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Abstract

We study the central problem in data privacy: how to share data with an analyst while
providing both privacy and utility guarantees to the user that owns the data. In this setting, we
present an estimation-theoretic analysis of the privacy-utility trade-off (PUT). Here, an analyst
is allowed to reconstruct (in a mean-squared error sense) certain functions of the data (utility),
while other private functions should not be reconstructed with distortion below a certain thresh-
old (privacy). We demonstrate how chi-square information captures the fundamental PUT in
this case and provide bounds for the best PUT. We propose a convex program to compute
privacy-assuring mappings when the functions to be disclosed and hidden are known a priori
and the data distribution is known. We derive lower bounds on the minimum mean-squared
error of estimating a target function from the disclosed data and evaluate the robustness of our
approach when an empirical distribution is used to compute the privacy-assuring mappings in-
stead of the true data distribution. We illustrate the proposed approach through two numerical
experiments.
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1 Introduction

Data sharing and publishing is increasingly common within scientific communities [3], businesses [4], gov-
ernment operations [5], medical fields [6], and beyond. Data is usually shared with an application in mind,
from which the data provider receives some utility. For example, when a user shares her movie ratings with a
streaming service, she receives utility in the form of suggestions of new, interesting movie recommendations
that fit her taste. As a second example, when a medical research group shares patient data, their aim is to
enable a wider community of researchers and statisticians to learn patterns from that data. Utility is then
gained through new scientific discoveries.

The disclosure of non-encrypted data incurs a privacy risk through unwanted inferences. In our previous
examples, the streaming service may infer the user’s political preference (potentially deemed private by the
user) from her movie ratings [7], or an insurance company may determine the identity of a patient within a
medical dataset [6, 8, 9]. If privacy is a concern but the data has no immediate utility, then cryptographic
methods suffice.

The dichotomy between privacy and utility has been widely studied by computer scientists, statisticians,
and information theorists alike. While specific metrics and models vary among these communities, their
desideratum is the same: to design mechanisms that perturb the data (or functions thereof) while achieving
an acceptable privacy-utility trade-off (PUT). The feasibility of this goal depends on several factors including
the chosen privacy and utility metric, as well as the topology and distribution of the data. The information-
theoretic approach to privacy, and notably the results by Sankar et al. [10, 11], Issa et al. [12, 13], Asoodeh
et al. [14, 15], Calmon et al. [16, 17], among others, seek to quantify the best possible PUT for any privacy
mechanism. In those works, information-theoretic quantities, such as mutual information and maximal
leakage [12, 13], have been used to characterize privacy, and bounds on the fundamental PUT were derived
under assumptions on the distribution of the data. It is within this information-theoretic approach that the
present work is inscribed.

Our aim is to characterize the fundamental limits of PUT from an estimation-theoretic perspective, and
to design privacy-assuring mechanisms that provide estimation-theoretic guarantees. We use the principal
inertia components (PICs) [16, 18–26] to formalize the privacy and utility constraints. The PICs quantify
the minimum mean-squared error (MMSE) achievable for reconstructing both private and useful information
from the disclosed data. We do not seek to claim that the estimation-based approach subsumes other privacy
metrics, such as differential privacy [27]. Rather, our goal is to show that the MMSE viewpoint reveals an
interesting facet of data disclosure which, in turn, can drive the design of privacy mechanisms used in
practice.

In the remainder of this section, we present an overview of the paper and our main results, discuss related
work, and introduce the notation adopted in the paper.

1.1 Overview and Main Contributions

Throughout this paper, we assume all random variables are discrete with finite support sets. We let S denote
a private variable to be hidden (e.g., political preference) and X be a useful variable that depends on S (e.g.,
movie ratings). Our goal is to disclose a realization of a random variable Y , produced from X through
a randomized mapping PY |X called the privacy-assuring mapping. Here, S, X, and Y satisfy the Markov
condition S → X → Y . We assume that an analyst will provide some utility based on an observation of Y
(e.g., movie recommendations), while potentially trying to estimate S from Y . Denoting [n] , {1, . . . , n},
the support sets of S, X, and Y are S = [|S|], X = [|X |], and Y = [|Y|], respectively.

In the sequel, we derive PUTs when both privacy and utility are measured in terms of the mean-
squared error of reconstructing functions of S and X from an observation of Y . We analyze three related
scenarios: (i) an aggregate setting, where certain functions of X can be, on average, reconstructed from
the disclosed variable while controlling the MMSE of estimating functions of S and PS,X is known to the
privacy mechanism designer, (ii) a composite setting, where specific functions of S and X have different
privacy/utility reconstruction requirements and PS,X is known to the privacy mechanism designer, and (iii)
a restricted-knowledge setting, where PS,X is unknown, but the correlation between a target function to be
hidden and a set of functions which are known to be hard to infer from the disclosed variable is given. For the
first two thrusts, we also analyze the robustness of privacy-assuring mappings designed using an empirical
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estimate of PS,X computed from a finite number of samples. Next, we present the outline of the paper and
a summary of our main contributions.

Aggregate PUTs

We start by studying the problem of limiting an untrusted party’s ability to estimate functions of S given an
observation of Y , while controlling for the MMSE of reconstructing functions of X given Y . Here, privacy
and utility are measured in terms of the χ2-information between S and Y and the χ2-information between
X and Y , denoted by χ2(S;Y ) and χ2(X;Y ) (cf. (1)), respectively. We introduce the χ2-privacy-utility
function in Section 3. Bounds of this function are presented in Theorem 2. In particular, the upper bound is
cast in terms of the PICs of PS,X and provides an interpretation of the trade-off between privacy and utility
that goes beyond simply using maximal correlation. We also prove that the upper bound is achievable in
the high-privacy regime in Theorem 3.

Composite PUTs

χ2-based metrics guarantee privacy and utility in a uniform sense, capturing the aggregate mean-squared
error of estimating any functions of the private and the useful variables. However, in many applications,
specific functions of S and X that should be hidden/revealed are known a priori. This knowledge enables
a more refined design of privacy-assuring mechanisms that specifically target these functions. We explore
this finer-grained approach in Section 4, and propose a PIC-based convex program for computing privacy-
assuring mappings within this setting. We demonstrate the practical feasibility of the convex programs
through two numerical experiments in Section 7, deriving privacy-assuring mappings for a synthetic dataset
and a real-world dataset. In the latter case, we approximate PS,X using its empirical distribution.

Restricted Knowledge of the Distribution

The aforementioned aggregate and composite PUTs require knowledge of the joint distribution PS,X . In
Section 5, we forgo this assumption, and study a simpler setting where S = φ(X) (i.e., the private variable
is a function of the data) and the correlation between φ(X) and a set of functions (composed with the data)
{φj(X)}mj=1 is given. In practice, φ(X) may be a sensitive feature of the data X, and {φj(X)}mj=1 is a

collection of other features from which E [φ(X)φj(X)] can be accurately estimated.
Our goal here is to derive lower bounds on the MMSE of estimating a real-valued function of X, namely

φ(X), from Y for any privacy-assuring mapping PY |X . These bounds are cast in terms of the MMSE of
estimating φj(X) from Y and the correlation between φ(X) and {φj(X)}mj=1. This leads to a converse result

in Theorem 5: if the MMSE of estimating φj(X) from Y is large and φ(X) is strongly correlated with φj(X),
then the MMSE of estimating φ(X) from Y will also be large and privacy is assured in an estimation-theoretic
sense. The inverse result is straightforward: if φ(X) and φj(X) are strongly correlated and φj(X) can be
reliably reconstructed from Y , then φ(X) can also be reliably estimated from Y . This intuitive trade-off is
at the heart of the estimation-theoretic view of privacy, and demonstrates that no function of X can remain
private whilst other strongly correlated functions are revealed through Y . The results in Section 5 make this
intuition mathematically precise.

Finally, in Section 6 we investigate the resilience of privacy-assuring mappings when designed using
an estimate of the distribution PŜ,X̂ computed as the empirical frequencies of S,X obtained from n i.i.d.
samples. Here, the value of the privacy and utility guarantees estimated using PŜ,X̂ will not match the true

values χ2(S;Y ) and χ2(X;Y ) obtained when the privacy-assuring mechanism is applied to fresh samples
drawn from the true distribution PS,X . We bound this performance gap in Theorem 6 and show that this

gap scales as O
(√

1/n
)

, while also depending on the alphabet size of the variables and the probability of

the least likely symbols.

1.2 Related Work

Currently, the most adopted definition of privacy is differential privacy [27, 28], which enables queries to
be computed over a database while simultaneously ensuring privacy of individual entries of the database.
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Information-theoretic quantities, such as Rényi divergence, can be used to relax the definition of differential
privacy [29]. Fundamental bounds on composition of differentially private mechanisms were given by Kairouz
et al. [30]. Recently, a new privacy framework called Pufferfish [31] was developed for creating customized
privacy definitions.

Several papers, such as Sankar et al. [10], Calmon and Fawaz [17], Asoodeh et al. [32], and Makhdoumi et
al. [33], have studied information disclosure with privacy guarantees through an information-theoretic lens.
For example, Sankar et al. [10] characterized PUTs in large databases using tools from rate-distortion theory.
Calmon and Fawaz [17] used expected distortion and mutual information to measure utility and privacy,
respectively, and characterized the PUT as an optimization problem. Makhdoumi et al. [33] introduced the
privacy funnel, where both privacy and utility are measured in terms of mutual information, and showed its
connection with the information bottleneck [34]. The PUT was also explored in [35] and [36] using mutual
information as a privacy metric.

Other quantities from the information-theoretic literature have been used to quantify privacy and utility.
For example, Asoodeh et al. [14] and Calmon et al. [16] used estimation-theoretic tools to characterize
fundamental limits of privacy. Liao et al. [37, 38] explored the PUT within a hypothesis testing framework.
Issa et al. [12,39] introduced maximal leakage as an information leakage metric. There is also significant recent
work in information-theoretic privacy in the context of network secrecy. For example, Li and Oechtering
[40] proposed a new privacy metric based on distributed Bayesian detection which can inform privacy-
aware system design. Recently, Tripathy et al. [41] and Huang et al. [42] used adversarial networks for
designing privacy-assuring mappings that navigate the PUT. Takbiri et al. [43] considered obfuscation and
anonymization techniques and characterized the conditions required to obtain perfect privacy.

