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Summary. In this chapter we describe some of the most important privacy prob-
lems that the Information Society has to face in a variety of fields, namely ecom-
merce, health care, etc. We next propose a solution based on data aggregation, which
is known to be NP-hard when applied to multivariate data. Due to this computa-
tional complexity, it is necessary to use heuristics to solve the problem. We propose
the use of a Genetic Algorithm (GA) conveniently tuned up for tackling the problem
properly.

1 Introduction

“Seduced by the effortless gathering of data, we discount the costs of turning

data into information, information into knowledge and knowledge into wisdom.”

B. Harris, 1987

When Harris wrote the above sentence in 1987 he could not imagine how
easy it would be in the twenty-first century to gather huge amounts of data
whilst, at the same time, transforming them into information, and next into
knowledge. The last step, to turn knowledge into wisdom, is still not reached
by computers and is even difficult to be achieved by most humans.

We want to obtain the information we need as fast as possible, from every-
where, and at any time. To that end, our storage and communication methods
have evolved e.g. from the classical paper-based mail carried by postmen to
the e-mail that fleetingly crosses the world through optical fibre. This achieve-
ment is the result of years of research and efforts. Research on information
and communications technologies (ICTs) is a keystone of the Europe’s 7th
Research Framework Programme [31] that will run until 2013. The European
Union acknowledges the importance of ICTs for the growth and competitive-
ness of Europe, and plans to invest over e 9 billion in research on ICTs. This
investment will lead to the development of more efficient techniques for gather-
ing, storing and sharing data by using a variety of devices, namely computers,
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mobile phones, smart cards, PDAs and even the interactive digital terrestrial
television (DTT).

The great advances achieved on ICTs in the last few years, and the new
ones that we envisage, pave the way for the storage and analysis of a huge
amount of information. This information, which is growing with each passing
day, is gathered by a plethora of institutions, namely statistical agencies,
private companies, health-care institutions and universities among others.

The balance between the right of the society to information and the right
of the individuals to privacy is on the line. A number of examples of this
contradictory situation can be found in our daily life.

• Commercial information. Supermarkets may gather information from the
fidelity cards of their customers in order to improve the services they offer
to them or to increase their annual benefits. On the other hand, if this
information is misused, the privacy of the costumers could be in jeopardy
because e.g. their consumer habits could be inferred from the data and
they can be flooded with undesired advertisements.

• E-commerce. Electronic commerce results in the automated collection of
large amounts of consumer data. This wealth of information is very useful
to companies, which are often interested in sharing it with their sub-
sidiaries or partners. Such consumer information transfer should not result
in public profiling of individuals and is subject to strict regulation.

• Statistical Agencies. Most countries have legislation which compels natio-
nal statistical agencies to guarantee statistical confidentiality when they
release data collected from citizens or companies; see [25] for regula-
tions in the European Union, [26] for regulations in Canada, and [32]
for regulations in the U.S.

• Health information. This is one of the most sensitive areas regarding pri-
vacy. For example, in the U.S., the Privacy Rule of the Health Insurance
Portability and Accountability Act (HIPAA, [13]) requires the strict regu-
lation of protected health information for use in medical research. In most
western countries, the situation is similar, which has caused e-health to
become a hot topic in privacy research (see e.g. [1]).

• Location-Based Services. Cell phones have become ubiquitous and services
related to the current position of the user are growing fast. If the queries
that a user makes to a location-based server are not securely managed,
it could be possible to infer the consumer habits of the user, e.g. a third
party could know that a given user likes Chinese food if she usually makes
queries from a Chinese restaurant.

• RFID technology. The massive deployment of the Radio Frequency IDen-
tification (RFID) technology is a reality. In the near future almost every
object will contain an RFID tag capable of transmitting information under
the request of an RFID reader. On the one hand, this technology will
increase the efficiency of supply chains and will eventually replace bar
codes. On the other hand, the existence of RFID tags in almost every
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object that we have, could be a privacy problem e.g. an eavesdropper in
the street will be able to scan the RFID tags of someone close to him
and he will be able to determine the amount of money that she has, what
kind of clothes she wears and even whether she has suffered from a hip
operation and she has a prosthesis.

These problems directly affect each of us in almost every aspect of our
daily life. If the proper actions are not taken, our personal data could be in
jeopardy due to the data storage and the advances in data mining techniques.

Releasing statistical information for public use can jeopardise the privacy
of individual respondents on which the data were collected. A possible solution
leveraged from the field of Statistical Disclosure Control (SDC) is the aggre-
gation of the original data before its publication. By aggregating the data,
it becomes statistically unprovable to link the released data with a given
respondent and, at the same time, data utility is preserved. Unfortunately,
this solution is not straightforward because the elements composing the data
must be properly clustered prior to the aggregation process. The clustering of
data with constraints on the size of the clusters is known to be an NP-Hard
problem when the data is multivariate. Thus, it is necessary to make use of
heuristics in order to properly aggregate multivariate data.

