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Abstract—While much effort has been made to detect and measure the privacy leakage caused by the advertising (ad) libraries

integrated in mobile applications, analytics libraries, which are also widely used in mobile apps have not been systematically studied for

their privacy risks. Different from ad libraries, the main function of analytics libraries is to collect users’ in-app actions. Hence, by design

analytics libraries are more likely to leak users’ private information. In this work, we study what information is collected by the analytics

libraries integrated in popular Android apps. We design and implement a framework called “Alde”. Given an app, Alde employs both

static analysis and dynamic analysis to detect the users’ in-app actions collected by analytics libraries. We also study what private

information can be leaked by the apps that use the same analytics library. Moreover, we analyze apps’ privacy policies to see whether

app developers have notified the users that their in-app action data is collected by analytics libraries. Finally, we select 8 widely used

analytics libraries to study and apply our method to 300 popular apps downloaded from both Chinese app markets and Google play.

Our experimental results show that some apps indeed leak users’ personal information through analytics libraries even though their

genuine purposes of using analytics services are legal. To mitigate such threats, we have developed an app named “ALManager” that

leverages the Xposed framework to manage analytics libraries in other apps.

Index Terms—Android, analytics libraries, privacy leakage

✦

1 INTRODUCTION

A CCORDING to the statistical result from AppBrain [2],
the number of apps in Google Play has reached 3.5 mil-

lion. The sheer number of apps that are in the Google Play
and the number of new ones added daily only show that the
mobile app ecosystem has become a gigantic marketplace
that is keeping expanding. It is more and more difficult for
app developers to make their apps stand out. Hence, it is
increasingly important for developers to understand their
users and improve their apps for the users.

For this purpose, developers need a way to collect
the data on user’s in-app actions, such as opening an app,
browsing different pages in the app, pressing a button in
the app, etc. By analyzing the collected data, developers
can understand how the users use their apps, what app
functions attract users and what not, and what problems
they may be experiencing. Such knowledge can help the
developers improve their designs and also fix known prob-
lems (as shown in Figure 1), thus enhancing the users’
experience. Hence, almost every popular app contains code
snippets to collect and analyze users’ in-app actions. Some
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developers implement the collecting and analysis functions
by themselves, while others implement these functions with
the help of some third-party libraries. We call a third-party
library that is used to collect and analyze the users’ in-
app actions “a third-party analytics library”, or “analytics
library” in short.

Analytics libraries are similar to ad libraries in some
aspects. For example, both analytics libraries and ad li-
braries are integrated with the host apps. Host apps and
the libraries share privileges and resources. They have the
same Linux file access control permissions and Android
permissions. Both analytics library and ad library require
some permissions that may not be needed by the host
app. Therefore, analytics libraries may cause security and
privacy issues similar to that caused by ad libraries [3],
[4], [5]. However, ad libraries do not require developers
to do many settings. Take AdMob’s banner ads [6] as an
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example. Developers only need to add an ad view in their
apps and set up the corresponding ad unit ID [7]. Then the
ad library will automatically request ads and display them
in the ad view. Developers do not need to care about the
ads’ content. Though ad libraries have provided some ad
control APIs, many developers do not use them [8], [9]. In
contrast, when developers use analytics libraries to collect
users’ in-app actions, developers need to invoke the tracking
APIs provided by the analytics libraries at locations they
want [10]. For example, developers may invoke the tracking
APIs to collect a user’s payment action after the user clicks a
payment button. In other words, what information to collect
is set by developers. The more a developer wants to profile
his users, the more tracking points he needs to set up in his
app.

After collecting users’ in-app action data, analytics li-
braries send it to the analytics companies, which analyze
the data and present analysis results to developers. Now,
curiosities are aroused on what private information is leaked
to analytics companies and to app developers, respectively,
from the collected data. This problem is exacerbated because
analytics libraries may collect unique device information
(IMEI, MAC, etc.) that can be used to link the information
collected by different apps together to get a more compre-
hensive record of users’ activities. Previous studies on app
privacy, however, only concerned the information protected
by Android permissions or information input by users (e.g.,
account number, password) [11], [12]; therefore, they cannot
answer the very question we are facing. As a first step
in the direction of answering this question, we explore
the users’ in-app action data collected by the analytics
libraries in the popular apps. Specifically, we design and
implement an analysis framework called “Alde” (Analytics
libraries data explorer), which employs both static analysis
and dynamic analysis to discover the users’ in-app actions
collected by analytics libraries. In the static analysis pro-
cess, Alde performs a backward taint analysis based on
the app’s smali codes [13]. This backward taint analysis
aims to find out what hardcoded information is sent to the
tracking APIs. In the dynamic analysis process, we hook
the tracking APIs to explore what information is sent to
these APIs at the app’s running time. As an extension of our
previous work [1], we propose an obfuscated API finder
to deal with the apps that have obfuscated the tracking
APIs they used. After we obtain the users’ in-app actions
collected by the analytics libraries, we manually review the
data to determine what personal information is leaked to
the analytics companies. We also analyze the apps’ privacy
policies to check whether they notify the users about such
data collection. We select 8 widely used analytics libraries
for study and apply our method to 300 apps downloaded
from both Wandoujia ( a Chinese app market) and Google
Play. The experimental results show that i) analytics libraries
can be exploited by malicious developers to directly collect
users’ personal information; ii) some apps indeed leak users’
personal information to analytics companies even though
their genuine purposes of using analytics libraries are legal;
iii) users will be deeply profiled if analytics companies link
the information collected from different apps, especially in
China; iv) developers seldom describe the use of analytics
libraries in their apps’ privacy policies even though they are
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Fig. 2. Structural overview of a mobile third-party analytics library.

requested to do so. To mitigate such threats and give users
the ability to control the analytics libraries, as an extension
of our previous work [1], we develop an app called “AL-
Manager”, which leverages the Xposed framework [14] to
manage the analytics libraries. In summary, we make the
following contributions in this work:

• To the best of our knowledge, our work is the
first research focusing on understanding information
leakage caused by users’ in-app action data collected
by analytics libraries.

• We design and implement a framework named
“Alde” that can be used to discover the users’ in-app
action data collected by analytics libraries.

• We apply our method to 300 apps downloaded from
both Wandoujia and Google Play, and reveal the data
collected by the analytics libraries integrated in these
apps. Based on the data, we discover various types
privacy risks.

• We develop an app named “ALManager” to mitigate
the privacy risk caused by analytics libraries.

The remainder of this paper is organized as follows.
Section 2 describes the background of Android analytics
libraries. Section 3 present the system design and implemen-
tation of Alde. Section 4 describes the dataset that we use
in this study. Section 5 describes the experimental results.
The design and implementation of ALManager and related
work are given in Section 6 and 7, respectively. Section 8
concludes our work.

2 BACKGROUND

2.1 Analytics Libraries

Analytics libraries are important tools that mobile app de-
velopers commonly employ in their apps. Through them,
analytics companies provide mobile app developers well
analyzed data that shows how the users are using their
apps. To understand how an analytics library is embedded
into an Android app, we provide a simplified structural
overview of the mobile analytics library through Figure 2.

Take Umeng [15], the most popular analytics library in
China, as an example. In order to integrate this library into
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their apps and obtain the analysis results, developers need
to take the following steps:

1) Register an account at the analytics company and
log in. Then, a developer is required to set up
the basic information (name, category, etc.) of the
app that he wants to track. After the setup for the
app, the analytics company will generate a unique
AppKey. This AppKey will be utilized to identify
the app.

2) Add the SDK provided by the analytics company
into the app’s build path. Then, edit the app’s
AndroidManifest file and add the unique AppKey
into the app’s metadata. Moreover, the developer
is required to add the permissions required by the
analytics library into the AndroidManifest file.