MMSE-based analysis and maximal correlation have been investigated in the context of log-Sobolev
inequalities and hypercontractivity, such as in the work of Raginsky [44], Anantharam et al. [45], and
Polyanskiy and Wu [46]. The metric used in this paper, namely χ2-information, relates with χ2-divergence,
which is a special case of f -divergence [47]. Also of note, the study of robustness of estimated distributions
with finite sample size has appeared in [48–51].

1.3 Notation

Matrices are denoted in bold capital letters (e.g., P) and vectors in bold lower-case letters (e.g., p). For a
vector p, diag(p) is defined as the matrix with diagonal entries equal to p and all other entries equal to 0.
The span of a set V of vectors is

span(V) ,

{
k∑
i=1

λivi

∣∣∣ k ∈ N,vi ∈ V, λi ∈ R

}
.

The dimension of a linear span is denoted by dim(span(V)).
We denote independence of random variables U and V by U |= V , and write U ∼ V to indicate that U

and V have the same distribution. When U , V , and W form a Markov chain, we write U → V →W . For a
random variable U with probability distribution PU , we denote

PU min , inf{PU (u) | u ∈ U},

where U is the support set of U . The MMSE of estimating U given V is

mmse(U |V ) , min
U→V→Û

E
[
(U − Û)2

]
= E

[
(U − E [U |V ])2

]
.

The χ2-information between two random variables U and V is defined as

χ2(U ;V ) , E
[(

PU,V (U, V )

PU (U)PV (V )

)]
− 1. (1)

Let PU and QU be two probability distributions taking values in the same discrete and finite set U . We
denote ||PU−QU ||1,

∑
u∈U |PU (u)−QU (u)|. For any real-valued random variable U , we denote the Lp-norm

of U as
||U ||p, (E [|U |p])1/p.
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The set of all functions that applied to a random variable U with distribution PU result in an L2-norm less
than or equal to 1 is given by

L2(PU ) , {f : U → R | ‖f(U)‖2≤ 1} . (2)

The conditional expectation operators TV |U : L2(PV )→ L2(PU ) and TU |V : L2(PU )→ L2(PV ) are given by

(TV |Ug)(u) , E [g(V )|U = u] and (TU |V f)(v) , E [f(U)|V = v], respectively.

2 Principal Inertia Components

We present next the properties of the PICs that will be used in this paper. For a more detailed overview,
we refer the reader to [16] and the references therein. We use the definition of PICs presented in [16], but
note that the PICs predate [16] by many decades (e.g., [18–24]). Recently, Huang et al. [52] considered the
PICs by analyzing the “divergence transition matrix” [52, Eq. 2]. Specifically, there are different directions
of local perturbation [53] of input distribution and the direction which leads to the greatest influence of the
output distribution of a noisy channel can be identified [52] by specifying the singular vector decomposition
of the divergence transition matrix. In follow-on work, Huang et al. [54] used the divergence transition
matrix in the context of feature selection. The singular values of the divergence transition matrix are exactly
the square root of the PICs considered here, and are also related to the singular values of the conditional
expectation operator, as also noted by Makur and Zheng [26] and originally by Witsenhausen [21] and others
[24]. We build on these prior works by using the PICs for quantifying privacy-utility trade-offs.

Definition 1 ([16, Definition 1]). Let U and V be random variables with support sets U and V, respectively,
and joint distribution PU,V . In addition, let f0 : U → R and g0 : V → R be the constant functions f0(u) = 1
and g0(v) = 1. For k ∈ Z+, we (recursively) define

λk(U ;V ) , E [fk(U)gk(V )]
2
, (3)

where

(fk, gk) , argmax
{
E [f(U)g(V )]

2
∣∣∣ f ∈ L2(PU ), g ∈ L2(PV ),E [f(U)fj(U)] = 0,

E [g(V )gj(V )] = 0, j ∈ {0, . . . , k − 1}
}
.

(4)

The values λk(U ;V ) are called the principal inertia components (PICs) of PU,V . The functions fk and gk
are called the principal functions of PU,V .

Observe that the PICs satisfy λk(U ;V ) ≤ 1, since fk ∈ L2(PU ), gk ∈ L2(PV ), and

|E [f(U)g(V )]| ≤ ‖f(U)‖2‖g(V )‖2≤ 1.

Thus, from Definition 1, 0 ≤ λk+1(U ;V ) ≤ λk(U ;V ) ≤ 1.
The largest PIC satisfies λ1(U ;V ) = ρm(U ;V )2 where ρm(U ;V ) is the maximal correlation [23], defined

as

ρm(U ;V ) , max
E[f(U)]=E[g(V )]=0

E[f(U)2]=E[g(V )2]=1

E [f(U)g(V )] . (5)

Definition 2 ([16, Definition 2]). For U = [m] and V = [n], let PU,V ∈ Rm×n be a matrix with entries
[PU,V ]i,j = PU,V (i, j), and DU ∈ Rm×m and DV ∈ Rn×n be diagonal matrices with diagonal entries
[DU ]i,i = PU (i) and [DV ]j,j = PV (j), respectively, where i ∈ [m] and j ∈ [n]. We define

QU,V , D
−1/2
U PU,V D

−1/2
V . (6)

We denote the singular value decomposition of QU,V by QU,V = UΣVT .
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Definition 3 ([16, Definition 14]). Let d , min{|U|, |V|}−1, and λd(U ;V ) the d-th PIC of PU,V . We define

δ(PU,V ) ,

{
λd(U ;V ) if |V|≤ |U|,
0 otherwise.

(7)

We also denote λd(U ;V ) and the corresponding principal functions fd, gd as λmin(U ;V ) and fmin, gmin,
respectively, when the alphabet size is clear from the context.

The next theorem illustrates the different characterizations of the PICs used in this paper.

Theorem 1 ([16, Theorem 1]). The following characterizations of the PICs are equivalent:

1. The characterization given in Definition 1, where, for fk and gk given in (4), gk(V ) = E[fk(U)|V ]
‖E[fk(U)|V ]‖2

and fk(U) = E[gk(V )|U ]
‖E[gk(V )|U ]‖2 .

2. For any k ∈ Z+,

1− λk(U ;V ) = mmse(hk(U)|V ), (8)

where

hk , argmin
{
mmse(h(U)|V )

∣∣∣ ‖h(U)‖2= 1,E [h(U)hj(U)] = 0, j ∈ {0, . . . , k − 1}
}
. (9)

If λk(U ;V ) is unique, then hk = fk, given in (4).

3.
√
λk(U ;V ) is the (k + 1)-st largest singular value of QU,V . The principal functions fk and gk in (4)

correspond to the columns of the matrices D
−1/2
U U and D

−1/2
V V, respectively, where QU,V = UΣVT .

The equivalent characterizations of the PICs in the above theorem have the following intuitive interpre-
tation: the principal functions can be viewed as a basis that decompose the mean-squared error of estimating
functions of a hidden variable U given an observation V . In particular, for any zero-mean finite-variance
function f : U → R,

mmse(f(U)|V ) =

|U|−1∑
i=1

E [f(U)fi(U)]
2

(1− λi(U ;V )).

We remark that the χ2-information between U and V is the sum of all PICs. Specifically, it has been
shown (e.g., [16, 21]) that χ2(U ;V ) =

∑d
i=1 λi(U ;V ), where d = min{|U|, |V|} − 1.

3 Aggregate PUTs:
The Chi-Square-Privacy-Utility Function

We start our analysis by adopting χ2-information as a measure of both privacy and utility. As seen in
the previous section, χ2(S;Y ) =

∑d
i=1 λi(S;Y ), where d = min{|S|, |Y|} − 1. If χ2(S;Y ) < 1, then, from

characterization 2 in Theorem 1, the MMSE of reconstructing any zero-mean, unit-variance function of S
given Y is lower bounded by 1−χ2(S;Y ), i.e., all functions of S cannot be reconstructed with small MMSE
given an observation of Y . Note that this argument also holds true when we replace χ2-information with
the maximal correlation. In fact, in the high privacy regime, the PUT under χ2-information is essentially
equivalent to the PUT when both privacy and utility are measured using maximal correlation. We make this
intuition precise at the end of this section. When 1 ≤ χ2(S;Y ), certain private functions, on average, may be
estimated from Y but, in general, most private functions are still kept in secret. Analogously, when χ2(X;Y )
is large, certain functions of X can be, on average, reconstructed (i.e., estimated) with small MMSE from
Y . We demonstrate next that the PICs play a central role in bounding the PUT in this regime.

We first introduce the χ2-privacy-utility function. This function captures how well an analyst can
reconstruct functions of the useful variable X while restricting the analyst’s ability to estimate functions of
the private variable S.
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Definition 4. For a given joint distribution PS,X and 0 ≤ ε ≤ χ2(S;X), we define the χ2-privacy-utility
(trade-off) function as

Fχ2(ε;PS,X) , sup
PY |X∈D(ε;PS,X)

χ2(X;Y ),

where D(ε;PS,X) , {PY |X | S → X → Y, χ2(S;Y ) ≤ ε}.

It has been proved in [55, 56] that there is always a privacy-assuring mapping PY |X which achieves the
supremum in Fχ2(ε;PS,X) using at most |X |+1 symbols (i.e., |Y|≤ |X |+1). The following lemma gives an
alternative way to compute the χ2-information, in the discrete, finite setting.

Lemma 1. Suppose S → X → Y . Then

χ2(X;Y ) = tr(A)− 1, (10)

χ2(S;Y ) = tr(BA)− 1, (11)

where, using (6),

A , QX,Y QT
X,Y , B , QT

S,XQS,X .

Proof. See Appendix A.1.

