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Abstract—The problem of providing privacy, in the private
information retrieval (PIR) sense, to users requesting data from
a distributed storage system (DSS), is considered. The DSS is
coded by an (n, k, d) Maximum Distance Separable (MDS) code
to store the data reliably on unreliable storage nodes. Some of
these nodes can be spies which report to a third party, such
as an oppressive regime, which data is being requested by the
user. An information theoretic PIR scheme ensures that a user
can satisfy its request while revealing no information on which
data is being requested to the nodes. A user can trivially achieve
PIR by downloading all the data in the DSS. However, this is
not a feasible solution due to its high communication cost. We
construct PIR schemes with low download communication cost.
When there is b = 1 spy node in the DSS, in other words,
no collusion between the nodes, we construct PIR schemes with
download cost 1

1−R per unit of requested data (R = k/n is the
code rate), achieving the information theoretic limit for linear
schemes. The proposed schemes are universal since they depend
on the code rate, but not on the generator matrix of the code.
Also, if b ≤ n− δk nodes collude, with δ = bn−b

k
c, we construct

linear PIR schemes with download cost b+δk
δ

.

I. INTRODUCTION

Consider the following scenario. A group of online peers
(storage nodes) want to collaborate together to form a peer-to-
peer (p2p) distributed storage system (DSS) to store and share
files reliably, while ensuring information theoretic private
information retrieval (PIR). The PIR [2], [3] property allows
a user (possibly one of the peers) to download a file while
revealing no information about which file is being downloaded.
We are mainly motivated by the following two applications: 1)
A DSS that protects users from surveillance and monitoring,
for instance from an oppressive regime. The people (peers)
collectively contribute to storing the data and making it
pervasively available online. But, some peers could be spies
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for the regime. They could turn against their “neighbors” and
report to the oppressor the identity of users accessing some
information deemed to be anti-regime (blogs, photos, videos,
etc.), leading to their persecution; 2) A DSS that protects
the personal information of users, such as gender, age group,
disease, etc., which can be inferred from their file access
history. This information can potentially be used to target them
with unwanted advertisement, or even affect them adversarially
in other areas, such as applications to health insurance or
bank loans. In this respect, the studied DSS can provide an
infrastructure, at least in theory, over which applications, such
as cloud storage and social networking, can be run with a
privacy guarantee for the users.

We suppose the DSS is formed of n peers or nodes. Peers
can be temporarily offline or can leave the system at any time.
The data is stored redundantly in the system to guarantee its
durability and availability. We assume that the DSS uses an
(n, k, d) maximum distance separable (MDS) code that can
tolerate n − k simultaneous node failures. A certain number
of nodes in the DSS, say b, whose identities are unknown to
the users or the system, are spies that collude and can report
the user requests to the oppressor, or sell this information
to interested third parties. The user can always achieve PIR
by asking to download all the files in the DSS. However,
this solution is not feasible due to its high communication
cost, and more efficient solutions have been studied in the
PIR literature [4]–[10] assuming the data is replicated in the
system. The next example illustrates our PIR scheme with
efficient communication cost that can be run on MDS coded
data.

Example 1. Consider a DSS formed of n = 4 nodes, as shown
in Figure 1, that stores m files (ai, bi), ai, bi ∈ GF (3w), i =
1, 2, . . . ,m. The DSS is coded by an (n, k, d) = (4, 2, 3)
MDS code over GF (3) to store the files. Nodes 1, . . . , 4 store,
respectively, ai, bi, ai + bi, ai + 2bi, i = 1, . . . ,m. Suppose
the user is interested in retrieving file f , i.e., (af , bf ), which
can equally likely be any of the m files. To this end, the
user generates a random vector u = (u1, . . . , um) with
components chosen independently and uniformly at random
from the underlying base field GF (3). It sends the query vector
q = u to nodes 1 and 2 and q = u + ef to nodes 3 and 4,
where ef is the all zero vector of length m with a 1 in the
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Fig. 1: The user sends queries as specified in Example 1 and receives the responses. From the responses, the user can decode af and bf ,
thus decoding the desired file privately.

f th entry. Upon receiving the user’s request, each node in
the DSS returns to the user the projection of all its data on
the received query vector. For instance, suppose that the user
wants file 1. Then, nodes 1, . . . , 4 return the following symbols
from GF (3w), I1, I2, af + bf + I1 + I2, af + 2bf + I1 + 2I2,
where I1 =

∑m
i=1 uiai and I2 =

∑m
i=1 uibi are thought of

as “interference” terms. The returned information forms an
invertible linear system and the user can decode af and bf .
Assume that the DSS contains no colluding nodes, i.e. b = 1.
Then, the proposed scheme achieves PIR since the query vector
to each node is statistically independent of the file index f .
However, if a node, say node 1, knows the query vector of
another node, say node 3, it may be able to pin down which
file the user wanted, by computing ef = q − u. However,
we assume that a node does not have access to the queries
coming to any other nodes, and PIR is indeed achieved here.
This PIR scheme downloads 4 symbols to retrieve a file of size
2 symbols. We say that the communication price of privacy
cPoP = 4/2 = 2 for this scheme, which does not depend on
the number of files in the system.

Replication-based PIR: PIR was first introduced in the seminal
papers of Chor et al. in [2], [3] followed by a significant
amount of research in this area [4]–[8], [11], [12]. The
classical model considers a binary database of length m and
a user that wishes to privately retrieve the value of a bit
(a record) in it, while minimizing the total communication
cost including the upload (query) and download phase. Chor
et al. [3] showed that if there is one server storing the
database, the user has to download the whole database in
order to achieve information theoretic PIR. However, when the
database is replicated on n non-colluding (non-cooperating)
servers (nodes), they devised a PIR scheme with total, upload
and download, communication cost of O((n2 log n)m1/n) and
O(m1/3) for the special case of n = 2. In the past few years,
there has been significant progress in developing PIR protocols
with total communication cost that is subpolynomial in the size
of the database [11]–[13]. Moreover, a connection between
PIR and blind interference alignment was discussed in [14].
PIR in a computational sense was shown to be achievable with
a single server (no replication) in [15] assuming the hardness
of quadratic residuosity problem. PIR schemes on databases
that are replicated but not perfectly synchronized were studied
in [16].

