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Private Information Retrieval from Coded Databases with Colluding Servers∗

Ragnar Freij-Hollanti† , Oliver W. Gnilke† , Camilla Hollanti† , and David A. Karpuk‡

Abstract. We present a general framework for private information retrieval (PIR) from arbitrary coded databases
that allows one to adjust the rate of the scheme to the suspected number of colluding servers. If
the storage code is a generalized Reed–Solomon code of length n and dimension k, we design PIR
schemes that achieve a PIR rate of n−(k+t−1)

n
while protecting against any t colluding servers, for

any 1 ≤ t ≤ n − k. This interpolates between the previously studied cases of t = 1 and k = 1 and
achieves PIR capacity in both of these cases asymptotically as the number of files in the database
grows.

Key words. private information retrieval, distributed storage systems, generalized Reed–Solomon codes

AMS subject classifications. 68P20, 68P30, 94B27, 14G50

DOI. 10.1137/16M1102562

1. Introduction. Private information retrieval (PIR) addresses the question of how to
retrieve data items from a database without disclosing information about the identity of the
data items retrieved, and was introduced by Chor et al. in [4, 5]. The classic PIR model of [5]
views the database as an m-bit binary string x = [x1 · · ·xm] ∈ {0, 1}m and assumes that the
user wants to retrieve a single bit xi without revealing any information about the index i. We
consider a natural extension of this model, wherein the database is a string x = [x1 · · ·xm] of
files xi, which are themselves bit strings, and the user wants to download one of the files xi

without revealing its index.
The rate of a PIR scheme in this model is measured as the ratio of the gained information

over the downloaded information, while upload costs of the requests are usually ignored.
The trivial solution is to download the entire database. This, however, incurs a significant
communication overhead whenever the database is large and is therefore not useful in practice.
While the trivial solution is the only way to guarantee information-theoretic privacy in the
case of a single server [5], this problem can be remedied by replicating the database onto n
servers that do not communicate.

The study of PIR recently received renewed attention when Shah et al. introduced a model
of coded private information retrieval (cPIR) [10, 11]. Here, all files are distributed over the
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648 R. FREIJ-HOLLANTI, O. GNILKE, C. HOLLANTI, AND D. KARPUK

servers according to a storage code, so there is no assumption that the contents of all servers
are identical. It is shown in [10] that for a suitably constructed storage code, privacy can
be guaranteed by downloading a single bit more than the size of the desired file. However,
this requires exponentially many servers in terms of the number of files. Blackburn, Etzion,
and Paterson achieved the same low download complexity with a linear number of servers [3].
This is a vast improvement upon [10], but still far from applicable storage systems where the
number of files tends to dwarf the number of servers.

While [10] effectively answered the question of how low the communication cost of a PIR
scheme can be, it highlighted another cost parameter that should not be neglected in the era
of big data, namely the storage overhead. We define the storage overhead as the ratio of the
total number of coded bits stored on all servers to the total number of uncoded bits of data.
Fazeli, Vardy, and Yaakobi showed in [6] that it is possible to reduce the storage overhead
significantly. However, this requires subpacketizing the file and distributing it over a number
of servers that grows to infinity as the desired storage overhead decreases.

In contrast to the schemes in [10], whose strengths appear as the number of servers tends
to infinity, we are considering the setting where we are given a storage system with a fixed
number of servers. While this in no way optimizes the storage overhead, it does keep the
overhead fixed. Moreover, we allow some subsets of servers to be colluding, by which we
mean that they may inform each other of their interaction with the user. This is very natural
in a distributed storage system where communication between servers is required to recover
data in the case of node failures. PIR over fixed maximum distance separable (MDS) storage
systems was considered in [16]. There, two PIR schemes were presented for arbitrary [n, k]
MDS codes, one of which had rate 1

n and protected against t = n−k colluding servers, and the
other of which had rate n−k

n and t = 1. In section 4 we present these as special instances of a
scheme that can handle any number 1 ≤ t ≤ n− k of colluding servers. Curiously, neither the
performance of our scheme nor the underlying field size depends on the number of files stored.
The rate of our scheme depends on the minimum distance of a certain star product, and in
the case where the storage code is a generalized Reed–Solomon (GRS) code (Theorem 10), we
can achieve a rate of n−(k+t−1)

n .
The capacity (i.e., maximum possible rate) of a PIR scheme for a replicated storage system

was derived in [14] (without collusion) and [13] (with colluding servers). The corresponding
capacity of a coded storage system was given in [1] in the case of no colluding servers. A
previous version of this paper conjectured a formula for the capacity of coded PIR with
colluding servers that gives the capacity bounds of [1, 13] as special cases. However, this
conjecture was recently disproven by Sun and Jafar in [15], who gave an explicit example of
a scheme for coded PIR with colluding servers, the rate of which exceeded our conjectured
upper bound. The work of [15] also characterizes the capacity of PIR for MDS coded data
with colluding servers for other parameters, in particular for m = 2 files of length k = n− 1.
In general, however, the capacity of coded PIR with colluding servers remains open. Recently,
another PIR scheme for coded databases with colluding servers was presented in [18] for MDS
coded data. However, the rates achieved in the present work outperform the rates presented
in [18] even for a moderate number of files, and the scheme in [18] requires the underlying field
to be large. The case of a linear storage code that is not necessarily MDS, without collusion,
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PIR FROM CODED DATABASES WITH COLLUDING SERVERS 649

has been studied in [7]. They show that for certain codes a rate of n−k
n can still be achieved,

outperforming the general result in Theorem 7.