1.1 Contribution and Plan of the Chapter

In this chapter we tackle the privacy problems that the Information Soci-
ety has to face. In order to address them, we propose the use of micro-
aggregation as the method for distorting data and guaranteeing respondents
privacy. Unfortunately, optimal micro-aggregation is known to be NP-Hard
and heuristics have to be used.

We suggest the use of a GA for solving the micro-aggregation problem.
Moreover, we show how to tune up a classical GA, i.e. how to codify the
chromosomes, how to choose the most effective parameters for the mutation
and crossover rates, etc.

The rest of the chapter is organised as follows. Section 2 gives an overview
of the micro-aggregation problem and introduces some important concepts
and renown micro-aggregation methods. In Sect. 3, we show how to solve the
micro-aggregation problem by using a GA. Section 4 presents an improvement
of the method in Sect. 3 that permits the aggregation of large files. Section 5
provides some experimental results and, finally, Sect. 6 finishes with some
conclusions and future challenges.

2 Basics of Micro-Aggregation

Statistical Disclosure Control (SDC), also known as Statistical Disclosure Lim-
itation (SDL), seeks to transform data in such a way that they can be publicly
released whilst preserving data utility and statistical confidentiality, where the
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latter means avoiding disclosure of information that can be linked to specific
individual or corporate respondent entities.

The SDC problem is to modify data in such a way that sufficient protection
is provided whilst minimising information loss, i.e. the loss of the accuracy
sought by users.

Micro-aggregation is an SDC technique consisting in the aggregation of
individual data. It can be considered as an SDC subdiscipline devoted to
the protection of individual data, also called micro-data. It is only recently
that data collectors (statistical agencies and the like) have been persuaded
to publish micro-data. Therefore, micro-data protection is the youngest SDC
subdiscipline and it is experiencing continuous evolution in the last years.
Micro-aggregation can be seen as a clustering problem with constraints on the
size of the clusters. It is somehow related to other clustering problems (e.g.
dimension reduction or minimum squares design of clusters). However, the
main difference of the micro-aggregation problem is that it does not consider
the number of clusters to generate or the number of dimensions to reduce, but
only the minimum number of elements that are grouped in the same cluster.

When we micro-aggregate data we have to keep two goals in mind:

• Preserving data utility. To do so, we should introduce as less noise as
possible into the data, i.e. we should aggregate similar elements instead of
different ones. In the example given in Fig. 1 for a security parameter k =
3, groups of three elements are built and aggregated. Note that elements
in the same aggregation group are similar.

• Protecting the privacy of the respondents. Data have to be sufficiently
modified to make re-identification difficult, i.e. by increasing the number
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of aggregated elements, we increase data privacy. In the example given
in Fig. 1, after aggregating the chosen elements, it is impossible to distin-
guish them, so that the probability of linking any respondent is inversely
proportional to the number of aggregated elements.

In order to determine whether two elements are similar, a similarity func-
tion such as the Euclidean Distance can be used. By means of this similarity
function, we can define a homogeneity measure HOM for a given univariate
data set Duni such as the one in Expression 1.

HOMDuni
=

n
∑

i=1

xi − x̄, (1)

where n is the number of elements in Duni, xi is the i-th element in Duni and

x̄ is the average element, i.e. x̄ =
∑

n

i=0
xi

n
. This expression can be extended to

multivariate data as follows:

HOMDmulti
=

n
∑

i=1

d
∑

j=1

xij − x̄j, (2)

where n is the number of elements in Dmulti, d is the number of dimensions
of each element, xij is the j-th component of the i-th element in Dmulti and
x̄j is the j-th component of the average element.

Expression 2 can be extended to multiple subsets and it is known as the
Sum of Squared Errors (SSE) cf. Expression 3.

SSE =

s
∑

i=1

ni
∑

j=1

(xij − x̄i)
′(xij − x̄i), (3)

where s is the number of subsets, ni is the number of elements in the i-th
subset, xij is the j-th element in the i-th subset and x̄i is the average element
of the i-th subset.

Given a homogeneity measure such as the SSE and a security parameter
k, which determines the minimum cardinality of the subsets, the micro-
aggregation or k-micro-aggregation problem can be enunciated as follows:

Given a data set D built up of n elements in a characteristic space

R
d, the problem consists in obtaining a k-partition1 P of D so that

the homogeneity of P is maximised. Once P is obtained, each element

of every part of P is replaced by the average element of the part.

This problem is known to be NP-hard [23] for multivariate data sets so
heuristic methods must be used to solve it.

1 A k-partition of D is a partition where its parts have, at least, k elements of D.



220 A. Solanas

2.1 Multivariate Micro-Aggregation Methods

There is a plethora of methods to address the multivariate micro-aggregation
problem (see e.g. [33] for a more detailed approach). In this section we give a
brief overview of the most relevant techniques and we point out some of their
shortcomings.

