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1 INTRODUCTION

This work studies the relationship between private PAC learning and online learning.

Differentially private learning. Statistical analyses and computer algorithms play significant
roles in the decisions that shape modern society. The collection and analysis of individuals’ data
drives computer programs that determine many critical outcomes, including the allocation of com-
munity resources, decisions to give loans, and school admissions.

Although data-driven and automated approaches have obvious benefits in terms of efficiency,
they also raise the possibility of unintended negative impacts, especially against marginalized
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groups. This possibility highlights the need for responsible algorithms that obey relevant ethical
requirements (e.g., see [71]).

Differential privacy (DP) [33] plays a key role in this context. Its initial (and primary) purpose
was to provide a formal framework for ensuring individuals’ privacy in the statistical analysis of
large datasets. But it has also found use in addressing other ethical issues such as algorithmic
fairness (e.g., see [29, 30]).

There is extensive literature identifying differentially private algorithms and their limitations in
a variety of contexts, including statistical query release, synthetic data generation, classification,
clustering, graph analysis, hypothesis testing, and more. In general, the goal is to understand when
and how privacy can be achieved in these tasks with a modest overhead in resources, such as
data samples, computation time, or communication. Nevertheless, many basic questions remain
regarding which tasks are compatible with DP whatsoever, especially in settings where the data
are complex, high dimensional, or infinite.

We study these questions in the private PAC model [57, 78], which captures binary classification
tasks under DP. This is the simplest and most extensively studied model of how sensitive data is
analyzed in machine learning. In their work introducing this model, Kasiviswanathan et al. [57]
showed that every finite class H is privately learnable using O (log |H |) samples. However, this
bound is loose for many specific concept classes of interest and says nothing when H is infinite.
Several works gave improved bounds for specific classes [8, 9, 11, 12, 19, 22, 38, 54, 55, 72], but
a general characterization of learnability in terms of the combinatorial structure of H remains
elusive. This situation stands in stark contrast to the non-private case, where early results showed
that the sample complexity of PAC learning is characterized, up to constant factors, by the VC
dimension [14, 79].

In this article, we make progress toward characterizing PAC learnability by algorithms satisfying
approximate DP. We prove a qualitative characterization: we show that a hypothesis class H is
differentially privately learnable (with some finite number of samples) if and only if it is online
learnable (with some finite mistake bound).

Online learning. Online learning is a well-studied branch of machine learning that addresses
algorithms making real-time predictions on sequentially arriving data. Such tasks arise in contexts
including recommendation systems and advertisement placement. The literature on this subject is
vast and includes several works (e.g., [24, 46, 73]).

Online Prediction, or Prediction with Expert Advice, is a basic setting within online learning.
Let H = {h : X → {±1}} be a class of predictors (also called experts) over a domain X . Con-
sider an algorithm that observes examples (x1,y1) . . . (xT ,yT ) ∈ X × {±1} in a sequential manner.
More specifically, in each timestep t , the algorithm first observes the instance xt , then predicts a
label ŷt ∈ {±1}, and finally learns whether its prediction was correct. The goal is to minimize the
regret, namely the number of mistakes compared to the best expert inH :

T∑
t=1

1[yt � ŷt ] − min
h∗ ∈H

T∑
t=1

1[yt � h∗ (xt )].

In this context, a class H is said to be online learnable if for every T there is an algorithm that
achieves sublinear regret o(T ) against any sequence of T examples. The Littlestone dimension is a
combinatorial parameter associated to the classH that characterizes its online learnability [13, 61]:
H is online learnable if and only if it has a finite Littlestone dimension d < ∞. Moreover, the best
possible regret R (T ) for online learning ofH satisfies

Ω(
√
dT ) ≤ R (T ) ≤ O

(√
dT logT

)
.
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Furthermore, if it is known that if one of the experts never errs (a.k.a. the realizable setting), then
the optimal regret is exactly d .1 (The regret is referred to as mistake bound in this context.)

Stability. Although at a first glance it may seem that online learning and differentially private
learning have little to do with one another, a recent line of work has revealed a tight connection
between the two [2, 3, 16, 44, 49, 69].

At a high level, this connection appears to boil down to the notion of stability, which plays a
key role in both topics. On one hand, the definition of DP is itself a form of stability; it requires
robustness of the output distribution of an algorithm when its input undergoes small changes. On
the other hand, stability also arises as a central motif in online learning paradigms such as Follow
the Perturbed Leader [51, 52] and Follow the Regularized Leader [1, 46, 75].

In their monograph, Dwork and Roth [34] identified stability as a common factor of learning
and DP: “Differential privacy is enabled by stability and ensures stability . . . we observe a tanta-
lizing moral equivalence between learnability, differential privacy, and stability.” This insight has
found formal manifestations in several works. For example, Abernethy et al. [2] used DP-inspired
stability methodology to derive a unified framework for proving state-of-the-art bounds in online
learning. In the opposite direction, Agarwal and Singh [3] showed that certain standard stabiliza-
tion techniques in online learning imply DP.

Stability plays a key role in this work as well. The direction that any class with a finite Littlestone
dimension can be privately learned hinges on the following form of stability: for η > 0 and n ∈ N,
a learning algorithm A is (n,η)-globally stable2 with respect to a distribution D over examples if
there exists an hypothesis h whose frequency as an output is at least η. Namely,

Pr
S∼Dn

[A (S ) = h] ≥ η.

Our argument follows by showing that every H can be learned by a globally stable algorithm

with parameters η = 2−2O (d )
,n = 2O (d ) , where d is the Littlestone dimension ofH . As a corollary,

we get an equivalence between global stability and DP (which can be viewed as a form of local
stability). In other words, the existence of a globally stable learner forH is equivalent to the exis-
tence of a differentially private learner for it (and both are equivalent to having a finite Littlestone
dimension).

Littlestone dimension and thresholds. The converse direction—that every DP-learnable class has
a finite Littlestone dimension—utilizes an intimate relationship between thresholds and the Lit-
tlestone dimension: a class H has a finite Littlestone dimension if and only if it does not embed
thresholds as a subclass (for a formal statement, see Theorem 10); this follows from a seminal result
in model theory by Shelah [76]. As explained in the preliminaries (Section 3), Shelah’s theorem is
usually stated in terms of orders and ranks. Chase and Freitag [25] noticed3 that the Littlestone
dimension is the same as the model-theoretic rank. Meanwhile, order translates naturally to thresh-
olds. To make Theorem 10 more accessible for readers with less background in model theory, we
provide a combinatorial proof in the appendix.

1More precisely, there is a deterministic algorithm that makes no more than d mistakes, and for every deterministic algo-

rithm there is a (realizable) input sequence on which it makes at least d mistakes. For randomized algorithms, a slightly

weaker lower bound of d/2 holds with respect to the expected number of mistakes.
2The word global highlights a difference with other forms of algorithmic stability. Indeed, previous forms of stability such as

DP and uniform hypothesis stability [15] are local in the sense that they require output robustness subject to local changes

in the input. However, the property required by global stability captures stability with respect to resampling the entire

input.
3Interestingly, although the Littlestone dimension is a basic parameter in machine learning, this result has not appeared in

the machine learning literature.
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Littlestone classes. It is natural to ask which classes have finite Littlestone dimension. First, note
that every finite class H has Littlestone dimension d ≤ log|H |. There are also many natural
and interesting infinite classes with finite Littlestone dimension. For example, let X = Fn be an
n-dimensional vector space over a field F and let H ⊆ {±1}X consist of all (indicators of) affine
subspaces of dimension ≤ d . The Littlestone dimension of H is d . More generally, any class of
hypotheses that can be described by polynomial equalities of bounded degree has a bounded Lit-
tlestone dimension.4 This can be generalized even further to classes that are definable in stable
theories. This (different, still) notion of stability is deep and well explored in model theory. We
refer the reader to Section 5.1 in the work of Chase and Freitag [26] for more examples of stable
theories and the Littlestone classes they correspond to.

Organization. The rest of this article is organized as follows. In Section 2, we formally state our
main results and discuss some implications and other related and subsequent work. We present
the preliminaries in Section 3. Then, in Section 4, we prove the direction that differentially pri-
vate learnable classes have a finite Littlestone dimension, and in Section 5, we prove the converse
direction—that every Littlestone class is differentially private PAC learnable. Finally, Section 6 con-
cludes the article with some suggestions for future work.

2 RESULTS

We next present our main results that yield an equivalence between private PAC learning and on-
line learning. We note that the derived equivalence is qualitative in the sense that the gap between
the best-known lower and upper bounds for learning a classH is incredibly large: the lower bound
is proportional to log∗ (d ), whereas the upper bound is doubly exponential in d , where d is the Lit-

tlestone dimension of H . Our upper bound has recently been reduced to Õ (d6) in subsequent
work [40].

The rest of this section is organized as follows: Sections 2.1, 2.2, and 2.3 are dedicated to the
relationship between differentially private learning, Littlestone dimension, and online learning,
and in Section 2.4. we discuss an implication for private boosting. Throughout this section, some
standard technical terms are used. For definitions of these terms, we refer the reader to Section 3.

2.1 Private Learning Implies Finite Littlestone Dimension

We begin by the following statement that resolves an open problem in the work of Feldman and
Xiao [38] and Bun et al. [22].

Theorem 1 (Thresholds Are Not Privately Learnable). Let X ⊆ R and let A be a ( 1
16 ,

1
16 )-

accurate learning algorithm for the class of thresholds over X with sample complexity n that satisfies
(ε,δ )-DP with ε = 0.1 and δ = O ( 1

n2 log n
). Then,

n ≥ Ω(log∗ |X |).

In particular, the class of thresholds over an infinite X cannot be learned privately.

We note that an upper bound which scales with (log∗ |X |) 3
2 on the private sample complexity

of learning thresholds over a domain of size n is given by Kaplan et al. [53]. Thus, Theorem 1 is
tight up to polynomial factors. A weaker version of Theorem 1 by Bun et al. [22] provides a similar
lower bound but applies only to proper learning algorithms.

4Note that if one replaces “equalities” with “inequalities,” then the Littlestone dimension may become unbounded while

the VC dimension remains bounded. This is demonstrated, for example, by halfspaces that are captured by polynomial

inequalities of degree 1.
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Theorems 1 and 10 (which is stated in Section 3) imply that any privately learnable class has a
finite Littlestone dimension.

Theorem 2 (Private Learning Implies Finite Littlestone Dimension). Let H be an hypoth-
esis class with Littlestone dimension d ∈ N∪ {∞} and letA be a ( 1

16 ,
1
16 )-accurate learning algorithm

for H with sample complexity n that satisfies (ε,δ )-differentially private with ε = 0.1 and δ =
O ( 1

n2 log n
). Then,

n ≥ Ω(log∗ d ).

In particular, any class that is privately learnable has a finite Littlestone dimension.

2.1.1 On the Proof of Theorem 1. A common approach of proving impossibility results in com-
puter science (and in machine learning in particular) exploits a Minmax principle, whereby one
specifies a fixed hard distribution over inputs, and establishes the desired impossibility result for
any algorithm with respect to random inputs from that distribution. As an example, consider the
“No-Free-Lunch Theorem,” which establishes that the VC dimension lower bounds the sample com-
plexity of PAC learning a classH . Here, the hard distribution is picked to be uniform on a shattered
set of size d = VC(H ), and the argument follows by showing that every learning algorithm must
observe Ω(d ) examples. (For example, see Theorem 5.1 in the work of Shalev-Shwartz and Singer
[74].)