Coded PIR: The original model studied in PIR assumes that
the entire data is replicated on each node. PIR on coded data
was studied in the literature on Batch Codes [17], where the
data is coded to allow parallel processing leading to amortizing
the PIR communication cost over multiple retrievals. Recently,
the PIR problem in DSSs that use erasure codes was initiated
in [9], where it was shown that one extra bit of download
is sufficient to achieve PIR assuming the number of servers
n to be exponential in the number of files. Bounds on the
information theoretic tradeoff between storage and download
communication cost for coded DSSs, for arbitrary number of
files m, were derived in [10]. The setting when nodes can
be byzantine (malicious) was considered in [18] and robust
PIR schemes were devised using locally decodable codes.
Robust PIR was also studied in [19], [20]. In [21], methods
for transforming a replication-based PIR scheme into a coded-
based PIR scheme with the same communication cost, up to
a multiplicative constant, were studied. PIR array codes with
optimal rate were designed in [22].

Following this work in [1], [23], the lowest achievable price
of privacy for repetition code on n nodes having m files and
b colluding nodes was found in [24], [25] to be 1−(b/n)m

1−(b/n) and

that of an (n, k)-code was found in [26] to be 1−(k/n)m
1−(k/n) . Also,

schemes using GRS codes have been constructed in [27], and
they conjectured that the lowest achievable price of privacy
is 1−( b+k−1

n )m

1− b+k−1
n

. That conjecture was then disproved using a
counter example in [28]. Moreover, in [29], PIR on coded
data such that arbitrary sets of servers collude is studied. In
[30], PIR schemes for any arbitrary code were discussed. Some
work was also done on symmetric PIR, where the objective is
to not only protect the privacy of the user, but also the privacy
of the server, such that the user should not get information
about files other than the one he wants [31]. Also, the capacity
of byzantine PIR on replicated storage systems was found in
[32].
Contributions: Motivated by the two DSS applications men-
tioned earlier, we draw the following distinctions with the
previous literature prior to this work on coded PIR [1]: (i)
To the best of our knowledge, all the previous work on
coded PIR, except for [10], assumes that the code is used to
encode together data from different files (records). However,
the model here is different, since in DSS applications only
data chunks belonging to the same file are encoded together (as
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done in Example 1); (ii) The work in [10] studies fundamental
limits on the costs of coded PIR. Here, we provide explicit
constructions of PIR schemes with efficient communication
cost.

In comparison with the classical literature on replication-
based PIR, we make the following observations: (i) We focus
only on the number of downloaded symbols in the communi-
cation cost of a PIR scheme. This is since the upload query
matrices are dependent only on the number of files and not
on the size of the file, and typically in DSSs, the size of a
file is relatively larger than the total number of files.; (ii) Up
to b nodes may collude and share their queries in the hope of
determining the requested file.

In the model we study, we assume that the MDS code
parameters (n, k, d) are given and depend on the desired
reliability level for the data. Therefore, they are not design
parameters that can be chosen to optimize the efficiency of
the PIR scheme. However, the code itself may have to be
designed jointly with the PIR scheme. A PIR scheme incurs
many overheads on the DSS, including communication cost,
computations [7], and connectivity; user contacts n instead of
k nodes, as seen in Example 1. However, we measure here
the efficiency of a PIR scheme only by its total download
communication cost, which we refer to as the communication
Price of Privacy (cPoP). A more formal definition of cPoP
is given in Definition 3 after the model we use has been
established. The PIR rate is the inverse of the cPoP , i.e.
the data downloaded from the required file per downloaded
symbol. The following questions naturally arise here: (1) What
is the minimum achievable cPoP for given n, k and b? (2) How
to efficiently construct codes and PIR schemes that achieve
optimal cPoP? (3) Do the code and PIR scheme have to be
designed jointly to achieve optimum cPoP? The last question
addresses the problem of whether reliability and PIR could be
addressed separately in a DSS. Moreover, it may have practical
implications on whether data already existing in coded form
needs to be re-encoded to achieve PIR with minimum cPoP.

In this paper, we make progress towards answering the
last two questions and provide constructions of efficient PIR
schemes for querying MDS coded data. Specifically, we make
the following contributions: (i) For b = 1, i.e., no colluding
nodes, we construct a linear PIR scheme with cPoP = 1

1−R
(R = k/n is the code rate), thus achieving the lower bound
on cPoP for linear schemes in [10], [26] as m → ∞; (ii)
For 2 ≤ b ≤ d − 1, we construct linear PIR schemes with
cPoP = b+k; (iii) More generally, for b ≤ n−δk, δ = bn−bk c,
we construct linear PIR schemes with cPoP = b+δk

δ . While
the minimum cPoP in this regime is unknown, the constructed
schemes have a cPoP that does not depend on m, the number
of files in the system. An important property of the scheme
for b = 1 is its universality. It depends only on n, k, and
b, but not on the generator matrix of the code. Moreover,
both of these schemes can be constructed for any given MDS
code, i.e., it is not necessary to design the code jointly with
the PIR scheme. This implies that b does not have to be a
rigid system parameter. Each user can choose their own value
of b to reflect its desired privacy level, at the expense of a
higher cPoP . The DSS can serve all the users simultaneously

storing the same encoded data, i.e., without having to store
different encodings for different values of b. The construction
in [27] is a generalized version of the earlier scheme presented
here. In both schemes, the parity check matrix of the storage
system should be known. The two schemes perform equally
well, and are in fact identical, for the case of no-collusion
(b = 1) and for the case of (n − k)-collusion (b = n − k).
In the intermediate regime, the generalized scheme in [27]
outperforms our scheme.

II. MODEL

Distributed Storage Systems: Consider a distributed storage
system (DSS) formed of n storage nodes indexed from 1 to n.
The DSS stores m files, X1, . . . , Xm, of equal sizes. The DSS
uses WLOG a systematic1 (n, k, d) MDS code over GF (q) to
store the data redundantly and achieve reliability against d−1
node failures. We assume that each file, Xi, i = 1, . . . ,m, is
divided into α stripes, and each stripe is divided into k blocks.
We represent the file Xi = [xilj ], l = 1, . . . , α, j = 1, . . . , k,
as an α×k matrix, with symbols from the finite field GF (qw).
We divide the file into stripes to have the number of parts of
Xi be divisible by the number of queries and by the number
of retrieved symbols per query.

Xi =


xi11 xi12 . . . xi1k
xi21 xi22 . . . xi2k

...
...

...
...

xiα1 xik2 . . . xiαk

 . (1)

Define X to be the mα×k matrix denoting all the systematic
data in the system, i.e.,

X
mα×k

=


X1

X2

...
Xm

 .