3) Initialize the analytics library. Commonly, a devel-
oper needs to invoke the initialization method pro-
vided by the analytics library to initialize the library
when the app is launched.

4) Invoke the tracking APIs provided by the ana-
lytics library to collect users’ in-app action. For
example, with the Umeng library, a developer
can invoke MobclickAgent.onResume() and Mobclick-
Agent.onPause() in each activity’s onResume() and
onPause() methods to collect each activity’s start
time and end time. He can invoke MobclickAgen-
t.onEvent(...) to collect the users’ in-app actions of
his interest. For instance, if the developer wants to
know how many users are interested in movies in a
video app he developed, he can invoke this method
(triggered when the users press the “movies” but-
ton) and set the parameter eventID as “movies”.
Developers can also set up the analytics library to
automatically collect the run-time errors occurred
in the app.

5) Upload the app to Android app market(s). When
users download and enjoy this app, the analytics
company will receive users’ in-app actions data,
analyze it and present the analysis results to the
app’s developer through a web interface.

The steps described above are the common procedures
that developers need to follow if they want to use an
analytics library. Although most analytics libraries can be
used successfully like this, different analytics libraries are
different in implementation details. Hence, the processes of
integrating different analytics libraries into the apps are not
totally the same. Additionally, some new analytics libraries
(such as Appsee1 and UXCam2) use a totally different method
to collect users’ in-app actions. They do not require develop-
ers to invoke tracking APIs to collect users’ actions. Instead,
they collect all the interactions between users and apps as
videos and show the videos to the developers directly. We
do not consider this kind of analytics libraries in this paper.

2.2 What Information is Presented to Developers

When users play with apps, their in-app actions data is
collected by analytics libraries and sent to the analytics

1. https://www.appsee.com
2. https://uxcam.com

TABLE 1
The information that developers obtain about their apps

Categories Details

Users
Total users, New users, Returning users, Active
users, Launch times, Launch frequency, Dura-
tion of once use, Activity path, App Versions

Terminals
Devices, Resolutions, OS versions, Carriers,
Area, Languages

Events
Event IDs, Event labels, Event times, Event val-
ues

Errors
Error summary, Error times, First appearance
time, Last appearance time

servers. It is analyzed automatically in the analytics servers,
which presents the analysis results to developers. In Table
1, we list the information that developers can learn from
the analysis results. Besides the basic information shown in
this list, analytics companies also present some statistical
information, such as User growth rate, User retention, User
loyalty, Event conversion rate, etc. This statistical information
can be presented in different time periods: by day, by week,
by month, or by year, which helps developers learn whether
their apps are popular or not in a period, or whether the
new functions they added in the apps attract more users.
Data presented to the developers is the statistical analysis
results based on all users. In principle, developers cannot
get the raw data of an individual user’s in-app actions.

2.3 Differences between Mobile App Analytics and Web

Analytics

Compared with the traditional web analytics, the privacy
threat is heightened on mobile app analytics. First, in web
analytics, a user is authenticated through cookies and IP
addresses, whereas in mobile app analytics, the user is
authenticated through device ID. Cookies can be deleted by
the user easily, but device ID is hard to change. Besides,
people (such as family members) may share the same com-
puter to browse the websites. Web analytics cannot know
exactly whether a web page’s browsing behavior comes
from the same user or not. But, since people usually have
their own mobile phones, data collected by mobile analytics
on a device usually comes from the same user. Second, in
web analytics, browsers are able to distinguish the host
websites from the third-party analytics sites based on their
domain names. Analytics sites can only access the content
presented in the web browser and some basic information
about the browser and computer. However, in mobile app
analytics, analytics libraries have the same permissions as
their host apps. They can access many other resources on
the phone with the permissions granted to the host apps.
Third, in the web analytics, users often open many pages at
the same time and do not close the pages that they are not
actively viewing. The analytics sites do not know whether
the pages are actually viewed by the user or not, while in the
mobile app analytics, the app running in the front is usually
actually viewed by the user [16] [17].

https://www.appsee.com
https://uxcam.com
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com/umeng/analytics/MobclickAgent.onEvent(   );
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com/google/android/gms/analytics/Tracker.send(   );
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Fig. 3. System Overview of Alde.

3 SYSTEM DESIGN AND IMPLEMENTATION OF

ALDE

To understand what private information can be leaked by
the analytics libraries integrated with the popular apps, we
develop “Alde”, a system for this purpose. Alde uses both
static analysis and dynamic analysis to discover the values
of the tracking APIs’ parameters, which are the users’ in-
app actions collected by these tracking APIs. The system’s
overview is illustrated in Figure 3.

3.1 Documentation Analysis

As we described in Section 2.1, developers need to invoke
the tracking APIs provided by analytics libraries to collect
users’ in-app actions. Hence, our first step is to determine
the tracking APIs provided by each analytics library. We
obtain this information by analyzing the development doc-
umentation provided by each analytics library. However,
some analytics libraries only give a brief description of
the tracking APIs in their development documentation. The
complete class names (including class package names) of
the tracking APIs that are needed in the following processes
are not given. To address this problem, we download some
apps that contain these analytics libraries, decompile them
with Apktool [18], and find out the complete class names of
the tracking APIs from the decompiled code.

3.2 Obfuscated API Finder

Identifier renaming based obfuscation is widely used in
popular Android apps. App’s package, class, method and
field names are obfuscated into meaningless strings. For
example, method MobclickAgent;→onEvent(...) may be ob-
fuscated into b;→f(...). Although most apps only obfuscate
their main code, some apps obfuscate the tracking APIs they
used. In order to analyze the apps that have obfuscated
the tracking APIs, we design and implement an obfuscated

TABLE 2
List of instruction categories and their representing characters

category character category character

JUMP J NEW N

INVOKE I PUT P

MATH M CONSTANT C

GET G MOVE V

GOTO T SWITCH W

RETURN R ARRAY A

Other smali instructions S

API finder to recognize the obfuscated tracking APIs in
these apps. Since the identifier renaming obfuscation does
not change an app’s method call graph, the obfuscated
API finder recognizes the obfuscated tracking APIs by their
method call graphs.

For a given analytics library, we extract its tracking APIs’
method call graphs from the apps that do not obfuscate
these tracking APIs’ names. Given an app that uses this
analytics library and does not obfuscate the tracking APIs,
we decompile the app into smali code files and analyze
all the smali files to generate this app’s method call graph.
The generated method call graph is a directed graph. Nodes
represent the app’s methods and edges represent the calling
relationships from callers to callees. In addition, each node
of the method call graph is assigned with a reference string
that characterizes the method’s content. The reference string
is generated from the method’s instruction sequence. Each
instruction in the method body is mapped to a character.
The mapping rule is shown in Table 2. If a method is a
system method and does not have analyzable method body,
the reference string assigned to this method is an empty
string. After the app’s method call graph is generated, we
extract the tracking API’s method call graph from it. As
shown in Figure 4, a tracking API’s method call graph is
a subgraph of the app’s method call graph. It is a series
of method call sequences start from the tracking API. The
maximum length of the method call sequence considered in
our work is 4. This is because the length of most method
call sequences of each tracking API is equal to or less than
4. For each tracking API in each analytics library, we extract
its method call graph. Since there may be some differences
in the same tracking APIs from different versions of an
analytics library, a tracking API may correspond to more
than one method call graph.

Given an app that has obfuscated the tracking APIs it
used and a known tracking API, the obfuscated API finder
detects whether the given tracking API is used in the given
app through the following steps.

1) Decompile the app and generate the app’s method
call graph.