The following lemma characterizes some properties of the χ2-privacy-utility function.

Lemma 2. For a given joint distribution PS,X , the χ2-privacy-utility function Fχ2(ε;PS,X) is a concave
function in ε. Furthermore, ε→ 1

εFχ2(ε;PS,X) is a non-increasing mapping.

Proof. See Appendix A.2.

The χ2-privacy-utility function has a simple upper bound,

Fχ2(ε;PS,X) ≤ ε+ |X |−1− χ2(S;X), (12)

which follows immediately from the data-processing inequality:

χ2(S;X) + χ2(X;Y ) ≤ χ2(S;Y ) + χ2(X;X). (13)

We derive an upper bound for the χ2-privacy-utility function that significantly improves (12) by using
properties of the PICs. The bound is piecewise linear, where each piece has a slope given in terms of a PIC
of PS,X . Intuitively, this bound corresponds to the privacy-assuring mapping PY |X that achieves the best
PUT if PY |X was not constrained to be non-negative. We also provide a lower bound that follows directly
from the concavity of the χ2-privacy-utility function. These bounds are illustrated in Fig. 1.

Definition 5. For ti ∈ [0, 1] (i ∈ [n]), 0 ≤ ε ≤∑i∈[n] ti, and n ≤ m, Gmε (t1, ..., tn) is defined as

Gmε (t1, ..., tn) , max

{
m∑
i=1

xi

∣∣∣ (x1, ..., xm) ∈ Dmε (t1, ..., tn)

}
,

where

Dmε (t1, ..., tn) ,

{
(x1, ..., xm)

∣∣∣ n∑
i=1

tixi ≤ ε, xi ∈ [0, 1], i ∈ [m]

}
.

For fixed m and ti (i ∈ [n]), Gmε (t1, ..., tn) is a piecewise linear function with respect to ε and can be
expressed in closed-form (cf. Appendix A.3).
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Figure 1: Piecewise linear upper bound and lower bound for the χ2-privacy-utility function when δ(PS,X),
defined in (7), is positive.

Theorem 2. For the χ2-privacy-utility function Fχ2(ε;PS,X) introduced in Definition 4 and ε ∈ [0, χ2(S;X)],

|X |−1

χ2(S;X)
ε ≤ Fχ2(ε;PS,X) ≤ G|X |−1ε (λ1(S;X), ..., λd(S;X)),

where d , min{|S|, |X |} − 1 and λ1(S;X), ..., λd(S;X) are the PICs of PS,X .

Proof. See Appendix A.4.

Remark 1. The upper bound for the χ2-privacy-utility function given in Theorem 2 can also be proved by,
for example, combining Theorem 4 in [57] with properties of the PICs.

We now illustrate the piecewise linear upper bound. Recall that the PIC decomposition of PS,X
results in a set of basis functions P , {f1(S), · · · , fd(S)}, with corresponding MMSE estimators U ,
{g1(X), · · · , gd(X)}. Consider the following intuition for designing a sequence of privacy-assuring mappings.
The first mapping enables the function gd(X) to be reliably estimated from Y while keeping all other func-
tions in U secret. In this case, the utility is one, since exactly one zero-mean, unit-variance function of X can
be recovered from Y . The privacy leakage is λd(S;X), since using gd(X) to estimate the private function
fd(S) has mean-squared error 1 − λd(S;X). Following the same procedure, the second privacy-assuring
mapping allows only gd(X) and gd−1(X) to be recovered from the disclosed variable and so on. This se-
quence of privacy-assuring mappings corresponds to the breakpoints of the upper bound. Note that such
privacy-assuring mappings may not be feasible — hence the upper bound.

Note that Fχ2(0;PS,X) characterizes the maximal aggregate MMSE of estimating useful functions while
guaranteeing perfect privacy. Here perfect privacy means that no zero-mean, unit-variance function of S can
be reconstructed from Y . If the value of Fχ2(0;PS,X) is known, a better lower bound can be obtained from
the concavity of Fχ2(ε;PS,X) as

|X |−1− Fχ2(0;PS,X)

χ2(S;X)
ε+ Fχ2(0;PS,X) ≤ Fχ2(ε;PS,X). (14)

When S = X, then χ2(S;X) = |X |−1 and Fχ2(ε;PS,X) = ε. Following from Definition 5 and noticing
that all PICs of PS,X are 1, the upper bound and the lower bound for the χ2-privacy-utility function in
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Theorem 2 are both ε, which is equal to Fχ2(ε;PS,X). In this sense, the upper bound and lower bound given
in Theorem 2 are sharp. We investigate the tightness of the upper bound through numerical example in
Section 7.1.

The following corollary of Lemma 2 and Theorem 2 shows that the χ2-privacy-utility function is strictly
increasing with respect to ε.

Corollary 1. For a given joint distribution PS,X , the mapping ε → Fχ2(ε;PS,X) is strictly increasing for
ε ∈ [0, χ2(S;X)].

Proof. See Appendix A.5.

We denote

∂D(ε;PS,X) , {PY |X | S → X → Y, χ2(S;Y ) = ε}.

By Corollary 1, Fχ2(ε;PS,X) is strictly increasing. Therefore,

Fχ2(ε;PS,X) = max
PY |X∈∂D(ε;PS,X)

χ2(X;Y ). (15)

By Corollary 7 in [16], when δ(PS,X) = 0, defined in (7), then Fχ2(0;PS,X) > 0 (i.e., there exists
a privacy-assuring mapping that allows the disclosure of a non-trivial amount of useful functions while
guaranteeing perfect privacy). On the other hand, when δ(PS,X) > 0, then Fχ2(0;PS,X) = 0. The following
theorem shows that when δ(PS,X) > 0, the upper bound of Fχ2(ε;PS,X) in Theorem 2 is achievable around
zero, implying that the upper bound is tight around zero. The proof of this theorem also provides a specific
way to construct an optimal privacy-assuring mapping (i.e., achieves the upper bound in Theorem 2).

Theorem 3. Suppose δ(PS,X) > 0 and PXmin > 0. Then there exists Y such that S → X → Y , χ2(X;Y ) =
PXmin and χ2(S;Y ) = PXminλmin(S;X).

Proof. See Appendix A.6.

When δ(PS,X) > 0 and PXmin > 0, then Fχ2(ε̂;PS,X) = PXmin where ε̂ = PXminλmin(S;X). Since
(ε̂, PXmin) is a point on the upper bound of the χ2-privacy-utility function given in Theorem 2, Theorem 3
shows that, in this case, the upper bound is achievable in the high-privacy region. We remark that the local
behavior of privacy-utility functions in high-privacy region and high-utility region has been studied in the
context of strong data processing inequalities (e.g., [58, 59] and the references therein).

Connections with Maximal Correlation

Maximal correlation has previously been considered as a privacy measure in [14,15,60,61]. In particular, it has
been proved [61] that when ρm(S;Y ) is small, then Pr(S 6= Ŝ) can be lower bounded for any Ŝ = h(Y ). We
show in Corollary 2 that, in the high privacy regime, the privacy-utility function under maximal correlation
possesses similar properties to Fχ2(ε;PS,X). However, when ρm(S;Y ) is large, say ρm(S;Y ) = 1, it is unclear
whether one private function or several private functions can be recovered from the disclosed variable. In
contrast, χ2-information can distinguish between these two cases and quantifies how many private functions,
on average, can be reconstructed from the disclosed variable. For example, a user might be comfortable
revealing that his/her age is above a certain threshold, but not the age itself. In this case, the privacy
leakage measured by maximal correlation is one since there is a function of age which can be recovered
from the disclosed variable. Thus, maximal correlation cannot distinguish between the cases where only one
function of S and S itself can be estimated from the disclosed data. We will revisit this example in the next
section and show how to design privacy-assuring mappings using PICs which target specific private functions
and useful functions. Finally, we provide an example showing the limitation of maximal correlation as a
utility measure.
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Definition 6. For a given joint distribution PS,X and 0 ≤ ε ≤ ρm(S;X), we define the maximal-correlation-
privacy-utility (trade-off) function as

Fρm(ε;PS,X) , sup
PY |X∈Dρm (ε;PS,X)

ρm(X;Y ),

where Dρm(ε;PS,X) , {PY |X | S → X → Y, ρm(S;Y ) ≤ ε}.

The next corollary follows from the same proof techniques used in Theorem 2 and Theorem 3.

Corollary 2. For a given joint distribution PS,X and ε ∈ [0, ρm(S;X)], if δ(PS,X) > 0, then Fρm(ε;PS,X) ≤
ε/
√
λmin(S;X). Furthermore, if PXmin > 0, then there exists Y such that S → X → Y , ρm(X;Y ) =√

PXmin and ρm(S;Y ) =
√
PXminλmin(S;X).

We illustrate the limitation of the maximal correlation as a utility measure through the following example.

Example 1. Let S = {−1, 1}n and X = {−1, 1}n, and Xn be the result of passing Sn through a memoryless
binary symmetric channel with crossover probability ε < 1/2. We assume that Sn is composed of n uniform
and i.i.d. bits. For A ⊆ [n], let Y =

∏
i∈AXi. In this case, one can show that ρm(Sn;Y ) = (1− 2ε)|A| and

ρm(Xn;Y ) = 1. If |A| is an increasing function of n, then ρm(Sn;Y ) → 0 as n → ∞. In other words, we
can disclose a function of Xn achieving nearly perfect privacy and utility as measured by ρm(Sn;Y ) and
ρm(Xn;Y ), respectively, with large |A| and n. However, as n increases, the basis of functions in L2(PXn) will
increase exponentially, and revealing only one function may not be enough for achieving utility. The crux of
the limitation is that maximal correlation only takes into account the most reliably estimated function. The
χ2-information overcomes this limitation by capturing all possible real-valued functions of Xn that can be
recovered from Y . In particular, if χ2(Xn;Y ) = |X |−1, then all zero-mean finite-variance functions of Xn

can be reconstructed from Y . We will revisit this example again in Section 5 and Section 7.