2. Coding-theoretic preliminaries. In this section we briefly collect some standard coding-
theoretic definitions and results that we will need in the following sections.

2.1. Basic definitions. We will use Fq to denote the field with q elements, where q is a
prime power, and [n] for the set {1, 2, . . . , n}. For any two vectors v, w ∈ Fn

q , we denote their
standard inner product by 〈v, w〉. If V ⊆ Fn

q , then we denote its orthogonal complement by

(1) V ⊥ = {w ∈ Fn
q | 〈v, w〉 = 0 for all v ∈ V },

and we write V ⊥W if W ⊆ V ⊥.
For a code C ⊆ Fn

q or a vector v ∈ Fn
q we use CI and vI to denote their respective

projections onto the coordinates in I ⊆ [n]. The support of a codeword c ∈ Fn
q is supp(c) =

{i ∈ [n] : ci 6= 0}, and the support of a code C ⊆ Fn
q is supp(C) = ∪c∈C supp(c). The

minimum distance of C ⊆ Fn
q is

(2) d = dC = min{|I| : |C[n]\I | < |C|}.

For linear codes, this can alternatively be written as

(3) d = min{| supp(c)| : c ∈ C}.

A linear code C ⊆ Fn
q of dimension k and with minimum distance d is called an [n, k, d]-

code, or an [n, k, d]q-code if we wish to emphasize the field of definition. By an elementary
result that is usually attributed to Singleton [12], if C is an [n, k, d]-code, then

(4) d ≤ n− k + 1.

A code that satisfies (4) with equality is called a maximum distance separable (MDS) code.
An [n, k, d] MDS code will be more concisely denoted as an [n, k] MDS code, with d = n−k+1
being implied.

Given a linear [n, k, d]-code C, a subset K ⊆ [n] of size |K| = k is an information set of C
if the natural projection C → CK is a bijection. Equivalently, the columns of any generator
matrix of C corresponding to the indices in K are linearly independent. If C is an MDS code,
then every K ⊆ [n] of size k is an information set.

The repetition code Rep(n)q ⊆ Fn
q is the one-dimensional code generated by the all-ones

vector. It is an [n, 1] MDS code.

2.2. Generalized Reed–Solomon codes. Our proposed PIR scheme will be most inter-
esting when the code defining the storage system is a GRS code. As such, we recall the basic
properties of such codes here.

Definition 1 (GRS codes). Let α = [α1 · · ·αn] ∈ Fn
q satisfy αi 6= αj for i 6= j, and let

v = [v1 · · · vn] ∈ F×q
n. We define the generalized Reed–Solomon (GRS) code of dimension k

associated to these n-tuples to be

(5) GRSk(α, v) = {(vif(αi))1≤i≤n | f ∈ Fq[x], deg(f) < k} .
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650 R. FREIJ-HOLLANTI, O. GNILKE, C. HOLLANTI, AND D. KARPUK

The canonical generator matrix for this code is given by

(6) G(α, v) :=


1 · · · 1
α1 · · · αn

α2
1 · · · α2

n
...

. . .
...

αk−1
1 · · · αk−1

n

 · diag(v),

where diag(v) is the diagonal matrix with the values vi on the diagonal. In data storage
applications, it is often desirable to have an explicit encoding matrix that is systematic, i.e.,
having an identity submatrix in the first k columns. For this purpose, define

(7) G̃(α, v) :=

f1(α1) · · · f1(αn)
...

. . .
...

fk(α1) · · · fk(αn)

 · diag(v),

where
fi(x) = v−1

i

∏
j∈[k]\{i}

x− αj

αi − αj

for i = 1, . . . , k. Note that fi(αi) = v−1
i and fi(αj) = 0 for j ∈ [k] \ {i}; hence this is a

systematic generator matrix for GRSk(α, v).
The code GRSk(α, v) is an [n, k] MDS code. From the Lagrange interpolation formula, it

follows that the dual of GRSk(α, v) is given by GRSn−k(α, u), where

(8) ui =
(
vi

∏
j 6=i

(αi − αj)
)−1

.

2.3. Star products. The star product of two codes will play an integral role in our PIR
scheme, essentially determining its rate.

Definition 2. Let V,W be subvector spaces of Fn
q . We define the star (or Schur) product

V ? W to be the subspace of Fn
q generated by the Hadamard products v ? w = [v1w1 · · · vnwn]

for all pairs v ∈ V,w ∈W .

The following proposition collects some basic properties of the star product that will prove
useful in the coming sections.

Proposition 3. The star product satisfies the following properties:
(i) If C is any linear code in Fn

q and Rep(n)q ⊆ Fn
q is the repetition code of length n over

Fq, then C ? Rep(n)q = C.
(ii) If C and D are any linear codes in Fn

q with supp(C) = supp(D) = [n], and (C ?D)⊥ =
H, then dH ≥ dC⊥ + dD⊥ − 2.

(iii) If C ⊆ Fn
q is any MDS code, then (C ? C⊥)⊥ = Rep(n)q.

(iv) The star product of two GRS codes in Fn
q with the same parameter α is again a GRS

code with parameter α. More specifically, GRSk(α, v)?GRS`(α,w) = GRSmin{k+`−1,n}
(α, v ? w) for any parameters v, w.
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PIR FROM CODED DATABASES WITH COLLUDING SERVERS 651

Proof. Property (i) follows immediately from the definition of the star product. Property
(ii) is Theorem 5 of [17]. To see that property (iii) holds, let H = (C?C⊥)⊥. The containment
Rep(n)q ⊆ H is obvious for any code C. If C is an [n, k] MDS code, then C⊥ is an [n, n− k]
MDS code, so property (ii) implies that dH ≥ dC + dC⊥ − 2 = n. Hence by the Singleton
bound the dimension of H is 1, and therefore H = Rep(n)q.