Each stripe of each file is encoded separately using the same
systematic MDS code with a k×n generator matrix Λ = [λij ]
with elements in GF (q). Since the code is systematic, the
square submatrix of Λ formed of the first k columns is the
identity matrix. The encoded data, XΛ, is stored on the DSS
as shown in Table I. We assume that the user knows this layout
table, i.e., he/she knows the coding coefficients for each node.
We denote by wl ∈ GF (qw)mα, l = 1, · · · , n the column
vector representing all the data on node l.
PIR: Suppose the user wants file Xf , where f is chosen
uniformly at random from the set [m] = {1, . . . ,m}. To
retrieve file Xf , the user sends requests to the nodes, among
which there are b colluding nodes. The user does not know
which nodes are colluding, else, he/she would avoid them.
The goal is to devise a PIR scheme that allows the user to
decode Xf , while revealing no information, in an information
theoretic sense, about f to the nodes. The colluding nodes
can analyze the different requests they receive from the user

1We focus on systematic codes due to their widespread use in practice.
However, our results still hold for non-systematic codes.
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node 1 node 2 . . . node k node k + 1 . . . node n

fil
e
1

x111 x112 . . . x11k λ1,k+1x
1
11 + · · ·+ λk,k+1x

1
1k . . . λ1nx111 + · · ·+ λknx

1
1k

...
...

...
...

...
...

...
x1α1 x1α2 . . . x1αk λ1,k+1x

1
α1 + · · ·+ λk,k+1x

1
αk . . . λ1nx1α1 + · · ·+ λknx

1
αk

...
...

...
...

...
...

...
...

fil
e
m

xm11 xm12 . . . xm1k λ1,k+1x
m
11 + · · ·+ λk,k+1x

m
1k . . . λ1nxm11 + · · ·+ λknx

m
1k

...
...

...
...

...
...

...
xmα1 xmα2 . . . xmαk λ1,k+1x

m
α1 + · · ·+ λk,k+1x

m
αk . . . λ1nxmα1 + · · ·+ λknx

m
αk

TABLE I: The layout of the encoded symbols of the m files in the DSS.

in order to identify the requested file. However, as explained
in the introduction, a node has access to the requests coming
to at most b− 1 other nodes in the system. Under this setting,
we are interested in linear PIR schemes.

Definition 1. A PIR scheme is linear over GF (q), and of
dimension ρ, if it consists of the following two stages.
1. Request stage: Based on which file the user wants, he/she
sends requests to a subset of nodes in the DSS. The request
to node l takes the form of a ρ ×mα query matrix Ql over
GF (q).
2. Download stage: Node l responds by sending the projection
of its data onto Ql, i.e.,

Rl = Qlwl ∈ GF (qw)ρ. (2)

We think of each query matrix Ql as formed of ρ sub-
queries corresponding to each of its ρ rows. Moreover, we
think of the response of node l as formed of ρ sub-responses
corresponding to projecting the node data on each row of Ql.

Definition 2 (Information theoretic PIR). A PIR scheme
achieves (perfect) information theoretic PIR iff H(f |Qj , j ∈
γ) = H(f), for all sets γ ∈ [n], |γ| = b. Here, H(·) denotes
the entropy function.

The objective is to design a linear PIR scheme that (i)
allows the user to decode its requested file Xf and (ii)
achieves information theoretic PIR with a low cPoP that
does not depend on m. In the classical literature on PIR,
the communication cost includes both the number of bits
exchanged during the request and download stages. However,
the query vectors depend only on the number of files in the
system, while the response vectors depend on the size of the
files, i.e. for a single sub-query, the query vector to a node
consists of m symbols in GF (q) while the response vector
from one node is 1 symbol in GF (qw). In DSSs, and in the
information-theoretic reformulation of this problem, the size
of the files are assumed to be arbitrarily large, thus making
the number of the files negligible with respect to the size
of the files [10], i.e., w is much larger than m. Therefore,
the download cost dominates the total communication cost.
Hence, we will only consider the download communication
cost, which we will refer to as the communication price of
privacy (cPoP).

Definition 3. [cPoP] The communication Price of Privacy
(cPoP) of a PIR scheme is the ratio of the total number of bits
sent from the nodes to the user during the download stage to
size of the requested file. This is the inverse of the PIR rate
given in the literature.

NOMENCLATURE
n Number of nodes in an (n, k, d) MDS code
k Dimension of the codeword in an (n, k, d) MDS code
d Distance of an (n, k, d) code
b Number of colluding nodes
m Number of files
ρ Dimension of the scheme, number of rounds / subqueries /

rows in query matrix
r Remainder of the division of n− k by k
β Quotient of the division of n− k by k
α Number of subdivisions
u Random vector of size m
wl Data on node l
ef Indicator vector, the all-zero vector with one 1 in position f
ql,i Query vector to Node l in sub-query i
rl,i Response vector from Node l in sub-query i
Ql Query Matrix to Node l of dimension ρ×mα
El 0-1 matrix of dimension ρ×mα

III. MAIN RESULTS

In this section, we state our two main results. The proof of
Theorem 1 is given in Section IV-B, the proof of Theorem 2
is given in Section V-B, and the proof of Theorem 3 is given
in Section VI.

Theorem 1. Consider a DSS using an (n, k) MDS code over
GF (q), with b = 1, i.e. no collusion between the nodes. Then,
the linear PIR scheme over GF (q) described in Section IV-A
achieves perfect PIR with cPoP = 1

1−R , where R = k/n.

The existence of PIR schemes over large fields that can
achieve cPoP = 1

1−R for b = 1 follows from Theorem 4 in
[10]. The scheme in Section IV-A achieves the optimal cPoP
given in [26] as m→∞. We prove Theorem 1 by providing an
explicit construction of the linear PIR scheme. The proposed
PIR construction is over same field over which the code is
designed and is universal in the sense that it depends only on
the parameters n, k and b and not on the generator matrix of
the code.

Theorem 2. Consider a DSS using an (n, k) MDS code over
GF (q), with b colluding nodes, 2 ≤ b ≤ d − 1. Then, there
exists an explicit linear PIR scheme over the same field that
achieves perfect PIR with cPoP = b+ k.

The next result is a generalization of Theorem 2 in which
we describe a PIR scheme when b ≤ n − δk, for any δ ≥ 1.
Theorem 2 is a special case of Theorem 3 when δ = 1, but
we keep it for a better presentation of the proof. The optimal
cPoP for PIR on coded data with colluding nodes is still an
open problem.
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TABLE II: Example of the retrieval pattern for (n, k, d) =
(15, 4, 12). The α × n entries of the table correspond to the α × n
coded symbols of the wanted file. All entries with same number, say
j (also given the same color) are privately retrieved in the jth sub-
query. Note that there are k = 4 nodes, including the last r = 3
nodes, in every sub-query, that do not have any retrieved symbols.
The responses of these nodes are used to decode the “interference”
from all the files, needed to confuse the nodes about what is being
requested. This interference is then cancelled out from the other sub-
responses in order to decode the desired file symbols in each sub-
query.