Such “Minmax” proofs establish a stronger assertion: they apply even to algorithms that “know”
the input distribution. For example, the No-Free-Lunch Theorem applies even to learning algo-
rithms that are designed given the knowledge that the marginal distribution is uniform over some
shattered set.

Interestingly, such an approach is bound to fail in proving Theorem 1. The reason is that if the
marginal distribution DX is fixed, then one can pick an ϵ/2-cover,5 which we denote by Cε/2, for
the class thresholds over X of size |Cε/2 | = O (1/ϵ ), and use the exponential mechanism [64] to
DP-learn the finite class Cε/2 with sample complexity that scales with log|Cε/2 | = O (log(1/ε )).
Since Cε/2 is an ε-cover for the class of thresholds, the obtained algorithm PAC learns the class
of thresholds in a differentially private manner. To conclude, there is no single distribution that is
“hard” for all DP algorithms that learn thresholds.

To overcome this difficulty, one must come up with a method of assigning to any given algorithm
A a “hard” distribution D = DA that is tailored to A and witnesses Theorem 1 with respect to A.
The challenge is that A can be arbitrary—for example, it may be improper.6 We refer the reader
elsewhere [7, 67, 68] for a line of work that explores in detail a similar “failure” of the Minmax
principle in the context of PAC learning with low mutual information.

The “method” we use to prove Theorem 1 exploits Ramsey theory. In a nutshell, Ramsey theory
provides tools that allow to detect, for any learning algorithm, a “largish”’ set X ′ ⊆ X such that
the behavior of A on input samples from X ′ is highly regular. Then, the uniform distribution over
X ′ is the “hard” distribution that is used to derive Theorem 1.

We note that similar applications of Ramsey theory in computer science date back to the
1980s [65]. For more recent usages, see other works [23, 27, 28].

Finally, we note that in the proper case, Bun et al. [22] demonstrated an ensemble, namely a
distribution over distributions, which is hard for every differentially private algorithm A: if one
draws a random distribution D from the ensemble and runs A on an input sample from D, then
the expected error of A will be large. It is plausible that such a statement also holds for a general
(possibly improper) algorithm, and it would be interesting to find such a natural ensemble.

5In other words, Cε/2 satisfies that for every threshold h there exists c ∈ Cε/2 such that Prx∼DX
(c (x ) � h (x )) ≤ ϵ/2.

6In other words, it may output hypotheses that are not thresholds.
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2.2 Finite Littlestone Dimension Implies Private Learning

The following statement provides an upper bound on the sample complexity of DP-learning H ,
which depends only on the Littlestone dimension of H and the privacy/utility parameters. In
particular, it does not depend on |H |.

Theorem 3 (Littlestone Classes are Privately Learnable). LetH ⊆ {±1}X be a class with
Littlestone dimension d , let ε,δ ∈ (0, 1) be privacy parameters, and let α , β ∈ (0, 1/2) be accuracy
parameters. For

n = O ��
2Õ (2d ) + log 1/βδ

αϵ
�� = Od

(
log(1/βδ )

αε

)

there exists an (ε,δ )-DP learning algorithm such that for every realizable distribution D, given an
input sample S ∼ Dn , the output hypothesis f = A (S ) satisfies lossD ( f ) ≤ α with probability at
least 1 − β , where the probability is taken over S ∼ Dn as well as the internal randomness of A.

A similar result holds in the agnostic setting.

Corollary 4 (Agnostic Learner for Littlestone Classes). Let H ⊆ {±1}X be a class with
Littlestone dimension d , let ε and δ ∈ (0, 1) be privacy parameters, and let α , β ∈ (0, 1/2) be accuracy
parameters. For

n = O ��
2Õ (2d ) + log(1/βδ )

αϵ
+

VC(H ) + log(1/β )

α2ϵ
��

there exists an (ε,δ )-DP learning algorithm such that for every distributionD, given an input sample
S ∼ Dn , the output hypothesis f = A (S ) satisfies

lossD ( f ) ≤ min
h∈H

lossD (h) + α

with probability at least 1 − β , where the probability is taken over S ∼ Dn as well as the internal
randomness of A.

Corollary 4 follows from Theorem 3 by Theorem 2.3 in [4] which provides a general mechanism
to transform a learner in the realizable setting to a learner in the agnostic setting.7 We note that
formally the transformation in the work of Alon et al. [4] is stated for a constant ε = O (1). Taking
ε = O (1) is without loss of generality, as a standard “secrecy-of-the-sample” argument can be used
to convert this learner into one that is (ε,δ )-differentially private by increasing the sample size by
a factor of roughly 1/ε and running the algorithm on a random subsample. See other works [57, 77]
for further details.

2.3 Online Learning Versus Differentially Private PAC Learning

Since the Littlestone dimension characterizes online learnability [13, 61], Theorems 2 and 3 imply
an equivalence between differentially private PAC learning and online learning.

Theorem 5 (Private PAC Learning≡Online Prediction). The following statements are equiv-
alent for a classH ⊆ {±1}X :

(1) H is online learnable.
(2) H is approximate differentially privately PAC learnable.

7Theorem 2.3 of Alon et al. [4] is based on a previous realizable-to-agnostic transformation from Beimel et al. [10] that

applies to proper learners. Here we require the more general transformation from Alon et al. [4], as the learner implied

by Theorem 3 may be improper.
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Theorem 5 directly follows from Theorem 2 (which gives 2 → 1) and Theorem 3 (which gives
1 → 2). We comment that a quantitative relation between the learning rates and mistake/regret
bounds is also implied—for example, in the agnostic setting, it is known that the optimal regret

bound for H is Θ̃d (
√
T ), where the Θ̃d conceals a constant that depends on the Littlestone di-

mension ofH [13]. Similarly, we get that the optimal sample complexity of agnostically privately

learningH is Θd (
log(1/(βδ ))

α 2ε
).

We remark, however, that the preceding equivalence is mostly interesting from a theoretical
perspective, and should not be regarded as an efficient transformation between online and private

learning. Indeed, the Littlestone dimension dependencies concealed by the Θ̃d (·) in the preceding
bounds on the regret and sample complexities may be quite different from one another. For exam-

ple, there are classes for which the Θd (
log(1/(βδ ))

α ε
) bound hides a poly(log∗ (d )) dependence, and

the Θ̃d (
√
T ) bound hides a Θ(d ) dependence. One example that attains both of these dependencies

is the class of thresholds over a linearly ordered domain of size 2d [53].

2.3.1 Global Stability. Our proof of Theorem 3 hinges on an intermediate property that we call
global stability.

Definition 6 (Global Stability). Let n ∈ N be a sample size and η > 0 be a global stability param-
eter. An algorithm A is (n,η)-globally stable with respect to a distribution D if there exists an
hypothesis h such that

Pr
S∼Dn

[A(S ) = h] ≥ η.

Although global stability is a rather strong property, it holds automatically for learning algo-
rithms using a finite hypothesis class. By an averaging argument, every learner using n samples
that produces a hypothesis in a finite hypothesis class H is (n, 1/|H |)-globally stable. The fol-
lowing proposition generalizes “Occam’s Razor”for finite hypothesis classes to show that global
stability is enough to imply similar generalization bounds in the realizable setting.

Proposition 7 (Global Stability =⇒ Generalization). Let H ⊆ {±1}X be a class, and
assume that A is a consistent learner for H (i.e., lossS (A (S )) = 0 for every realizable sample S).
Let D be a realizable distribution such that A is (n,η)-globally stable with respect to D, and let h
be a hypothesis such that PrS∼Dn [A(S ) = h] ≥ η, as guaranteed by the definition of global stability.
Then,

lossD (h) ≤ ln(1/η)

n
.

Proof. Let α denote the loss of h (i.e., lossD (h) = α ), and let E1 denote the event that h is
consistent with the input sample S . Thus, Pr[E1] = (1−α )n . Let E2 denote the event thatA (S ) = h.
By assumption, Pr[E2] ≥ η. Now, since A is consistent we get that E2 ⊆ E1, and hence that
η ≤ (1 − α )n . This finishes the proof (using the fact that 1 − α ≤ e−α and taking the logarithm of
both sides). �

Another way to view global stability is in the context of pseudo-deterministic algorithms [39].
A pseudo-deterministic algorithm is a randomized algorithm that yields some fixed output with
high probability. Thinking of a realizable distributionD as an instance on which the PAC-learning
algorithm has oracle access, a globally stable learner is one that is “weakly” pseudo-deterministic
in that it produces some fixed output with probability bounded away from zero. A different model
of pseudo-deterministic learning, in the context of learning from membership queries, was defined
and studied by Oliveira and Santhanam [70].

We prove Theorem 3 by constructing, for a given Littlestone class H , an algorithm A that is
globally stable with respect to every realizable distribution.

Journal of the ACM, Vol. 69, No. 4, Article 28. Publication date: August 2022.



28:8 N. Alon et al.

2.4 Boosting for Approximate DP

Our characterization of private learnability in terms of the Littlestone dimension has new conse-
quences for boosting the privacy and accuracy guarantees of differentially private learners. Specif-
ically, it shows that the existence of a learner with weak (but non-trivial) privacy and accuracy
guarantees implies the existence of a learner with any desired privacy and accuracy parameters—
in particular, one with δ (n) = exp(−Ω(n)).

Theorem 8. There exists a constant c > 0 for which the following holds. Suppose that for some sam-
ple size n0 there is an (ε0,δ0)-differentially private learnerW for a classH satisfying the guarantee

Pr
S∼Dn0

[lossD (W (S )) > α0] < β0

for ε0 = 0.1,α0 = β0 = 1/16, and δ0 ≤ c/n2
0 logn0.

Then there exists a constant CH such that for every α , β, ε,δ ∈ (0, 1) there exists an (ε,δ )-
differentially private learner forH with

Pr
S∼Dn

[lossD (A (S )) > α] < β

whenever n ≥ CH · log(1/βδ )/αε .

Given a weak learnerW as in the statement of Theorem 8, Theorem 2 imply that Ldim(H ) is
finite. Hence, Theorem 3 allows us to construct a learner forH with arbitrarily small privacy and
accuracy, yielding Theorem 8. The constantCH in the last line of the theorem statement suppresses
a factor depending on Ldim(H ).

Prior to our work, it was open whether arbitrary learning algorithms satisfying approximate
DP could be boosted in this strong a manner. We remark, however, that in the case of pure DP,
such boosting can be done algorithmically and efficiently. Specifically, given an (ε0, 0)-differentially
private weak learner as in the statement of Theorem 8, one can first apply random sampling to
improve the privacy guarantee to (pε0, 0)-DP at the expense of increasing its sample complexity
to roughly n0/p for any p ∈ (0, 1). The Boosting-for-People construction of Dwork et al. [36] (also
see the work of Bun et al. [18]) then produces a strong learner by making roughlyT ≈ log(1/β )/α2

calls to the weak learner. By composition of DP, this gives an (ε, 0)-differentially private strong
learner with sample complexity roughly n0 · log(1/β )/α2ε .

What goes wrong if we try to apply this argument using an (ε0,δ0)-differentially private weak
learner? Random sampling still gives a (pε0,pδ0)-differentially private weak learner with sam-
ple complexity n0/p. However, this is not sufficient to improve the δ parameter of the learner
as a function of the number of samples n. Thus, the strong learner one obtains using Boosting-

for-People still at best guarantees δ (n) = Õ (1/n2). Meanwhile, Theorem 8 shows that the exis-

tence of a (0.1, Õ (1/n2))-differentially private learner for a given class implies the existence of a
(0.1, exp(−Ω(n))-differentially private learner for that class.