To see that property (iv) holds, consider some arbitrary codewords (vif(αi)) ∈ GRSk(α, v)
and (wig(αi)) ∈ GRS`(α,w). We clearly have

(9) (vif(αi)) ? (wig(αi)) = (viwi(fg)(αi)) ∈ GRSmin{k+`−1,n}(α, v ? w);

hence the containment GRSk(α, v) ? GRS`(α,w) ⊆ GRSmin{k+`−1,n}(α, v ? w) holds. To see
the reverse containment, note that GRSmin{k+`−1,n}(α, v ? w) is generated as an Fq-vector
space by codewords of the form (viwifm(αi)), where fm(x) = xm is a monomial of degree
m < k + `− 1. We can clearly decompose such a codeword as

(10) (viwifm(αi)) = (vifa(αi)) ? (wifb(αi)),

where fa(x) = xa and fb(x) = xb for any a, b such that a < k, b < `, and a + b = m. This
shows the reverse inclusion and completes the proof.

3. Coded storage and private information retrieval. Let us describe the distributed
storage systems we consider; this setup follows that of [1, 16]. To provide clear and concise
notation, we have consistently used superscripts to refer to files, subscripts to refer to servers,
and parenthetical indices for entries of a vector. So, for example, the query qi

j is sent to the
jth server when downloading the ith file, and yi

j(a) is the ath entry of the vector yi
j stored on

server j.
Suppose we have files x1, . . . , xm ∈ Fb×k

q . Data storage proceeds by arranging the files into
a bm× k matrix

(11) X =

x
1

...
xm

 .
Each file xi is encoded using a linear [n, k, d]-code C with generator matrix GC into an encoded
file yi = xiGC . In matrix form, we encode the matrix X into a matrix Y by right-multiplying
by GC :

(12) Y = XGC =

 y
1

...
ym

 =
[
y1 · · · yn

]
=

 y
1
1 · · · y1

n
...

. . .
...

ym
1 · · · ym

n

 .
The jth column yj ∈ Fbm×1

q of the matrix Y is stored by the jth server. Here the vector
yi

j ∈ Fb×1
q represents the part of the ith file stored on the jth server.

Such a storage system allows any dC−1 servers to fail while still allowing users to success-
fully access any of the files xi. In particular, if C is an MDS code, the resulting distributed
storage system is maximally robust against server failures.
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Private information retrieval (PIR) is the process of downloading a file from a database
without revealing to the database which file is being downloaded [5]. Here by “database” we
mean a collection of servers, e.g., all of the n servers used in the distributed storage system
described earlier.

Definition 4. Suppose we have a distributed storage system as described above. A linear
PIR scheme over Fq for such a storage system consists of the following:

1. For each index i ∈ [m], a probability space (Qi, µi) of queries. When the user wishes to
download xi ∈ Fb×k

q , a query qi ∈ Qi is selected randomly according to the probability
measure µi. Each qi is a set qi = {qi

1, . . . , q
i
n}, where qi

j is sent to the jth server, and
furthermore qi

j is itself a row vector of the form

(13) qi
j = [qi1

j · · · qim
j ], where qi`

j ∈ F1×b
q for all ` ∈ [m].

2. Responses ri
j = 〈qi

j , yj〉 ∈ Fq which the servers compute and transmit to the user. We
set ri = [ri

1 · · · ri
n] to be the total response vector.

3. An iteration process, which repeats steps 1–2 a total of s times until the desired file xi

can be reconstructed from the s responses ri.
4. A reconstruction function which takes as input the various ri over all of the s iterations

and returns the file xi.

Here we view b and s as secondary parameters, which we are free to adjust to enable the
user to download exactly one whole file. If one restricts to the case of b = 1 row per file, the
size of the file k may be too small, in which case it is not clear how to take advantage of a
high rate scheme which inherently downloads more symbols per iteration than there are in a
file. On the other hand, restricting to schemes with s = 1 iteration may fail to download an
entire file. The freedom to adjust b and s allows one to avoid such complications.

The rate of a PIR scheme measures its efficiency by comparing the size of a file with how
much information we downloaded in total.

Definition 5. The rate of a linear PIR scheme is defined to be bk
ns .

Note that Definition 5 ignores the cost to the user of uploading the queries to the servers.
This can be justified by considering xi ∈ V b×k, where V is some finite-dimensional vector
space over Fq, and encoding and data retrieval proceeds in an obvious way. In this setting
the size of the queries is easily seen to be minimal in comparison to download costs when
dimV � 1.

It would be more precise to define the rate as bk
E[w(qi)]s , where E(·) denotes expectation

and w(qi) is the number of queries qi
j which are not the zero vector, since such queries can be

ignored. For comparison with earlier work on PIR, we use Definition 5 for the remainder of
this paper.

Definition 6. A PIR scheme protects against t colluding servers if for every set T =
{j1, . . . , jt} ⊆ [n] of size t, we have

(14) I(Qi
T ; i) = 0,

where Qi
T denotes the joint distribution of all tuples {qi

j1
, . . . , qi

jt
} of queries sent to the servers
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in T as we range over all s iterations of the PIR scheme, and I(· ; ·) denotes the mutual
information of two random variables.