4 Composite PUTs:
A Convex Program for Computing Privacy-Assuring Mappings

In the previous section, we studied χ2-based metrics for both privacy and utility. The optimization problem in
the definition of χ2-privacy-utility function (Definition 4) is non-convex. Next, we provide a convex program
for designing privacy-assuring mappings by adding more stringent constraints on privacy and utility.

More specifically, we explore an alternative, finer-grained approach for measuring both privacy and utility
based on PICs (recall that χ2-information is the sum of all PICs). This approach has a practical motivation,
since oftentimes there are specific well-defined features (functions) of the data (realizations of a random
variable) that should be hidden or disclosed. For example, a user may be willing to disclose that they
prefer documentaries over action movies, but not exactly which documentary they like. More abstractly,
we consider the case where certain known functions should be disclosed (utility), whereas others should be
hidden (privacy). This is a finer-grained setting than the one used in the last section, since χ2-information
captures the aggregate reconstruction error across all zero-mean, unit-variance functions.

We denote the set of functions to be disclosed as

U(X) , {ui : X → R | E [ui(X)] = 0, ||ui(X)||2= 1, i ∈ [n]},

and the set of functions to be hidden as

P(S) , {si : S → R | E [si(S)] = 0, ||si(S)||2= 1, i ∈ [m]}.

Our goal is to find the privacy-assuring mapping PY |X such that S → X → Y and Y satisfies the following
privacy-utility constraints:

1. Utility constraints: max{mmse(ui(X)|Y )}i∈[n] ≤ ∆ and X ∼ Y .

2. Privacy constraints: mmse(si(S)|Y ) ≥ θi, i ∈ [m].

10



Note that the utility constraint X ∼ Y implies that the disclosed variable follows the same distribution as
the useful variable. The practical motivation for adding this constraint is to enable Y to preserve overall
population statistics about X, while hiding information about individual samples. This assumption also
enables the problem of finding the optimal privacy-assuring mapping to be formulated as a convex program,
described next.

We follow two steps – projection1 and optimization – to find the privacy-assuring mapping. Private
functions are projected to a new set of functions based on the useful variable in the first step. Then a
PIC-based convex program is proposed in order to find the privacy-assuring mapping.

4.1 Projection

As a first step, we project (i.e., compute the conditional expectation) all private functions to the useful
variable and obtain a new set of functions:

P(X) ,

{
ŝi(x) ,

E [si(S)|X = x]

||E [si(S)|X] ||2

∣∣∣ i ∈ [m]

}
.

It is worth noting that, after the projection, the obtained privacy-assuring mapping may not be an optimal
solution to the original problem since the privacy constraints become stricter (see Lemma 3). Nonetheless,
the advantage of this projection is twofold. First, it can significantly simplify the optimization program,
since after the projection all functions are cast in terms of the useful variable alone. Second, the private
variable is not needed as an input to the optimization after the projection. Therefore, the party that solves
the optimization does not need access to the private data directly, further guaranteeing the safety of the
sensitive information. The following lemma proves that privacy guarantees cast in terms of the projected
functions still hold for the original functions.

Lemma 3. Assume S → X → Y . For any function f : S → R, if E [f(S)] = 0 and ||E [f(S)|X] ||2 6= 0, we
have E [E [f(S)|X]] = 0 and

mmse

(
f(S)

||f(S)||2

∣∣∣∣∣Y
)
≥ mmse

(
E [f(S)|X]

||E [f(S)|X] ||2

∣∣∣∣∣Y
)
.

Proof. See Appendix B.1.

By Lemma 3, mmse(si(S)|Y ) ≥ mmse(ŝi(X)|Y ). Therefore, if the new set of functions satisfies the pri-
vacy constraints (i.e., mmse(ŝi(X)|Y ) ≥ θi), the original set of functions also satisfies the privacy constraints
(i.e., mmse(si(S)|Y ) ≥ θi).

4.2 Optimization

We introduce next a PIC-based convex program to find the privacy-assuring mapping PY |X . First, we
construct a matrix F given by (f0, f1, ..., f|X |−1) such that

FTDXF = I, (16)

span({f0, ..., fn′}) = span({f0,u1, ...,un}), (17)

where f0 , (1, ..., 1)T , fi , (fi(1), ..., fi(|X |))T , ui , (ui(1), ..., ui(|X |))T , and

n′ , dim(span({f0,u1, ...,un}))− 1.

Following from (16), {fk(x) | k = 0, ..., |X |−1} is a basis of L2(PX) and, consequently, the functions
ŝi(x) can be decomposed as

ŝi(x) =

|X |−1∑
k=0

αi,kfk(x). (18)

1We call this step as projection because of the geometric interpretation of conditional expectation (see, e.g., [62]).
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max obj(σ1, ..., σn′) (20)

s.t.

|X |−1∑
k=1

α2
i,kσ

2
k ≤ 1− θi (i = 1, ...,m), (21)

0 ≤ σi ≤ 1 (i = 1, ..., |X |−1), (22)

Σ = diag(1, σ1, ..., σ|X |−1), (23)

PX,Y = DXFΣFTDX , (24)

PX,Y has non-negative entries. (25)

Formulation 1: PIC-based convex program. Here σi (i = 1, ..., |X |−1) and θi (i = 1, ...,m) are variables

and privacy parameters, respectively. The objective function obj(σ1, ..., σn′) is chosen as a concave function

and measures utility.

Since E [ŝi(X)] = 0, then αi,0 = 0. Similarly, since ui ∈ span({f0, ..., fn′}) and E [ui(X)] = 0, we have

ui(x) =

n′∑
k=1

βi,kfk(x). (19)

If PX,Y = DXFΣFTDX with Σ = diag(1, σ1, ..., σ|X |−1) is a feasible joint distribution matrix (i.e., non-
negative entries and all entries add to 1), then, following from Theorem 1,

mmse(ŝi(X)|Y ) = 1−
|X |−1∑
k=1

α2
i,kσ

2
k,

mmse(ui(X)|Y ) =

n′∑
k=1

β2
i,k(1− λk(X;Y )) ≤ 1− min

k∈[n′]
λk(X;Y ) = 1−

(
min
k∈[n′]

σk

)2

.

Therefore, the design of the privacy-assuring mapping PY |X with privacy-utility constraints is equivalent to
solving the PIC-based convex program in Formulation 1. In this case, the objective function is chosen as
obj(σ1, ..., σn′) = min{σ1, ..., σn′}2.

The objective function min{σ1, ..., σn′} maximizes the worst-case utility over all useful functions. On the

other hand, we can choose the objective function to be a weighted sum
∑n′

i=1 aiσi. Although maximizing the
weighted sum is not equivalent to the desired utility constraints, this new formulation allows more flexibility
in the optimization. In particular, this enables useful functions which do not highly correlate with private
functions to achieve better utility, in terms of mean-squared error, under the same privacy constraints.
Furthermore, the weights can be used to prioritize the reconstruction of certain useful functions.

The previous convex programs can be numerically solved by standard methods (e.g., CVXPY [63]).
Note that when all useful functions and private functions are based on the same random variable, we can
use optimization without projection. We defer the numerical results to Section 7, where we derive privacy-
assuring mappings for a synthetic dataset and a real-world dataset using tools introduced in this section.

5 Lower Bounds for MMSE with Restricted Knowledge of the
Data Distribution

So far we have assumed the information-theoretic setting where the probability distribution PS,X is known
to the privacy mechanism designer beforehand. In this section, we forgo this assumption and consider a

2This is a convex program since one can add a constraint σi ≥ σ (i ∈ [n′]) and maximize σ.
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setting where S = φ(X) and the correlation between φ(X) and a set of functions (composed with the data)
{φj(X)}mj=1 is given. We derive lower bounds for the MMSE of estimating φ(X) given Y in terms of the
MMSE of estimating φj(X) given Y . In privacy systems, X may be a user’s data and Y a distorted version
of X generated by a privacy-assuring mapping PY |X . The set {φj(X)}mj=1 could then represent a set of
functions that are known to be hard to infer from Y due to inherent privacy constraints of the setup. For
example, when the mapping PY |X is designed by the PIC-based convex programs in Formulations 1 and
{φj(X)}mj=1 is the set of private functions, mmse (φj(X)|Y ) is lower bounded due to the privacy constraints.

The following lemma will be used to derive the lower bounds for the MMSE of φ(X) given Y .

Lemma 4. Let Ln : (0,∞)n × [0, 1]n → R be given by

Ln(a,b) , max
{
aTy | y ∈ Rn, ‖y‖2≤ 1,y ≤ b

}
. (26)

Let π be a permutation of [n] such that bπ(1)/aπ(1) ≤ . . . ≤ bπ(n)/aπ(n). If bπ(1)/aπ(1) ≥ 1, Ln(a,b) = ‖a‖2.
Otherwise,

Ln(a,b) =

k∗∑
i=1

aπ(i)bπ(i) +

√√√√(‖a‖22− k∗∑
i=1

a2π(i)

)(
1−

k∗∑
i=1

b2π(i)

)

where

k∗ , max

k ∈ [n]
∣∣∣ bπ(k)
aπ(k)

≤

√√√√√(1−∑k−1
i=1 b

2
π(i)

)+
‖a‖22−

∑k−1
i=1 a

2
π(i)

 . (27)

Proof. See Appendix C.1.

Throughout this section we assume ‖φi(X)‖2= 1 (i ∈ [m]) and E [φi(X)φj(X)] = 0 (i 6= j). For a given
φi, the inequality

max
ψ∈L2(PY )

E [φi(X)ψ(Y )] = ‖E [φi(X)|Y ] ‖2≤ νi (28)

is satisfied, where 0 ≤ νi ≤ 1. This is equivalent to mmse(φi(X)|Y ) ≥ 1− ν2i .