2) Simplify the method call graph by deleting the
nodes that are certainly not tracking APIs, for ex-
ample, nodes belonging to other known third-party
libraries.

3) Assign each node of the simplified method cal-
l graph a reference string that characterizes the
method’s content. The reference string generation
rule is the same as described before.
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Fig. 4. Method call graph of method MobclickAgen-
t.onEvent(context,String) from Umeng analytics library.

4) For each method (node) in the simplified method
call graph, the obfuscated API finder compares the
method’s reference string and parameter type with
that of the given tracking API. If they match, the ob-
fuscated API finder extracts this method’s method
call graph (the maximum length of the method call
sequences is 4, too) and compares its method call
graph with that of the given tracking API. The
algorithm for comparing the two graphs is shown
in Algorithm 1. In this algorithm, the function get-
MethodCallSequenceList() convents the method call
graph into a method call sequence list (as shown
in Figure 5). If their method call graphs also match,
the obfuscation API finder records this method as
an obfuscation of the given tracking API.

Algorithm 1 Compare whether two graphs are the same

Input: G1 and G2

Output: true: G1 and G2 are the same. false: G1 and G2

are not the same.
1: L1 ← G1.getMethodCallSequenceList()
2: L2 ← G2.getMethodCallSequenceList()
3: if L1.length() 6= L2.length() then
4: return false
5: end if
6: for l in L1 do
7: if l in L2 then
8: continue
9: else

10: return false
11: end if
12: end for
13: return true

In order to evaluate the effectiveness of this obfuscated
API finder, we conduct an experiment on 50 open source
apps downloaded from F-Droid, an Android open source
project sharing website3. We add some tracking APIs into
each app and configure each app’s proguard-rules.pro file to
obfuscate these tracking APIs. Then, we use our obfuscated
API finder to detect these obfuscated tracking APIs. All of
these obfuscated tracking APIs are successfully detected,

3. https://f-droid.org/en/

"GCCCVVIR->GJIGIRIT->NIR->"

"GCCCVVIR->GJIGIRIT->NIIR->GCR"
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"GCCCVVIR->GJIGIRIT->NICR->NCR"

Method call sequence list

Method call graph

GCCCVVIR GJIGIRIT

NIR

NIIR

NICR

NCR

GCR

Fig. 5. Convert a method call graph into a method call sequence list.

which indicates that this obfuscated API finder can effec-
tively identify the tracking APIs obfuscated via identifier
renaming.

This approach aims to detect identifier renaming based
obfuscation processed by ProGuard [19]. Other obfuscation
techniques that modify the call graph structure (inlining,
outline, reflection injection) indeed affect the detection re-
sults. The effectiveness of this approach in practice will be
discussed in Section 4.2.

3.3 Static Analysis

Some information collected by the tracking APIs is hard-
coded in the app’s source code, such as names of some
buttons. Static analysis aims to discover the users’ in-app
actions hardcoded in the app’s source code. Alde performs
static backward taint analysis to find out the values of the
tracking APIs’ parameters based on the app’s smali code.
As shown in Figure 3, given an app, Alde carries out the
following backward taint analysis.

1) Alde decompiles the app into smali code files with
Apktool. Then, it analyzes the smali code files to
generate the app’s method call graph and each
method’s control flow graph.

2) Alde finds out the corresponding smali codes of
the tracking APIs and identifies the registers that
store the values of the tracking APIs’ parameters.
Then, Alde starts a backward taint analysis from the
identified registers. Alde searches the smali code in
the reverse order to backward propagate taint. The
taint propagation rules are based on the semantic
of Dalvik bytecode [20]. For example, consider the
Dalvik instruction: move v1, v2. The semantics of
this instruction specify that the value in register
v2 is moved to register v1. In our backward taint
analysis, if the value of register v1 is tainted, then

https://f-droid.org/en/
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taint register v2. If a tainted register is assigned with
an insensitive value, the taint will be removed from
this register and the backward taint analysis of this
register will stop.

3) This backward taint propagation process will not
stop until Alde finds a constant value is assigned to
the tainted register or Alde traces into a method that
cannot be analyzed by Alde. Last, the final constant
value and the backward taint propagation path are
reported. As shown in Figure 3, the final constant
value of v1 is “in RgstSex”.

The code snippet shown in Figure 3 appeared in a fitness
app. When users go to the Gender setting page, this code
snippet will run and collect this in-app action.

3.4 Dynamic Analysis

Though the above static analysis can explore the in-app
actions defined and hardcoded in an app’s source code,
some information is only generated at app’s running time,
so it cannot be captured by static analysis. Hence, Alde also
performs dynamic analysis on the app.

In the dynamic analysis process, Alde runs the app for
5 minutes with the help of AndroidViewClient [21]. Devel-
oped with python, AndroidViewClient is a test framework
for Android apps and is more powerful than monkeyrunner
[22]. AndroidViewClient runs on a computer and connects
to an Android device through USB debugging. Android-
ViewClient can be used to obtain the UI structure of a run-
ning app and sent simulated user operations to the device.
We write a python script based on AndroidViewClient to
automatically run Android apps. Given an app, Alde runs
it according to the process described in Figure 6. A “view”
means an element in an activity, such as button, text-area,
picture, etc. At the same time, the tracking APIs are hooked
by Alde with the help of Xposed framework.

Xposed Framework is a widely used framework running
on the rooted Android device. With the APIs provided by
the Xposed Framework, we can develop modules to hook
any Java methods running on the device for monitoring,
modifying or replacing specific methods. In Android plat-
form, both the app process and the system service process
are hatched by the Zygote process. When Zygote process
starts, it will load some necessary resources such as some
Android core classes and some Java runtime libraries. App
processes and system service processes will inherit these
resources when they are hatched by the Zygote process. The
code executed by the Zygote process is located in file /sys-
tem/bin/app process. Through the root permission, Xposed
Framework replaces the original app process file with its own
customized app process file to control the Zygote. This makes
the Zygote process load a jar file named XposedBridge.jar
provided by Xposed Framework during startup. Since other
app processes and system service processes will inherit the
resources loaded by Zygote, XposedBridge.jar is embedded
into every app. Through the code in XposedBridge.jar, X-
posed Framework modifies the method needed to hook
as a native method xposedCallHandler. Native methods will
be invoked before Java methods. Native method xposed-
CallHandler will invoke Java method handleHookedMethod,
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FlurryAgent.onStartSession(Context context, String s): 4TJX3SR2FZ9KPBGGRNQR

FlurryAgent.logEvent(String eventId, Map<K,V> m): LauncherPageView (PageIndex - 0) 

FlurryAgent.logEvent(String eventId, Map<K,V> m): Usage_of_features_in_Launcher (DestName - Natural Makeup) 

  

  

  

FlurryAgent.logEvent(String eventId, Map<K,V> m): Popularity of Look (Name - Alluring) (GUID - thumb_live_1) 

FlurryAgent.logEvent(String eventId, Map<K,V> m): Usage of Category (CategoryName - Accessories) 

FlurryAgent.logEvent(String eventId, Map<K,V> m): Usage of features in Accessory (FeatureName - Eye Wear) 

FlurryAgent.logEvent(String eventId, Map<K,V> m): Usage of all features (FeatureName - Eye Wear) 

FlurryAgent.logEvent(String eventId, Map<K,V> m): YMK_EditStayTime_Back (StayTime - 58452)

Tracking API s name

Tracking API s parameters

The value of parameter one

The value of parameter two

Fig. 7. Part of the analysis results of app “YouCamMakeUp”.

and handleHookedMethod will invoke two call back method-
s named beforeHookedMethod and afterHookedMethod, which
are implemented by developers. These two methods are
invoked before and after the hooked method, respectively.
Methods that are needed to be hooked and the modifications
to the hooked methods are defined in Xposed modules.
Xposed modules are installed into the device as apps.
Xposed Framework will load the selected modules after
device reboot.