Theorem 3. For b ≤ n−δk colluding nodes, with δ = bn−bk c,
we construct an explicit linear PIR scheme with cPoP =
b+δk
δ .

To illustrate the performance stated in the above three
theorems, the price of privacy versus the rate of the storage
code (R = k

n ) when using the scheme of Theorem 1, the
scheme of Theorem 2, and the scheme for Theorem 3 for
n = 16 and b = 1 is shown in Figure 2 . We notice that
Theorem 1 shows much improvement on Theorem 2 and
Theorem 3 for b = 1. We can also see that Theorem 3
improves on Theorem 2 when δ > 1.

IV. PIR SCHEME CONSTRUCTION AND PROOF FOR b = 1

A. PIR scheme construction for b = 1

We describe here the PIR scheme referred to in Theorem 1.
We assume WLOG that the MDS code is systematic. The PIR
scheme uses the number of stripes α = d−1 and the dimension
ρ = k.2 We write α = βk+ r where, β and r are integers and
0 ≤ r < k and β ≥ 0.

The scheme consists of the user sending a ρ ×mα query
matrix Ql to each node l, l = 1, . . . , n. To form the query
matrices, the user generates a ρ × mα random matrix U =
[uij ], whose elements are chosen uniformly at random from
GF (q), the same field over which the MDS code is defined.
The query matrices have the following structure:

Ql = U + Ef,l, l = 1, . . . , n− r, (3)
Ql = U, l = n− r + 1, . . . , n. (4)

U is the random component of the query aimed at confusing
the nodes about the request, whereas Ef,l is a deterministic
matrix that depends on the index f of the requested file. The
matrices Ef,l add parts of the file Xf that is being retrieved
to the responses of the nodes. The user can download n − k
symbols privately per sub-query, so the matrices Ef,l add a
symbol to the responses of n−k of the nodes per sub-query. In
this scheme, the user retrieves r symbols from the systematic
nodes, and βk symbols from the parity nodes. Moreover, the
retrieved symbols should not be redundant. The matrices Ef,l
are 0-1 matrices of dimensions ρ×mα, every row corresponds
to a sub-query and every column corresponds to a stripe of
a file. A “1” in the (i, j)th position of Ef,l implies that,
during the ith sub-query, the jth symbol on node l is being
retrieved privately. The matrices Ef,l are designed such that
the following conditions hold:

1) Each row and column of the matrices Ef,l contains at
most one 1. The restriction on rows guarantees that we
receive one coded symbol from a node, instead of the
sum of several symbols. The column condition ensures
that every symbol is only retrieved once, and thus, no
retrieved symbol is redundant.

2) In each sub-query a 1 is added to the queries of exactly
n − k nodes, i.e., for n − k of the matrices Ef,l the
ith row contains a 1. This allows the user to decode a
codeword from the MDS storage code, since k symbols
are not altered, and subsequently decode n− k symbols
of the file Xf .

3) If j is the index of a stripe of the requested file f then
exactly k of the matrices Ef,l contain a 1 in column
j. This ensures that we retrieve exactly k MDS coded
symbols per row, which are needed to recover the original
stripe.

Based on these desired retrieval patterns, we choose

Ef,1 =

[
0k×(f−1)α

Ir×r 0k×βk 0k×(m−f)α0(k−r)×r

]
,

(5)
and Ef,l, l = 2, . . . , k, is obtained from matrix Ef,l−1 by a
single downward cyclic shift of its row vectors.

2The parameters can be optimized to α =
LCM(k,d−1)

k
and ρ =

LCM(k,d−1)
d−1

, as was done in Example 1. But to simplify notation, we will
take α = d− 1 and ρ = k.
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1

Sys. nodes

2 3 4 5

Parity nodes

St
ri

pe
s 1 1 2

2 1 1
3 2 2

TABLE III: Retrieval pattern for a (5,2,4) code.

We divide the first βk parity nodes into β groups of k nodes
each. All nodes in group s, i.e., nodes l where sk + 1 ≤ l ≤
sk + k, receive the same query matrix, such that

Ef,l=
[
0k×(f−1)α+r+(s−1)k Ik×k 0k×(β−s)k+(m−f)α

]
.
(6)

For the remaining r parity nodes we let

Ef,l = 0 , for l > βk + k,

and they hence all receive the same matrix U as a query.

Claim 1. Conditions 1, 2, and 3 are satisfied in the choice of
the Ef,l above.

Proof. 1) Ef,l has at most one 1 in each row and column.
2) For the matrices Ef,l sent to the parity nodes, all βk of

them contain exactly one 1 in row i.
Since the k matrices Ef,l for 1 ≤ l ≤ k sent to the
systematic nodes are generated by cyclic row shifts of
the matrix in (5), and it contains exactly r rows with a
single 1, we see that r of these matrices contain a 1 in
the ith row. In total we have βk + r = n − k matrices
Ef,l that contain a 1 in their ith row.

3) The columns corresponding to the stripes of file f are
in the range (f − 1)α < j ≤ fα. For (f − 1)α < j ≤
(f − 1)α+ r we see that the k matrices of the form (5)
contain exactly one 1 in column j. For (f − 1)α + r +
(s− 1)k < j ≤ (f − 1)α + r + sk, s = 1, · · · , β, the k
matrices Ef,l, for sk+ 1 < l ≤ sk+ k, contain each one
1 in column j.

Example 2 (Retrieval pattern). Consider a DSS using an
(n, k, d) = (15, 4, 12) MDS code. Therefore, we have ρ =
k = 4 sub-queries to each node. Also, the number of stripes
is α = d − 1 = 11. This gives β = 2 and r = 3. Table II
gives the retrieval pattern of the PIR scheme, i.e., which file
symbols are retrieved in each sub-query. The 11x15 entries
in the table represents all the symbols of the desired file with
each node being a column. The numbers (alternatively colors)
in each entry indicate in which sub-query the specific symbol
is retrieved.