Minimum Spanning Tree Partitioning (MSTP)

The MSTP algorithm for micro-aggregation was proposed in [18] as a variable-
size multivariate micro-aggregation method. The method is based in the well-
known Minimum Spanning Tree (MST) problem. However, the standard MST
partitioning algorithm does not solve the micro-aggregation problem since it
does not consider the group size constraints.

In order to address this problem, the authors proposed a modification of
the MSTP algorithm that takes into account the constraints on the size of the
clusters. The algorithm is divided in three main steps:

1. MST construction: Constructs a MST by using the method of Prim and a
Euclidean metric. Moreover, the authors augment the algorithm by adding
a priority queue based on the edge length and a descendant count, that
determines the number of nodes under a given node, in each node of the
tree.

2. Edge cutting: The algorithm iteratively visits every MST edge in length
order, from longest to shortest, and deletes the removable edges whilst
retaining the remaining edges. An edge is said to be removable if the
forest that results from the cutting is acceptable, i.e. each tree in the
forest has at least k nodes. Note that this condition guarantees the final
partition to be a k-partition.

3. Cluster generation: Once the forest has been constructed, a recursive algo-
rithm that visits every node in the forest is applied in order to assign every
node (point) to a cluster (part) (see [18] for further details). At the end
of this process a k-partition is obtained.

The main limitation of this algorithm remains in its foundation, i.e. in the
minimum spanning tree. Although it could be very useful when the data are
distributed in clusters, it fails to properly adapt to the data when the points
(elements) are distributed in a scattered way.

Maximum Distance Method (MD)

The MD was proposed in [7] as a multivariate micro-aggregation method.
The main advantage of this method is its simplicity. Moreover, it achieves
very good results in most data sets.
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The MD algorithm builds a k-partition as follows:

1. Let r and s be the two most distant records in the data set, using the
Euclidean Distance; form a group with r and the k − 1 records closest to
r; form a group with s and the k − 1 records closest to s.

2. If there are at least 2k records which do not belong to any of the groups
formed in Step 1, go to Step 1 taking as the new data set the previous
data set minus the groups formed in the previous instance of Step 1.

3. If there are between k and 2k − 1 records which do not belong to any of
the groups formed in Step 1, form a new group with those points and exit
the algorithm.

4. If there are less than k records which do not belong to any of the groups
formed in Step 1, add them to the closest group formed in Step 1.

At this moment, we have a k-partition of the data set. As explained above,
given a k-partition, the micro-aggregated data are computed by replacing each
record by the centroid of the group to which it belongs.

The main shortcoming of this method is its computational complexity, i.e.
O(n3).

Maximum Distance to Average Vector Method (MDAV)

The main drawback of MD is its computational complexity because of the
cost of finding the most distant records at each iteration. The Maximum
Distance to Average Vector method (MDAV) improves on MD in terms of
computational complexity whilst maintaining the performance in terms of
resulting SSE.

MDAV was proposed in [9,15] as part of a multivariate micro-aggregation
method implemented in the µ-Argus package for statistical disclosure control.
A slight modification of the same construction was later described in [18]
under the name centroid-based fixed size micro-aggregation.

MDAV is the most popular method used for micro-aggregating data sets.
Thus, we will explain it in detail and we will compare it with our genetic
approach.

MDAV builds a k-partition as follows. First, a square matrix of distances
between all records is computed (line 1 in Algorithm 1). Two main approaches
can be adopted to perform these distance calculations. The first approach is
to compute and store the distances at the beginning of the micro-aggregation
process. The second approach consists in computing the distances on the fly
when they are needed. The first approach is computationally cheaper but it
requires too much memory when the number of records in the data set is large.

After computing the matrix of distances, MDAV iterates (lines 4-13) and
builds two groups at each iteration. In order to build these groups, the centroid
c – i.e. the average vector – of the remaining records – those which have not yet
been assigned to any group – is computed at the beginning of each iteration
(line 5). Then the most distant record r from c is taken (line 6) and a group of
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Algorithm 1: Maximum Distance to Average Vector (MDAV)

Data: Data set X, Integer k, Integer n.
Result: k-partition.
ComputeDistanceMatrix(X);1

RR = n; //Remaining Records2

i = 0;3

while RR > 2k − 1 do4

c = ComputeNewCentroid(X);5

r = GetFarthestRecordFromCentroid(X,c);6

s = GetFarthestRecordFromRecord (X,r);7

gi = BuildGroupAroundRecord(r,X,k);8

i = i + 1;9

gi = BuildGroupAroundRecord(s,X,k);10

i = i + 1;11

RR = RR − 2k;12

end13

g1 . . . gs = AssignRemainingRec(X, g1 . . . gs);14

return g1 . . . gs15

k records is built around r (line 8). The group of k records around r is formed
by r and the k − 1 closest records to r. Next, the most distant record s from
r is taken (line 7) and a group of k records is built around s (line 10). The
generation of groups continues until the number of remaining records (RR)
is less than 2k. When this condition is met, two cases are possible, namely
RR < k or RR ≥ k. In the first case, the remaining records are assigned
to their closest group. In the second case, a new group is built with all the
remaining records. Note that all groups have k elements except perhaps the
last one.