We develop a module for Xposed framework to hook
the tracking APIs. When the app under analysis invokes
a tracking API, the values of the API’s parameters will
be captured by Xposed framework and stored in the files
located in the phone’s external SDCard. When the app stops
running, we pull these files from the phone. Through this
method, we get the users’ in-app actions that are collected
by the analytics libraries at the app’s running time.

For the apps that ask the users to register an account,
we register the account manually and then analyze it with
Alde. After the entire analysis process of an app is finished,
we merge the analysis results from both static analysis and
dynamic analysis to get the final analysis results (as shown
in Figure 7).

4 DATASET

In this section, we describe the dataset that we use in this
study. We download 200 popular apps from a Chinese app
market named “Wandoujia” and 100 popular apps from
Google Play. All these apps are free apps.

4.1 Analytics Libraries

We focus on 8 widely used analytics libraries, listed in Table
3. To select these widely used analytics libraries, we search
the Internet for popular analytics libraries and also learn
from previous studies [23]. After this, we get a list of popular
analytics libraries. Then, we search these analytics libraries’
package names in the smali code that is decompiled from
the apps we downloaded. If an analytics library’s package
name appears in an app, we conclude that the app uses
this library. Finally, we select 8 most widely used analytics
libraries in our dataset. Four of them are mainly used by
the apps in the Chinese app markets and the other four are
mainly used by the apps in Google Play. In the rest of this
paper, we call them analytics libraries China and analytics
libraries Google Play, respectively.
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Fig. 6. Flowchart of dynamic app running in Alde.

TABLE 3
Analytics libraries’ required permissions and optional permissions. “✔” means required permission and “●” means optional permission.

Umeng Talkingdata
Tencent

Analytics

Baidu

Analytics
Flurry Adjust Localytics

Google

Analytics

INTERNET ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ACCESS WIFI STATE ✔ ✔ ✔ ✔ ●

ACCESS NETWORK STATE ✔ ✔ ✔ ✔ ● ✔

READ PHONE STATE ✔ ✔ ✔ ✔

WRITE EXTERNAL STORAGE ✔ ✔ ✔

WRITE SETTINGS ✔

GET TASKS ● ✔

READ EXTERNAL STORAGE ✔

MOUNT UNMOUNT

FILESYSTEMS
✔

ACCESS FINE LOCATION ● ● ●

ACCESS COARSE LOCATION ● ●

BLUETOOTH ●

WAKE LOCK ✔

Table 3 also shows the permissions required by these 8
analytics libraries as well as their optional permissions. An-
alytics libraries China commonly require more permissions.
This is because they need the device information (IMEI,
MAC, etc.) to generate the ID that is used to identify the
individual device. They also need to know the network state
and WIFI state in order to adjust the interval of sending
collected data to their servers. They may also need to store
some cache files in the external storage. Analytics libraries
Google Play can do the similar things with the help of
Google Play Service, which is not available in China. How-
ever, these permissions also empower the analytics libraries
from Chinese app markets to collect more information than
they need.

4.2 App Selection

As described in Section 3, our method needs to know where
the tracking APIs are invoked. If an app obfuscates the
tracking APIs it used, we need to identify the names of
the obfuscated tracking APIs. We perform an API search
process (i.e., searching tracking APIs’ names in apps’ smali
code) to filter out the apps we can analyze directly. If a
tracking API provided by an analytics library appears in
an app’s smali code, we consider this app as using this
analytics library and it can be analyzed by our method.
To understand how many apps are missed by our method,
we carry out another file search process to determine the
analytics libraries used by each app. In this file search
process, we launch each app on a device and determine

what analytics libraries it uses based on the files generated
at the app’s running time. This is because different analytics
libraries generate different files (such as database files, cache
files, Shared prefs files) at their running time. The generated
files’ names are not influenced by code obfuscation. For
the apps that are not found by the API search process but
found by the file search process, we try to identify the
obfuscated tracking APIs they use with the obfuscated API
finder described in Section 3. We present the filtering result
in Figure 8. For each analytics library in the figure, there
are two numbers (in red color) shown besides its group of
four bars, which represent the number of apps that get the
same analysis results via both API search process and file
search process, in Chinese app market and in Google Play,
respectively.

Figure 8 shows that our method can analyze most of
the apps. With the obfuscated API finder, we identify 25
apps that have obfuscated the tracking APIs’ names and
use the obfuscated API names in the subsequent analysis
process. Through these apps, we find that the impact of
identifier renaming based obfuscation on third-party ana-
lytics library usually has the following three aspects. First,
the names of the tracking APIs are changed to single char-
acters or other meaningless strings. Second, some unused
tracking APIs and related classes may be removed. For
example, Umeng provided seven different tracking APIs.
App com.iyd.reader.ReadingJoy Version 6.04 only used two of

4. Some Chinese apps do not have the corresponding English name,
we use their package names instead.
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Fig. 8. The number of popular apps containing each of the analytics libraries.

them. After obfuscating, five unused tracking APIs and
some classes related to these APIs were removed from the
app’s code. Third, the package structure of the analytics
library may be changed. For example, the original track-
ing API MobclickAgent.onEvent from Umeng library was
located in package com.umeng.analytics. However, in app
com.hipu.yidian Version 5.0.1, this tracking API was obfus-
cated to on.a located in the root package.

In order to assess the effectiveness of the obfuscated
API finder, we manually analyze the apps that are found
by the file search process but not found by the API search
process. We find that these tracking APIs were not identified
due to the following four reasons. First, the versions of an
obfuscated analytics library may be different from versions
of its corresponding un-obfuscated analytics library. The
same tracking API in different versions of the same analytics
library may have different method call graphs. For a given
analytics library, we extract its tracking APIs’ method call
graphs from the apps that do not obfuscate these tracking
APIs’ names. Since we only analyze 300 popular apps, the
tracking APIs’ method call graphs generated from the un-
obfuscated analytics libraries may not cover all versions
of the tracking APIs. We find not only the method call
graphs of some obfuscated tracking APIs but also part of the
readable strings in them are different from those of the un-
obfuscated tracking APIs. Hence, these obfuscated tracking
APIs belong to other versions of analytics libraries, because
obfuscation does not change the readable strings in the code
into different readable strings.

Second, while some apps use analytics libraries, they
do not use the tracking APIs we care about. For example,
app Spotify Version 6.0 has used Google analytics library.
However, it only uses this analytics library to track which
campaigns and traffic sources are attracting users to down-

load this app from the Google Play Store other than user’s
in-app actions. Third, several apps invoke the tracking APIs
via Java reflection, which is not handled by our method.
Fourth, some apps are protected by packing. These apps
cannot be successfully decompiled by Apktool, and there-
fore, they cannot be analyzed by our method. The number
of apps that have failed to analyze for each of these four
reasons is shown in Table 4. We believe failure reason #1
can be mitigated by collecting and analyzing more apps
that have not obfuscated the analytics libraries they used.
In Section 3.2, the obfuscated apps that were used to test
the obfuscated API finder were generated by ourselves.
We have the corresponding un-obfuscated versions of the
analytics libraries used by these apps. Hence, the obfuscated
API finder is able to detect all the obfuscating apps.

Meanwhile, since dynamic running cannot cover all the
code in an app, some apps do not generate the correspond-
ing files in the file search process even they contain the
tracking APIs. For such apps, we only consider their static
analysis results in the following analysis. Finally, we select
100 popular apps from Chinese app market and 56 popular
apps from Google play to analyze.