In other words, for every set T of servers of size t, there exists a probability distribution
(QT , µT ) such that for all i ∈ [m], the projection of (Qi, µi) to the coordinates in T is (QT , µT ).
Hence, no subset of servers of size t will learn anything about the index i of the file that is
being requested. If a PIR scheme protects against t colluding servers, it also clearly protects
against t′ colluding servers for all t′ ≤ t.

4. A general PIR scheme for coded storage with colluding servers. Our goal is to
find high-rate PIR schemes which protect against many colluding servers. To that end, the
following construction provides a general PIR scheme for coded databases which protects
against a flexible number of colluding servers.

4.1. Scheme construction. Let C be a linear [n, k, d]q code with generator matrix GC ,
and consider the distributed storage system Y = XGC as in section 3. We choose another
linear code D ⊆ Fn

q , the retrieval code. As we will see, the retrieval code essentially determines
the privacy properties of the scheme.

Throughout this section, i will denote the index of the file we wish to retrieve. We begin
by simplifying notation, defining

(15) c := dC?D − 1.

The queries are constructed so that the total response vector during one iteration is of the
form

(16) ri = (codeword of C ? D) + ỹi,

where ỹi is a vector containing c distinct symbols of yi in known locations, and zeros elsewhere.
Multiplying ri by a generator matrix of (C ? D)⊥ then allows us to recover these c symbols.

To allow the user to download exactly one file over s iterations, we force the file size bk
to be an integer multiple of c by setting

(17) b =
lcm(c, k)

k
and s =

lcm(c, k)
c

so that bk = sc. During each iteration of the scheme, we download

(18) g :=
k

s
=
c

b

symbols from every row of yi. After s iterations, the scheme will have downloaded sg = k
symbols of the ath row yi,a of yi for all a ∈ [b].

We also fix a subset J ⊆ [n] of servers of size

(19) |J | = max{c, k}

which stays constant throughout the scheme. By reindexing the servers if necessary, we may
assume without loss of generality that

(20) J = {1, . . . , |J |}.
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The set J will be the set of all servers from which we obtain encoded symbols. We will also
make use of sets Ja

u ⊆ J where u ∈ [s] and a ∈ [b], which are defined so that during the uth
iteration we obtain the symbol yi

j(a) from every server j ∈ Ja
u .

For clarity of presentation, we will describe steps 1–2 in detail for the first iteration of
the scheme, which will help elucidate the structure of the queries and responses of subsequent
iterations.

1. Query construction. We select mb codewords d`,a = [d`,a(1) · · · d`,a(n)] uniformly at
random from D for ` ∈ [m] and a ∈ [b]. For ` ∈ [m] and j ∈ [n], define

(21) d`
j =

[
d`,1(j) · · · d`,b(j)

]
∈ F1×b

q and dj =
[
d1

j · · · dm
j

]
∈ F1×mb

q .

We partition J1 := [c] ⊆ J into b subsets as follows:

(22) J1
1 = {1, . . . , g}, J2

1 = {g + 1, . . . , 2g}, . . . , Jb
1 = {g(b− 1), . . . , gb = c};

and we define the queries qi
j by

(23) qi
j =

{
dj + eb(i−1)+a if j ∈ Ja

1 ,

dj if j 6∈ J1,

where eb(i−1)+a ∈ F1×mb
q denotes the (b(i− 1) + a)th standard basis vector. Thus for j ∈ Ja

1 ,
the query qi

j is simply dj but with the entry di,a(j) replaced with di,a(j) + 1.
2. Responses. To understand the response vector ri, we first calculate ri

j for j 6∈ J1. We
have

(24) ri
j = 〈qi

j , yj〉 = 〈dj , yj〉 =
m∑

`=1

〈d`
j , y

`
j〉 =

m∑
`=1

b∑
a=1

d`,a(j)y`
j(a).

For j ∈ Ja0
1 for some a0 ∈ [b], the same calculation reveals that

(25) ri
j =

m∑
`=1

b∑
a=1

d`,a(j)y`
j(a) + yi

j(a0).

We see that the value of the total response vector during the first iteration is

(26) ri =
m∑

`=1

b∑
a=1

d
`,a(1)y`

1(a)
...

d`,a(n)y`
n(a)

+



yi
1(1)
...

yi
g(1)
...

yi
g(b−1)(b)

...
yi

c(b)
0(n−c)×1


=

m∑
`=1

b∑
a=1

d`,a ? y`,a

︸ ︷︷ ︸
∈C?D

+



yi
1(1)
...

yi
g(1)
...

yi
g(b−1)(b)

...
yi

c(b)
0(n−c)×1


,
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where y`,a ∈ C is the ath row of y`.
3. Iteration. During the uth iteration for u = 2, . . . , s, we repeat steps 1–2 but recursively

define the subset Ja
u ⊆ J to be the cyclic shift of Ja

u−1 within J to the right by g indices. Thus
if Ja

u−1 = {j1, . . . , jg}, then

(27) Ja
u = {j1 + g, j2 + g, . . . , jg + g},

where if j ∈ Ja
u satisfies j > |J |, it is replaced with (j − 1) (mod |J |) + 1. We let Ju =

J1
u ∪ · · · ∪ Jb

u and define the queries during the uth iteration by

(28) qi
j =

{
dj + eb(i−1)+a if j ∈ Ja

u ,

dj if j 6∈ Ju.