We leave it as an interesting open question to determine whether this kind of boosting for
approximate DP can be done algorithmically.

2.5 Related and Subsequent Work

In this work, we determine that the (approximately) differentially-privately learnable classes
are exactly those that are online learnable. We note that PAC learnability under the much
stronger constraint of pure differentially privacy has already been characterized by several natural
parameters such as the probabilistic representation dimension [12] and one-way communication
complexity [38]. These characterizations even imply nearly tight bounds on the optimal sample
complexity. This is in contrast with the equivalence derived in this work whose implied upper
and lower bounds on the sample complexity are extremely far away from each other.
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Subsequent to our work, Ghazi et al. [40] gave a significantly improved upper bound of Õ (d6) on
the sample complexity of learning any class with Littlestone dimensiond . Moreover, their learning
algorithm is proper. There is still an enormous gap between this and our lower bound of Ω(log∗ d ),
but both the upper and lower bound are within polynomial factors of the best possible sample
complexity bounds that depend only on the Littlestone dimension. Thus, despite the fact that DP
learnability is characterized by the finiteness of the Littlestone dimension, it remains wide open to
find meaningful quantitative bounds on the sample complexity of DP learning. This is discussed
in more detail in Section 5.4, where we suggest directions for future work.

Subsequent work has also extended the connection between online learning, global stability,
and private learning to settings beyond binary classification. The private learnability of Little-
stone classes has been studied in multiclass classification [20, 50], real-valued classification (re-
gression) [42, 50], quantum state learning [6], and the online private learning model [43].

Ghazi et al. [41] used a generalization of global stability to derive private learning algorithms
for datasets where each individual contributes multiple samples. Global stability is also related to
a definition of reproducibility for machine learning algorithms put forth by Impagliazzo et al. [48].

Finally, several works have studied the question of whether computationally efficient reductions
exist between online and private learning. Gonen et al. [44] gave an efficient compiler from low
sample complexity pure private learners to online learners, whereas Bun [17] showed that under
cryptographic assumptions, such a reduction cannot exist in general.

3 PRELIMINARIES

3.1 PAC Learning

We use standard notation from statistical learning (e.g., see [74]). Let X be any “domain” set and
consider the “label” set Y = {±1}. A hypothesis is a function h : X → Y , which we alternatively
write as an element of YX . An example is a pair (x ,y) ∈ X × Y . A sample S is a finite sequence
of examples. We also use the following notation: for samples S,T , let S ◦ T denote the combined
sample obtained by appending T to the end of S .

Definition 9 (Population and Empirical Loss). LetD be a distribution over X × {±1}. The popula-
tion loss of a hypothesis h : X → {±1} is defined by

lossD (h) = Pr
(x,y )∼D

[h(x ) � y].

Let S = ((xi ,yi ))n
i=1 be a sample. The empirical loss of h with respect to S is defined by

lossS (h) =
1

n

n∑
i=1

1[h(xi ) � yi ].

Let H ⊆ YX be a hypothesis class. A sample S is said to be realizable by H if there is h ∈ H
such that lossS (h) = 0. A distribution D is said to be realizable by H if there is h ∈ H such
that lossD (h) = 0. A learning algorithmA is a (possibly randomized) mapping taking input samples
to output hypotheses. We denote by A(S ) the distribution over hypotheses induced by the algo-
rithm when the input sample is S . We say that A learns8 a classH with α-error, (1− β )-confidence,
and sample complexitym if for every realizable distribution D,

Pr
S∼Dm, h∼A(S )

[lossD (h) > α] ≤ β .

8We focus on the realizable case.
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For brevity, if A is a learning algorithm with α-error and (1 − β )-confidence, we will say that A is
an (α , β )-accurate learner.

3.2 Online Learning

Littlestone dimension. The Littlestone dimension is a combinatorial parameter that captures mis-
take and regret bounds in online learning [13, 61].9 Its definition uses the notion of mistake trees.
A mistake tree is a binary decision tree whose internal nodes are labeled by elements of X . Any
root-to-leaf path in a mistake tree can be described as a sequence of examples (x1,y1), . . . , (xd ,yd ),
where xi is the label of the i’th internal node in the path, and yi = +1 if the (i + 1)’th node in the
path is the right child of the i’th node and yi = −1 otherwise. We say that a mistake tree T is
shattered by H if for any root-to-leaf path (x1,y1), . . . , (xd ,yd ) in T there is an h ∈ H such that
h(xi ) = yi for all i ≤ d (Figure 1). The Littlestone dimension ofH , denoted Ldim(H ), is the depth
of largest complete tree that is shattered byH . We say thatH is a Littlestone class if it has finite
Littlestone dimension.

Littlestone dimension and thresholds. Recently, Chase and Freitag [25] noticed that the Littlestone
dimension coincides with a model-theoretic measure of complexity—Shelah’s 2-rank.

A classical theorem of Shelah connects bounds on 2-rank (Littlestone dimension) to bounds
on the so-called order property in model theory. The order property corresponds naturally to the
concept of thresholds. LetH ⊆ {±1}X be an hypothesis class. We say thatH contains k thresholds if
there are x1, . . . ,xk ∈ X and h1, . . . ,hk ∈ H such that hi (x j ) = 1 if and only if i ≤ j for all i, j ≤ k .

Shelah’s result (part of the so-called Unstable Formula Theorem10) [47, 76], which we use in the
following translated form, provides a simple and elegant connection between Littlestone dimen-
sion and thresholds.

Theorem 10 (Littlestone dimension and thresholds [47, 76]). LetH be an hypothesis class,
then

(1) If the LdimH ≥ d, thenH contains �logd� thresholds.
(2) IfH contains d thresholds, then its LdimH ≥ �logd�.
For completeness, we provide a combinatorial proof of Theorem 10 in Appendix A.
In the context of model theory, Theorem 10 is used to establish an equivalence between finite

Littlestone dimension and stable theories. It is interesting to note that an analogous connection
between theories that are called NIP theories and VC dimension has also been previously observed
and was pointed out by Laskowski [59]; this in turn led to results in learning theory, particularly
within the context of compression schemes [62] but also some of the first polynomial bounds for
the VC dimension for sigmoidal neural networks [56].

Mistake bound and the Standard Optimal Algorithm. The simplest setting in which learnability
is captured by the Littlestone dimension is called the mistake-bound model [61]. Let H ⊆ {±1}X
be a fixed hypothesis class known to the learner. The learning process takes place in a sequence
of trials, where the order of events in each trial t is as follows:

(i) The learner receives an instance xt ∈ X ,
(ii) The learner responses with a prediction ŷt ∈ {±1}, and

(iii) The learner is told whether or not the responds was correct.

9It appears that the name “Littlestone dimension” was coined in the work of Ben-David et al. [13].
10Shelah [76] provides a qualitative statement, and a quantitative one that is more similar to Theorem 10 can be found in

the work of Hodges [47].
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Fig. 1. A tree shattered by the classH ⊆ {±1}8 that contains the threshold functions ti , where ti (j ) = +1 if

and only if i ≤ j.

We assume that the examples given to the learner are realizable in the following sense: for the
entire sequence of trials, there is a hypothesis h ∈ H such that yt = h(xt ) for every instance xt

and correct response yt . An algorithm in this model learnsH with mistake bound M if for every
realizable sequence of examples presented to the learner it makes a total of at most M incorrect
predictions.

Littlestone [61] showed that the minimum mistake bound achievable by any online learner is
exactly Ldim(H ). Furthermore, he described an explicit algorithm, called the Standard Optimal

Algorithm (SOA), which achieves this optimal mistake bound.

Standard Optimal Algorithm (SOA)

(1) InitializeH1 = H .
(2) For trials t = 1, 2, . . . :

(i) For each b ∈ {±1} and x ∈ X , let H b
t (x ) = {h ∈ Ht : h(x ) = b}. Define h : X →

{±1} by ht (x ) = argmaxb Ldim(H b
t (x )).

(ii) Receive instance xt .
(iii) Predict ŷt = ht (xt ).
(iv) Receive correct response yt .
(v) UpdateHt+1 = Hyt

t (xt ).

Extending the SOA to non-realizable sequences. Our globally stable learner for Littlestone classes
will make use of an optimal online learner in the mistake bound model. For concreteness, we pick
the SOA (any other optimal algorithm will also work). It will be convenient to extend the SOA

to sequences that are not necessarily realizable by a hypothesis in H . We will use the following
simple extension of the SOA to non-realizable samples.

Definition 11 (Extending the SOA to Non-realizable Sequences). Consider a run of the SOA on
examples (x1,y1), . . . , (xm ,ym ), and let ht denote the predictor used by the SOA after seeing the
first t examples (i.e., ht is the rule used by the SOA to predict in the (t + 1)’st trial). Then, after
observing both xt+1,yt+1 do the following:

• If the sequence (x1,y1), . . . , (xt+1,yt+1) is realizable by some h ∈ H , then apply the usual
update rule of the SOA to obtain ht+1.
• Else, set ht+1 as follows: ht+1 (xt+1) = yt+1, and ht+1 (x ) = ht (x ) for every x � xt+1.
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Thus, upon observing a non-realizable sequence, this update rule locally updates the maintained
predictor ht to agree with the last example.

3.3 Differential Privacy

We use standard definitions and notation from the DP literature. For more background, see surveys
found elsewhere [34, 77]. For a,b, ε,δ ∈ [0, 1], let a ≈ε,δ b denote the statement

a ≤ eεb + δ and b ≤ eεa + δ .

We say that two probability distributions p,q are (ε,δ )-indistinguishable if p (E) ≈ε,δ q(E) for every
event E.

Definition 12 (Private Learning Algorithm). A randomized algorithm

A : (X × {±1})m → {±1}X

is (ε,δ )-differentially private if for every two samples S, S ′ ∈ (X × {±1})n that disagree on a single
example the output distributions A(S ) and A(S ′) are (ε,δ )-indistinguishable.

We emphasize that (ε,δ )-indistinguishability must hold for every such pair of samples, even if
they are not generated according to a (realizable) distribution.

The parameters ε,δ are usually treated as follows: ε is a small constant (say 0.1), and δ is negli-

gible, δ = n−ω (1) , where n is the input sample size. The case of δ = 0 is also referred to as pure DP.
Thus, a class H is privately learnable if it is PAC learnable by an algorithm A that is (ε (n),δ (n))-
differentially private with ε (n) ≤ 0.1, and δ (n) ≤ n−ω (1) .

We will use the following corollary of the Basic Composition Theorem from DP (e.g., see
Theorem 3.16 in the work of Dwork and Roth [35]).

Lemma 13 (Composition [31, 32]). If p,q are (ε,δ )-indistinguishable, then for all k ∈ N, pk and

qk are (kε,kδ )-indistinguishable, where pk ,qk are the k-fold products of p,q (i.e., corresponding to k
independent samples).

Private empirical learners. For the proof of Theorem 1, it will be convenient to consider the
following task of minimizing the empirical loss.

Definition 14 (Empirical Learner). Algorithm A is (α , β )-accurate empirical learner for a hy-
pothesis class H with sample complexity m if for every h ∈ H and for every sample S =
((x1,h(x1), . . . , (xm ,h(xm ))) ∈ (X × {±1})m the algorithm A outputs a function f satisfying

Pr
f ∼A(S )

(lossS ( f ) ≤ α ) ≥ 1 − β .

This task is simpler to handle than PAC learning, which is a distributional loss minimization
task. Replacing PAC learning by this task does not lose generality; this is implied by the following
result of Bun et al. [22].