Theorem 4. Let ‖φ(X)‖2= 1 and E [φ(X)φi(X)] = ρi > 0. Denoting ρ , (|ρ1|, . . . , |ρm|), ννν , (ν1, . . . , νm),
ρ0 ,

√
1−∑m

i=1 ρ
2
i , ρ0 , (ρ0,ρ) and ννν0 , (1, ννν), then

‖E [φ(X)|Y ] ‖2≤ Bm(ρ0, ννν0), (29)

where

Bm(ρ0, ννν0) ,

{
Lm+1 (ρ0, ννν0) if ρ0 > 0,

Lm(ρ, ννν) otherwise,
(30)

and Ln is given in (26). Consequently,

mmse(φ(X)|Y ) ≥ 1−Bm(ρ0, ννν0)2. (31)

Proof. See Appendix C.2.

Denote ψi(Y ) , (TX|Y φi)(Y )/‖(TX|Y φi)(Y )‖2 (i ∈ [m]) and φ0(X) , ρ−10 (φ(X)−∑m
i=1 ρiφi(X)) if ρ0 >

0, otherwise φ0(X) , 0. The previous bounds, (29) and (31), can be further improved when E [ψi(Y )φj(X)] =
0 for i 6= j, j ∈ {0, . . . ,m}.

Theorem 5. Let ‖φ(X)‖2= 1 and |E [φ(X)φi(X)] |= ρi > 0 for i ∈ [m]. In addition, assume E [ψi(Y )φj(X)] =
0 for i 6= j, i ∈ [t] and j ∈ {0, . . . ,m}, where 0 ≤ t ≤ m. Then

‖E [φ(X)|Y ] ‖2≤

√√√√ t∑
k=1

ν2i ρ
2
i +Bm−t (ρ̃, ν̃νν)

2
, (32)
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where ρ̃ = (ρ0, ρt+1, . . . , ρm), ν̃νν = (1, νt+1, . . . , νm), and Bm is defined in (30) (considering B0 = 0). In
particular, if t = m,

‖E [φ(X)|Y ] ‖2≤

√√√√ρ20 +

m∑
k=1

ν2i ρ
2
i , (33)

and (33) is an equality when ρ0 = 0. Furthermore,

mmse(φ(X)|Y ) ≥ 1−
t∑

k=1

ν2i ρ
2
i −Bm−t (ρ̃, ν̃νν)

2
. (34)

Proof. See Appendix C.3.

In what follows, we use three examples to illustrate different use cases of Theorem 4 and 5. Example 2
illustrates how Theorem 5 can be applied to the q-ary symmetric channel which could be perceived as a model
of randomized response [64,65], and demonstrates that bound (33) is sharp. Example 3 illustrates Theorem 5
for the binary symmetric channel. Here the useful variable is composed by n uniform and independent bits.
In this case, the basis can be expressed as the parity bits of the input to the channel. Finally, Example 4
illustrates Theorem 4 for one-bit functions. The same method used in the proof of Theorem 4 is applied to
bound the probability of correctly guessing a one-bit function from an observation of the disclosed data.

Example 2 (q-ary symmetric channel). Let X = Y = [q], and Y be the result of passing X through an
(ε, q)-ary symmetric channel, which is defined by the transition probability

PY |X(y|x) = (1− ε)1y=x + ε/q for all x ∈ X , y ∈ Y. (35)

We assume that X has a uniform distribution, which implies Y also has a uniform distribution. Any function
φ ∈ L2(PX) such that E [φ(X)] = 0 and ‖φ(X)‖2= 1 satisfies

ψ(Y ) = (TX|Y φ)(Y ) = (1− ε)φ(Y ),

and, consequently, ‖(TX|Y φ)(Y )‖2= (1 − ε). We will use this fact to show that the bound (33) is sharp in
this case.

Observe that for φi, φj ∈ L2(PX), if E [φi(X)φj(X)] = 0 then E [ψi(Y )ψj(Y )] = 0. Now let φ ∈ L2(PX)
satisfy E [φ(X)] = 0 and ‖φ(X)‖2= 1, and let E [φ(X)φi(X)] = ρi for i ∈ [m], where {φi} satisfies the
conditions in Theorem 5 and

∑m
i=1 ρ

2
i = 1. In addition, ‖ψi(Y )‖2= (1− ε) = νi. Then, from (33) and noting

that ρ0 = 0, t = m, we have

‖(TX|Y φ)(Y )‖2≤

√√√√ m∑
i=1

ν2i ρ
2
i = (1− ε)

√√√√ m∑
i=1

ρ2i = 1− ε,

which matches ‖(TX|Y φ)(Y )‖2, and the bound is tight in this case.

Example 3 (Binary channels with additive noise). Let X = {−1, 1}n and Y = {−1, 1}n, and Y n be the
result of passing Xn through a memoryless binary symmetric channel with crossover probability ε < 1/2.
We assume that Xn is composed by n uniform and i.i.d. bits. For S ⊆ [n], let

χS(Xn) ,
∏
i∈S

Xi.

Any function φ : X → R can then be decomposed in terms of the basis χS(Xn) as [66]

φ(Xn) =
∑
S⊆[n]

cSχS(Xn),

where cS = E [φ(Xn)χS(Xn)]. Furthermore, since E [χS(Xn)|Y n] = (1 − 2ε)|S|χS(Y n), it follows from
Theorem 5 that

mmse(φ(Xn)|Y n) = 1−
∑
S⊆[n]

c2S(1− 2ε)2|S|. (36)
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This result can be generalized for the case Xn = Y n⊗Zn, where the operation ⊗ denotes bit-wise multipli-
cation, Zn is drawn from {−1, 1}n and Xn is uniformly distributed. In this case

mmse(φ(Xn)|Y n) = 1−
∑
S⊆[n]

c2SE [χS(Zn)]
2
. (37)

Example 4 (One-Bit Functions). Let X be a hidden random variable with support X , and let Y be a
noisy observation of X. We denote by B1, . . . , Bm a collection of m predicates of X, where Bi = φi(X),
φi : X → {−1, 1} for i ∈ [m] and, without loss of generality, E [Bi] = bi ≥ 0.

We denote by B̂i an estimate of Bi given an observation of Y , where Bi → X → Y → B̂i. We assume
that for any B̂i ∣∣∣E[BiB̂i]

∣∣∣ ≤ 1− 2αi

for some 0 ≤ αi ≤ (1− bi)/2 ≤ 1/2. This condition is equivalent to imposing that Pr(Bi 6= B̂i) ≥ αi, since

E
[
BiB̂i

]
= Pr(Bi = B̂i)− Pr(Bi 6= B̂i)

= 1− 2 Pr(Bi 6= B̂i).

In particular, this captures the “hardness” of guessing Bi based solely on an observation of Y .
Now assume there is a bit B such that E [BBi] = ρi for i ∈ [m] and E [BiBj ] = 0 for i 6= j. We can apply

the same method used in the proof of Theorem 4 to bound the probability of B being guessed correctly from
an observation of Y :

Pr(B 6= B̂) ≥ 1

2
(1−Bm(ρ, ννν)) , (38)

where νi = 1− 2αi.

6 Robustness of the PUTs

In this section we investigate the pipeline in Fig. 2 for designing privacy-assuring mappings in practice.
During the training time, a reference dataset with n samples is drawn from PS,X . The distribution of the
source is estimated by computing the empirical distribution (type) PŜ,X̂ of the reference dataset. PŜ,X̂
and the privacy-utility constraints are then used as inputs to a convex program solver that returns the
corresponding privacy-assuring mapping WY |X̂ (if feasible). We denote by Ŷ the random variable produced

by randomizing X̂ according to WY |X̂ , i.e., by applying the privacy-assuring mapping to a source with
distribution PŜ,X̂ . During the testing time, new i.i.d. samples from the source PS,X are randomized using
the privacy-assuring mapping WY |X̂ computed during the training time, resulting in the disclosed variable
Y .

The privacy and utility constraints used for computing the privacy-assuring mapping hold for a data
source with distribution PŜ,X̂ , since this is the distribution used as an input to the optimization program.
However, during the testing time, WY |X̂ is applied to new samples from the source PS,X . Do the privacy
and utility guarantees still hold during the testing time? Since as n increases PŜ,X̂ converges to PS,X , it is
natural to expect that the privacy and utility guarantees during the testing time will not be far from the
ones selected during the training time.

In what follows, we analyze the robustness of the PUT optimization using χ2-information, and charac-
terize the gap between privacy and utility guarantees of the training and testing time in terms of the number
of samples in the reference dataset and the probability of less likely symbols. The following lemma will be
used to prove the main result in this section.

Lemma 5. Suppose that Si → Xi → Yi for i = 1, 2 and PY1|X1
= PY2|X2

. Let mS , min{PSi(s) | s ∈ S, i =

1, 2} and mX , min{PXi(x) | x ∈ X , i = 1, 2}. Then

|χ2(S1;Y1)− χ2(S2;Y2)| ≤ 4

mS
||PS1,X1 − PS2,X2 ||1,

|χ2(X1;Y1)− χ2(X2;Y2)| ≤ 4

mX
||PS1,X1

− PS2,X2
||1.

15



Data source 
with 

distribution

Reference 
dataset

Solver

Privacy and utility 
constraints

New 
samples

Estimate of 
distribution
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Figure 2: Flowchart for training time (red) and testing time (blue).

Proof. See Appendix D.1.

Next, we illustrate the sharpness of the upper bounds in Lemma 5 through the following example.

Example 5. Let X = Y = {0, 1}, Si = Xi for i ∈ {1, 2}. Assume that PX1
(1) = p and PX2

(1) = p + ε/2
are such that p, ε ∈ (0, 1/2). Let PY |X denote the Z-channel determined by

PY |X(y|x) =


a if y = 1, x = 1,

1− a if y = 0, x = 1,

1 if y = 0, x = 0,

(39)

where a ∈ (0, 1). In this case, we have ε = ‖PS1,X1
− PS2,X2

‖1 which does not depend on a and p, and

χ2(Si;Yi) = χ2(Xi;Yi) = 1− 1− a
1− aPXi(1)

, for i ∈ {1, 2}.