5 EXPERIMENTAL RESULTS

We analyze the selected popular apps with our proposed
system and then review the analysis results manually. Based
on the information collected by the analytics libraries, we
classify the apps into three levels: App level, Activity level
and User level (See Table 5).

In Table 5, “App level” refers to the app that only uses
analytics libraries to collect the information that reflects the
running status of the whole app, such as what Activities are
visited by the users. “Activity level” refers to the app that
uses analytics libraries to collect the running status of each
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TABLE 4
The number of apps that failed to analyze

Analytics Library Total Numbera Identifiedb
Failed

Reason One Reason Two Reason Three Reason Four

Umeng 30 17 7 0 1 5

Talkingdata 5 2 0 0 0 3

Tencent Analytics 4 0 3 0 1 0

Baidu Analytics 3 0 1 0 0 2

Flurry 3 1 0 0 0 2

Adjust 4 3 0 1 0 0

Localytics 1 0 1 0 0 0

Google Analytics 13 5 5 2 0 1

a The number of apps that are found by the file search process but not found by the API search process.
b The number of apps that are identified the usage of obfuscated tracking APIs through the obfuscated API finder.

TABLE 5
The number of apps in each level of information collection

Umeng Talkingdata Tencent Analytics Baidu Analytics Flurry Adjust Localytics Google Analytics

App level 10 2 4 4 9 5 2 6

Activity level 46 9 7 15 15 10 3 13

User level 12 2 4 1 6 1 3 2

activity in an app, such as which “view” in the activity is
pressed by the users. “User level” refers to the app that uses
analytics libraries to collect the data generated by the users.
For instance, how long time a user spends on a song in a
music app. Table 5 shows most apps belong to the Activity
level.

In order to detail the results we found in our analysis,
we organize them as the answers to the following four
questions.

Q1: Do analytics libraries leak users’ personal information to
app developers?

As the developers cannot get the raw data of the collect-
ed information, it is hard for them to profile individual user-
s. However, developers can exploit these analytics libraries
to collect users’ private data directly.

For example, Wo Mailbox Version 6.3.0 is a mailbox app
that helps users manage their emails. It is developed by
China Unicom and has more than 2.6 million active users
in February 2016 [24]. Our tool found out that through the
analytics library, this app automatically recorded users’ e-
mail addresses, recipients’ email addresses, email addresses
that users carbon copy emails to, emails’ subjects and users’
IP addresses.

We also found the analytics libraries did not check the in-
formation collected by the developers. They just performed
some statistical analysis and presented the analysis results
to the developers. This made it possible to collect users’
sensitive information through these analytics libraries. In
order to test and verify this vulnerability, we developed
two apps with Umeng and Talkingdata [25], respectively.
We disguise these two apps as Communication apps, so it
is reasonable for these apps to request READ CONTACTS
permission. When users open their contacts book with our
apps, these apps read users’ contacts and display to them.

But, these apps also secretly collect their contacts and send
the contacts out through analytics libraries by invoking
MobclickAgent.onEvent(Context ctx, String eventId, Map event-
Value) for Umeng and TCAgent.onEvent(Context ctx, String
eventId, String eventValue) for Talkingdata. The contacts are
embedded in the parameter eventValue. Both Umeng and
Talkingdata successfully collect users’ contact information
and present them to us, although the invoked tracking APIs
were originally designed to collect user’s in-app actions
only. We tested these two apps with Flowdroid [26], a state-
of-the-art static taint analysis tool for Android apps, but
none of these two apps was reported to send user’s contacts
through the Internet. Although we have not found any real-
world apps that have the similar behaviors, we think this is
clearly a big security vulnerability.

Q2: Do analytics libraries leak users’ personal information to
analytics companies?

Since analytics companies own the raw data of the col-
lected information, compared with the information leaked
to the developers, information leaked to the analytics com-
panies is much more serious.

For example, com.culiukeji.huanletao Version 3.0 is a shop-
ping app and com.tadu.android Version 3.21 is a reading app.
These two apps ask users to select their genders before
using and collect users’ gender information via Umeng. The
developers’ purpose is to understand whether their apps are
popular among male or female. They can get the percentage
of female users and percentage of male users from Umeng.
However, Umeng gets each app user’s gender information
through this way. Since Umeng collects the user’s device
identifier (IMEI, MAC, etc) at the same time, it gets each
corresponding device user’s gender. com.autohome.usedcar
Version 5.2.1 is a used car trading app. It leaks the user’s
fine location to Umeng. Apps in Google play also have
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Fig. 9. Example of user’s in-app actions collected by Localytics in The
Weather Channel app.

similar behaviors. Skype Version 6.15.0.1162 sends call ended
time and message sent time to Flurry. Text Free Version 5.6
sends user’s fine location, rough number of user’s contacts
and rough length of every message to Flurry, and also
sends the device’s IMEI to Adjust. The Weather Channel
Version 6.0.0 leaks user’s location to Localytics (as shown
in Figure 9). Due to space limitation, we will not list all
the apps that have the similar behaviors here. In Table 6,
we summarize the privacy issues caused by the third-party
analytics libraries in the apps being analyzed.

Besides, some analytics libraries collect users’ data se-
cretly. Talkingdata Version 2.1.37 is a well-known analytics
library in China. We find this analytics library reads the
smartphone’s sensors data without givinging any notice to
users and even developers. When developers invoke the
tracking APIs provided by this analytics library to collect
users’ in-app actions, this analytics library will read the
sensors’ data (includes ambient temperature sensor, relative
humidity sensor, rotation vector sensor, pressure Sensor,
light sensor and magnetic field sensor) and send the data
to the analytics server. The collected sensor data will not
be presented to the developers, and Talkingdata does not
describe this behavior in its development documentation.
Hence, neither the developers nor the users know about
this behavior. This is not a direct privacy risk, but the data
indeed can be used to infer users’ surrounding environment.
Differently, Talkingdata released a special version of its SDK
for Google Play. In this version, it removed the code snippet
for collecting sensor data. Lotuseed is another Chinese an-
alytics library. This analytics library is not very popular, so
we do not study it deeply. But in our preliminary work, we
found this analytics library collected the list of apps installed
in the user’s phone secretly.

Q3: What will analytics companies know about the users if
they link the information collected from different apps?

As we mentioned before, the privacy risk caused by
analytics libraries is exacerbated if analytics companies link
the data collected from different apps together to profile the

TABLE 7
App categories that Umeng collects data from

Category
Number

of apps
Category

Number

of apps

Health & Fitness 1 Lifestyle 6

Photography 3 Tools 8

Weather 4 Music & Audio 3

Media & Video 11 News & Magazines 2

Entertainment 2 Books & Reference 4

Personalization 3 Finance 1

Travel & Local 2 Communication 5

Education 6 Shopping 5

users. Analytics companies can do this work easily because
they collect device identifiers together with users’ in-app
actions. They know which apps are installed in the same
device and used by the same user. The more popular the
analytics library is, the more information it can gain. Take
Umeng as an example, it is the most widely used analytics
library in China. Apps that have integrated Umeng inside
almost cover all the app categories (See Table 7). As these
apps are popular apps, it is very possible that more than
one of them is installed in the same phone.