Lemma 15 ([22], Lemma 5.9). Suppose ε < 1 andA is an (ϵ,δ )-differentially private (α , β )-accurate
learning algorithm for a hypothesis class H with sample complexity m. Then there exists an (ϵ,δ )–
differentially private (α , β )-accurate empirical learner forH with sample complexity 9m.

3.4 Additional Notation

A sample S of an even length is called balanced if half of its labels are +1’s and half are −1’s.
For a sample S , let SX denote the underlying set of unlabeled examples: SX = {x |(∃y) : (x ,y) ∈

S }. Let A be a randomized learning algorithm. It will be convenient to associate with A and S the
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function AS : X → [0, 1] defined by

AS (x ) = Pr
h∼A(S )

[
h(x ) = 1

]
.

Intuitively, this function represents the average hypothesis outputted by A when the input sample
is S .

For the next definitions assume that the domain X is linearly ordered. Let S = ((xi ,yi ))m
i=1 be a

sample. We say that S is increasing if x1 < x2 < · · · < xm . For x ∈ X , define ordS (x ) by |{i |xi ≤ x }|.
Note that the set of points x ∈ X with the same ordS (x ) form an interval whose endpoints are two
consecutive examples in S (consecutive with respect to the order on X , i.e., there is no example xi

between them).
The tower function twrk (x ) is defined by the recursion

twr(i )x =
⎧⎪⎨⎪⎩
x i = 1,

2twr(i−1)(x ) i > 1.

The iterated logarithm, log(k ) (x ) is defined by the recursion

log(i ) x =
⎧⎪⎨⎪⎩

logx i = 0,

1 + log(i−1) logx i > 0.

The function log∗ x equals the number of times the iterated logarithm must be applied before the
result is less than or equal to 1. It is defined by the recursion

log∗ x =
⎧⎪⎨⎪⎩

0 x ≤ 1,

1 + log∗ logx x > 1.

4 PRIVATE LEARNING IMPLIES FINITE LITTLESTONE DIMENSION

In this section, we prove that every classH that can be PAC learned by a DP algorithm has a finite
Littlestone dimension. This is achieved by establishing a lower bound on the sample complexity
of privately learning H that depends on its Littlestone dimension (Theorem 2). The crux of this
lower bound lies in Theorem 1, which provides a lower bound for the task of privately learning 1-
dimensional thresholds. This section is organized as follows. In Section 4.1, we provide an overview
of the proof. Then, in Sections 4.2 and 4.3, we prove Theorems 1 and 2.

4.1 Proof Overview

The starting point of the proof is Theorem 10, which asserts that ifH has Littlestone dimension d ,
then it contains, as a subclass, at least some logd thresholds. In other words, the class of thresholds
is “complete” in the sense that a lower bound on the sample complexity of DP learning thresholds
yields a lower bound for classes with a large Littlestone dimension.

Thus, consider an arbitrary differentially private algorithm A that learns the class of thresholds
over an ordered domain X of size n. Our goal is to show a lower bound of Ω(log∗ n) on the sample
complexity of A. A central challenge in the proof emerges because A may be improper and output
arbitrary hypotheses (this is in contrast with proving impossibility results for proper algorithms
where the structure of the learned class can be exploited).

The proof consists of two parts. The first part handles the preceding challenge by showing that
for any algorithm (in fact, for any mapping that takes input samples to output hypotheses) there
is a large subset of the domain that is homogeneous with respect to the algorithm. This notion of
homogeneity places useful restrictions on the algorithm on input samples from the homogeneous

Journal of the ACM, Vol. 69, No. 4, Article 28. Publication date: August 2022.



28:14 N. Alon et al.

Fig. 2. Depiction of two possible outputs of an algorithm over an homogeneous set, given two input samples

from the set (marked in red). The numbers pi denote, for a given point x , the probability that h(x ) = 1, where

h ∼ A(S ) is the hypothesis h outputted by the algorithm on input sample S . These probabilities depend (up

to a small additive error) only on the interval that x belongs to. In the figure, we changed in the input the

fourth example—this only affects the interval and not the values of the pi ’s (again, up to a small additive

error).

set. The second part of the argument utilizes the homogeneity of X ′ ⊆ X to derive a lower bound
on the sample complexity of the algorithm in terms of |X ′ |.

We note that the Ramsey argument in the first part is quite general: it does not use the definition
of DP and could perhaps be useful in other sample complexity lower bounds. It is also worth noting
that a Ramsey-based argument was used by Bun [23] in a weaker lower bound for DP learning
thresholds in the proper case. In contrast to the first part, the second (and more technical) part of
the proof is tailored specifically to the definition of DP. We next outline each of these two parts.

Reduction to homogeneous sets. As discussed earlier, the first step in the proof is about identify-
ing a large homogeneous subset of the input domain X on which we can control the output of A.
To define homogeneity, recall from Section 3.4 that a sample S = ((xi ,yi ))m

i=1 of an even length is
called balanced if half of its labels are +1’s and half are −1’s, and that S is said to be increasing if
x1 < x2 < · · · < xm . Now, a subset X ′ ⊆ X is called homogeneous with respect to A if there is a list
of numbers p0,p1, . . . ,pm such that for every increasing balanced sample S of points from X ′ and
for every x ′ from X ′ with ordS (x ′) = i ,

|AS (x ′) − pi | ≤ γ ,

where γ is sufficiently small. For simplicity, in this proof overview we will assume that γ = 0.
(In the proof, γ is some O (1/m) (see Definition 16).) So, for example, if A is deterministic, then
h = A(S ) is constant over each of the intervals defined by consecutive examples from S . Figure 2
presents an illustration.

The derivation of a large homogeneous set follows by a standard application of the Ramsey
theorem for hypergraphs using an appropriate coloring (Lemma 17).

Lower bound for homogenous algorithms. We next assume thatX ′ = {1, . . . ,k } is a large homoge-
neous set with respect to A (with γ = 0). We will obtain a lower bound on the sample complexity
of A, denoted by m, by constructing a family P of distributions such that (i) on the one hand,

|P | ≤ 2Õ (m2 ) , and (ii) on the other hand, |P | ≥ Ω(k ). Combining these inequalities yields a lower
bound onm in terms of |X ′ | = k and concludes the proof.

The construction of P proceeds as follows and is depicted in Figure 3: let S be an increasing
balanced sample of points from X ′. Using the fact that A learns thresholds, it is shown that for
some i1 < i2 we have that pi1 ≤ 1/3 and pi2 ≥ 2/3. Thus, by a simple averaging argument, there is
some i1 ≤ i ≤ i2 such that pi − pi−1 ≥ Ω(1/m).

The last step in the construction is done by picking an increasing sample S such that the interval
(xi−1,xi+1) has size n = Ω(k ). For x ∈ (xi−1,xi+1), let Sx denote the sample obtained by replacing
xi with x in S . By restricting the output hypothesis to the interval (xi−1,xi+1) (which is of size n),
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Fig. 3. An illustration of the definition of the family P . Given an homogeneous set and two consecutive

intervals where there is a gap of at least Ω(1/m) between pi and pi−1 (here, i = 4). The distributions in P
correspond to the different positions of the i’th example, which separates between the (i − 1)’th and the i’th
intervals.

each output distribution A(Sx ) can be seen as a distribution over the cube {±1}n . Thus, the family
of distributions P consists of all distributions Px = A(Sx ) for x ∈ (xi−1,xi+1). Since A is private, it
follows that P has the following two properties:

• Px ′, Px ′′ ∈ P are (ε,δ )-indistinguishable for all x ′,x ′′ ∈ (xi−1,xi+1), and

• Put r =
pi−1+pi

2 , then for all Px ∈ P,

(∀x ′ ≤ n) : Pr
h∼Px

[
h(x ′) = 1

]
=
⎧⎪⎨⎪⎩
r − Ω(1/m) x ′ < x ,

r + Ω(1/m) x ′ > x .

It remains to show that Ω(k ) ≤ |P| ≤ 2Õ (m2 ) . The lower bound follows directly from the definition
of P. The upper bound requires a more subtle argument: it exploits the composition property for
DP (see Lemma 13) via a privacy-breaching “attack” that is based on binary search. This argument
appears in Lemma 21, whose proof is self-contained.

4.2 A Lower Bound for Privately Learning Thresholds

4.2.1 Proof of Theorem 1. The proof uses the following definition of homogeneous sets. Recall
the definitions of balanced sample and of an increasing sample—in particular, that a sample S =
((x1,y1), . . . , (xm ,ym )) of an even size is realizable (by thresholds), balanced, and increasing if and
only if x1 < x2 < · · · < xm and the first half of the yi ’s are −1 and the second half are +1.

Definition 16 (m-Homogeneous Set). A set X ′ ⊆ X is m-homogeneous with respect to a learning
algorithm A if there are numbers pi ∈ [0, 1], for 0 ≤ i ≤ m such that for every increasing balanced
realizable sample S ∈ (X ′ × {±1})m and for every x ∈ X ′ \ SX ,

|AS (x ) − pi | ≤
1

102m
,

where i = ordS (x ). The list (pi )m
i=0 is referred to as the probabilities list of X ′ with respect to A.

Proof of Theorem 1. Let A be a (1/16, 1/16)-accurate learning algorithm that learns the class
of thresholds overX withm examples and is (ε,δ )-differentially private with ε = 0.1,δ = 1

103m2 log m
.

By Lemma 15, we may assume without loss of generality that A is an empirical learner with the
same privacy and accuracy parameters and sample size that is at most nine times larger.
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Theorem 1 follows from the next two lemmas, which we prove later.

Lemma 17 (Every Algorithm Has Large Homogeneous Sets). Let A be a (possibly random-
ized) algorithm that is defined over input samples of sizem over a domain X ⊆ R with |X | = n. Then,
there is a set X ′ ⊆ X that ism-homogeneous with respect to A of size

|X ′ | ≥ log(m) (n)

2O (m log m)
.

Lemma 17 allows us to focus on a large homogeneous set with respect to A. The next lemma
implies a lower bound in terms of the size of a homogeneous set. For simplicity and without loss
of generality, assume that the homogeneous set is {1, . . . ,k }.

Lemma 18 (Large Homogeneous Sets Imply Lower Bounds for Private Learning). Let A
be an (0.1,δ )-differentially private algorithm with sample complexitym and δ ≤ 1

103m2 log m
. Let X =

{1, . . . ,k } be m-homogeneous with respect to A. Then, if A empirically learns the class of thresholds
over X with (1/16, 1/16)-accuracy, then

k ≤ 2O (m2 log2 m)

(i.e.,m ≥ Ω(

√
log k

log log k
)).

With these lemmas in hand, Theorem 1 follows by a short calculation: indeed, Lemma 17 implies

the existence of an homogeneous set X ′ with respect to A of size k ≥ log(m) (n)/2O (m log m) . We
then restrict A to input samples from the set X ′, and by relabeling the elements of X ′ assume that

X ′ = {1, . . . ,k }. Lemma 18 then implies that k = 2O (m2 log2 m) . Together, we obtain that

log(m) (n) ≤ 2c ·m2 log m

for some constant c > 0. Applying the iterated logarithm t = log∗ (2c ·m2 log m ) = log∗ (m) + O (1)
times on the inequality yields that

log(m+t ) (n) = log(m+log∗ (m)+O (1)) (n) ≤ 1,

and therefore log∗ (n) ≤ log∗ (m) +m +O (1), which implies thatm ≥ Ω(log∗ n) as required. �

4.2.2 Proof of Lemma 17. We next prove that every learning algorithm has a large homoge-
neous set. We will use the following quantitative version of the Ramsey theorem due to Erdös and
Rado [37] (see also the book by Graham et al. [45] or Theorem 10.1 in the survey by Mubayi and
Suk [66]).