We denote ∆ , |χ2(S1;Y1)−χ2(S2;Y2)|= |χ2(X1;Y1)−χ2(X2;Y2)|. By a simple manipulation and Lemma 5,
for sufficiently small ε,

(1− a)a

2(1− ap)2 ε ≤ ∆ ≤ 4

p
ε. (40)

In particular, if we let a = 2/3 and p = 1/3, then 9ε/49 ≤ ∆ ≤ 12ε. This example shows that the first-order
dependence on the L1-norm in the bounds of Lemma 5 cannot be improved in general. In what follows,
this L1-norm will be translated into the deviation between the underlying and empirical distributions which
vanishes with order 1/

√
n where n is the number of samples.

The next theorem follows from Lemma 5 and large deviation results [67]. It answers the question raised
at the beginning of this section and provides the bounds for the difference between the training and testing
privacy-utility guarantees. Note that the bounds provided in the theorem hold for any channel WY |X̂ , not
just the ones that optimize the PUT. In other words, the theorem holds for any privacy-assuring mapping
returned by the solver in Fig. 2, even if this mapping is not a globally optimal solution.

Theorem 6. Let PŜ,X̂ be the empirical distribution obtained from n i.i.d. samples drawn from the true

distribution PS,X . In addition, denote by Y and Ŷ the random variables obtained by passing X and X̂
through a given channel WY |X̂ , respectively. Let

mS ,

(
min{PS(s) | s ∈ S} −

√
2

n
(M − lnβ)

)
+

, (41)
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Figure 3: We depict the bounds of the χ2-privacy-utility function (see Theorem 2) and the privacy-utility
values of the privacy-assuring mappings designed by the optimization methods in Section 4.

mX ,

(
min{PX(x) | x ∈ X} −

√
2

n
(M − lnβ)

)
+

. (42)

Then, with probability at least 1− β,

|χ2(S;Y )− χ2(Ŝ; Ŷ )|≤ 4

mS

√
2

n
(M − lnβ), (43)

|χ2(X;Y )− χ2(X̂; Ŷ )|≤ 4

mX

√
2

n
(M − lnβ), (44)

where M = |S||X |.
Proof. See Appendix D.2.

Note that the bounds provided in Theorem 6 depend on the probability of the least likely symbols. The
bounds become weaker as mX and mS become smaller. We refer the reader to Wang et al. [51] for an
alternate approach if mX and mS are near zero.

7 Numerical Results

We illustrate some of the results derived in this paper through two experiments. The first experiment,
conducted on a synthetic dataset, verifies the tightness of the upper bound for the χ2-privacy-utility function.
The second experiment, run on a real-world dataset, demonstrates the performance of the optimization
methods proposed in Section 4.

7.1 Example 1: Parity Bits

We choose private variable S = (S1, S2) ∈ {−1, 1}2, where S is composed by two independent bits with
Pr(S1 = 1) = 0.45 and Pr(S2 = 1) = 0.4. The useful variable X = (X1, X2) ∈ {−1, 1}2 is generated by
passing S1 and S2 through BSC(0.2) and BSC(0.15), respectively.

We use the optimization methods proposed in Section 4 to design privacy-assuring mappings. The private
and useful functions are selected as s1(S) = S1 and u1(X) = X1X2, u2(X) = X2, respectively. We first
project the private function to the useful variable. Then we apply Formulation 1 with obj(σ1, ..., σn′) =∑n′

i=1 σi to find the privacy-assuring mappings.
In Fig. 3, we depict the privacy and utility, measured by χ2-information, of the privacy-assuring map-

pings. We also draw the upper bound and lower bound of the χ2-privacy-utility function. As shown, the
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✓ i ✓ i

Figure 4: MMSE of estimating each function given the disclosed variable, where darker means harder
to estimate. Here (Education Years, Income) and (Gender,Race) are useful variable and private variable,
respectively. The privacy parameters θi are selected as the same for all i and increase from 0 to 1 (i.e.,
the privacy constraints are increasing from the top down). The privacy-assuring mappings are designed

by Formulation 1 with obj(σ1, ..., σn′) = min{σ1, ..., σn′} (left) and with obj(σ1, ..., σn′) =
∑n′

i=1 σi (right),
respectively.

privacy-utility values of the designed mappings are very close to the upper bound. In particular, since the
χ2-privacy-utility function is a concave function (see Lemma 2), the curve of this function is between its
upper bound (red line) and the linear interpolation of the achievable privacy-utility values (dashed line).

7.2 Example 2: UCI Adult Dataset

We apply our formulations to the UCI Adult Dataset [68]. A natural selection for the private and useful
variables are S = (Gender,Race) and X = (Education Years, Income), respectively. This allows us to
interpret the results of our formulations in an intuitive way, as one would expect there to exist correlations
between the chosen private and useful variables. Private functions and useful functions are represented by
indicator functions. Furthermore, functions which are linear combinations of others are removed. Following
the same procedure proposed in Section 4, we first project all private functions to the useful variable. We use
QR decomposition [69] to construct the basis {fk(x)}. Note that other decomposition methods can also be
used for constructing basis and, in fact, different bases affect the behavior of the PIC-based convex program
(e.g., the joint distribution matrix PX,Y returned by the optimization may be different). Consequently, the
solution produced from the optimization program may not be optimal. Finally, Formulation 1 is used to
compute the privacy-assuring mappings.

In Fig. 4, we show the MMSE of estimating useful functions and private functions given the disclosed
variable. As shown, when we use Formulation 1 with obj(σ1, ..., σn′) = min{σ1, ..., σn′} to compute privacy-
assuring mappings, the estimation errors behave uniformly among all functions. This is because we aim at
maximizing the worst-case utility over all useful functions. On the other hand, the privacy-assuring mappings

designed by Formulation 1 with obj(σ1, ..., σn′) =
∑n′

i=1 σi reveal more interpretable relationships between
the private functions and useful functions. We see that Income, Gender, and Race are highly correlated, and
it is not possible to reveal Income while maintaining privacy for Gender and Race. Of particular interest are
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the subtle correlations between the three aforementioned functions and Education Years. There is a marked
correlation between Education Years < 6 and, to a lesser degree, Education Years > 12, with Gender and
Race. This may be due to the fact that most members of the dataset do not end their education midway.
That is, most individuals will either never have begun schooling in the first place or will not continue their
education after the 12-year benchmark, which marks graduation from high school. Therefore, we observe
that the relationship between Education Years and Race is manifested the most in the two extremities
of Education Years (> 12 and < 6). Also of note is the correlation between the private functions and
Education Years : 8. Though not as obvious, this relationship can, too, be explained by the fact that 8 years
of education marks another benchmark: the beginning of high school, also a time when people are prone to
terminating their education.

8 Conclusion

In this paper, we studied a fundamental PUT in data disclosure, where an analyst is allowed to reconstruct
certain functions of the data, while other private functions should not be estimated with distortion below a
certain threshold. First, χ2-information was used to measure both privacy and utility. Bounds on the best
PUT were provided and the upper bound, in particular, was shown to be achievable in the high-privacy
region. Moreover, a PIC-based convex program was proposed to design privacy-assuring mappings when the
useful functions and private functions were known beforehand. We also derived lower bounds on the MMSE
of estimating a target function from the disclosed data and analyzed the robustness of our method when the
designer used empirical distribution to compute the privacy-assuring mappings. Finally, we performed two
experiments and analyzed the numerical results. Our hope is that the methods presented here can inspire
new, information-theoretically grounded and interpretable privacy mechanisms.
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Appendix A Proofs from Section 3

A.1 Lemma 1

Proof. By the definition of χ2-information,

χ2(X;Y ) + 1 =

|X |∑
x=1

|Y|∑
y=1

PX,Y (x, y)

PX(x)PY (y)
PX,Y (x, y).

Note that QX,Y = D
− 1

2

X PX,Y D
− 1

2

Y which implies

tr(QX,Y QT
X,Y ) = tr(D

− 1
2

X PX,Y D−1Y PT
X,Y D

− 1
2

X ) = tr(D−1X PX,Y D−1Y PT
X,Y )

=

|X |∑
x=1

|Y|∑
y=1

PX,Y (x, y)

PX(x)

PX,Y (x, y)

PY (y)
.

Therefore,
χ2(X;Y ) = tr(QX,Y QT

X,Y )− 1 = tr(A)− 1.

Since

QS,Y = D
− 1

2

S PS,Y D
− 1

2

Y = D
− 1

2

S PS,XD
− 1

2

X D
− 1

2

X PX,Y D
− 1

2

Y = QS,XQX,Y ,

then
χ2(S;Y ) = tr(QS,Y QT

S,Y )− 1 = tr(QS,XQX,Y QT
X,Y QT

S,X)− 1 = tr(BA)− 1.
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A.2 Lemma 2

Proof. For 0 ≤ ε1 < ε2 < ε3 ≤ χ2(S;X), it suffices to show that

Fχ2(ε3;PS,X)− Fχ2(ε1;PS,X)

ε3 − ε1
≤ Fχ2(ε2;PS,X)− Fχ2(ε1;PS,X)

ε2 − ε1
,

which is equivalent to

ε2 − ε1
ε3 − ε1

Fχ2(ε3;PS,X) +
ε3 − ε2
ε3 − ε1

Fχ2(ε1;PS,X) ≤ Fχ2(ε2;PS,X). (45)

Let PY1|X and PY3|X be two optimal solutions in D(ε1;PS,X) and D(ε3;PS,X), respectively. Assume that Y1
and Y3 take values in [m1] and [m3], respectively. Furthermore, we denote λ , ε2−ε1

ε3−ε1 . Next, we introduce a
new privacy-assuring mapping defined as

PYλ|X(y|x) ,

{
λPY3|X(y|x) if y ∈ [m3],

(1− λ)PY1|X(y −m3|x) if y −m3 ∈ [m1].
(46)

Consequently, we have

PYλ(y) =

{
λPY3(y) if y ∈ [m3],

(1− λ)PY1
(y −m3) if y −m3 ∈ [m1].