Example 3 (Decoding). Now consider another example
with (n, k, d) = (5, 2, 4) with generator matrix Λ =(

1 0 1 1 1
0 1 1 2 3

)
, over GF (5). Suppose the DSS stores

m = 3 files, X1, X2, X3. Our goal is to construct a linear
scheme that achieves perfect PIR against b = 1, with cPoP =

1
1−R = 5

3 . The construction above gives α = d − 1 = 3 and
ρ = k = 2. Thus, a file Xi has the following array structure,

Xi =

 xi11 xi12
xi21 xi22
xi31 xi32

 .

Therefore, we get β = 1 and r = 1. Suppose WLOG that
the user wants file X1, i.e., f = 1. The user generates an
2 × 9 random matrix U = [uij ], whose elements are chosen
uniformly at random from GF (5). For the nodes 1, . . . , 4,
the query matrix Ql = U + E1,l, and Q5 = U . Therefore,
following (3), (4), (5), (6) and Table III we have

Q1 =

[
u11 + 1 u12 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 u24 u25 u26 u27 u28 u29

]
,

Q2 =

[
u11 u12 u13 u14 u15 u16 u17 u18 u19

u21 + 1 u22 u23 u24 u25 u26 u27 u28 u29

]
,

Q3 =

[
u11 u12 + 1 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 + 1 u24 u25 u26 u27 u28 u29

]
,

Q4 =

[
u11 u12 + 1 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 + 1 u24 u25 u26 u27 u28 u29

]
.

The added 1s in certain positions of the query matrix are
due to the addition of the matrix E1,l. This construction
achieves perfect privacy, since the only information any node
l knows about f is through the query matrix Ql, which is
random and independent of f . Next, we want to illustrate how
the user can decode the file symbols. Each node l sends back
the length 2 vector, rl = (rl1, rl2) = Qlwl, l = 1, . . . , 5, to
the user. Recall that wl is the data stored on node l. Consider
the sub-responses of the 5 nodes to the first sub-query. They
form the following linear system:

x111 + I1 = r11 (7)
I2 = r21 (8)

x112 + x122 + I1 + I2 = r31 (9)

x112 + 2x122 + I1 + 2I2 = r41 (10)
I1 + 3I2 = r51, (11)

where Il = uT1 wl, l = 1, 2, and uT1 is the first row of U .
The user can first decode I1 and I2 from (8) and (11).

Then, canceling out the values of I1 and I2 from the remaining
equations, the user can solve for x111, x

1
12 and x122. Similarly,

the user can obtain x121, x
1
13 and x123 from the sub-responses to

the second sub-query. This PIR scheme downloads 2 symbols
from each server. Therefore, it has a cPoP = 10

6 = 5
3 , which

matches the bound in Theorem 1.

B. Proof of Theorem 1

The following remarks from coding theory will be used on
several occasions. For more background and proofs we refer
to [33].

Remark 1. A linear [n, k] code C is the set of all vectors
C := {xG : x ∈ Fkq} ⊆ Fnq , where G is a generator matrix of
the code. Therefore C is a k dimensional subvectorspace of
Fnq and any linear combination of codewords in C is again a
codeword in C.

Remark 2. The following statements are equivalent.
1) A [n, k] code C is MDS
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2) For any generator matrix GC of C any k subset of
columns is full rank.

3) The code C can recover from up to n−k erasures in any
coordinates.

We prove Theorem 1 by showing that the scheme described
in Section IV-A has the following properties.
Decodability: For any sub-query i, we sort the nodes into two
groups to prove decodability. By the properties of the Ef,l in
Claim 1 exactly k nodes receive only the vector uTi , the ith

row of U , as a query. And the user is aware of the indices of
these nodes. For these nodes l, the received symbols are given
by

rli = uTi ·wl.

Since every stored stripe is a codeword in C, by Remark 1,
any linear combination of stripes will be a codeword too. We
notice that rli is indeed the lth component of the codeword
r′i = uTi · (w1, . . . ,wn). Since we have k of its components,
we can recover the whole vector r′i by Remark 2.

For the other nodes `, the ith sub-query is of the form uTi +
eg where eg is a standard basis vector, i.e., a single 1 has been
added to the vector ui in position g. The received symbol r`i =
uTi ·w`+eg ·w` = uTi ·w`+w`(g) therefore is the sum of the
`th component of r′i and the gth symbol of w`. Since we have
recovered r′i from the k unaltered components, we can retrieve
w`(g). Furthermore, the matrices Ef,l are designed such that
we retrieve exactly k symbols from every coded stripe of the
f th file. Using Remark 2 again allows us to retrieve all stripes
of file Xf from these k symbols.

Privacy: Since b = 1, the only way a node l can learn
information about f is from its own query matrix Qi. By,
construction Qi is statistically independent of f and this
scheme achieves perfect privacy.

cPoP: Every node l ∈ [n] responds with ρ = k symbols.
Therefore, the total number of symbols downloaded by the
user is kn. Therefore, cPoP = kn

k(n−k) = 1
1−R .

V. PIR SCHEME CONSTRUCTION AND PROOF FOR
b ≤ d− 1

A. PIR scheme construction for b ≤ d− 1

In this section, we will describe the general PIR scheme
that achieves cPOP = b+k by specifying the query matrices
to each node. This scheme requires b ≤ d−1. To simplify the
description of the scheme, we will assume b = d − 1.3 The
scheme has dimension ρ = k, i.e., it consists of ρ = k sub-
queries. Moreover, the scheme requires no subdivisions, i.e.,
the number of stripes α = 1. Since there are no subdivisions,
we simplify further the notation and write xji1 = xji to denote
the ith systematic symbol of file Xj , where j = 1, . . . ,m.
Denote by f the index of the file that the user wants, i.e., the
user wants to retrieve file Xf . WLOG, we assume the MDS
code is systematic.

In the ith sub-query, i = 1, . . . , k, the proposed PIR scheme
retrieves systematic symbol xfi of the wanted file Xf . So,
by the completion of the scheme, the user will have all the

3If b < d− 1, only b+ k nodes, say the first b+ k, are queried.

k symbols forming the file. In sub-query i, the user creates
d−1 random (column) vectors u1,i, . . . ,ud−1,i, of dimension
m each, whose elements are chosen uniformly at random from
GF (q). Recall that the generator matrix for any systematic
(n, k, d) MDS code is of the form

G
k×n

=
[
Ik×k Pk×(d−1)

]
, (12)

where P is a k× d− 1 matrix describing the parity nodes. A
parity check matrix for this code is then given by

H
(d−1)×n

=
[
−PT I(d−1)×(d−1)

]
.