Theorem 19 ([37]). Let s > t ≥ 2 and q be integers, and let

N ≥ twrt (3sq logq).

Then for every coloring of the subsets of size t of a universe of size N using q colors, there is a homo-
geneous subset11 of size s .

Proof of Lemma 17. Define a coloring on the (m + 1)-subsets of X as follows. Let D = {x1 <
x2 < · · · < xm+1} be an (m + 1)-subset of X . For each i ≤ m + 1, let D−i = D \ {xi }, and let S−i

denote the balanced increasing sample on D−i . Set pi to be the fraction of the form t
102m

that is
closest to AS−i (xi ) (in case of ties, pick the smallest such fraction). The coloring assigned to A is
the list (p1,p2, . . . ,pm+1).

11A subset of the universe is homogeneous if all of its t -subsets have the same color.
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Thus, the total number of colors is (102m+1) (m+1) . By applying Theorem 19 with t :=m+1,q :=

(102m + 1) (m+1) , and N := n, there is a set X ′ ⊆ X of size

|X ′ | ≥ log(m) (n)

3(102m + 1)m+1 (m + 1) log(102m + 1)
=

log(m) (N )

2O (m log m)

such that all m + 1-subsets of X ′ have the same color. One can verify that X ′ is indeed m-
homogeneous with respect to A. �

4.2.3 Proof of Lemma 18. The lower bound is proven by using the algorithm A to construct a
family of distributions P with certain properties, and use these properties to derive that Ω(k ) ≤
P ≤ 2O (m2 log2 m) , which implies the desired lower bound.

Lemma 20. Let A,X ′,m,k as in Lemma 18, and set n = k −m. Then there exists a family P = {Pi :
i ≤ n} of distributions over {±1}n with the following properties:

(1) Every Pi , Pj ∈ P are (0.1,δ )-indistinguishable.
(2) There exists r ∈ [0, 1] such that for all i, j ≤ n:

Pr
v∼Pi

[v (j ) = 1] =
⎧⎪⎨⎪⎩
≤ r − 1

10m
j < i,

≥ r + 1
10m

j > i .

Lemma 21. Let P,n,m, r as in Lemma 20. Then, n ≤ 2103m2 log2 m .

By the preceding lemmas, k −m = |P | ≤ 2103m2 log2 m , which implies that k = 2O (m2 log2 m) as
required. Thus, it remains to prove these lemmas, which we do next.

For the proof of Lemma 20, we will need the following claim.

Claim 22. Let (pi )m
i=0 denote the probabilities list of X ′ with respect to A. Then for some 0 < i ≤ m,

pi − pi−1 ≥
1

4m
.

Proof. The proof of this claim uses the assumption that A empirically learns thresholds. Let S
be a balanced increasing realizable sample such that SX = {x1 < · · · < xm } ⊆ X ′ are evenly spaced
points on K (so, S = (xi ,yi )m

i=1, where yi = −1 for i ≤ m/2 and yi = +1 for i > m2).
A is an (α = 1/16, β = 1/16)-empirical learner, and therefore its expected empirical loss on S is

at most (1 − β ) · α + β · 1 ≤ α + β = 1/8, and so

7

8
≤ E

h∼A(S )
(1 − lossS (h))

=
1

m

m/2∑
i=1

[1 −AS (xi )] +
1

m

m∑
i=m/2+1

[AS (xi )] . (since S is balanced)

This implies that there ism/2 ≤ m1 ≤ m such that AS (xm1 ) ≥ 3/4. Next, by privacy, if we consider
S ′ the sample where we replace xm1 by xm1 + 1 (with the same label), we have that

AS ′ (xm1 ) ≥
(

3

4
− δ

)
e−0.1 ≥ 2

3
.

Note that ordS ′ (xm1 ) = m1 − 1, hence by homogeneity: pm1−1 ≥ 2
3 −

1
102m

. Similarly, we can show

that for some 1 ≤ m2 ≤ m
2 , we havepm2−1 ≤ 1

3+
1

102m
. This implies that for somem2−1 ≤ i ≤ m1−1,

pi − pi−1 ≥
1/3

m
− 1

50m2
≥ 1

4m
,

as required. �
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Proof of Lemma 20. Let i be the index guaranteed by Claim 22 such that pi −pi−1 ≥ 1/4m. Pick
an increasing realizable sample S ∈ (X ′ × {±1})m so that the interval J ⊆ X ′ between xi−1 and
xi+1,

J =
{
x ∈ {1, . . . ,k } : xi−1 < x < xi+1

}
,

is of size k −m. For every x ∈ J , let Sx be the neighboring sample of S that is obtained by replacing
x with xi . This yields family of neighboring samples {Sx : x ∈ (xi−1,xi+1)} such that

• Every two output distributionsA(Sx ′ ),A(Sx ′′ ) are (ε,δ )-indistinguishable (becauseA satisfies
(ε,δ ) DP).
• Set r =

pi+1+pi

2 . Then for all x ,x ′ ∈ J ,

Pr
h∼A(Sx )

[
h(x ′) = 1

]
=
⎧⎪⎨⎪⎩
≤ r − 1

10m
x ′ < x ,

≥ r + 1
10m

x ′ > x .

The proof is concluded by restricting the output of A to J , and identifying J with [n] and
each output distributions A(Sx ) with a distribution over {±1}n . �

Proof of Lemma 21. SetT = 103m2 log2m − 1, and D = 102m2 logT . We want to show that n ≤
2T+1. Assume toward contradiction that n > 2T+1. Consider the family of distributions Qi = PD

i

for i = 1, . . . ,n. By Lemma 13, each Qi ,Q j is (0.1D,δD)-indistinguishable.

We next define a set of mutually disjoint events Ei for i ≤ 2T that are measurable with respect
to each of the Qi ’s. For a sequence of vectors v = (v1, . . . ,vD ) in {±1}n , we let v̄ ∈ {±1}n be the
threshold vector defined by

v̄(j ) =
⎧⎪⎨⎪⎩
−1 1

D

∑D
i=1vi (j ) ≤ r ,

+1 1
D

∑D
i=1vi (j ) ≥ r .

Given a point in the support of any of the Qi ’s, namely a sequence v = (v1, . . . ,vD ) of D
vectors in {±1}n , define a mapping B according to the outcome ofT steps of binary search on v̄ as
follows: probe the n

2 ’th entry of v̄; if it is +1, then continue recursively with the first half of v̄. Else,
continue recursively with the second half of v̄. Define the mapping B = B (v) to be the entry that
was probed at the T ’th step. The events Ej correspond to the 2T different outcomes of B. These

events are mutually disjoint by the assumption that n > 2T+1.
Notice that for any possible i in the image of B, applying the binary search on a sufficiently

large independent and identically distributed sample v from Pi would yield B (v) = i with high
probability. Quantitatively, a standard application of Chernoff inequality and a union bound imply
that the event Ei = {v : B (v̄) = i} for v ∼ Qi , has probability at least

1 −T exp
(
−2

1

102m2
D
)
= 1 −T exp(−2 logT ) ≥ 2

3
.

We claim that for all j ≤ n, and i in the image of B,

Q j (Ei ) ≥ 1

2
exp(−0.1D). (1)

This will finish the proof since the 2T events are mutually disjoint, and therefore

1 ≥ Q j (∪iEi )

=
∑

i

Q j (Ei )

≥ 2T · 1

2
e−0.1D

= 2T−1e−0.1D .

However, 2T−1e−0.1D > 1 by the choice of T ,D, which is a contradiction.
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Thus, it remains to prove Equation (1). This follows since Qi ,Q j are (0.1D,Dδ )-
indistinguishable:

2

3
≤ Qi (Ei ) ≤ exp(0.1D)Q j (Ei ) + Dδ ,

and by the choice of δ , which implies that 2
3 − Dδ ≥

1
2 . �

4.3 Privately Learnable Classes Have Finite Littlestone Dimension

We conclude this section by deriving Theorem 2, which gives a lower bound of Ω(log∗ d ) on the
sample complexity of privately learning a class with Littlestone dimension d .

Proof of Theorem 2. The proof is a direct corollary of Theorems 10 and 1. Indeed, let H be a
class with Littlestone dimensiond , and let c = �logd�. By Item 1 of Theorem 10, there are x1, . . . ,xc

and h1, . . . ,hc ∈ H such that hi (x j ) = +1 if and only if j ≥ i . Theorem 1 implies a lower bound
of m ≥ Ω(log∗ c ) = Ω(log∗ d ) for any algorithm that learns {hi : i ≤ c} with accuracy (1/16, 1/16)
and privacy (0.1,O (1/m2 logm)). �

5 FINITE LITTLESTONE DIMENSION IMPLIES PRIVATE LEARNING

In this section, we prove that every Littlestone class H is PAC learnable by a DP algorithm (The-
orem 3). We begin by providing a proof overview in Section 5.1. Then, in Section 5.2, we prove
that every Littlestone class can be learned by a globally stable algorithm, and in Section 5.3 that
globally stable algorithms can be transformed to DP algorithms. Finally, in Section 5.4, we wrap
up by proving Theorem 3.

5.1 Proof Overview

We next give an overview of the main arguments used in the proof of Theorem 3. The proof consist
of two parts: (i) we first show that every class with a finite Littlestone dimension can be learned by
a globally stable algorithm, and (ii) we then show how to generically obtain a differentially private
learner from any globally stable learner.

5.1.1 Step 1: Finite Littlestone Dimension =⇒ Globally Stable Learning. Let H be a concept
class with Littlestone dimension d . Our goal is to design a globally stable learning algorithm for

H with stability parameter η = 2−2O (d )
and sample complexity n = 22O (d )

. We will sketch here a
weaker variant of our construction that uses the same ideas but is simpler to describe.

The property ofH that we will use is that it can be online learned in the realizable setting with
at most d mistakes (see Section 3.2 for a brief overview of this setting). Let D denote a realizable
distribution with respect to which we wish to learn in a globally stable manner. In other words,D
is a distribution over examples (x , c (x )), where c ∈ H is an unknown target concept. Let A be a
learning algorithm that makes at most d mistakes while learning an unknown concept fromH in
the online model. Consider applying A on a sequence S = ((x1, c (x1)) . . . (xn , c (xn ))) ∼ Dn , and
denote by M the random variable counting the number of mistakes A makes in this process. The
mistake bound guarantee on A guarantees that M ≤ d always. Consequently, there is 0 ≤ i ≤ d
such that

Pr[M = i] ≥ 1

d + 1
.

Note that we can identify, with high probability, an i such that Pr[M = i] ≥ 1/2d by running A
onO (d ) samples fromDn . We next describe how to handle each of the d + 1 possibilities for i . Let
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us first assume that i = d , namely that

Pr[M = d] ≥ 1

2d
.

We claim that in this case we are done: indeed, after making d mistakes, it must be the case thatA
has completely identified the target concept c (or elseA could be presented with another example
that forces it to make d + 1 mistakes). Thus, in this case, it holds with probability at least 1/2d that
A (S ) = c and we are done. Let us next assume that i = d − 1, namely that

Pr[M = d − 1] ≥ 1

2d
.

The issue with applying the previous argument here is that before making the d’th mistake,A can
output many different hypotheses (depending on the input sample S). We use the following idea:
draw two samples S1, S2 ∼ Dn independently, and set f1 = A (S1) and f2 = A (S2). Condition on
the event that the number of mistakes made byA on each of S1, S2 is exactly d − 1 (by assumption,
this event occurs with probability at least (1/2d )2) and consider the following two possibilities:

(i) Pr[f1 = f2] ≥ 1
4 ,

(ii) Pr[f1 = f2] < 1
4 .