Then

χ2(X;Yλ) = E
[
PX,Yλ(X,Yλ)

PX(X)PYλ(Yλ)

]
− 1

=
∑

y∈[m3]

|X |∑
x=1

PX,Yλ(x, y)2

PX(x)PYλ(y)
+

∑
y−m3∈[m1]

|X |∑
x=1

PX,Yλ(x, y)2

PX(x)PYλ(y)
− 1

=
∑

y∈[m3]

|X |∑
x=1

PYλ|X(y|x)2PX(x)

PYλ(y)
+

∑
y−m3∈[m1]

|X |∑
x=1

PYλ|X(y|x)2PX(x)

PYλ(y)
− 1

=
∑

y∈[m3]

|X |∑
x=1

λ2PY3|X(y|x)2PX(x)

λPY3(y)
+
∑

y∈[m1]

|X |∑
x=1

(1− λ)2PY1|X(y|x)2PX(x)

(1− λ)PY1(y)
− 1

= λχ2(X;Y3) + (1− λ)χ2(X;Y1).

Similarly, we have

χ2(S;Yλ) = λχ2(S;Y3) + (1− λ)χ2(S;Y1) ≤ ε2, (47)

which implies that PYλ|X ∈ D(ε2;PS,X). Therefore,

Fχ2(ε2;PS,X) ≥ χ2(X;Yλ)

= λχ2(X;Y3) + (1− λ)χ2(X;Y1)

=
ε2 − ε1
ε3 − ε1

Fχ2(ε3;PS,X) +
ε3 − ε2
ε3 − ε1

Fχ2(ε1;PS,X), (48)

which implies that (45) is true, so Fχ2(ε;PS,X) is a concave function. Furthermore, ε → 1
εFχ2(ε;PS,X) is

non-increasing since Fχ2(ε;PS,X) is non-negative and concave.

A.3 Closed-Form Expression of Gm
ε (t1, ..., tn)

Recall that, for ti ∈ [0, 1] (i ∈ [n]), 0 ≤ ε ≤∑i∈[n] ti, and n ≤ m, Gmε (t1, ..., tn) is defined as:

Gmε (t1, ..., tn) , max

{
m∑
i=1

xi

∣∣∣ (x1, ..., xm) ∈ Dmε (t1, ..., tn)

}
,
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where

Dmε (t1, ..., tn) ,

{
(x1, ..., xm)

∣∣∣ n∑
i=1

tixi ≤ ε, xi ∈ [0, 1], i ∈ [m]

}
.

We assume 1 ≥ t1 ≥ ... ≥ tn−s > tn−s+1 = ... = tn = 0 without loss of generality. Then we divide [0,
∑n
i=1 ti]

into n− s intervals: [
0,

n∑
i=1

ti

]
=

n−1−s⋃
j=0

 n−s∑
i=n−s−j+1

ti,

n−s∑
i=n−s−j

ti

 .
If ε ∈

[∑n−s
i=n−s−j+1 ti,

∑n−s
i=n−s−j ti

]
, then

Gmε (t1, ..., tn) = s+ (m− n) + j +
ε−∑n−s

i=n−s−j+1 ti

tn−s−j
, (49)

and it can be achieved by setting

xi = 1, for i = n− s− j + 1, ...,m,

xn−s−j =
ε−∑n−s

i=n−s−j+1 ti

tn−s−j
,

xi = 0, for i = 1, ..., n− s− j − 1.

A.4 Theorem 2

Proof. The lower bound for Fχ2(ε;PS,X) follows immediately from the concavity of Fχ2(ε;PS,X) and

Fχ2(0;PS,X) ≥ 0,

Fχ2

(
χ2(S;X);PS,X

)
= χ2(X;X) = |X |−1.

Using Lemma 1, the χ2-privacy-utility function can be simplified as

Fχ2(ε;PS,X) = max
PY |X∈D(ε;PS,X)

tr(A)− 1,

D(ε;PS,X) = {PY |X | S → X → Y, tr(BA)− 1 ≤ ε},
where

A = QX,Y QT
X,Y ,B = QT

S,XQS,X .

We denote the singular value decomposition of QS,X and QX,Y by QS,X = WΣ1U
T and QX,Y = VΣ2M

T ,

respectively. Then B = UΣT
1 Σ1U

T = UΣBUT , A = VΣ2Σ
T
2 VT = VΣAVT where ΣB , ΣT

1 Σ1 and
ΣA , Σ2Σ

T
2 .

Let A1 = UTAU = LΣALT where L , UTV. Suppose the diagonal elements of A1 are a1, ..., a|X |.
Then, from characterization 3 in Theorem 1, we have

tr(BA)− 1 = a1 − 1 +

d+1∑
i=2

λi−1(S;X)ai. (50)

Suppose the i-th row of L is li = (li,1, ..., li,|X |), the i-th column of U is uTi and ΣA = diag(σ1, ..., σ|X |). By
characterization 3 in Theorem 1, σ1 = 1, σj+1 = λj(X;Y ) for j = 1, ..., d and σj+1 = 0 for j = d+1, ..., |X |−1.
Then, for ∀i ∈ [|X |],

0 ≤ ai =

|X |∑
j=1

σj l
2
i,j ≤

|X |∑
j=1

l2ij = 1.
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Since, following from characterization 3 in Theorem 1, the first column of U and that of V are both
(
√
PX(1), ...,

√
PX(|X |))T , then l1 = u1V = (1, 0, ..., 0). Therefore, a1 = σ1 = 1. If PY |X ∈ D(ε;PS,X), then

(50) shows

tr(BA)− 1 =

d+1∑
i=2

λi−1(S;X)ai ≤ ε,

which implies that
(a2, ..., a|X |) ∈ D|X |−1ε (λ1(S;X), ..., λd(S;X)).

Thus,

Fχ2(ε;PS,X) ≤ max
(a2,...,a|X|)

∈D|X|−1
ε (λ1(S;X),...,λd(S;X))

|X |∑
i=2

ai

= G|X |−1ε (λ1(S;X), ..., λd(S;X)),

as required.

A.5 Corollary 1

Proof. First, Fχ2(ε;PS,X) is non-decreasing since, for any 0 ≤ ε1 < ε2 ≤ χ2(S;X), we have D(ε1;PS,X) ⊆
D(ε2;PS,X). Now suppose there exist ε1 and ε2, such that Fχ2(ε1;PS,X) = Fχ2(ε2;PS,X). We denote χ2(S;X)
by ε0. Since Fχ2(ε;PS,X) is a concave and non-decreasing function, then for any ε > ε1, Fχ2(ε;PS,X) =
Fχ2(ε1;PS,X). In particular, Fχ2(ε1;PS,X) = Fχ2(ε0;PS,X) = |X |−1. This contradicts the upper bound of
χ2-privacy-utility function in Theorem 2 since the upper bound implies that Fχ2(ε;PS,X) < |X |−1 when
ε < ε0.

A.6 Theorem 3

Proof. Following from characterization 2 in Theorem 1, there exists f ∈ L2(PX) such that ‖f(X)‖2= 1,
E [f(X)] = 0 and ‖E [f(X)|S] ‖22= λmin(S;X).

Fix Y = {1, 2} and the privacy-assuring mapping is defined as

PY |X(y|x) =
1

2
+ (−1)y

√
PXminf(x)

2
. (51)

Since

1 = ||f(X)||22=

|X |∑
x=1

f(x)2PX(x) ≥ f(x)2PX(x),

for any x ∈ [|X |]
|f(x)|≤ 1√

PX(x)
≤ 1√

PXmin

.

Therefore,
∣∣∣√PXminf(x)

2

∣∣∣ ≤ 1
2 , which implies that PY |X(y|x) is feasible. Furthermore, PY (y) = 1

2 because of

E [f(X)] = 0.

χ2(X;Y ) =

|X |∑
x=1

|Y|∑
y=1

PY |X(y|x)2PX(x)

PY (y)
− 1 =

|X |∑
x=1

(PX(x) + PXminf(x)2PX(x))− 1 = PXmin.

Since

PY |S(y|s) =

|X |∑
x=1

PY |X(y|x)PX|S(x|s) =

|X |∑
x=1

(
1

2
+ (−1)y

√
PXminf(x)

2

)
PX|S(x|s)

=
1

2
+ (−1)y

√
PXmin

2
E [f(X)|S = s] ,
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then

χ2(S;Y ) =

|S|∑
s=1

|Y|∑
y=1

PY |S(y|s)2PS(s)

PY (y)
− 1 =

|S|∑
s=1

(
PS(s) + PXminE [f(X)|S = s]

2
PS(s)

)
− 1

= PXminλmin(S;X).

Hence, this Y satisfies χ2(X;Y ) = PXmin and χ2(S;Y ) = PXminλmin(S;X).

Appendix B Proofs from Section 4

B.1 Lemma 3

Proof. Suppose ||f(S)||2= 1 without loss of generality. Observe that

E [E [f(S)|X]] = E [f(S)] = 0.

Since f(S)→ X → Y , then E [f(S)|X] = E [f(S)|X,Y ]. Therefore,

mmse

(
E [f(S)|X]

||E [f(S)|X] ||2

∣∣∣∣∣Y
)

=
E
[
E [f(S)|X]

2
]
− E

[
E [E [f(S)|X] |Y ]

2
]

||E [f(S)|X] ||22

=
E
[
E [f(S)|X]

2
]
− E

[
E [E [f(S)|X,Y ] |Y ]

2
]

||E [f(S)|X] ||22

= 1−
E
[
E [f(S)|Y ]

2
]

||E [f(S)|X] ||22

= E
[
f(S)2

]
−

E
[
E [f(S)|Y ]

2
]

||E [f(S)|X] ||22
≤ E

[
f(S)2

]
− E

[
E [f(S)|Y ]

2
]

= mmse(f(S)|Y ),

where the last inequality follows from Jensen’s inequality:

1 = E
[
f(S)2

]
= E

[
E
[
f(S)2|X

]]
≥ E

[
E [f(S)|X]

2
]

= ||E [f(S)|X] ||22.