Define Ui to be the m × (d − 1) matrix with its columns
being the b = d− 1 random vectors used in sub-query i, i.e.,

Ui
m×d−1

= [u1,i,u2,i, . . . ,ud−1,i] .

Now for each sub-query the user generates m random
codewords in the dual code by multiplying the random matrix
Ui ∈ GF (q)m×(d−1) by the parity check matrix H

(d−1)×n
to

calculate
Ui H

(d−1)×n
=
[
q′1,i, . . . ,q

′
n,i

]
.

Note that each row of UiH is a codeword in the dual of the
MDS code used to store the data.

For i = 1, . . . , k, let ql,i be the ith sub-query vector to
node l with l = 1, . . . , n. These query vectors are chosen as
follows:

ql,i =

{
q′l,i + ef , if l = i,

q′l,i, otherwise,
(13)

where ef is the standard basis vector with a single 1 in position
f .

Therefore, the response of node l to the ith sub-query,
denoted by rl,i, is given by (2) and can be written as

rl,i = ql,i
Twl, (14)

where wl is the vector representing the data stored on node l.
We will give an example.

Example 4. Next, we illustrate this scheme through an exam-
ple. Consider a DSS using the following systematic (5, 3, 3)
MDS code with generator matrix

Λ =

 1 0 0 1 1
0 1 0 1 2
0 0 1 1 3

 .
Suppose the system is storing m = 3 files, X1 =

 a1
a2
a3

,

X2 =

 b1
b2
b3

 and X3 =

 c1
c2
c3

. Then, the data is stored

on the different nodes in the DSS as described in table IV.
Our goal is to construct a linear scheme that achieves

perfect PIR against b = 2 colluding nodes with cPoP =
k + b = 3 + b. The scheme will consist of ρ = k = 3 sub-
queries.
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node 1 node 2 node 3 node 4 node 5
a1 a2 a3 a1 + a2 + a3 a1 + 2a2 + 3a3
b1 b2 b3 b1 + b2 + b3 b1 + 2b2 + 3b3
c1 c2 c3 c1 + c2 + c3 c1 + 2c2 + 3c3

TABLE IV: (5,3,3) DSS

Suppose WLOG that the user wants file X1, i.e., f = 1.
We will consider the first sub-query and the remaining sub-
queries (i.e. sub-queries 2 and 3) follow similarly. The user
creates 2 random vectors u1,1,u2,1 of dimension m = 3 each.
U1 = [u1,1,u2,1]. The dual code will have a generator matrix

H
(n−k)×n

=

[
−1 −1 −1 1 0
−1 −2 −3 0 1

]
.

The sub-query vectors to nodes 1 to 5 are the following
respectively

q1,1 = −u1,1 − u2,1 +

 1
0
0

 , (15)

q2,1 = −u1,1 − 2u2,1, (16)
q3,1 = −u1,1 − 3u2,1, (17)
q4,1 = u1,1, (18)
q5,1 = u2,1. (19)

Next, we want to show that the user can decode its requested
file correctly. The nodes send back the length 3 vectors, rl =
(rl,1, rl,2, rl,3), l = 1, . . . , 5, to the user. Consider the first
symbol in each of the vectors rl,1, which form the following
linear system:

a1 − I11 − I12 = r1,1 (20)
−I21 − 2I22 = r2,1 (21)
−I31 − 3I32 = r3,1 (22)

I11 + I21 + I31 = r4,1 (23)
I12 + 2I22 + 3I32 = r5,1 (24)

where Ilj = uTj,1wl, for l = 1, 2, 3 denoting the node index,
and j = 1, 2 denoting the random vector. In analogy with the
interference alignment literature [34], [35], one can think of
a1 as the signal to be decoded and I11, I12, I21, I22, I31, I32 as
the interference. And we can notice that if we sum up eqs. (20)
to (24), we get a1. This PIR scheme downloads 3 packets from
each server. Therefore, it has a cPoP = 5×3

3 = 5.

As mentioned for b < d − 1 only b + k nodes are queried
as shown in the next example. We will revisit this example
in the next section and present a more efficient scheme when
explaining Theorem 3.

Example 5. Consider the (6,2,5) MDS code in table V, where

Λ =

[
1 0 1 1 1 1
0 1 1 2 3 4

]
. The goal here is to construct

a linear scheme that achieves perfect PIR against b = 2
colluding nodes with cPoP = k + b = 4. Assume WLOG
the user wants file Xf . The scheme will consist of ρ = 2 sub-
queries. We will consider the first sub-query and the second
sub-query follows similarly.

node 1 node 2 node 3 node 4 node 5 node 6
a1 b1 a1 + b1 a1 + 2b1 a1 + 3b1 a1 + 4b1
...

...
...

...
...

...
am bm am + bm am + 2bm am + 3bm am + 4bm

TABLE V: (6,2,5) DSS

In this case, the user will query only 4 nodes, WLOG the

first 4 nodes, with generator matrix G =

[
1 0 1 1
0 1 1 2

]
.

As described in section V-A, the user creates 2 random
vectors u1,1,u2,1 of dimension m each, and as in the previous
example, forms U1 = [u1,1,u2,1]. The dual code of G will have
a generator matrix

H
(n−k)×n

=

[
−1 −1 1 0
−1 −2 0 1

]
.

The sub-query vectors to nodes 1 to 4 are the following
respectively

q1,1 = −u1,1 − u2,1 + ef , (25)
q2,1 = −u1,1 − 2u2,1, (26)
q3,1 = u1,1, (27)
q4,1 = u2,1. (28)

The nodes will respond to the user by projecting their data
on the query matrices. With inspection of the queries, we can
see that the user will be able to decode af from the first sub-
query, and similarly decode bf from the second sub-query.
This achieves a cPoP = 4.

B. Proof of Theorem 2

We prove Theorem 2 by showing that the scheme described
in Section V-A ensures decodability and privacy. The main
ingredient in the proof, which makes it different from the proof
of Theorem 1, is that the scheme does not require the user to
decode all the interference terms. Recall that the user wants
to retrieve file Xf . We will prove that the user can retrieve
xfi in the ith sub-query. An alternative proof of Theorem 2 is
shown in the Appendix.
Decodability:

The response of node l = 1, . . . , n to the ith sub-query is
given by

rl,i = ql,i
Twl. (29)

To decode xfi , the user sums the responses of all the nodes
to the ith sub-query, i.e., it computes

∑n
l=1 rl,i.