If (i) holds, then using a simple calculation one can show that there is h such that Pr[A(S ) = h] ≥
1

(2d )2 · 1
4 and we are done. If (ii) holds, then we apply the following random contest between S1, S2:

(1) Pick x such that f1 (x ) � f2 (x ) and draw y ∼ {±1} uniformly at random.
(2) If f1 (x ) � y, then the output isA (S1 ◦ (x ,y)), where S1 ◦ (x ,y) denotes the sample obtained

by appending (x ,y) to the end of S . In this case, we say that S1 “won the contest.”
(3) Else, f2 (x ) � y, then the output is A (S2 ◦ (x ,y)). In this case, we that S2 “won the contest.”

Note that adding the auxiliary example (x ,y) forces A to make exactly d mistakes on Si ◦ (x ,y).
Now, if y ∼ {±1} satisfies y = c (x ), then by the mistake bound argument it holds that A (Si ◦
(x ,y)) = c . Therefore, since Pry∼{±1}[c (x ) = y] = 1/2, it follows that

Pr
S1,S2,y

[A (Si ◦ (x ,y)) = c] ≥ 1

(2d )2
· 3

4
· 1

2
= Ω(1/d2),

and we are done.
Similar reasoning can be used by induction to handle the remaining cases (the next one would

be that Pr[M = d −2] ≥ 1
2d

, and so on). As the number of mistakes reduces, we need to guess more
labels, to enforce mistakes on the algorithm. As we guess more labels, the success rate reduces;
nevertheless, we never need to make more than 2d such guesses. (Note that the random contests
performed by the algorithm can naturally be presented using the internal nodes of a binary tree
of depth ≤ d .)he proof we present in Section 5.2 is based on a similar idea of performing random
contests, although the construction becomes more complex to handle other issues, such as gen-
eralization, which were not addressed here. For more details, we refer the reader to the complete
argument in Section 5.2.

5.1.2 Step 2: Globally Stable Learning =⇒ Differentially Private Learning. Given a globally sta-
ble learner A for a concept classH , we can obtain a differentially private learner using standard
techniques in the literature on private learning and query release. If A is a (η,m)-globally stable
learner with respect to a distribution D, we obtain a differentially private learner using roughly
m/η samples from that distribution as follows. We first run A on k ≈ 1/η independent samples,
non-privately producing a list of k hypotheses. We then apply a differentially private “Stable His-
tograms” algorithm [21, 58] to this list that allows us to privately publish a short list of hypotheses
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that appear with frequency Ω(η). Global stability of the learnerA guarantees that with high prob-
ability, this list contains some hypothesish with small population loss. We can then apply a generic
differentially private learner (based on the exponential mechanism) on a fresh set of examples to
identify such an accurate hypothesis from the short list.

5.2 Globally Stable Learning of Littlestone Classes

5.2.1 Theorem Statement. The following theorem states that any class H with a bounded Lit-
tlestone dimension can be learned by a globally stable algorithm.

Theorem 23. LetH be a hypothesis class with Littlestone dimension d ≥ 1, let α > 0, and set

m = 22d+2+14d+1 ·
⌈
2d+2

α

⌉
.

Then there exists a randomized algorithm G : (X × {±1})m → {±1}X with the following properties.
LetD be a realizable distribution, and let S ∼ Dm be an input sample. Then there exists a hypothesis
f such that

Pr[G (S ) = f ] ≥ 1

(d + 1)22d+1
and lossD ( f ) ≤ α .

5.2.2 The Distributions Dk . Algorithm G is obtained by running the SOA on a sample drawn
from a carefully tailored distribution. This distribution belongs to a family of distributions that we
define next. Each of these distributions can be sampled from using black-box access to independent
and identically distributed samples from D. Recall that for a pair of samples S,T , we denote by
S ◦T the sample obtained by appending T to the end of S . Define a sequence of distributions Dk

for k ≥ 0 as shown in the boxed text.

Distributions Dk

Let n denote an “auxiliary sample” size (to be fixed later), and let D denote the target
realizable distribution over examples. The distributions Dk = Dk (D,n) are defined by
induction on k as follows:

(1) D0: output the empty sample ∅ with probability 1.
(2) Let k ≥ 1. If there exists an f such that

Pr
S∼Dk−1,T∼Dn

[SOA(S ◦T ) = f ] ≥ 2−2d+2

,

or if Dk−1 is undefined, then Dk is undefined.
(3) Else, Dk is defined recursively by the following process:

(i) Draw S0, S1 ∼ Dk−1 and T0,T1 ∼ Dn independently.
(ii) Let f0 = SOA(S0 ◦T0), f1 = SOA(S1 ◦T1).

(iii) If f0 = f1, then go back to step (i).
(iv) Else, pick x ∈ {x : f0 (x ) � f1 (x )} and sample y ∼ {±1} uniformly.
(v) If f0 (x ) � y, then output S0 ◦T0 ◦ ((x ,y)) and else output S1 ◦T1 ◦ ((x ,y)).

Please see Figure 4 for an illustration of sampling S ∼ Dk for k = 3.
We next observe some basic facts regarding these distributions. First, note that wheneverDk is

well defined, the process in Item 3 terminates with probability 1.
Let k be such that Dk is well defined and consider a sample S drawn from Dk . The size of S

is |S | = k · (n + 1). Among these k · (n + 1) examples, there are k · n examples drawn from D
and k examples that are generated in Item 3(iv). We will refer to these k examples as tournament
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Fig. 4. An illustration of the process of generating a sample S ∼ D3. The edge labels are the samples Tb

drawn in Item 3(i). The node labels are the tournament examples (xb ,yb ) generated in Item 3(iv). The bold

edges indicate which of the samples Tb0,Tb1 was appended to S in step 3(v) along with the corresponding

tournament example. The sample S generated in this illustration isT010 ◦ (x01,y01) ◦T01 ◦ (x0,y0) ◦T0 ◦ (x ,y).

examples. Note that during the generation of S ∼ Dk , there are examples drawn from D that do not
actually appear in S . In fact, the number of such examples may be unbounded, depending on how
many times Items 3(i) through 3(iii) were repeated. In Section 5.2.3, we will define a “Monte Carlo”
variant ofDk in which the number of examples drawn fromD is always bounded. This Monte Carlo
variant is what we actually use to define our globally stable learning algorithm, but we introduce the
simpler distributions Dk to clarify our analysis.

The k tournament examples satisfy the following important properties.

Observation 24. Let k be such that Dk is well defined and consider running the SOA on the
concatenated sample S ◦T , where S ∼ Dk and T ∼ Dn . Then

(1) Each tournament example forces a mistake on the SOA. Consequently, the number of mistakes
made by the SOA when run on S ◦T is at least k .

(2) SOA(S ◦T ) is consistent with T .

The first item follows directly from the definition of x in Item 3(iv) and the definition of S in
Item 3(v). The second item clearly holds when S ◦T is realizable byH (because the SOA is consistent).
For non-realizable S ◦T , Item 2 holds by our extension of the SOA in Definition 11.

The existence of frequent hypotheses. The following lemma is the main step in establishing global
stability.

Lemma 25. There exists k ≤ d and an hypothesis f : X → {±1} such that

Pr
S∼Dk ,T∼Dn

[SOA(S ◦T ) = f ] ≥ 2−2d+2

.

Proof. Suppose for the sake of contradiction that this is not the case. In particular, this means
that Dd is well defined and that for every f ,

Pr
S∼Dd ,T∼Dn

[SOA(S ◦T ) = f ] < 2−2d+2

. (2)

We show that this cannot be the case when f = c is the target concept (i.e., for c ∈ H , which

satisfies lossD (c ) = 0). Toward this end, we first show that with probability 2−2d+2
over S ∼ Dd ,

we have that all d tournament examples are consistent with c: for k ≤ d, let ρk denote the
probability that all k tournament examples in S ∼ Dk are consistent with c . We claim that ρk
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satisfies the recursion ρk ≥ 1
2 (ρ2

k−1
− 8 · 2−2d+2

). Indeed, consider the event Ek that (i) in each of
S0, S1 ∼ Dk−1, all k − 1 tournament examples are consistent with c , and (ii) that f0 � f1. Since

f0 = f1 occurs with probability at most 2−2d+2
< 8 · 2−2d+2

, it follows that Pr[Ek ] ≥ ρ2
k−1
− 8 · 2−2d+2

.
Further, since y ∈ {±1} is chosen uniformly at random and independently of S0 and S1, we
have that conditioned on Ek , c (x ) = y with probability 1/2. Taken together, we have that

ρk ≥ 1
2 Pr[Ek ] ≥ 1

2 (ρ2
k−1
− 8 · 2−2d+2

). Since ρ0 = 1, we get the recursive relation

ρk ≥
ρ2

k−1
− 8 · 2−2d+2

2
, and ρ0 = 1.

Thus, it follows by induction that for k ≤ d , ρk ≥ 4 · 2−2k+1
: the base case is verified readily, and

the induction step is as follows:

ρk ≥
ρ2

k−1
− 8 · 2−2d+2

2

≥ (4 · 2−2k
)2 − 8 · 2−2d+2

2
(by induction)

= 8 · 2−2k+1 − 4 · 2−2d+2

≥ 4 · 2−2k+1

. (k ≤ d and therefore 2−2d+2 ≤ 2−2k+1
)

Therefore, with probability 2−2d+2
, we have that S ◦T is consistent with c (because all examples

in S ◦T that are drawn from D are also consistent with c). Now, since each tournament example
forces a mistake on the SOA (Observation 24), and since the SOA does not make more than d
mistakes on realizable samples, it follows that if all tournament examples in S ∼ Dd are consistent
with c, then SOA(S ) = SOA(S ◦T ) = c . Thus,

Pr
S∼Dd ,T∼Dn

[SOA(S ◦T ) = c] ≥ 2−2d+2

,

which contradicts Equation (2) and finishes the proof. �

Generalization. The next lemma shows that only hypotheses f that generalize well satisfy the con-
clusion of Lemma 25 (note the similarity of this proof with the proof of Proposition 7).

Lemma 26 (Generalization). Let k be such that Dk is well defined. Then every f such that

Pr
S∼Dk ,T∼Dn

[SOA(S ◦T ) = f ] ≥ 2−2d+2

satisfies lossD ( f ) ≤ 2d+2

n
.

Proof. Let f be a hypothesis such that PrS∼Dk ,T∼Dn [SOA(S ◦ T ) = f ] ≥ 2−2d+2
and let α =

lossD (h). We will argue that

2−2d+2 ≤ (1 − α )n . (3)

Define the events A,B as follows:

(1) A is the event that SOA(S ◦T ) = f . By assumption, Pr[A] ≥ 2−2d+2
.

(2) B is the event that f is consistent with T . Since |T | = n, we have that Pr[B] = (1 − α )n .

Note that A ⊆ B: indeed, SOA(S ◦ T ) is consistent with T by the second item of Observa-
tion 24. Thus, whenever SOA(S ◦ T ) = f , it must be the case that f is consistent with T . Hence,
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Pr[A] ≤ Pr[B], which implies Inequality (3) and finishes the proof (using the fact that 1−α ≤ 2−α

and taking logarithms on both sides). �

5.2.3 The Algorithm G.

A Monte Carlo variant of Dk . Consider the following first attempt of defining a globally
stable learner G: (i) draw i ∈ {0 . . .d } uniformly at random, (ii) sample S ∼ Di , and (iii) output
SOA(S ◦ T ), where T ∼ Dn . The idea is that with probability 1/(d + 1), the sampled i will be
equal to a number k satisfying the conditions of Lemma 25, and so the desired hypothesis f
guaranteed by this lemma (which also has low population loss by Lemma 26) will be outputted

with probability at least 2−2d
/(d + 1).