The response vector ri during the uth iteration is of the form

(29) ri = (codeword of C ? D) + yi
Ju
,

where yi
Ju

is a vector with entries yi
j(a) in some known positions for all j ∈ Ja

u and all a ∈ [b],
and zeros elsewhere.

4. Data reconstruction. Let S be a generator matrix for (C?D)⊥. Since c = dC?D−1, every
c columns of S are linearly independent. To reconstruct the file xi, we begin by considering
the response vector ri from the first iteration and computing

(30) Sri = S(codeword of C ? D) + S


yi
1(1)
...

yi
c(b)

0(n−c)×1

 = S


yi
1(1)
...

yi
c(b)

0(n−c)×1

 .
From Sri we can obtain the values of yi

1(1), . . . , yi
c(b), since the first c columns of S are linearly

independent. If ri is instead the response during the uth iteration of the scheme, we similarly
obtain all entries of the form yi

j(a) for j ∈ Ja
u and a ∈ [b] from the product Sri. For a fixed

row a, the sets Ja
1 , . . . , J

a
s are disjoint and consist of sg = k servers in total; hence we retrieve

k distinct symbols of yi,a for every row a.
One can visualize the entire PIR scheme as in Figure 1, wherein we show what portions

of the encoded file yi we are downloading during each iteration, for parameters k = 6, c = 4,
and n = 10 (in the left-hand figure). Here each file consists of b = 2 rows, and the scheme
requires s = 3 iterations. We have J = {1, . . . , k}, and the sets Ja

u are given by

(31)

J1
1 = {1, 2}, J2

1 = {3, 4},
J1

2 = {3, 4}, J2
2 = {5, 6},

J1
3 = {5, 6}, J2

3 = {1, 2}.

In Figure 1 we denote the encoded symbols downloaded during the first iteration in red,
those downloaded during the second iteration in blue, and those downloaded during the third
iteration in green.
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Figure 1. Visualizing the PIR scheme of section 4.1. On the left, downloading from a system with param-
eters (k, c, n) = (6, 4, 10). Since k > c, we have J = {1, . . . , k}, and the scheme requires b = 2 rows and s = 3
iterations. On the right, a system with parameters (k, c, n) = (4, 6, 10). Here c > k, so J = {1, . . . , c} and the
scheme requires b = 3 rows and s = 2 iterations. Depicted is the encoded file yi ∈ Fb×n

q , along with the encoded
symbols downloaded in the first (red), second (blue), and third (green) iterations. The columns which contain
colored blocks are those in J .

In the right-hand side of Figure 1 we repeat this exercise for parameters k = 4, c = 6, and
n = 10. In this case we have b = 3 rows per file and require s = 2 iterations. The sets Ja

u are
given by

(32)
J1

1 = {1, 2}, J2
1 = {3, 4}, J3

1 = {5, 6},
J1

2 = {3, 4}, J2
2 = {5, 6}, J3

2 = {1, 2},

which are depicted in Figure 1.

4.2. Proofs of correctness and privacy. In this section we provide proofs that the PIR
scheme described in the previous subsection is correct (retrieves the desired file) and preserves
privacy (does not reveal the index i of the desired file to any group of t colluding servers).

Theorem 7. Let C be an [n, k, d]-code, and suppose we have a retrieval code D such that
either (i) dC?D − 1 ≤ k, or (ii) there exists J ⊆ [n] of size max{dC?D − 1, k} such that every
subset of J of size k is an information set of C. Then the PIR scheme of section 4.1 is correct,
that is, retrieves the desired file with rate (dC?D − 1)/n.

Proof. If condition (i) is satisfied, we choose J ⊆ [n] of size k to be any information set
of C. In the data reconstruction phase of the PIR scheme, we retrieve k symbols from each
row yi,a of yi, corresponding to the columns belonging to J . Since every K ⊆ J of size k is
an information set, this suffices to recover every yi,a and therefore all of xi. The rate of the
scheme is easily seen to be

(33)
bk

ns
=
k · lcm(c,k)

k

n · lcm(c,k)
c

=
dC?D − 1

n
,

which completes the proof.

Theorem 8. Then the PIR scheme described in section 4.1 protects against dD⊥−1 collud-
ing servers.

Proof. Let T = {j1, . . . , jt} ⊆ [n] be a set of servers of size t ≤ dD⊥ − 1. We begin by
showing that during a single iteration, we have I(qi

j1
, . . . , qi

jt
; i) = 0. From t ≤ dD⊥ − 1 it

follows immediately that every t columns of the generator matrix ofD are linearly independent.
Therefore, the code DT is the entire space Ft

q.
First consider the distribution of one of the vectors

(34) dj = [d1,1(j) · · · d1,b(j) · · · dm,1(j) · · · dm,b(j)] ∈ F1×bm
q
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for a single j ∈ T . As D{j} is distributed uniformly on Fq, and the codewords d`,a are selected
uniformly at random from D, it follows that dj is uniform on F1×bm

q .
Similarly, as DT is all of Ft

q, we see that the joint distribution {dj | j ∈ T} is uniform over(
F1×bm

q

)t. If f(i, j) denotes the index of the standard basis vector as in (23) and (28), we see
that

(35) {qi
j1 , . . . , q

i
jt
} = {dj + ef(i,j) | j ∈ T ∩ J} ∪ {dj | j ∈ T \ J}

is uniformly distributed for all i, as translating the uniform distribution by any vector results
again in the uniform distribution. The distribution {qi

j1
, . . . , qi

jt
} of the queries is therefore

independent of the index i of the desired file; hence I(qi
j1
, . . . , qi

jt
; i) = 0 is satisfied for a single

iteration.
Now consider the joint distribution Qi

T of all queries to all servers in T , as we range over
all iterations of the scheme. For each iteration, the vectors d`,a are chosen independently of
all other iterations, from which arguments identical to the above show that Qi

T is uniform on(
F1×bm

q

)ts. Thus I(Qi
T ; i) = 0 as desired.