Finally, given the k-partition obtained by MDAV, a micro-aggregated data
set is computed by replacing each record in the original data set by the centroid
of the group to which it belongs. The main problem of this algorithm is its
lack of flexibility. It only generates subsets of fixed cardinality k and, due to
this limitation, it can suffer from a performance reduction when applied to
data sets where the points are distributed in clusters of variable cardinality.

Variable-MDAV

MDAV generates groups of fixed size k and, thus, it lacks flexibility for adapt-
ing the group size to the distribution of the records in the data set, which
may result in poor within-group homogeneity.

Variable-size MDAV (V-MDAV) [28] algorithm intends to overcome this
limitation by computing a variable-size k-partition with a computational cost
similar to the MDAV cost.
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The algorithm for building a k-partition using V-MDAV is as follows:

1. Compute the distances between the records and store them in a distance
matrix.

2. Compute the centroid c of the data set.
3. Whilst there are more than k − 1 records not yet assigned to a group do:

a) Let e be the most distant record to c.
b) Form a group around e which contains the k − 1 records closest to e.
c) Extend the group, which consists of adding to the current group up

to k − 1 records using these steps:
i. Find the unassigned record emin which is closest to any of the

records of the current group and let din be the distance between
emin and the group;

ii. Let dout be the shortest distance from emin to the other unassigned
records;

iii. If din < γdout then assign emin to the current group. γ is a gain
factor that has to be tuned according to the data set.

4. If less than k records remain unassigned, no new group can be formed. In
that case, assign the remaining records to their closest group.

At the time of writing this chapter, MDAV is the most popular algo-
rithm used to micro-aggregate multivariate data sets. Thus, we will use it as
a reference to compare with our genetic approach.

3 Privacy Protection Through Genetic-Algorithm-Based

Micro-aggregation

As we have shown in previous sections, the micro-aggregation problem is
known to be NP-hard. Looking for optimal solutions in a multivariate data
set is a very difficult task. Genetic algorithms are very well suited for search-
ing solutions in complex search spaces. Therefore, a genetic-based technique
seems to be a good candidate for solving this privacy problem.

We use the concept of GA described by Holland in [14]. A GA is a method
for moving from one population of chromosomes to a new population by using
a kind of natural selection together with the genetics-inspired operators of
crossover, mutation, and inversion. Each chromosome consists of genes, each
gene being an instance of a particular allele [22]. A GA depends on a number
of parameters, namely population size, mutation rate, crossover rate and so
on. The value of these parameters is typically initialised by following the
recommendations of experts [5,10], although statistical techniques can be used
to tune these parameters [4].

In a nutshell, a GA is a function optimiser that can be described in terms
of a population of chromosomes, a coding sequence, a selection algorithm,
a fitness function and some genetic operators. The chromosomes are candi-
date solutions to the problem which are encoded by means of the coding
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sequence. The selection algorithm determines which chromosomes will gener-
ate offspring. The fitness function evaluates how good a chromosome is and
the genetic operators are used to mix the genetic information of the selected
chromosomes in order to generate the offspring.

In order to address the micro-aggregation problem, a GA must be prop-
erly modified. The modifications introduced in our scheme with respect to
a classical GA are intended to boost performance when micro-aggregating
multivariate data. We next deal with those modifications in detail.

3.1 The Coding Sequence

The way in which candidate solutions are encoded is a key factor in the success
of a GA [22].

Searching a proper coding could be a bewildering task due to the array of
possible coding alternatives. However, at the same time, looking for a good
coding among a plethora of alphabets is an invigorating challenge.

Codings can be mainly classified according to their alphabet in three main
categories:

• Binary codings: They are based on a two-symbol alphabet (e.g. 0 and 1)
and have been widely used because they were the codings initially intro-
duced by Holland in his pioneering work [14]. Some recent examples
are [19, 24, 30]. Moreover, lots of heuristics based on binary codings have
been used as meta-heuristics in order to determine the value of parameters
such as the crossover rate and the mutation rate [4, 12, 27].

• N -ary codings: They differ from binary codings in that each gene can take
N different alleles2. As it will be shown next, this coding is our choice for
addressing the multivariate micro-aggregation problem.

• Real-valued codings: These codings assign a real value to each gene. This
kind of coding is basically used when the representation of a real number
in a binary alphabet is awkward, this is, when the number’s precision or
range are not previously and clearly known [3, 21, 35].