Appendix C Proofs from Section 5

C.1 Lemma 4

Proof. For fixed a,b ∈ Rn where ai > 0 and bi ≥ 0, let LP : Rn → R and LD : Rn → R be given by

LP (y) , aTy,

LD(u) , aTb + uTb + ‖u‖2.

Furthermore, we define A(a) , {u ∈ Rn | u ≥ −a} and B(b) , {y ∈ Rn | ‖y‖2≤ 1,y ≤ b}.
Assume, without loss of generality, that b1/a1 ≤ b2/a2 ≤ . . . ≤ bn/an, and let k∗ be defined in (27).

Note that b1 ≤ 1 and for k ∈ [k∗]

k∑
i=1

b2i ≤
a2k∑n
i=k a

2
i

(
1−

k−1∑
i=1

b2i

)+

+

k−1∑
i=1

b2i ,
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so
∑k
i=1 b

2
i ≤ 1. Especially,

∑k∗

i=1 b
2
i ≤ 1. For cj ,

√
(1−

∑j
i=1 b

2
i )

‖a‖22−
∑j
i=1 a

2
i

, let

y∗ = (b1, . . . , bk∗ , ak∗+1ck∗ , . . . , anck∗)

and
u∗ = (−b1/ck∗ , . . . ,−bk∗/ck∗ ,−ak∗+1, . . . ,−an).

From the definition of k∗, y∗ ∈ B(b) and u∗ ∈ A(a). Furthermore,

LP (y∗) = aTy∗

=

k∗∑
i=1

aibi +

n∑
i=k∗+1

ck∗a
2
i

=

k∗∑
i=1

aibi +

√√√√(‖a‖22− k∗∑
i=1

a2i

)(
1−

k∗∑
i=1

b2i

)
, (52)

and

LD(u∗) = aTb + u∗Tb + ‖u∗‖2

=

k∗∑
i=1

(
aibi −

b2i
c∗k

)
+ c−1k∗

√√√√ k∗∑
i=1

b2i + c2k∗

(
‖a‖22−

k∗∑
i=1

a2i

)

=

k∗∑
i=1

aibi + c−1k∗

(
1−

k∗∑
i=1

b2i

)

=

k∗∑
i=1

aibi +

√√√√(‖a‖22− k∗∑
i=1

a2i

)(
1−

k∗∑
i=1

b2i

)
= LP (y∗).

Since both the primal and the dual achieve the same value at y∗ and u∗, respectively, it follows that the
value LP (y∗) given in (52) is optimal.

C.2 Theorem 4

Proof. Let

h(x) ,

{
ρ−10 (φ(x)−∑m

i=1 ρiφi(x)) if ρ0 > 0,

0 otherwise.
(53)

Note that when ρ0 > 0, we have ‖h(X)‖2= 1. Then for any ψ ∈ L2(PY ) and ‖ψ(Y )‖2= 1,

|E [φ(X)ψ(Y )]| =
∣∣∣∣∣ρ0E [h(X)ψ(Y )] +

m∑
i=1

ρiE [φi(X)ψ(Y )]

∣∣∣∣∣
≤ ρ0 |E [h(X)ψ(Y )]|+

m∑
i=1

|ρiE [φi(X)ψ(Y )]|

= ρ0
∣∣E [h(X)(TY |Xψ)(X)

]∣∣+

m∑
i=1

∣∣ρiE [φi(X)(TY |Xψ)(X)
]∣∣ ,

where TY |X is defined in Section 1.3. Denoting |E
[
h(X)(TY |Xψ)(X)

]
|, x0, |E

[
φi(X)(TY |Xψ)(X)

]
|, xi,

x , (x0, x1, . . . , xm), the last inequality can be rewritten as

|E [φ(X)ψ(Y )]| ≤ ρT0 x. (54)
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Observe that ‖x‖2≤ 1 and xi ≤ νi for i ∈ [m], and the right hand side of (54) can be maximized over
all values of x that satisfy these constraints. We assume, without loss of generality, that ρ0 > 0 (otherwise
set x0 = 0). The left-hand side of (54) can be further bounded by

|E [φ(X)ψ(Y )]| ≤ Lm+1(ρ0, ννν0), (55)

where ννν0 = (1, ν1, . . . , νm) and Lm+1 is defined in (26). The result follows directly from Lemma 4 and noting
that maxψ∈L2(PY ) E [φ(X)ψ(Y )] = ‖E [φ(X)|Y ] ‖2.

C.3 Theorem 5

Proof. For any ψ ∈ L2(PY ) with ‖ψ(Y )‖2= 1, let αi , E [ψ(Y )ψi(Y )], α0 ,
√

1−∑t
i=i α

2
i and ψ0(Y ) ,

α−10 (ψ(Y )−∑t
i=1 αiψi(Y )) if α0 > 0, otherwise ψ0(Y ) , 0. Observe that ‖ψ0(Y )‖2= 1 when α0 > 0. Also,

E [φi(X)ψj(Y )] = 0 for i 6= j, i ∈ {0, . . . ,m}, j ∈ [t]. Consequently,

E [φ(X)ψ(Y )] = E

( m∑
i=0

ρiφi(X)

) t∑
j=0

αjψj(Y )


=

m∑
i=0

t∑
j=0

ρiαjE [φi(X)ψj(Y )]

≤

∣∣∣∣∣∣α0

m∑
i=0,i/∈[t]

ρiE [φi(X)ψ0(Y )]

∣∣∣∣∣∣+

t∑
i=1

|νiρiαi|

≤ |α0|Bm−t (ρ̃, ν̃νν) +

t∑
i=1

|νiρiαi| (56)

≤

√√√√ t∑
k=1

ν2i ρ
2
i +Bm−t (ρ̃, ν̃νν)

2
. (57)

Inequality (56) follows from the similar proof of Theorem 4, and (57) follows by observing that
∑t
i=0 α

2
i = 1

and applying Cauchy-Schwarz inequality.
Finally, when ρ0 = 0 and t = m, (57) can be achieved with equality by taking

ψ(Y ) =

∑m
i=1 νiρiψi(Y )√∑m

i=1 ν
2
i ρ

2
i

.

Appendix D Proofs from Section 6

D.1 Lemma 5

Proof. By the definition of χ2-information, we have

|χ2(X1;Y1)− χ2(X2;Y2)| ≤
|X |∑
x=1

|Y|∑
y=1

∣∣∣∣ PX1,Y1
(x, y)2

PX1
(x)PY1

(y)
− PX2,Y2

(x, y)2

PX2
(x)PY2

(y)

∣∣∣∣ . (58)
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By the triangle inequality,∣∣∣∣ PX1,Y1(x, y)2

PX1
(x)PY1

(y)
− PX2,Y2(x, y)2

PX2
(x)PY2

(y)

∣∣∣∣ ≤ PX1,Y1(x, y)

PX1
(x)PY1

(y)
|PX1,Y1(x, y)− PX2,Y2(x, y)|

+
PX1,Y1

(x, y)

PX1
(x)PY1

(y)

PX2,Y2
(x, y)

PX2
(x)

|PX1
(x)− PX2

(x)|

+
PX1,Y1(x, y)

PY1
(y)

PX2,Y2(x, y)

PX2
(x)PY2

(y)
|PY1

(y)− PY2
(y)|

+
PX2,Y2

(x, y)

PX2(x)PY2(y)
|PX1,Y1(x, y)− PX2,Y2(x, y)| . (59)

Note that for i = 1, 2
PXi,Yi(x, y)

PXi(x)PYi(y)
≤ 1

PXi(x)
≤ 1

mX
.

Therefore, we have

|χ2(X1;Y1)− χ2(X2;Y2)| ≤ 2

mX
‖PX1,Y1 − PX2,Y2‖1+

1

mX
(‖PX1 − PX2‖1+‖PY1 − PY2‖1)

≤ 4

mX
‖PX1,Y1

− PX2,Y2
‖1. (60)

Similarly,

|χ2(S1;Y1)− χ2(S2;Y2)|≤ 4

mS
‖PS1,Y1

− PS2,Y2
‖1. (61)

By the data processing inequality and the assumption PY1|X1
= PY2|X2

, we have

‖PS1,Y1
− PS2,Y2

‖1 ≤ ‖PS1,X1
− PS2,X2

‖1,
‖PX1,Y1

− PX2,Y2
‖1 ≤ ‖PS1,X1

− PS2,X2
‖1.

Therefore, we get the desired conclusion.

D.2 Theorem 6

Recall the following results by Weissman et al. [67, Theorem 2.1] for the L1 deviation of the empirical
distribution.

For all ε > 0,

Pr
(
‖P̂n − P‖1≥ ε

)
≤ (2M − 2) exp(−nφ̄(πP )ε2/4), (62)

where P is a probability distribution on the set [M ], P̂n is the empirical distribution obtained from n i.i.d.
samples, πP , maxM⊆[M ] min(P (M), 1− P (M)), and

φ̄(p) ,

{
1

1−2p ln 1−p
p p ∈ [0, 1/2),

2 p = 1/2.

Note that φ̄(πP ) ≥ 2, which implies that

Pr
(
‖P̂n − P‖1≥ ε

)
≤ exp(M) exp(−nε2/2). (63)

Therefore, by choosing P = PS,X , M = |S||X |, and ε =
√

2
n (M − lnβ), (63) implies that, with probability

at least 1− β,

‖PŜ,X̂ − PS,X‖1≤
√

2

n
(M − lnβ), (64)
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where PŜ,X̂ is the empirical distribution obtained from n i.i.d. samples drawn from PS,X . Also of note,

min{PŜ(s) | s ∈ S} ≥ min{PS(s) | s ∈ S} − ‖PŜ − PS‖1
≥ min{PS(s) | s ∈ S} − ‖PŜ,X̂ − PS,X‖1. (65)

Similarly,

min{PX̂(x) | x ∈ X} ≥ min{PX(x) | x ∈ X} − ‖PŜ,X̂ − PS,X‖1. (66)

The proof of Theorem 6 then follows from Lemma 5 and (64), (65), (66).
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