4.3. Examples. In this subsection we show how some previously constructed PIR schemes
fit into the general framework of our scheme. Throughout this section, we assume that i is
the index of the file we wish to retrieve. In case either b = 1 or s = 1, we will suppress all
indices relating to rows or iterations, respectively.

Example 1. Let C be any systematic [n, k, d] storage code, and set D = Rep(n) so that
C ? D = C. The above-outlined scheme has rate (dC − 1)/n and as dD⊥ − 1 = 1, it only
provides privacy against noncolluding servers (t = 1). For simplicity we assume dC − 1|k and
therefore require only b = 1 row per file but s = k/(dC − 1) iterations. We set J = [k].

As D = Rep(n), sampling from D uniformly at random amounts to sampling uniformly
at random from Fq itself. Thus the query construction in this example amounts to selecting
a single vector d0 = [d1 · · · dm] ∈ Fm

q uniformly at random, and setting d1 = · · · = dn = d0.
Now set J1 = [dC − 1], and define the queries by

(36) qi
j =

{
d0 + ei if j ∈ J1,
d0 if j 6∈ J1.

The total response vector is then easily seen to be

(37) ri =
m∑

`=1

d`y` +


yi(1)

...
yi(dC − 1)

0(n−(dC−1))×1

 .
Let S be a generator matrix of C⊥ which is in systematic form. Then

(38) Sri =
[
yi(1) · · · yi(dC − 1)

]
=
[
xi(1) · · ·xi(dC − 1)

]
.

In the second iteration, we obtain J2 by shifting J1 to the next set of dC−1 servers and repeat
the above in the obvious way. After k/(dC − 1) iterations we recover [yi(1) · · · yi(k)] = xi.
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Privacy against any single server is clear, since for a fixed j the queries qi
j are independent

samples of the uniform distribution on Fm
q .

This is essentially a paraphrasing of the scheme of [16, Theorem 1] in the language of our
construction. However, in [16], the scheme is only presented for MDS codes.

Example 2. Let C be any [n, k] MDS code, and set D = C⊥. We have (C ?D)⊥ = Rep(n)
by Proposition 3(iv). Since dC?D − 1 = 1 and dD⊥ − 1 = n − k, the above-outlined scheme
has rate 1/n and provides privacy against any n− k colluding servers.

We have b = 1 row per file and require s = k iterations of the scheme. We set J = [k] and
J1 = {1}, so that the queries in the first iteration are given by

(39) qi
j =

{
dj + ei if j = 1,
dj if j > 1,

where the vectors dj ∈ Fn
q are as in the construction. The response vector is

(40) ri =
m∑

`=1

d` ? y` +
[
yi(1)

0(n−1)×1

]
,

where d` ∈ D and y` ∈ C. As (C ? D)⊥ = Rep(n), the reconstruction function takes a
particularly simple form. In particular, we can take S = [1 · · · 1] and see immediately that
Sr = yi(1). Iterating this procedure k times while setting Ju = {u} for u ∈ [k] yields
[yi(1) · · · yi(k)], which suffices to reconstruct xi by the MDS property.

This is the scheme of [16, Theorem 2], again rephrased in the context of our scheme.

Example 3. Let C = Rep(n), and let D be any [n, t] MDS code. We have dC?D − 1 =
dD − 1 = n − t and dD⊥ − 1 = t. The above-outlined scheme thus has rate (n − t)/n and
provides privacy against any t colluding servers. We have b = n− t rows per file but require
only s = 1 iteration of the scheme. We set J = [n− t].

With dj ∈ F1×m(n−t)
q as in the scheme construction, the queries qi

j are of the form

(41) qi
j =

{
dj + e(n−t)(i−1)+j if j ∈ J,
dj if j 6∈ J,

which yields a response vector of the form

(42) ri =
m∑

`=1

n−t∑
a=1

x`(a)d`,a +


xi(1)

...
xi(n− t)

0t×1

 .

If S is a generator matrix of D⊥ in systematic form, then Sri = xi, which completes the
retrieval scheme.
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4.4. Remarks on scheme construction. Theorem 7 implies that for any storage code
C at all, provided that we choose D such that dC?D − 1 ≤ k, we can choose J to be any
information set of C and achieve rate (dC?D − 1)/n and protection against dD⊥ − 1 colluding
servers. In particular, if C is any MDS code, then we can choose any subset J of servers of
size |J | = max{dC?D−1, k}. Thus the scheme achieves the stated rate and protection against
collusion for any MDS storage code C and any retrieval code D.

It is likely that condition (ii) in Theorem 7 is somewhat conservative. We do not really
need every subset of J of size k to be an information set of C—only subsets of the form
Ja

1 ∪ · · · ∪ Ja
s for a ∈ [b], which index the servers retrieving symbols from the ath row of yi.

However, we prefer to state condition (ii) as it is for the sake of simplicity.
Theorem 8 implies that we must have supp(D) = [n] to achieve any nontrivial privacy

with our scheme. For if supp(D) 6= [n], then we would have some standard basis vector in
D⊥, implying dD⊥ − 1 = 0. This can be interpreted by saying that every server has to see
some amount of randomness.