Claim 2.
∑n
l=1 rl,i = xfi

Proof.
n∑
l=1

rl,i = tr ((UiH)TXG) + eTf wi (30)

= tr (UiHG
TXT ) + xfi (31)

= xfi . (32)

where tr(·) is the trace operator. Equation (30) follows
directly from the scheme, equation (31) follows from the fact
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Fig. 3: cPoP versus rate when n = 16 and number of colluding nodes
b = 1, 3, 5, following the scheme in Theorem 2 and Theorem 3.
We notice that as the number of colluding nodes increases, the
improvement the scheme in Theorem 3 has over the scheme in
Theorem 2 grows.

that tr(ATB) = tr(ABT ), and equation (32) follows from the
fact that tr (UiHG

TXT ) = 0 since HGT = 0.

Privacy: Recall that f ∈ [m] is the index of the file wanted by
the user. Let Sb be a subset of cardinality b of [n] representing
the set of b colluding nodes. We define QSb

to be the set of
query vectors (or matrices) incoming to the b nodes indexed
by Sb. We want to show that when b spies collude, they cannot
learn any information about f , i.e., H(f |QSb

) = H(f), for
any possible set of colluding nodes Sb ⊂ [n], |Sb| = b.

H(f,QSb
) = H(f,QSb

) (33)
H(QSb

) +H(f |QSb
) = H(f) +H(QSb

|f) (34)
H(f |QSb

) = H(f) +H(QSb
|f)−H(QSb

)
(35)

= H(f)−H(QSb
) +H(QSb

|f)

−H(QSb
|f, Ui)︸ ︷︷ ︸

=0

(36)

= H(f)−H(QSb
) + I(QSb

, Ui|f)
(37)

= H(f)−H(QSb
) +H(Ui|f)

−H(Ui|QSb
, f) (38)

= H(f)−H(QSb
) +H(Ui) (39)

= H(f). (40)

Where the equality in equation (36) follows from the
fact that H(QSb

|f, Ui) = 0, since the query vectors are a
deterministic function of f and Ui. Equation (39) follows from
H(Ui|f) = H(Ui), since the random matrix Ui is independent
of the file index f . Moreover, H(Ui|QSb

, f) = 0 since by
(48), given f , Ui can be decoded from QSb

due to the MDS
property of the code. Lastly, in (40) H(QSb

) = H(Ui) = m
follows again from (48) and the MDS property of the code.

VI. PIR SCHEME CONSTRUCTION FOR b ≤ n− δk
Let δ = bn−bk c. We can see that for δ = 1, this simplifies to

Theorem 2. Figure 3 shows a comparison of the construction
of Theorem 2 and Theorem 3.

Example 6. Consider again the (6,2,5) MDS code in table V
and b = 2. We notice that in example 5, we did not use nodes
5 and 6, and achieved cPoP = 4. Now we will show how we
can use those nodes and achieve a lower cPoP = 3. Assume
the user wants file Xf .

We first choose the last b = 2 of the parity nodes to be
common nodes. Then, we split the rest of the δk = 4 nodes
into δ = 2 groups of k = 2 nodes each. We then consider the
two punctured codes, each with a 2×4 generator matrix, that
intersect in the common nodes. Here, we pick the two subcodes
consisting of nodes 1, 2, 5, 6 and 3, 4, 5, 6, respectively. The
punctured codes will have the following generator matrices:

G1 =
[
B1 P

]
=

[
1 0 1 1
0 1 3 4

]
,

and

G2 =
[
B2 P

]
=

[
1 1 1 1
1 2 3 4

]
.

The user can transform the generator matrices of the
punctured codes into systematic form by multiplying by the
inverse of the k×k = 2×2 matrix formed by the non-common
nodes. In this example, we can see that G2 in not in systematic
form, so we multiply by the inverse of the 2 × 2 sub-matrix

formed by nodes 3 and 4, i.e.
[

1 1
1 2

]
to get

G2 =

[
1 0 −1 −2
0 1 2 3

]
.

The parity check matrices of the (4, 2, 3) MDS codes
generated by G1, and G2 are

H1 =
[
−PT1 I2×2

]
=

[
−1 −3 1 0
−1 −4 0 1

]
,

H2 =
[
−PT2 I2×2

]
=

[
1 −2 1 0
2 −3 0 1

]
.

In this example, we will not subdivide the files into stripes,
and one sub-query is required in which we will decode both
parts of the file. For this reason, we will remove the subscript
for simplicity. Similar to the scheme in section V-A, the user
generates 2 random (column) vectors u1 and u2, of length m
each, whose elements are chosen uniformly at random from
GF (q). Define U to be the m × 2 matrix with its columns
being the b = 2 random vectors u1 and u2, i.e.,

U
m×2

=
[
u1 u2

]
.

Now the user generates m random codewords in the dual
codes by multiplying the random matrix U by the parity check
matrix H1

b×(b+k)
to calculate

UH1 = [q′1,q
′
2,u1,u2] , (41)
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and multiplying the random matrix U by the parity check
matrix H2

b×(b+k)
to calculate

UH2 = [q′3,q
′
4,u1,u2] , (42)

The query vectors to nodes 1, 2, 3, and 4 are chosen as
follows:

ql =

{
q′l + ef , if l = 1 mod k,
q′l, otherwise.

(43)

The query vectors to nodes 5, 6 are

ql = ul. (44)

Decodability:
Each of the punctured codes is coded as in section V-A.

Based on the decodability proved in section V-B, the user can
decode af from the first code, and af + bf from the second
code. Hence, the user retrieves file Xf .
Privacy:

The queries are sent by projecting the random matrix U on
the matrix

H =
[
−PT1 −PT2 I

]
.

This is a dual of the code generated by the matrix

G =

[
B1 0 P
0 B2 P

]
.

The dual code is an (6, 4, 3) MDS code, and thus the queries
are sent using a (6, 2, 5) MDS code.

This means that any 2 queries are linearly independent and
thus if this is private against 2 colluding nodes.

The user contacts 6 nodes, to download 2 information parts,
thus the price of privacy of this is cPoP = b+δk

δ = 6
2 = 3.

A. General Proof of Theorem 3

We assume the user wants file Xf . Assume n = b + δk.4

The user uses the last b nodes, nδk+1, . . . , nδk+b as com-
mon nodes. The rest of the nodes will be divided into δ
groups, j = 1, . . . , δ, of k nodes each. This forms δ punc-
tured (b + k, k) MDS codes, each with a generator matrix[
Bj Pb×b

]
which can be transformed to systematic form

Gj =
[
Ik×k Pj

]
by multiplying by the inverse of the

k × k matrix Bj . Here we will use α = δ subdivisions and k
queries.5

We calculate the parity check matrix of the δ codes.