The issue here is that sampling f ∼ Di may require an unbounded number of samples from
the target distribution D (in fact, Di may even be undefined). To circumvent this possibility, we
define a Monte Carlo variant of Dk in which the number of examples drawn from D is always
bounded.

The Distributions D̃k (a Monte Carlo Variant of Dk )

(1) Let n be the auxiliary sample size and N be an upper bound on the number of exam-
ples drawn from D.

(2) D̃0: output the empty sample ∅ with probability 1.

(3) For k > 0, define D̃k recursively by the following process:
(*) Throughout the process, if more than N examples from D are drawn (including

examples drawn in the recursive calls), then output “Fail.”

(i) Draw S0, S1 ∼ D̃k−1 and T0,T1 ∼ Dn independently.
(ii) Let f0 = SOA(S0 ◦T0), f1 = SOA(S1 ◦T1).

(iii) If f0 = f1, then go back to step (i).
(iv) Else, pick x ∈ {x : f0 (x ) � f1 (x )} and sample y ∼ {±1} uniformly.
(v) If f0 (x ) � y, then output S0 ◦T0 ◦ ((x ,y)) and else output S1 ◦T1 ◦ ((x ,y)).

Note that D̃k is well defined for every k , even for k such that Dk is undefined (however, for
such k’s, the probability of outputting “Fail” may be large).

It remains to specify the upper bound N on the number of examples drawn from D in D̃k .
Toward this end, we prove the following bound on the expected number of examples fromD that
are drawn during generating S ∼ Dk .

Lemma 27 (Expected Sample Complexity of Sampling from Dk ). Let k be such that Dk is
well defined, and let Mk denote the number of examples from D that are drawn in the process of
generating S ∼ Dk . Then,

E[Mk ] ≤ 4k+1 · n.

Proof. Note that E[M0] = 0 asD0 deterministically produces the empty sample. We first show
that for all 0 < i < k ,

E[Mi+1] ≤ 4E[Mi ] + 4n, (4)

and then conclude the desired inequality by induction.
To see why Inequality (4) holds, let the random variable R denote the number of times Item 3(i)

was executed during the generation of S ∼ Di+1. In other words, R is the number of times a
pair S0, S1 ∼ Di and a pair T0,T1 ∼ Dn were drawn. Observe that R is distributed geometrically
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with success probability θ , where

θ = 1 − Pr
S0,S1,T0,T1

[
SOA(S0 ◦T0) = SOA(S1 ◦T1)

]
= 1 −

∑
h

Pr
S,T

[
SOA(S ◦T ) = h

]2

≥ 1 − 2−2d+2

,

where the last inequality follows because i < k and hence Di is well defined, which implies

that PrS,T [SOA(S ◦T ) = h] ≤ 2−2d+2
for all h.

Now, the random variable Mi+1 can be expressed as follows:

Mi+1 =

∞∑
j=1

M (j )
i+1,

where

M (j )
i+1 =

⎧⎪⎨⎪⎩
0 if R < j,

# of examples drawn from D in the j’th execution of Item 3(i) if R ≥ j .

Thus, E[Mi+1] =
∑∞

j=1 E[M (j )
i+1]. We claim that

E[M (j )
i+1] = (1 − θ ) j−1 · (2E[Mi ] + 2n).

Indeed, the probability that R ≥ j is (1 − θ ) j−1 and conditioned on R ≥ j, in the j’th execution of
Item 3(i) two samples from Di are drawn and two samples from Dn are drawn. Thus,

E[Mi+1] =

∞∑
j=1

(1 − θ ) j−1 · (2E[Mi ] + 2n) =
1

θ
· (2E[Mi ] + 2n) ≤ 4E[Mi ] + 4n,

where the last inequality is true because θ ≥ 1 − 2−2d+2 ≥ 1/2.
This gives Inequality (4). Next, using that E[M0] = 0, a simple induction gives

E[Mi+1] ≤ (4 + 42 + · · · + 4i+1)n ≤ 4i+2n,

and the lemma follows by taking i + 1 = k . �

Proof of Theorem 23. Our globally stable learning algorithm G is defined as shown in the
boxed text.

Algorithm G

(1) Consider the distribution D̃k , where the auxiliary sample size is set to n = � 2d+2

α
�

and the sample complexity upper bound is set to N = 22d+2+14d+1 · n.
(2) Draw k ∈ {0, 1, . . . ,d } uniformly at random.

(3) Output h = SOA(S ◦T ), where T ∼ Dn and S ∼ D̃k .

First note that the sample complexity of G is |S | + |T | ≤ N + n = (22d+2+14d+1 + 1) · � 2d+2

α
�, as

required. It remains to show that there exists a hypothesis f such that

Pr[G (S ) = f ] ≥ 2−2d+2

d + 1
and lossD ( f ) ≤ α .

Journal of the ACM, Vol. 69, No. 4, Article 28. Publication date: August 2022.



28:26 N. Alon et al.

By Lemma 25, there exists k∗ ≤ d and f ∗ such that

Pr
S∼Dk∗,T∼Dn

[SOA(S ◦T ) = f ∗] ≥ 2−2d+2

.

We assume k∗ is minimal—in particular, Dk is well defined for k ≤ k∗. By Lemma 26,

lossD ( f ∗) ≤ 2d+2

n
≤ α .

We claim thatG outputs f ∗ with probability at least 2−2d+2−1. To see this, letMk∗ denote the number
of examples drawn from D during the generation of S ∼ Dk∗ . Lemma 27 and an application of
Markov’s inequality yield

Pr
[
Mk∗ > 22d+2+1 · 4d+1 · n

]
≤ Pr

[
Mk∗ > 22d+2+1 · 4k∗+1 · n

]
(because k∗ ≤ d)

≤ 2−2d+2−1. (by Markov’s inequality, since E[Mk∗] ≤ 4k∗+1 · n)

Therefore,

Pr
S∼D̃k∗,T∼Dn

[SOA(S ◦T ) = f ∗] = Pr
S∼Dk∗,T∼Dn

[
SOA(S ◦T ) = f ∗ and Mk∗ ≤ 22d+24d+1 · n

]
≥ 2−2d+2 − 2−2d+2−1 = 2−2d−1.

Thus, since k = k∗ with probability 1/(d + 1), it follows thatG outputs f ∗ with probability at least
2−2d+2−1

d+1 as required. �

5.3 Globally Stable Learning Implies Private Learning

In this section, we prove that any globally stable learning algorithm yields a differentially private
learning algorithm with finite sample complexity.

5.3.1 Tools from DP. We begin by stating a few standard tools from the DP literature that un-
derlie our construction of a learning algorithm.

Let X be a data domain, and let S ∈ Xn . For an element x ∈ X , define freqS (x ) = 1
n
· #{i ∈ [n] :

xi = x }—that is, the fraction of the elements in S which are equal to x .

Lemma 28 (Stable Histograms [21, 58]). Let X be any data domain. For

n ≥ O

(
log(1/ηβδ )

ηε

)
,

there exists an (ε,δ )-differentially private algorithm Hist that, with probability at least 1−β , on input
S = (x1, . . . ,xn ) outputs a list L ⊆ X and a sequence of estimates a ∈ [0, 1] |L | such that

• Every x with freqS (x ) ≥ η appears in L, and
• For every x ∈ L, the estimate ax satisfies |ax − freqS (x ) | ≤ η.

Using the Exponential Mechanism of McSherry and Talwar [64], Kasiviswanathan et al. [57] de-
scribed a generic differentially private learner based on approximate empirical risk minimization.

Lemma 29 (Generic Private Learner [57]). Let H ⊆ {±1}X be a collection of hypotheses. For

n = O

(
log |H | + log(1/β )

αε

)
,

there exists an ε-differentially private algorithm GenericLearner : (X × {±1})n → H such that the
following holds. Let D be a distribution over (X × {±1}) such that there exists h∗ ∈ H with

lossD (h∗) ≤ α .
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Then on input S ∼ Dn , algorithm GenericLearner outputs, with probability at least 1−β , a hypothesis

ĥ ∈ H such that

lossD (ĥ) ≤ 2α .

Our formulation of the guarantees of this algorithm differ slightly from those of Ka-
siviswanathan et al. [57], so we give its standard proof for completeness.

Proof of Lemma 29. The algorithm GenericLearner(S ) samples a hypothesis h ∈ H with prob-
ability proportional to exp(−εn lossS (h)/2). This algorithm can be seen as an instantiation of the
Exponential Mechanism [64]; the fact that changing one sample changes the value of lossS (h) by
at most 1 implies that GenericLearner is ε-differentially private.

We now argue that GenericLearner is an accurate learner. Let E denote the event that the sample
S satisfies the following conditions:

(1) For every h ∈ H such that lossD (h) > 2α , it also holds that lossS (h) > 5α/3, and
(2) For the hypothesis h∗ ∈ H satisfying lossD (h∗) ≤ α , it also holds that lossS (h∗) ≤ 4α/3.

We claim that Pr[E] ≥ 1−β/2 as long as n ≥ O (log( |H |/β )/α ). To see this, leth ∈ H be an arbitrary
hypothesis with lossD (h) > 2α . By a multiplicative Chernoff bound,12 we have lossS (h) > 7α/4
with probability at least 1 − β/(4|H |) as long as n ≥ O (log( |H |/β )/α ). Taking a union bound over
all h ∈ H shows that condition (1) holds with probability at least 1−β/4. Similarly, a multiplicative
Chernoff bound ensures that condition (2) holds with probability at least 1 − β/4, so E holds with
probability at least 1 − β/2.

Now we show that conditioned on E, the algorithm GenericLearner(S ) indeed produces a hy-

pothesish with lossD (ĥ) ≤ 2α . This follows the standard analysis of the accuracy guarantees of the
Exponential Mechanism. Condition 2 of the definition of event E guarantees that lossS (h∗) ≤ 4α/3.
This ensures that the normalization factor in the definition of the Exponential Mechanism is at least
exp(−2εαn/3). Hence, by a union bound,

Pr[lossS (ĥ) > 5α/3] ≤ |H | · exp(−5εαn/6)

exp(−2εαn/3)
= |H |e−εαn/6.

Taking n ≥ O (log( |H |/β )/αε ) ensures that this probability is at most β/2. Given that loss(ĥ) ≤
5α/3, condition (1) of the definition of event E ensures that lossD (ĥ) ≤ 2α . Thus, for n sufficiently

large as described, we have overall that lossD (ĥ) ≤ 2α with probability at least 1 − β . �

5.3.2 Construction of a Private Learner. We now describe how to combine the Stable Histograms
algorithm with the Generic Private Learner to convert any globally stable learning algorithm into
a differentially private one.

Theorem 30. Let H be a concept class over data domain X . Let G : (X × {±1})m → {±1}X be a
randomized algorithm such that forD a realizable distribution and S ∼ Dm , there exists a hypothesis
h such that Pr[G (S ) = h] ≥ η and lossD (h) ≤ α/2.

Then for some

n = Õ

(
m · log(1/ηβδ )

ηε
+

log(1/ηβ )

αε

)
,

there exists an (ε,δ )-differentially private algorithm M : (X × {±1})n → {±1}X that, given n inde-

pendent and identically distributed samples fromD, produces a hypothesis ĥ such that lossD (ĥ) ≤ α
with probability at least 1 − β .