It may be the case that the user does not have the freedom to adjust the number of rows
in a file. For example, each file might be stored as a single row of X, in which case it is not
obvious how to take advantage of a scheme which downloads more symbols per iteration than
there are in a file. One way to remedy this is to simply have the user download multiple files.
Thus one could rephrase Example 3 so that the user downloads n− t files from the database,
instead of one file which consists of n−t symbols. However, according to recent results [2], the
capacity of such multimessage PIR is higher than that of single-message PIR. Thus to make a
more valid comparison with known rate and capacity results, we have chosen to describe our
schemes as only retrieving one file.

While our interest in this paper is in download cost, we observe that the user in each
iteration of our scheme uploads bnm symbols from Fq, for a total of bnms uploaded symbols.
In particular, while the download cost does not depend on the number of files stored, the
upload cost grows linearly in m. While the upload cost also depends linearly on b and s, the
size of the file does as well, so while the upload cost grows with these parameters, so does the
total amount of privately downloaded information.

5. Private information retrieval from GRS codes. In [16], two PIR schemes were pre-
sented for arbitrary [n, k] MDS codes, one of which had rate 1

n and protected against t = n−k
colluding servers, and the other of which had rate n−k

n and t = 1. These schemes are essen-
tially variations of Examples 1 and 2 in this paper. The authors asked if one can adapt their
schemes in the “intermediate regime” where 1 < t < n − k for arbitrary n and k. In this
section, we show how to do this via the construction in section 4 for some suitably chosen
[n, k] MDS storage codes, namely for GRS codes.

By Proposition 3 we know that the class of all GRS codes associated to a fixed n-tuple
α ∈ Fn

q is closed under taking star products and duals. Moreover, while the dimension of a
star product C ?D of two generic codes can be as high as dim(C) ·dim(D), in the case of GRS
codes it is only dim(C) + dim(D) − 1, which is useful when we want to maximize minimum
distances. Indeed, the following theorem from [9], which can be seen as a multiplicative version
of the Singleton bound, shows that among all storage codes, our PIR schemes give the best
privacy-rate tradeoff precisely for GRS storage codes.
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Theorem 9 (immediate corollary of [9, Theorem 2] and [8, Theorem 14]). Let C1 and C2 be
linear codes of dimension k1 and k2 and support [n]. Then

(43) dC1?C2 − 1 ≤ max{0, n− (k1 + k2 − 1)}.

Conversely, if neither C1, C2, nor (C1 ? C2)⊥ is the length n repetition code, then the above
bound is an equality exactly when both C1 and C2 are GRS codes.

By Proposition 3(iv), GRS codes satisfy Theorem 9 with equality. The following theorem
instantiates our scheme in the case where the storage code C and retrieval code D are GRS.

Theorem 10. Let C = GRSk(α, v), and consider the distributed storage system Y = XGC

as in section 3. Then for all t such that 1 ≤ t ≤ n − k, there exists a retrieval code D such
that the PIR scheme constructed in section 4 has rate n−(k+t−1)

n and protects against any t
colluding servers.

Proof. We will give a linear code D satisfying dD⊥ − 1 = t and dC?D− 1 = n− (k+ t− 1);
the theorem then follows immediately from Theorems 7 and 8. Let D = GRSt(α, u) for
an arbitrary vector u ∈ F×q

n; since its dual is also MDS we see that dD⊥ = t + 1. Then
(C ?D)⊥ = GRSn−k−t+1(α,w) with w given by (8). It follows that dC?D− 1 = n− (k+ t− 1)
as desired.

When k + t > n, our PIR scheme has rate zero, regardless of the storage code chosen.
This can be seen readily from Theorem 9, as the retrieval code D must have rank at least t,
so dC?D − 1 ≤ max{0, n − (k + t − 1)} = 0, and thus the number of retrieved symbols per
iteration is dC?D − 1 = 0.

When k = 1, that is, the data is stored via a replication system, our scheme provides a
rate of n−t

n . It is known by [13] that the capacity for PIR in this case is 1−t/n
1−(t/n)m . Thus our

scheme is asymptotically capacity-achieving in that the resulting rates approach capacity as
the number of files m→∞.

Similarly, when t = 1, that is, without server collusion, our scheme provides a rate of n−k
n .

By [1] the capacity for PIR in this case is 1−k/n
1−(k/n)m ; thus our schemes are again asymptotically

capacity-achieving.
The capacity of coded PIR with colluding servers is known when m = 2 and k = n − 1

by [15], but no general result is known for k > 1 and t > 1. A previous version of this paper
conjectured the following.

Conjecture 1 (disproven; see [15]). Let C be an [n, k, d] code that stores m files via the
distributed storage system Y = XGC , and fix 1 ≤ t ≤ n − k. Any PIR scheme for Y that

protects against any t colluding servers has rate at most 1− k+t−1
n

1−( k+t−1
n

)
m .

However, this conjecture was disproven in [15], where the authors exhibited an explicit
PIR scheme for m = 2 files distributed over n = 4 servers using a rate 1/2 storage code
C, which protects against t = 2 collusion. The exhibited scheme has rate 3/5, while our
conjectured capacity was 4/7.

