmax and the data set contains at least k objects do
18: for each non-visited adjacent vertex px of p do
19: Ri = Ri ∪ find objects(px, p)
20: update Distmax with sorted Ri

21: en-queue(px, Dist(px, ti))
22: end for
23: de-queue the next node p in Q
24: end while
25: R = R ∪ Ri

26: end for
27: end if
28: Sort R for removing duplicates
29: return R

covers n1, n2, n3, n4, and n5. Then, the result set R will be returned to the query mobile
user q and q will evaluate the query locally over the received R for retrieving the exact query
result. The complete algorithm of PSNN is shown in Algorithm 1. Since in the worst case
we have to search all the road segments in the search space, the complexity of Algorithm 1
is O(n) where n is the total number of road segments.

4.2. PRIVACY PROTECTED RANGE QUERY ON SPATIAL NETWORKS

We define a spatial network range query as follows: given a query point q, a range value r,
and an object data set S, the query retrieves all elements of S that are within network distance
r from q. For executing a privacy protected spatial network range query (PSRQ), first we
have to locate the intersection points of the cloaked spatial area Ac and the underlying road
network as a point set T = {t1, . . . , tm}. Then, PSRQ searches the network segments inside
Ac and inserts the retrieved objects into R. For each point ti in T we can compute a set of
candidate segments within network range r from ti and then retrieve the data objects falling
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Figure 7. Network range query with PSRQ.

on these segments. Because the search range r could be a large number and it may cover
many candidate segments, it is inefficient to check each candidate segment with the primitive
operation find objects(segment). Therefore, we utilize the intersection join function [4]
for retrieving all intersection object pairs from the spatial network R-tree and the object R-
tree. When reaching the leaf node level, PSRQ executes the plane-sweep method with the
object R-tree nodes which intersect with the MBR of at least one candidate segment and
stores the qualified objects into R.

An example is demonstrated in Figure 7. Assuming r is equal to a 7 unit distance,
PSRQ joins the candidates segments (solid lines) with the object R-tree and retrieves leaf
node E5 intersecting with segment p4p6. After executing the intersection test (plane-sweep
method), PSRQ retrieves n4 as the query result. The complete algorithm of PSRQ is shown
in Algorithm 2.

Algorithm 2 PSRQ (q, r, Ac)
1: locate the intersection points between Ac and the underlying network as T = {t1, . . . , tm}
2: Segi = inside segments(Ac)
3: search objects on Segi and insert the retrieved objects into R

4: for each point ti in T do
5: Compute all the candidate segments within distance r from ti as C
6: Intersection join C with the object R-tree for finding intersection leaf nodes
7: for each retrieved leaf node Ei do
8: Rti = intersection test of the intersected segments with data objects in Ei

9: end for
10: R = R ∪ Rti

11: end for
12: Sort R for removing duplicates
13: return R

5. Experimental Validation

In this section, we present extensive simulation results of our location cloaker and query
processing algorithms. We implemented our cloaking technique and privacy protected query
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algorithms in a simulator to evaluate the performance of our approach. Our main objectives
are to observe the influence of performance related factors (e.g., cloaked region size) on the
system and to test the feasibility of our approach with real world parameter sets. Performance
is measured in terms of the cloaked region size, result set size, and CPU time. All simulation
results were recorded after the system model reached steady state.

5.1. SIMULATOR IMPLEMENTATION

Our simulator consists of three main components, the mobile environment, the location
cloaker, and the location-based service provider. For the mobile environment, we utilized
the network-based moving objects generation framework [3] to generate a set of mobile users
and the underlying road network inside a geographical area, measuring 10 miles by 10 miles.
Each mobile user is an independent object which encapsulates all its related parameters (e.g.,
its current speed and destination). We implemented the location cloaker as a new module for
interacting with mobile users to anonymize spatial queries in the framework. Our privacy
protected query approaches (Section 4.1 and Section 4.2) were also implemented inside the
framework as new functions and play the role of the LBSP. We obtained our road network
data of the City of Los Angeles and Riverside County from the TIGER/Line street vector
data available from the U.S. Census Bureau.

5.2. EXPLORING PERFORMANCE INFLUENCING FACTORS

We are interested in the effect of four major performance influencing factors: the minimum
road segment number (Smin), the cloaked region size, the number of k, and the Point of In-
terest (POI) number, of spatial queries. We experimented with both nearest neighbor queries
and range queries with these factors as follows.