In [7] a binary coding was used to solve the problem of univariate micro-
aggregation. The idea was to sort univariate records in ascending order and to
represent the i-th record by the i-th symbol in a binary string (chromosome).
Thus, a chromosome represents a k-partition as follows. If a cluster starts at
the i-th record, its bit in the chromosome is initialised with a “1” symbol;
otherwise it is set to “0”. This coding makes sense for univariate data sets
because they can be sorted. Unfortunately, no generalisation to the multi-
variate case is possible because there is no way of sorting multivariate records

2 It is clear that all problems that can be encoded using N-ary codings can be
also encoded by using a binary alphabet which would encode the N-ary alphabet.
However, some problems are more easily and naturally encoded by using an N-ary
alphabet [17,34].
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without giving a higher priority to one of the attributes. To overcome this lim-
itation, we propose a new coding that can be applied to data sets containing
any number of dimensions.

Micro-aggregation requires that each group in a k-partition contain at least
k records. Thus, the maximum number G of groups in a k-partition is

G =
⌊n

k

⌋

, (4)

where n is the total number of records to be micro-aggregated. The maximum
number of groups G is the number of different alleles which must be defined
in order to be able to encode a valid solution of the problem within each
chromosome. Thus, the cardinality of our alphabet is G and each symbol of
the alphabet represents one group/part of the k-partition.

We consider that each chromosome has a fixed number of genes equalling
the number of records in the data set. This is, the value of the i-th gene in a
chromosome defines the group of the k-partition which the i-th record in the
data set belongs to.

Example 1. Taking the data in Table 1 and considering k = 3 we use (4) to
get that G = 3. We then define a 3-character alphabet (e.g. A, B and C)
that will be used to encode our chromosomes. Since we have 11 records in
the data set, each chromosome is built up of 11 genes. A valid chromosome
could be AAABBBCCCAA which encodes the following 3-partition: group
A = {1,2,3,10,11}, group B = {4,5,6} and group C = {7,8,9}

Note that using alphabets with more than G symbols is conceivable, but
the principle of minimum alphabets states that the smallest alphabet that
permits a natural expression of the problem should be selected [11].

Table 1. Example: SME data

Company Surface Employees Turnover Net profit
name (m2) (e) (e)

A&A Ltd 790 55 32,12,334 3,13,250
B&B SpA 710 44 22,83,340 2,99,876
C&C Inc 730 32 19,89,233 2,00,213
D&D BV 810 17 9,84,983 1,43,211
E&E SL 950 3 1,94,232 51,233
F&F GmbH 510 25 1,19,332 20,333
G&G AG 400 45 30,12,444 5,01,233
H&H SA 330 50 42,33,312 7,77,882
I&I LLC 510 5 1,59,999 60,388
J&J Co 760 52 53,33,442 10,01,233
K&K Sarl 50 12 6,45,223 3,33,010

“Company name” is an identifier to be suppressed before publish-
ing the data set
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3.2 Initialising the Population

The initialisation of the population is not a key issue when all the possible
combinations of the symbols in the alphabet are candidate solutions. Gener-
ally, the initialisation of the chromosomes in the population is performed at
random, i.e. by using a pseudo-random generator mapped over the alphabet
of the coding. Pseudo-random chromosome initialisation with n records and
G different alphabet symbols results in

V ′
(G,n) = Gn (5)

possible chromosomes. Unfortunately, only a small fraction of such chromo-
somes meet the cardinality constraints to represent valid k-partitions.

Domingo-Ferrer and Mateo-Sanz [7] proved that

Result 1 In an optimal k-partition, each group has between k and 2k − 1
records.

From Result 1 the minimum number of groups in a k-partitions is

g =

⌈

n

2k − 1

⌉

. (6)

The probability of randomly obtaining a k-partition candidate to opti-
mality (that is, meeting the cardinality constraints of Result 1) is the total
number of candidate optimal k-partitions divided by the number of possible
chromosomes given in (5). Computing the exact number of k-partitions can-
didate to optimality is not straightforward. However, in [29] an upper bound
in the number of candidates is given by following the next steps.

1. First, the number an,k of representatives3 of optimal k-partitions given n
and k is determined by using the next recursive definition for an,k

an,p = 0 if n < p, k ≤ p ≤ 2k − 1;

an,p = 1 if p ≤ n ≤ 2k − 1, k ≤ p ≤ 2k − 1;

otherwise, if n ≥ 2k

an,p = an−p,p + an−(p+1),p+1 + an−(p+2),p+2 + . . .

. . . + an−(2k−1),2k−1, k ≤ p ≤ 2k − 1; (7)

where an,p denotes the number of representatives with n elements with
the first subset having a cardinality ≥ p.
Table 2 lists the values of an,k for several choices of k and n.

3 A representative is a k-partition with its groups enumerated in ascending order
of cardinality. Thus, the k-partition with three groups of cardinalities 3, 4 and
5, respectively, represents all k-partitions formed by three groups with the same
cardinalities (i.e. {3, 4, 5}, {3, 5, 4}, {4, 3, 5}, {4, 5, 3}, {5, 3, 4} and {5, 4, 3}).
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Table 2. Values of an,k for several choices of k and n

n k = 3 k = 4 k = 5

10 2 2 1
20 6 6 5
30 11 14 14
40 18 27 29
50 26 45 56
100 94 272 520
500 2,134 26,477 1,97,549
1,000 8,434 2,05,037 29,53,389

2. The representative with the maximal number G of groups is taken and
the number µ of different candidate optimal k-partitions it represents is
obtained by using the following multinomial-inspired formula.