We review the information that these apps’ developers
choose to collect through Umeng to see what user’s personal
information will be inferred by Umeng if a user installs
these apps. First, Umeng is able to use all the Android
permissions granted to these different host apps. For ex-
ample, if an app used Umeng and required permission
{p 1, p 2} while another app on the same device also used
Umeng and required permission {p 3, p 4}, then Umeng
will be able to use permissions {p 1, p 2, p 3, p 4} although
it does not require these permissions by itself. Second,
Umeng knows which apps integrating it are installed in
the same phone. According to the previous study [5], [27],
this app installation and usage pattern will leak the user’s
information. If the app is developed for a special user
group, more information is leaked to Umeng. For example,
com.xtuone.android.syllabus is developed for undergraduate
students, cn.haoyunbang is developed for pregnant women
and new mothers, etc. When these apps collect users’ in-app
actions through Umeng, Umeng also gets the users identity
information. Third, data sent to Umeng often has clear se-
mantics. Umeng can learn user’s gender and reading habits
from a reading app, user’s location and approximate income
level from a used car trading app, user’s video watching
habits from a video app, and user’s health condition from a
health app, etc. If Umeng analyzes and links this rich data,
it can characterize app users in various aspects.

Q4: Do users know their in-app actions are collected by third-
party analytics companies?

According to a previous study [28], 90% users cared if
apps shared their personal data with third parties and 45%
users believed the apps should never share their personal
data with third parties without their explicit confirmation.
This inspires us to see whether users know their in-app
actions are collected by third-party analytics companies.
Hence, we review these analytics libraries’ privacy policies
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TABLE 6
Summarize of the privacy issues caused by third-party analytics libraries in the apps being analyzed

Leaked information

Analytics library

Umeng Talkingdata
Tencent

Analytics

Baidu

Analytics
Flurry Adjust Localytics

Google

Analytics

Location 2 0 0 0 1 0 2 1

Gender 3 0 0 0 0 0 0 0

Ad content 1 0 0 1 0 0 0 0

IM account 0 0 2 0 0 1 0 0

Interested news 0 2 0 0 0 0 0 0

Favorite songs or videos 2 0 0 0 1 0 1 1

Favorite websites 3 0 0 0 0 0 0 0

Specific app

function used duration
0 0 0 0 2 0 0 0

manually to discover what information they claimed they
will collect. Table 8 describes what information is collected
from users’ Android devices declared by each analytics
library in their privacy policies.

In these analytics libraries’ privacy policies, we find that
some analytics companies have listed what information
they will collect and ask the developers to show the use of
analytics libraries as well as the information collected by
analytics libraries in their apps’ privacy policies. However,
after we review the privacy policies of the apps we select,
we find only a handful of apps follow this rule. In the
100 apps from Chinese app market, only five apps clearly
describe the using of third-party analytics service in their
privacy policies, and only one of them gives the name of
the analytics library it uses. In the 56 apps from Google
Play, there are only 19 apps clearly describe the using of
third-party analytics service and 5 apps in them give the
name of the analytics library it uses. As collecting users’
in-app actions do not need permissions, we believe that
most users do not know their in-app actions are collected
by third-party analytics libraries.

Discussion Our study shows the privacy risk from the
analytics libraries. Given the results above, the discussion
needs to focus on the reasons for these results and future
privacy protection methods in this environment.

First, in today’s Android phones, users’ private informa-
tion is not limited to the information protected by Android
permissions. Due to the lack of a clear definition of what
information is users’ personal information, some developers
cannot decide what information should not be collected.
Second, some developers totally disregard user’s privacy,
as can be seen from their apps’ privacy policies. Only a few
apps describe the use of analytics libraries in their privacy
policies. Third, some analytics companies do not specifically
provide their privacy policies for mobile analytics, which
makes mobile app developers hard to understand the pri-
vacy risk caused by these analytics libraries.

To protect users’ privacy in this situation, we think
the first step is to let the users know what information is
leaked by the analytics libraries in each app. Then they can
choose to use the app or choose a similar one. We believe
the app market is the most important role to realize this
goal. App markets can ask the developers to write a clear

description about the using of analytics libraries and the
information collected by analytics libraries in their apps’
privacy policies. Alde can be used by app markets to explore
the information collected by analytics libraries. We also de-
sign and implement an Android app called “ALManager”
to help end users to manage the analytics libraries in their
devices. ALManager will be introduced in Section 6.

Limitations In the static analysis process, Alde uses the
methods provided by Apktool to decompile Android apps,
so we cannot analyze the apps that cannot be decomiled
by Apktool. Android inter-component communication and
inter-process communication are not handled in the static
analysis process, which may misses some results. In the
dynamic analysis process, we cannot cover all the execution
path. This is a common shortcoming of dynamic analysis.
Although we take measures to identify the obfuscated track-
ing APIs’ names, we cannot find the obfuscated tracking
APIs in some apps.

6 ANALYTICS LIBRARY MANAGER

As described in the previous section, today’s analytics li-
braries in Android may leak users’ private information. In
this section, we design and implement an Android app
called “ALManager” that aims to address this threat.

6.1 Design of ALManager

ALManager is designed for the Android platform. It aims to
give a user the capability to control the information collected
by analytics libraries. It achieves the following two goals: 1)
it allows the users to examine the information collected by
the analytics libraries. 2) it allows the users to specify the
apps that can collect data through the analytics libraries and
blocks the analytics libraries in other apps.

By default, ALManager blocks all of the user’s in-app
action data collected by the analytics libraries. But, it stores
this intercepted information in a database. Users can search
the database to find out what information is collected by
which analytics library in which app. If a user confirms that
the information collected by the analytics libraries in one
app does not contain his/her personal information, he can
remove this app from ALManager’s app block list. Since
then, the information collected by the analytics libraries in
this app will be sent to the analytics servers as usual.
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TABLE 8
Information that these analytics libraries declare to collect in their privacy policy

Analytics library Information collected

Umenga

SDK versions, browsers version, ISP, IP, platform, time stamp, app identifier, app version, app distribution
channels, device identifiers, MAC, IMEI, device type, terminal manufacturers, OS version, session start/stop
time, language, location, time zone, network status, hard disk, CPU and battery usage, etc. Maybe also includes
user’s identifier of the app, longitude and latitude, gender, age, event triggered by the user, error, and page
views.

Talkingdatab

SDK or API version, platform, time stamp, app identifier, app version, app distribution channels, Android
advertiser ID, MAC, IMEI, device type, terminal manufacturers, OS version, session start/stop time, language,
location, mobile network/Country code, time zone, network status, hard disk, CPU and battery usage, etc.
Maybe also includes user’s gender, age, geographic location, specific event triggered by user, error reporting
and page views, etc.

Tencent Analytics Do not find the privacy policy specific for mobile analytics service

Baidu Analytics Do not find the privacy policy specific for mobile analytics service

Flurryc device ID, IP address, time spent, links clicked, your location, apps on the device, or advertisements viewed on
those apps.

Adjustd
Anonymized (hashed) IP address, anonymous identifiers such as Google Advertising ID or similar identifiers,
installation and first opening of an app on your mobile device, user interactions within an app (e.g. in-app
purchases, registration), information regarding which advertisements the user has seen or clicked on.

Localytics Do not find the privacy policy specific for mobile analytics service

Google Analytics Do not find the privacy policy specific for mobile analytics service

a https://www.umeng.com/policy.html
b http://www.talkingdata.com/privacy.jsp?languagetype=en
c https://policies.yahoo.com/xa/en/yahoo/privacy/topics/analytics/index.htm
d https://www.adjust.com/privacy-policy/

6.2 Implementation of ALManager

We implement our design on Android (as shown in Figure
10). ALManager is also based on the Xposed framework and
it consists of four parts:

• Xposed framework module. The Xposed framework
module is the core of ALManager. By hooking the
tracking APIs in other apps with this Xposed frame-
work module, ALManager intercepts the information
collected by the third-party analytics libraries. The
identification of a tracking API, including the API’s
class name, the API’s method name and the API’s
parameter type is read from the configuration file.
When a hooked tracking API is invoked, ALManager
captures the following information: package name of
the app that invokes this tracking API, time when
this tracking API is invoked, values for this tracking
API’s parameters. This captured information is sent
to ALManager’s data storage service via Android In-
tent. Then, ALManager checks whether the app that
invokes this tracking API is allowed to collect user’s
in-app action through third-party libraries. If this ap-
p is in ALManager’s app block list, ALManager will
replace the values of this tracking API’s parameters
with empty values. In this way, ALManager prevents
user’s personal information from being leaked to
third-party analytics companies.