12In other words, for independent random variables Z1, . . . , Zn whose sum Z satisfies E[Z ] = μ , we have for every

δ ∈ (0, 1) that Pr[Z ≤ (1 − δ )μ] ≤ exp(−δ 2μ/2) and Pr[Z ≥ (1 + δ )μ] ≤ exp(−δ 2μ/3).
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Theorem 30 is realized via the learning algorithm M described in the following. Here, the pa-
rameter

k = Õ

(
log(1/ηβδ )

ηε

)

is chosen so that Lemma 28 guarantees the algorithm Hist succeeds with the stated accuracy pa-
rameters. The parameter

n′ = Õ

(
log(1/ηβ )

αε

)

is chosen so that Lemma 29 guarantees that GenericLearner succeeds on a list L of size |L| ≤ 2/η
with the given accuracy and confidence parameters.

Differentially Private Learner M

(1) Let S1, . . . , Sk each consist ofm independent and identically distributed samples from
D. Run G on each batch of samples producing h1 = G (S1), . . . ,hk = G (Sk ).

(2) Run the Stable Histogram algorithm Hist on input H = (h1, . . . ,hk ) using privacy
parameters (ε/2,δ ) and accuracy parameters (η/8, β/3), producing a list L of frequent
hypotheses.

(3) Remove from L all hypotheses with estimated frequency ah < 3η/4.
(4) Let S ′ consist of n′ independent and identically distributed samples from D. Run

GenericLearner(S ′) using the collection of hypotheses L with privacy parameter ε/2

and accuracy parameters (α/2, β/3) to output a hypothesis ĥ.

Proof of Theorem 30. We first argue that the algorithm M is differentially private. The out-
come L of step 2 is generated in a (ε/2,δ )-differentially private manner as it inherits its pri-
vacy guarantee from Hist. For every fixed choice of the coin tosses of G during the executions
G (S1), . . . ,G (Sk ), a change to one entry of some Si changes at most one outcome hi ∈ H . DP
for step 2 follows by taking expectations over the coin tosses of all executions of G, and for the
algorithm as a whole by simple composition.

We now argue that the algorithm is accurate. Using the fact that k ≥ Õ (log(1/β )/η), standard
generalization arguments (e.g., see Theorem A3.1 in the work of Blumer et al. [14]) imply that with
probability at least 1 − β/3, every h such that PrS∼Dm [G (S ) = h] > η satisfies

freqH (h) ≥ 7η

8
.

Let us condition on this event. Then by the accuracy of the algorithm Hist, with probability at least
1− β/2 it produces a list L containing h∗ together with a sequence of estimates that are accurate to
within additive error η/8. In particular, h∗ appears in L with an estimate ah∗ ≥ 7η/8 − η/8 ≥ 3η/4.

Now remove from L every item h with estimate ah < 3η/4. Since every estimate is accurate
to within η/8, this leaves a list with |L| ≤ 2/η that contains h∗ with lossD (h∗) ≤ α . Hence, with
probability at least 1 − β/3, step 4 succeeds in identifying h∗ with lossD (h∗) ≤ α/2.

The total sample complexity of the algorithm is k ·m+n′,which matches the asserted bound. �

5.4 Wrapping up

We now combine Theorem 23 (finite Littlestone dimension =⇒ global stability) with Theorem 30
(global stability =⇒ private learnability) to prove Theorem 3.

Proof of Theorem 3. Let H be a hypothesis class with Littlestone dimension d, and let D
be any realizable distribution. Then, Theorem 23 guarantees, for m = O (22d+2+14d+1 · d/α ), the
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existence of a randomized algorithm G : (X × {±1})m → {±1}X and a hypothesis f such that

Pr[G (S ) = f ] ≥ 1

(d + 1)22d+2+1
and lossD ( f ) ≤ α/2.

Taking η = 1/(d + 1)22d+2+1, Theorem 30 gives an (ε,δ )-differentially private learner with sample
complexity

n = O

(
m · log(1/ηβδ )

ηε
+

log(1/ηβ )

αε

)
= O ��

2Õ (2d ) + log 1/βδ

αϵ
�� . �

6 CONCLUSION

We conclude this article with a few suggestions for future work:

(1) Sharper quantitative bounds: Our upper bound on the differentially private sample complex-
ity of a classH has a double exponential dependence on the Littlestone dimension Ldim(H ),
whereas the lower bound by Alon et al. [5] depends on log∗ (Ldim(H )). The work by Kaplan
et al. [53] shows that for thresholds, the lower bound is nearly tight (up to a polynomial
factor). In a follow-up work to this article, Ghazi et al. [40] improved the upper bound to
poly(Ldim(H )) (roughly, with an exponent of 6). This is also tight up to polynomial factors
for some classes, particularly those with maximal Littlestone dimension equal to log |H |.
However the tower-of-exponents gap between the upper bound and the lower bound re-
mains essentially the same (with two fewer levels). We thus pose the following question:

Can every classH be privately learned with sample complexity
poly(VC(H ), log∗ (Ldim(H )))?

(2) Characterizing private query release: Another fundamental problem in differentially private
data analysis is the query release, or equivalently, the data sanitization problem: given a class

H and a sensitive dataset S , output a synthetic dataset Ŝ such that h(S ) ≈ h(Ŝ ) for every
h ∈ H . In earlier versions of this work, we asked whether a finite Littlestone dimension
characterizes when this task is possible. This was shown to be true by Bousquet et al. [16] and
Ghazi et al. [40]. (Bousquet et al. [16] showed how to transform a proper private learner to
a sanitizer, and Ghazi et al. [40] proved that every Littlestone class can be learned properly.)
However, as with private classification, massive quantitative gaps between the known upper
and lower bounds remain.

(3) Oracle-efficient learning: Neel et al. [69] recently began a systematic study of oracle-efficient
learning algorithms: differentially private algorithms that are computationally efficient
when given oracle access to their non-private counterparts. The main open question left
by their work is whether every privately learnable concept class can be learned in an oracle-
efficient manner. Our characterization shows that this is possible if and only if Littlestone
classes admit oracle-efficient learners.

(4) General loss functions: It is natural to explore whether the equivalence between online and
private learning extends beyond binary classification (which corresponds to the 0-1 loss) to
regression and other real-valued losses. These more general loss functions have been studied
in subsequent work [6, 20, 42, 50], although the problem of exactly characterizing private
learnability in the regression setting remains open.

(5) Global stability: It would be interesting to perform a thorough investigation of global stability
and to explore potential connections to other forms of stability in learning theory, including
uniform hypothesis stability [15], PAC-Bayes [63], local statistical stability [60], and others.
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(6) Differentially private boosting: Can the type of private boosting presented in Section 2.4 be
done algorithmically, and ideally, efficiently?

APPENDIX

A PROOF OF THEOREM 10

In this appendix, we prove Theorem 10. Throughout the proof, a labeled binary tree means a full
binary tree whose internal vertices are labeled by instances.

The second part of the theorem is easy. If H contains 2t thresholds, then there are hi ∈ H for
0 ≤ i < 2t and x j for 0 ≤ j < 2t − 1 such that hi (x j ) = 0 for j < i and hi (x j ) = 1 for j ≥ i . Define
a labeled binary tree of height t corresponding to the binary search process. In other words, the
root is labeled by x2t−1−1, its left child by x2t−1+2t−2−1 and its right child by x2t−1−2t−2−1 and so on. If
the label of an internal vertex of distance q from the root, where 0 ≤ q ≤ t − 1, is xp , then the label
of its left child is xp+2t−q−1 and the label of its right child is xp−2t−q−1 . It is easy to check that the
root-to-leaf path corresponding to each of the functions hi leads to leaf number i from the right
among the leaves of the tree (counting from 0 to 2t − 1).

To prove the first part of the theorem, we first define the notion of a subtree T ′ of depth h of a
labeled binary treeT by induction on h. Any leaf ofT is a subtree of height 0. For h ≥ 1, a subtree
of height h is obtained from an internal vertex of T together with a subtree of height h − 1 of the
tree rooted at its left child and a subtree of height h − 1 of the tree rooted at its right child. Note
that if T is a labeled tree and it is shattered by the class H , then any subtree T ′ of it with the
same labeling of its internal vertices is shattered by the class H . With this definition, we prove
the following simple lemma.

Lemma 31. Let p,q be positive integers and letT be a labeled binary tree of height p +q − 1 whose
internal vertices are colored by two colors: red and blue. Then T contains either a subtree of height p
in which all internal vertices are red (a red subtree) or a subtree of height q in which all vertices are
blue (a blue subtree).

Proof. We apply induction on p + q. The result is trivial for p = q = 1 as the root of T is either
red or blue. Assuming the assertion holds for p ′ + q′ < p + q, let T be of height p + q − 1. Without
loss of generality, assume the root of t is red. If p = 1 we are done, as the root together with a leaf
in the subtree of its left child and one in the subtree of its right child form a red subtree of height p.
If p > 1, then by the induction hypothesis, the tree rooted at the left child of the root ofT contains
either a red subtree of height p − 1 or a blue subtree of height q, and the same applies to the tree
rooted at the right child of the root. If at least one of them contains a blue subtree as earlier, we are
done; otherwise, the two red subtrees together with the root provide the required red subtree. �

We can now prove the first part of the theorem, showing that if the Littlestone dimension of
H is at least 2t+1 − 1, then H contains t + 2 thresholds. We apply induction on t . If t = 0, we
have a tree of height 1 shattered byH . Its root is labeled by some variable x0 and as it is shattered
there are two functions h0,h1 ∈ H so that h0 (x0) = 1,h1 (x0) = 0, meaning that H contains two
thresholds, as needed. Assuming the desired result holds for t − 1, we prove it for t , t ≥ 1. Let
T be a labeled binary tree of height 2t+1 − 1 shattered by H . Let h be an arbitrary member of H
and define a two coloring of the internal vertices of T as follows. If an internal vertex is labeled
by x and h(x ) = 1, then color it red, else color it blue. Since 2t+1 − 1 = 2 · 2t − 1, Lemma 31 with
p = q = 2t implies that T contains either a red or a blue subtree T ′ of height 2t . In the first case,
define h0 = h and let X be the set of all variables x so that h(x ) = 1. Let x0 be the root of T ′ and
let T ′′ be the subtree of T ′ rooted at the left child of T ′. Let H′ be the set of all h′ ∈ H so that
h′(x0) = 0. Note that H′ shatters the tree T ′′, and that the depth of T ′′ is 2t − 1. We can thus
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apply the induction hypothesis and get a set of t +1 thresholds h1,h2, . . . ,ht+1 ∈ H ′ and variables
x1,x2, . . . ,xt ∈ X so that hi (x j ) = 1 iff j ≥ i . Adding h0 and x0 to these we get the desired t + 2
thresholds.

Similarly, ifT contains a blue subtreeT ′, define ht+1 = h and let X be the set of all variables x so
that h(x ) = 0. In this case denote the root of T ′ by xt and let T ′′ be the subtree of T ′ rooted at the
right child ofT ′. LetH′ be the set of all h′ ∈ H so that h′(xt ) = 1. As before,H′ shatters the tree
T ′′ whose depth is 2t − 1. By the induction hypothesis we get t + 1 thresholds h0,h1, . . . ,ht and
variables x0,x1, . . . ,xt−1 ∈ X so that hi (x j ) = 1 if and only if j ≥ i , and the desired result follows
by appending to them ht+1 and xt . This completes the proof. �
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