We will refrain from stating any further conjectures on the capacity of coded PIR with
server collusion. However, the question remains open as to whether our schemes are asymp-
totically capacity-achieving as m → ∞ for general k and t. This is consistent with the
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Figure 2. Achievable PIR rates for n = 12 servers and m = 8 files, as a function of t = the number of
colluding servers, for various storage code rates. The black curve represents the PIR capacity for the case of
k = 1 (data stored via a replication system) as computed from [13]. The asterisks show the capacity for the
noncolluding case t = 1 as given in [1]. The PIR capacity is unknown when t ≥ 2 and k ≥ 2.

results in [15], where it is also proven that, although positive retrieval rates are possible when
k+ t > n, the rates decrease to 0 as m→∞. We further remark that the rates of our schemes
do not depend on the number of files stored, and the field size required to achieve the rates
of Theorem 10 is only q ≥ n, which is needed to guarantee the existence of GRS codes. This
is in contrast with the capacity-achieving schemes of [13, 14, 15], wherein the field size grows
as q = O(nm). Similarly, for the scheme of [18] for MDS coded data with colluding servers,
which outperforms our scheme when the number of files m is small, the field size is required
to satisfy q ≥ O

((
n
k

))
.

In Figure 2 we plot for n = 12 servers the achievable PIR rates as a function of the number
of colluding servers t, for various code rates k/n. The black curve represents the capacity for
the case of k = 1, that is, when the data is stored using a replication system [13], while the
asterisks represent the capacity obtained in [1] for the noncolluding case t = 1 at different
code rates. One can see that even for a relatively small number of files and a relatively large
amount of collusion, our scheme is quite close to capacity.

6. An example in the intermediate regime. We will illustrate our scheme with an explicit
example in the case when t = 2 and k = 2. This is the first case not covered by our Examples 1–
3. The storage code C is MDS, with [n, k, d] = [5, 2, 4]. We will have c = k = 2, and hence we
require only b = 1 row per file and s = 1 iteration; thus we are free to ignore these parameters
in what follows.

Example 4. Let α = [0, 1, 2, 3, 4] ∈ F5
5, and let 1 ∈ F5

5 be the all-ones vector. Consider the
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storage code C = GRS2(α,1) over F5, encoded by its systematic generator matrix

(44) GC :=
[
1 0 4 3 2
0 1 2 3 4

]
as in (7). So each file xi is divided into two blocks, xi(1) and xi(2), and distributed onto the
five servers as follows:

(45)


xi(1) on server 1,
xi(2) on server 2,
4xi(1) + 2xi(2) on server 3,
3xi(1) + 3xi(2) on server 4,
2xi(1) + 4xi(2) on server 5.

The random codewords d1, . . . , dm used to query the servers will be drawn from D =
GRS2(α,1), for which we choose the canonical generator matrix

(46) GD :=
[
1 1 1 1 1
0 1 2 3 4

]
.

Note that D⊥ is a [5, 3] MDS code, so our scheme protects against t = dD⊥ − 1 = 2 colluding
servers. The reason we choose different generator matrices for C and D is practical, as the
systematic generator matrix is better for decoding, while the canonical generator matrix is
preferable for computations.

Observe that C ? D = GRS3(α,1). We compute its dual (C ? D)⊥ = GRS2(α, u), where
ui = (

∏
j 6=i(αi − αj))−1 for i = 1, . . . , 5. Since αi runs over the entire field F5, these products

are unusually easy to evaluate; indeed, we have ui = −1 for all i = 1, . . . , 5. Thus (C ?D)⊥ =
GRS2(α,−1) = GRS2(α,1), so (C ? D)⊥ is identical to C, and we use the same generator
matrix GH = GC .

For each file index ` ∈ [m], we sample uniformly at random from D by multiplying GD

on the left by a uniform random vector z` = [z`(1), z`(2)] ∈ F2
5, so that d` = z`GD and

dj = [d1(j) · · · dm(j)] for j ∈ [m]. We let z1 = [z`(1) · · · zm(1)] and z2 = [z1(2) · · · zm(2)],
which are independent and uniformly distributed over Fm

5 .
Suppose we want to retrieve the file xi for some i ∈ [m]. We select dC?D − 1 = 2 servers

from which to download blocks from xi, and for simplicity here we choose the systematic
nodes. The queries qi

j sent to the servers will now be the following vectors in Fm
5 :

(47)

qi
1 = d1 + ei = z1 + ei,

qi
2 = d2 + ei = z1 + z2 + ei,

qi
3 = d3 = z1 + 2z2,

qi
4 = d4 = z1 + 3z2,

qi
5 = d5 = z1 + 4z2,

where ei is the ith standard basis vector. Observe that for each pair of servers, the corre-
sponding joint distribution of queries is the uniform distribution over (Fm

5 )2.
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The servers now respond by projecting their stored data onto the query vector, whence
we obtain a response vector

(48) ri =


∑m

`=1 d
`(1)x`(1) +xi(1)∑m

`=1(d`(1) + d`(2))x`(2) +xi(2)∑m
`=1(d`(1) + 2d`(2))(4x`(1) + 2x`(2))∑m
`=1(d`(1) + 3d`(2))(3x`(1) + 2x`(2))∑m
`=1(d`(1) + 4d`(2))(2x`(1) + 4x`(2))

 ∈ C ? D +


xi(1)
xi(2)

0
0
0

 .
To finally decode the desired symbols, we now compute the matrix product G(C?D)⊥ · ri. One
calculates that indeed

(49) G(C?D)⊥ · ri = G(C?D)⊥ ·


xi(1)
xi(2)

0
0
0

 =
[
xi(1)
xi(2)

]
.

We have therefore extracted the two desired data blocks using five queries, while maintaining
privacy against t = 2 colluding servers.
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