• Data storage service. The data storage service is an
Android Service continuously running in the back-
ground. It receives the Intents sent from ALManag-
er’s Xposed framework module and stores the data
in these Intents into a database.

• Configuration file. The configuration file stores AL-
Manager’s configuration, including a list of tracking
APIs and a list of blocked apps. The list of tracking
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Fig. 10. The framework of ALManager.

APIs can be automatically updated from the config-
uration server at each time ALManager starts. Users
can also pull the latest tracking API list from the
configuration server at any time through one click in
ALManager. The configuration server is maintained
by researchers. Therefore, updates of the tracking
API list can be made timely when the tracking APIs
of new third-party analytics libraries are added or the
tracking APIs of old third-party analytics libraries are
changed.

• User Interface. Users can check out the informa-
tion collected by the third-party analytics libraries
through ALManager’s user interface. If a user be-
lieves that the information collected by the third-
party analytics libraries in an app is not sensitive,
he/she can remove this app from ALManager’s app
block list through the user interface.

https://www.umeng.com/policy.html
http://www.talkingdata.com/privacy.jsp?languagetype=en
https://policies.yahoo.com/xa/en/yahoo/privacy/topics/analytics/index.htm
https://www.adjust.com/privacy-policy/
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(a) (b)

(c) (d)

Fig. 11. A Demo of ALManager.

We implement ALManager and run it on a Google Nexus
5 smartphone. The Android version of this phone is 6.0.1
and the Xposed framework version is 86. Figure 11 (a)
is the main activity of ALManager. Figure 11 (b) shows
the apps that have collected user’s in-app actions through
third-party analytics libraries. By clicking on an app in the
list, ALManager will display the information collected by
the analytics libraries in this app (as shown in Figure 11
(c)). After the user checks out the information and thinks
it is insensitive, he can choose to remove the app from
ALManager’s app block list. As shown in Figure 11 (d),
some selected apps are removed from ALManager’s app
block list.

Limitations ALManager works only after successfully
hooking the tracking APIs. Hence, it will fail due to the
tracking APIs used by other apps are not listed in the con-
figure file. ALManager identifies the tracking APIs that are
needed to be hooked through the tracking APIs’ identifiers
(including class name, method name and parameter type)
listed in the configure file. As we described in Section 4.2,
some apps have obfuscated the tracking APIs they use, and

these obfuscated tracking APIs may not be identified by
our obfuscated API finder. Thereby, the identifiers of these
obfuscated tracking APIs are not added in the configure file.
This finally leads ALManager to fail to identify and hook
the target tracking APIs.

6.3 Performance Overhead of ALmanager

ALManager incurs the biggest overhead when an app
invokes the tracking APIs. Hence, we evaluate the run-
time delay caused by ALManager when an app invokes a
tracking API. We develop a test app to invoke a tracking
API for 1000 times and record the time spent with and
without ALManager, respectively. Results in Table 9 show
that ALManager incurs about 2.1 ms overhead on each API
invocation. Considering that the tracking APIs are invoked
only when the user performs some specific operations, AL-
Manager has very small impact on user experience. Through
an Android app performance monitoring tool named Em-
magee5, we evaluate the impact of ALManager on the user
experience in practice. Emmagee monitors the CPU time,
the memory space used by the target app (not the whole
system) when the app is running. Emmagee also monitors
the target app’s UI refresh rate. The app’s UI refresh rate
can reflect the performance smoothness of the app. The
performance smoothness of the app will impact the users’
experience. Experimental results on 16 apps from different
categories indicate that ALManager has little impact on
user experience. These 16 apps are selected from the apps
that use Umeng library. As mentioned in Section 5, apps
that have integrated Umeng inside cover 16 categories (as
shown in Table 7). From each of these 16 categories, we
choose one app to test the impact of ALManager on the user
experience in practice. Considering a reading app named
Tadu literature as an example, the app has little difference
in CPU usage, memory usage and UI refresh rate with and
without ALManager (as shown in Figure 12). As these 16
apps belong to 16 different categories and all of them were
popular apps, we believe that the experiments conducted
on these apps can generally represent most of apps in the
app markets.

Low power consumption is necessary for mobile app-
s. Therefore, we further measure the power consumption
overhead of ALManager. Note that the measured power
consumption is not obtained with a power meter. It is given
to show an estimate of the power overhead. We develop
another test app to invoke a tracking API every second. We
run this app for 30 minutes with and without ALManager.
Other conditions, such as the screen brightness and the
network connection, are kept the same. The experimental
results show that the test app consumes 4% of the phone
battery in 30 minutes no matter ALManager is used or
not. This indicates the power consumption overhead of
ALManager is negligible.

7 RELATED WORK

We categorize the previous work into the following cate-
gories based on their main purposes.

5. https://github.com/NetEase/Emmagee
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Fig. 12. Performance comparison of Android app Tadu literature with and without ALManager

TABLE 9
Performance on API invocations

Analytics

library

1000 tracking

API invocations
Overhead per

API invocation
Without

ALManager

With

ALManager

Umeng 35 ms 1628 ms 1.6 ms

Talkingdata 38 ms 1099 ms 1.1 ms

Tencent

Analytics
44 ms 2570 ms 2.5 ms

Baidu

Analytics
82 ms 3151 ms 3.1 ms

Flurry 76 ms 2880 ms 2.8 ms

Adjust 70 ms 2096 ms 2.0 ms

Localytics 73 ms 2606 ms 2.5 ms

Google

Analytics
177 ms 1608 ms 1.4 ms

Privacy and mobile advertising There are many studies
focusing on the privacy issues associated with the advertis-
ing libraries in mobile apps. Grace et al. [4] studied potential
privacy and security risks caused by in-app ad libraries.
They analyzed 100,000 Android apps and found that most
existing ad libraries collected private information. Book et
al. [8] studied how app developers used the APIs through
which a host app can send private information about the
users to ad servers. They found that although most apps did
not make use of these privacy-related APIs, the number of
apps that used these APIs is not negligible. The information
collected by these APIs can be simply identified by the APIs’
names. They [29] also studied mobile ad targeting using
simulated user profiles and found that a large portion of
mobile ads are targeted based on app, location, time, and
profiles built around actual users. Nath [9] studied what
targeting information was sent to ad networks by mobile
apps and how effectively the information was used by ad
networks to target users. Demetriou et al. [5] developed
a tool called “Pluto” that can be used to analyze apps
and discover whether they leak targeted user data. They
also studied what ad networks can learn from the list of
apps installed in a phone. Meng et al. [30] studied what ad
networks know about the user’s interest and demographic
information. They also studied whether the host apps could
conversely use the targeted ads to infer some of the user

information collected by the ad network. Taylor et al. [31]
studied the privacy risk caused by intra-library collusion
in Android environment. The intra-library collusion means
that a single library embedded in more than one app on a
device leverages the combined set of permissions available
to it to pilfer sensitive user data. By analyzing historical
data, they found that risks from intra-library collusion have
significantly increased compared to two years ago.