µ =
n!

k1!k2! . . . kG!

1

G!
, (8)

where km is the cardinality of the m-th group in the k-partition. Clearly,
µ is an upper bound for the number of candidate optimal k-partition
represented by any representative.

3. Finally, multiplying µ by the number of representatives an,k and divid-
ing by the number Gn of random chromosomes, an upper bound on the
probability P (random candidate optimal) of hitting a candidate optimal
k-partition by random initialisation is obtained:

P (random candidate optimal) ≤
an,kµ

Gn
. (9)

Example 2. Considering a data set with n = 30 records/elements and cardi-
nality constraint k = 3, the probability of obtaining a candidate to optimal
chromosome at random is

P (random candidate optimal) ≤ 13, 2977212023656× 10−12 ≈ 0

From Example 2, it becomes clear that random initialisation is not suitable to
obtain candidate optimal k-partitions. The cardinality constraints stated in
Result 1 must be embedded in the initialisation procedure. Thus, Algorithm 2
is used to initialise the chromosomes with solutions that are candidate to
optimality.

The application of Algorithm 2 guarantees that each group/part has at
most 2k − 1 elements. However, groups with less than k elements can exist.
In order to avoid this problem, elements from the most populated groups
are randomly moved to the groups with less than k elements. At the end of
this process, chromosomes representing k-partitions which are candidate to
be optimal are obtained.
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Algorithm 2: Chromosome initialisation with constraints

Data: inout chromosome, in k.
Result: k-partition.
gene number = 01

while gene number < chromosome size do2

group number = rand() mod G3

if records in group[group number]< 2k − 1 then4

chromosome[gene number]←group number5

records in group[group number] += 16

gene number += 17

end8

end9

3.3 The Fitness Function

The evaluation of a chromosome in the population is the costliest part
in the whole evolution process of the GA. We want to obtain a measure
of the homogeneity of the groups in the k-partition represented by a given
chromosome.

As we have introduced in Sect. 2, the most frequently used homogeneity
measure for k-partitions is the within-group sum of squares SSE [7, 16]. The
SSE is the sum of square distances from the centroid of each group to every
element (i.e. record) in the group. For a k-partition, SSE can be computed as:

SSE =

s
∑

i=1

ni
∑

j=1

(xij − x̄i)
′(xij − x̄i), (10)

where s is the number of groups in the k-partition and ni is the number of
records in the i-th group. Expression (10) is applied to the data after stan-
dardising them, this is, after subtracting from the values of each attribute the
attribute mean and dividing the result by the attribute standard deviation4.

During the evolution process, some chromosomes can appear which are not
candidate optimal k-partitions due to the effect of genetic operators. This is,
some groups can appear whose cardinality is no longer in the range [k, 2k−1].
In these cases, we do not remove the chromosome from the population; instead,
we penalise it in order to nearly preclude its reproduction.

Our goal is to minimise SSE. Thus, the fitness value that we finally assign
to a chromosome is

Fitness =
1

SSE + 1
. (11)

4 Standardisation does not affect attribute correlations.
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3.4 Selection Scheme and Genetic Operators

Our GA uses the well-known roulette-wheel selection algorithm. This selection
algorithm is based on weighting the chromosomes of the population according
to their fitness. Thus, the probability of a chromosome for being selected to
pass to the next generation is proportional to its fitness. This method tends to
converge quickly because it does not preserve the diversity of the population.
Even though this entails some risk of missing good solutions, experimental
results show that this risk is small and it can be afforded for the sake of
speed.

We have used the most common genetic operators, this is, one-point
crossover and mutation.

4 A Hybrid Approach

In the previous section, we have introduced how to build a GA to let it properly
face the problem of micro-aggregating a multivariate data set. Although the
proposed method is correct, it suffers from some performance limitations when
the number of elements in the data set is large.

On the one hand, the GA approach is very efficient in terms of SSE, but
it cannot deal with large data sets. On the other, distance-based methods like
MDAV can deal with very large data sets, but they are not as good as the
GA in terms of SSE.

The solution consists in taking the advantages of both methods and mix
them to obtain a new hybrid method able to micro-aggregate large data sets,
whilst maintaining a good performance in terms of SSE.

The hybrid method, that we call two-step partitioning [20], can be sum-
marised as follows:

1. Let k be a small value (e.g. k = 3).
2. Let K be larger than k and divisible by k, small enough to be suitable for

our GA (e.g. K = 21).
3. Use a fixed-size heuristic to build a k-partition.
4. Taking as input records the average vectors obtained in the previous step,

apply the fixed-size heuristic to build macro-groups (i.e. sets of average
vectors) of size K/k.