5.2.1. Effect of the Minimum Road Segment Number
We first varied the minimum road segment number (Smin) from 1 to 20 with real world road
street vector data sets. We define a road segment as a street section between two adjacent
intersections. The influence of Smin was experimented with the street vector data from an
urban area (in the City of Los Angeles) and a suburban area (in Riverside County). Figure 8
demonstrates the cloaked region size with different minimum road segment number. Since
the road segments are sparse and the distance between two adjacent intersections are longer
in suburban areas, the cloaked region size expanded exponentially in the suburban space
when we raised the minimum road segment number. On the contrary, the expansion of the
cloaked region in the urban area is quite stable because the road segment density in urban
areas is much higher.

5.2.2. Effect of the Cloaked Region Size
Next we increased the cloaked region size from 2% to 10% of the whole experimental region
and the cloaked region size also reflects the influences of the two privacy policy settings – K
and Rmin. Figure 9 demonstrates the result set size and query processing time with different
cloaked region sizes. Since a bigger cloaked region usually intersects with more underlying
network segments, it generates a larger candidate result set and takes longer to process. As
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shown in Figure 9a., the curve of PSRQ remarkably increases because the result set covers
all the POIs within the cloaked region and the search range r. In contrast, PSNN removes
duplicated objects from R. In addition, the query processing time of PSNN increases notably
with an enlarged cloaked region size as illustrated in Figure 9b.

5.2.3. Effect of k
We tested the impact of varying the number of requested nearest neighbors, i.e., k. We altered
k in the range from 4 to 20. As shown in Figure 10, the result set size grows when we raised
k from 4 to 20 and we also observe that the result set increases super-linearly when k is a
relatively large number. For example, the result set covers around 25% more objects than the
queried k number when k is equal to 20. This factor has a similar super-linear influence on
the query processing time as demonstrated in Figure 10b.

5.2.4. Effect of the Number of POI
To see the effect of varying the total POI number, we increased the total POI number from
200 to 1000 in the simulation environment. Figure 11 illustrates the result set size and query
processing time of PSNN and PSRQ with increasing POI numbers. We notice that with a
higher POI density the result set of PSRQ increases conspicuously compared with PSNN.
This is expected, since PSRQ has to report all the objects inside the cloaked region. In
addition, the query processing time of PSNN is always longer than that of PSRQ.
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Figure 9. The effect of the cloaked region size.
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Figure 10. The effect of k.
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Figure 11. The effect of the POI number.

5.3. EXPERIMENTS WITH REAL WORLD PARAMETER SETS

In order to test our approach with realistic environments, we obtained our simulation para-
meters from public data sets which report vehicle density and POI density in the City of Los
Angeles and Riverside County. We term the two parameter sets based on these real-world
statistics the City of Los Angeles parameter set and the Riverside County parameter set.

The City of Los Angeles and the Riverside County parameter sets represent a very dense,
urban area and a low-density, more rural area respectively. For experimental purpose, we
mixed the two real parameter sets to generate a third, synthetic data set. Table II lists the two
parameter sets where POINum stands for the total POI number and MUNum stands for the
total mobile user number.

We used both input parameter sets, City of Los Angeles and Riverside County, to sim-
ulate our techniques for solving kNN queries and range queries. The simulation results are
demonstrated in Figure 12. The City of Los Angeles data set generates a larger result and
requires a longer CPU time because of its high user mobility and POI density. However, the
performance of the City of Los Angeles data set did not deteriorate much compared with the
far sparser Riverside County parameter set. The results for range queries exhibit a similar
trend as for kNN queries.
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Table II. The simulation parameter sets.

Parameter City of Los Angeles Riverside County Synthetic Suburbia Units

POINum 580 260 420

MUNum 15325 3430 9378

K-anonymity 150 150 150 peers

Rmin 1 1 1 mile2

Smin 5 5 5

k 5 5 5

r 1 1 1 mile
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Figure 12. The effect of k with real-world parameter sets.

6. Conclusions

In this paper we present an advanced location cloaker and two novel algorithms for process-
ing k nearest neighbor queries and range queries on spatial networks with privacy protection.
The main idea is to hide the exact mobile user location with a cloaked region. The cloaked
region covers the query requester and at least K − 1 other users based on the K-anonymity
concept. The spatial queries are executed based on both the cloaked region and the under-
lying networks. A candidate result set will be returned to the requesting user who filters
out the exact answer. Our comprehensive simulations with real and synthetic parameter
sets demonstrate the efficiency of our methods. We plan to extend the proposed solutions
to support spatial network based query processing in other privacy protection models. In
addition, a road network based indexing technique will also be studied in the future.
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