Privacy and mobile analytics service Han et al. [28]
studied how real-world users were tracked by the apps
running on their Android smartphones. They employed
dynamic information flow tracking to monitor when sen-
sitive information was sent off the device. They recruited 20
volunteers to participate in this study. They found advertis-
ing and analytics were embedded in 57% of the apps and
every participant in their study was tracked multiple times.
However, they only studied the information protected by
Android permissions. Chen et al. [32] studied the leakage
of user’s sensitive information through the vulnerabilities
in mobile analytics services. They also studied how the ads
served to users can be influenced by modifying the user
profiles generated by these analytics services. Their exper-
iments, conducted on Google Mobile Analytics and Flurry,
validated the information leakage problem they described.
Seneviratne et al. [33] studied the third-party trackers in
popular paid apps. They categorized the trackers into three
categories: advertising, analytics and utilities. They found
60% of the paid apps contained at least one tracker that
collected personal information. Vallina et al. [34] analyzed
mobile advertising and tracking ecosystem. They collected
users’ network traffic data through an app named “ICSI
Haystack”. Based on the collected data, they identified
mobile advertising and tracking domains. Binns et al. [35]
studied the distribution of third-party trackers on both
websites and Android apps. They proposed a metric for
measuring a tracking company’s tracking capability. Based
on the collected data and proposed method, they analyzed
the concentration of third-party tracking and discussed the
impact on user privacy. Binns et al. [36] also specifically
studied the third-party tracking in the mobile ecosystem.
They identified and analyzed the third-party trackers on
959,000 apps from the US and UK Google Play stores.
The analysis results showed that third-party tracking was
found in most apps and several tracking companies were
dominating the market.

Analysis of third-party tracking scripts Third-party
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tracking in the web environment has been widely studied.
Pan et al. [37] proposed an anti-tracking browser called
“TrackingFree”. TrackingFree automatically generated dif-
ferent identifiers for different web sites. With these identi-
fiers, third-party trackers could not link a user’s requests
sent from different web sites together to track the user.
Wu et al. [38] proposed a system named “DMTrackerDetec-
tor”, which automatically generated the blacklist of third-
party trackers. Leveraging the different usage of JavaScript
between trackers and non-trackers, DMTrackerDetector de-
tected third-party trackers via supervised machine learning
technique. Experimental results showed that 97.8% of the
third-party trackers in the test dataset were detected correct-
ly. Lerner et al. [39] developed a tool named “TrackingEx-
cavator”, which leveraged the Internet Archive’s Wayback
Machine to measure third-party tracking behaviors from
1996 to 2016. They found that third-party tracking were
becoming more and more popular and complicated. En-
glehardt et al. [40] proposed an open-source web privacy
measurement tool named “OpenWPM”. With OpenWPM,
they performed a large and detail measurement of online
tracking. By analyzing data crawled from top 1 million
websites, they found some fingerprinting techniques never
measured before. Merzdovnik et al. [41] evaluated the effec-
tiveness of many third-party tracker blockers and discussed
the challenges of effectively blocking third-party trackers.

Privacy and mobile app’s privacy policy Balebako et
al. [42] studied how app developers made decisions about
privacy and security. They interviewed 13 app developers
to get information about privacy and security decision-
making. And they tested what they found with 228 app
developers online. One important thing they found was
that although third-party ads and analytics services are
pervasive, developers are not aware of the data collected by
these tools. Yu et al. [43] developed a tool called “AutoPPG”
that can be used to automatically construct correct and
readable descriptions about the collection of user’s private
information. AutoPPG is able to generate the descriptions of
third-party libraries used in apps; however, the information
it focuses on is limited to the information protected by An-
droid permissions. Yu et al. [44] also developed a tool called
“PPChecker” that employed natural-language processing
and static program analysis techniques to identify problems
in Android app’s privacy policy. They defined three kinds of
problems in privacy policy: incomplete, incorrect and incon-
sistent. They analyzed 1,197 popular apps with PPChecker
and found 282 apps had at least one kind of problems in
privacy policy. Slavin et al. [45] proposed a semi-automated
framework to detect privacy policy violations in Android
apps. They constructed a policy terminology-API map that
linked policy phrases to API functions. Then they used this
map to find the APIs and perform an information flow
analysis. They analyzed 501 top Android apps and discov-
ered 63 potential privacy policy violations. Story et al. [46]
analyzed the metadata of more than one million apps from
Google Play to examine which apps had privacy policy.
They worked out a logistic regression model to predict
an app will have privacy policy or not. They found some
categories of the apps, such as the apps had high rating and
in-app purchases, were more likely to have privacy policy.

Android app analysis tools Arzt et al. [26] proposed

“FlowDroid”, a well-known static taint analysis tool for
Android. FlowDroid conducted precise static taint analysis
on Android apps and generated the propagation path for
sensitive data. FlowDroid needed developers to predefine
the source and sink APIs of the sensitive data. Holavanalli et
al. [47] developed a static analysis tool named “Blue Seal”,
which could be used to analyze data sent inter-and intra-
apps. Based on Blue Seal, they proposed an extension to
Android permission mechanism called “Flow Permissions”.
Wei et al. [48] presented a static analysis framework called
“Amandroid”, which performed data flow and data depen-
dence analysis at Android component level. Amandroid
was implemented with Scala and could run distributed.
Enck et al. [49] proposed a well-know dynamic analysis
tool for Android named “TaintDroid”. TaintDroid modified
Android’s virtualized execution environment for tracking
taint data at an app’s runtime. You et al. [50] presented
“TaintMan”, a dynamic taint analysis tool that supported
Android RunTime (ART). By statically instrumenting the
taint code into the target apps and the system libraries,
TaintMan could run on un-rooted devices. One thing these
tools had in common was that they all required the pre-
defined taint sources to start the analysis. The sources
were usually the system APIs used to read the taint data.
However, in our work, the sinks are clearly the tracking
APIs, but the sources are hard to define. Sources are no
longer limited to system APIs that are used to read data
protected by Android permissions from the system. Some
readable strings in some apps may be sensitive to the users,
like disease names in some health related apps.

In our previous work [51], [52], [53], [54], we extracted a
big number of features from apps to detect their malicious
behaviors. We also studied privacy issues in the Android
single sign-on protocol [55] and embedded sensors [56].
Different from our previous work [1], we have additionally
proposed a method call graph based “obfuscated API find-
er” to deal with the apps that have obfuscated the tracking
APIs they use. The obfuscated API finder is used to identify
the real names of the tracking APIs that are obfuscated
by identifier renaming. With this obfuscated API finder,
we have additionally analyzed 25 apps that we could not
analyze before. The “Cydia substrate” is an API hook tool
used in Alde’s dynamic analysis process in our previous
work. We have replaced it with the “Xposed framework”.
The Xposed framework is available on all Android versions
while the Cydia substrate is only available on Android
versions 2.3 through 4.3. In order to mitigate the privacy
risk caused by the analytics libraries, we have developed
an app named “ALManager” that leverages the Xposed
framework to mitigate the privacy risk caused by analytics
libraries. We have evaluated the runtime delay and the
power consumption overhead caused by ALManager.

8 CONCLUSION

In this paper, we studied the information leakage caused
by analytics libraries that collect users’ in-app actions infor-
mation. We developed a tool named “Alde” to explore the
users’ in-app actions. Through experiments on 8 popular
analytics libraries and 300 apps downloaded from both
Chinese app market and Google play, we found that some
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apps leaked users personal information to analytics libraries
without notifying users. We also found that popular analyt-
ics companies have the capability to characterize and profile
users. To mitigate this kind of privacy risk, we developed
an app named “ALManager” that leverages Xposed frame-
work to manage analytics libraries. In the future work, we
plan to improve our tool by making it more automated and
more suitable for large-scale analysis. Then we will make it
an online service to help users and app markets understand
the information collected by analytics libraries.
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