5. For each given macro-group, replace the average vectors by the k original
records to obtain a K-partition.

Figure 2 shows two macro-groups obtained by the two-step partitioning
method using MDAV two times with K = 24 and k = 3.

Finally, apply the GA to each macro-group in the K-partition in order
to generate an optimal or near optimal k-partition of the macro-group. The
composition of the k-partitions of all macro-groups yields a k-partition for
the entire data set. An important issue when using the GA on a macro-group
is to include the fixed-size k-partition of the macro-group induced by the
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Fig. 2. Two macro-groups obtained by the two-step partitioning method using
MDAV two times with K = 24 and k = 3

k-partition of the entire data set computed in Step 3 above as one of the
chromosomes of the initial population fed to the GA.

The following result holds:

Lemma 1. The SSE of the k-partition obtained using a two-step partition

based on a fixed-size heuristic followed by a GA is not greater than the SSE

of the k-partition output by the fixed-size heuristic alone.

Proof. By assumption, the fixed-size k-partition of each macro-group induced
by the fixed-size k-partition of the data set obtained at Step 3 is one of the
chromosomes of the initial population fed to the GA. Therefore, for each
macro-group, the k-partition output by the GA is at least as good as the fixed-
size k-partition in terms of the fitness function. This implies that the SSE of
the k-partition of the entire data set obtained by composition of the macro-
group k-partitions output by the GA is not greater than the SSE of the
k-partition of Step 3. ⊓⊔

5 Experimental Results

In this section we summarise the most relevant experimental results obtained
with the proposed GA-based micro-aggregation algorithm and the hybrid
micro-aggregation approach. We compare these results with the ones obtained
with the MDAV algorithm and by exhaustive search (ES). Note that ES is
only possible with tiny data sets of up to 11 elements.
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We classify the experiments in three main groups:

1. Experiments with the example data set: These experiments have been car-
ried out in order to clearly show the main properties of the GA approach
in a tiny data set. The obtained results are not statistically relevant, but
they provide a first intuition of what the GA approach is able to do.

2. Experiments with small data sets: This set of experiments are intended for
a complete analysis of the behaviour of the GA-based micro-aggregation.

3. Experiments with large and real data sets: In these case, the hybrid
approach is on the line. Well-known data sets are used to demonstrate
that the hybrid approach performs properly.

Each experiment consists of several runs of the GA. At each run of the
GA, a different combination of parameters is used i.e. the Mutation rate (Mr)
has been varied from 0 to 1, with a step of 0.1, the Crossover rate (Cr) has
been varied from 0 to 1, with a step of 0.1 and, the population size has been
varied from 10 to 100 chromosomes with a step of 10.

The above implies 1210 different parameter settings. For each setting, the
GA was run 10 times, so that altogether each test comprised 12,100 runs of
the GA5.

5.1 Results for the Running Example

With the aim of giving a first intuition of how our GA-based micro-aggregation
method performs, we have used it to micro-aggregate the data set in Table 1.

Table 3 gives a comparison between ES, MDAV and GA in terms of running
time and SSE for the example data set in Table 1. The running time of the
GA depends on the number of generations. Figure 3 shows a histogram of the
convergence generation of the tests. It can be observed that most of the tests
converge in less than 5,000 iterations. Thus, the running time for the GA in
Table 3 corresponds to 5,000 iterations.

Even though MDAV is faster than the GA approach, the SSE obtained
with the GA is better. In fact, in 91% of the 12,100 runs, the GA reaches the
optimal SSE = 14.82.

Table 3. Performance of ES, MDAV and GA on the running example

n = 11, d = 4 ES MDAV GA

Time 717 s <1 s 1.4 s
SSE 14.82 18.29 14.82

5 Tests were performed on a Pentium 4 PC running at 3GHz with a Debian Linux
operating system. Programs were coded in C++.
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Fig. 3. Histogram of the convergence generation of the tests on the example data
set

Table 4. Minimum SSE values for tests with larger data sets

Data set MDAV GAm Mr Cr pop.size

20 × 2 5.39 4.29 0.1 0.4 60
35 × 2 5.01 3.13 0.1 0.1 90
50 × 2 5.92 4.02 0.1 0.1 50
100 × 2 5.48 15.37 0.1 0.2 50

5.2 Results in Small Data Sets

After observing the promising results achieved by the GA approach over the
data set in Table 1, we have carried out a deeper analysis of its performance
on a variety of small data sets.

Random data sets n × d have been constructed for several numbers n of
records and several numbers of attributes d. Attribute values were drawn from
the [−10000, 10000] interval by simple random sampling. For data sets with
n = 11, n = 20 and n = 35 the number of generations (number of iterations)
was 104. For the data set with n = 50, the number of generations was 105.
Note that for micro-data sets with n = 11 records, the optimal k-partition
could be found by ES in a reasonable time. For n > 11 the SSE obtained with
GA was only compared to the SSE obtained using MDAV.

Table 4 shows the best results obtained with the GA over data sets of
fixed dimensionality d = 2 and a variable number of elements (i.e. 20, 35, 50
and 100). From these results it becomes clear that the mutation rate should
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Table 5. Average of the minimum SSE values for tests with larger data sets

Data set MDAV GAA Mr Cr

20 × 2 5.39 4.61 0.1 0.7
35 × 2 5.01 3.59 0.1 0.5
50 × 2 5.92 4.67 0.1 0.5
100 × 2 5.48 23.78 0.1 0.0

Table 6. SSE for data sets with n = 11 and different d values

Data set SE MDAV GA Av.Conv.E.

11 × 5 29.36 39.11 29.36 931
11 × 7 43.28 52.47 43.28 839
11 × 10 68.66 71.14 68.66 705

be low6 (e.g. 0.1). Moreover, it is also clear that the GA improves the MDAV
heuristic when the number of elements is lower than 100. This result must be
emphasised because it represents the main limitation of the proposed method
(i.e. it cannot deal with large data sets).

Table 5 shows the averages of the minimum values obtained in the same
data sets and confirms the previous conclusions.

In both the 11× 2 and 11× 3 data sets the optimal SSE was obtained. In
order to check whether the optimal SSE is obtained for larger values of d, we
have tested our GA over random data sets with d = 5, d = 7 and d = 10. In
all cases, the k-partition generated for Mr �= 0 and Cr �= 0 equals the optimal
k-partition output by ES. Table 6 shows the results of these tests. In all three
data sets, around a 90% of the tests output the optimal SSE value.

In [29] a detailed sensitivity analysis of the parameters of the GA based on
the Analysis Of Variance (ANOVA) and the Tukey and Scheffé test is given.

5.3 Results in Real and Large Data Sets

The main limitation of our GA-based micro-aggregation technique is that it
cannot deal with large data sets. Thus, the hybrid technique is needed.

In order to test the hybrid technique we have used the next data sets:

• Synthetic data sets :“Scattered” and “Clustered” are data sets that con-
tain n = 1,000 records with d = 2 attributes. The former is scattered

in the sense that no natural clusters are apparent. Attribute values were
drawn from the [−10000, 10000] range by simple random sampling. The
second data set is considered to be clustered because its records are
grouped in natural clusters. The attribute values were uniformly drawn
from [−10000, 10000] as in the previous case, but records were then group-
wise shifted by a random amount in order to form clusters of size between

6 The use of higher values of the mutation rate leads to the generation of too much
non-optimal chromosomes.
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Table 7. Summary of experimental results with the hybrid approach (k = 3)

Two-step MDAV partitioning
Data set K SSEMDAV # clus. SSE % impr.(%)

“Scattered” 12 4.71 83 4.28 9
18 4.71 56 4.33 8
27 4.71 38 4.58 3

“Clustered” 12 3.57 84 2.84 20
18 3.57 56 2.14 40
27 3.57 41 2.09 41

“Census” 12 799 91 768 4
18 799 61 767 4
27 799 41 789 1

“EIA” 12 217 342 189 13
18 217 228 186 14
27 217 152 197 9

3 and 5 records each; more details on the generation of this data sets can
be found in [6].

• Real data sets: “Census” is a data set that contains 1,080 records with
13 numerical attributes. “EIA” contains 4092 records with 11 numerical
attributes. These data sets were proposed as reference micro-data sets
during the CASC project [2] and have been widely used [7–9,18].

Table 7 provides a summary of the obtained results. It can be observed
that the hybrid method always improves MDAV. The main improvement takes
place when the data set is clustered. This is due to the fact that MDAV is a
fixed-size heuristic i.e. it generates groups of k elements. This lack of flexibility
results in a poor performance when the elements in the micro-aggregated
data set are clustered in groups of variable size. On the contrary, the hybrid
approach makes use of the flexibility of the GA and clearly improves the SSE
results (cf. [20] for details).

6 Conclusions and Future Challenges

In this chapter we have shown some of the privacy problems that the Informa-
tion Society has to face. Some of these privacy threads can be tackled by using
well-known techniques from the field of statistical disclosure control such as
micro-aggregation.

We have introduced the main concepts of micro-aggregation and we have
shown that, due to the complexity of the problem, no optimal methods exist
and novel heuristics must be developed.

We have pointed out the possibility of using a GA to solve the micro-
aggregation problem and we have shown how to modify a classical GA in
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order to let it cope with the micro-aggregation problem. Moreover, we have
reported the main limitation of the GA approach (i.e. it can only deal with
small data sets) and we have proposed an improvement that consists in the
mixture of our GA and a classical distance-based heuristic like MDAV.

The reported experimental results demonstrate the usefulness of the pro-
posed methods and open the door to an invigorating research line. Lots of
questions remain open, next we conclude with some future challenges:

• Look for better codings.
• Test the efficiency of other selection algorithms.
• Evaluate the importance of genetic operators such as multiple-point

crossover or inversion.
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