Hj
b×(b+k)

=
[
−PTj Ib×b

]
.

Now for each sub-query, i, i = 1, . . . , k, the user generates
m random codewords by multiplying the random matrix Ui =

4If b < n− δk, only b+ δk nodes are queried.
5The parameters can be optimized to α =

LCM(δ,k)
k

and ρ =
LCM(δ,k)

δ
,

as was done in Example 6. But to simplify notation, we will take α = δ and
ρ = k.

[
u1,i . . . ub,i

]
∈ GF (q)m×b by the parity check matrix

Hj
b×(b+k)

of subcode j

Ui Hj
b×(b+k)

=
[
q′1+(j−1)k,i,q

′
2+(j−1)k,i . . . ,q

′
jk,i,u1,i, . . . ,ub,i

]
.

For the nodes l = 1, . . . , δk, the query vectors in sub-query
i are as follows:

ql,i =

{
q′l,i + e(f−1)δ+j , if l = k − (j − 1) + i,

q′l,i, otherwise.
(45)

For the nodes l = δk + 1, . . . , δk + b, the query vectors in
sub-query i are the columns of Ui

ql,i = ul−δk,i. (46)

Decodability:
For each subcode j, we follow the scheme of Theorem 2 to

obtain the jth stripe of file xf . Subsequently, the user is able
to decode the file xf .
Privacy: The queries are generating by multiplying the random
matrix U on the matrix

H =
[
−PT1 −PT2 · · · −PTδ I

]
.

This is a dual of the code generated by the matrix

G =


B1 0 · · · 0 P
0 B2 · · · 0 P
...

...
. . .

...
...

0 0 · · · Bδ P

 .
We see that the code generated by G is an (δk+ b, δk, b+

1) MDS code, and thus the queries are sent using an (δk +
b, b, δk + 1) MDS code.

This means that any b queries are linearly independent and
thus this is private against b colluding nodes.

The user contacts b+ δk nodes, to download δ information
parts, thus the price of privacy of this is cPoP = b+δk

δ .

VII. COMPARISON TO FUNDAMENTAL BOUNDS

Our scheme achieves the fundamental bounds currently
known for infinite number of files and 1 spy node, i.e.
no collusion. The lowest achievable price of privacy of a
storage system with replicated databases is given in [25] to be
1−(1/n)m
1−(1/n) which asymptotically approaches n

n−1 as m → ∞.
If we apply our PIR scheme for a replicated database, the
cPoP = 1

1−R = n
n−1 which is the limit of the lower bound.

The lower bound for an (n, k, d) MDS-coded database
was derived in [26] to be 1−(k/n)m

1−(k/n) , which asymptotically
approaches n

n−k = 1
1−R as m → ∞, and is again the cPoP

achieved by our construction.
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VIII. CONCLUSION

We studied the problem of constructing PIR schemes with
low communication cost for requesting data from a DSS that
uses MDS codes. Some nodes in the DSS may be spies who
will report to a third party, such as an oppressive regime,
which data is being requested by a user. The objective is to
allow the user to obtain its requested data without revealing
any information on the identity of the data to the nodes.
We constructed PIR schemes against non-colluding nodes
that achieve the information theoretic limit on the download
communication cost for linear schemes. An important property
of these schemes is their universality since they depend on the
code rate, but not on the MDS code itself. When there is b-
collusion with 2 ≤ b ≤ n− k, we devised linear PIR schemes
that have download cost equal to b + k per unit of requested
data.
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APPENDIX

Alternative Proof of Theorem 2

To simplify the description of the scheme, we will assume
b = n− k. The scheme has dimension ρ = k, i.e., it consists
of ρ = k sub-queries. Moreover, the scheme requires no
subdivisions, i.e., the number of stripes α = 1. Since there
are no subdivisions, we simplify further the notation and write
xji1 = xji to denote the ith systematic symbol of file Xj , where
j = 1, . . . ,m. Denote by f the index of the file that the user
wants, i.e., the user wants to retrieve file Xf .

In the ith sub-query, i = 1, . . . , k, the proposed PIR scheme
retrieves systematic symbol xfi of the wanted file Xf . So, by
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the completion of the scheme, the user will have obtained all
the k symbols forming the file.

In sub-query i, the user creates b random (column) vectors
u1,i, . . . ,ub,i, of dimension m each, whose elements are
chosen uniformly at random from GF (q). Define Ui to be
the m × d − 1 matrix with its rows being the b = n − k
random vectors used in sub-query i, i.e.,

Ui
m×d−1

= [u1,i,u2,i, . . . ,ud−1,i] .

Recall that the generator matrix of the MDS code is

Λ
k×n

=

 Ik×k

λ1,k+1 . . . λ1,n
...

...
...

λk,k+1 . . . λk,n

 .
We write Λ =

[
I P

]
, where

P
k×d−1

=

 λ1,k+1 . . . λ1,n
...

...
...

λk,k+1 . . . λk,n

 .
We denote by pTj the jth row of P . Let eTf =[
01×(f−1) 1 01×(m−f)

]
.

For a systematic node l, the user sends the sub-query vector:

ql,i =

{
λl,k+1u1,i + · · ·+ λl,nud−1,i + ef , if l = i,

λl,k+1u1,i + · · ·+ λl,nud−1,i, otherwise.
(47)

This translates to

ql,i =

{
Uipl + ef , if l = i,

Uipl, otherwise.
(48)

For the parity nodes l = k + 1, . . . , n = k + b, the ith

sub-query vector is given by,

ql,i = ul−k,i. (49)

Therefore, the response of node l to the ith sub-query,
denoted by rl,i, is given by (2) and can be written as

rl,i = ql,i
Twl, (50)

where wl is the vector representing the data stored on node l.
We prove Theorem 2 by showing that the scheme described

in Section V-A ensures decodability and privacy. The main
ingredient in the proof, which makes it different from the proof
of Theorem 1, is that the scheme does not require the user to
decode all the interference terms.

Recall that the user wants to retrieve file Xf . We will prove
that the user can retrieve xfi in the ith sub-query.

Decodability:
From (48) and (55), the response of systematic node l to

the ith sub-query is given by

rl,i =

{
pTl U

T
i wl + xfi = wT

l Uipl + xfi if l = i,

pTl U
T
i wl = wT

l Uipl otherwise.
(51)

Notice that wT
l Ui

Tpl is the lth diagonal element of
XUi

TPT , since wl is the lth row of X, l = 1, . . . , k, due
to the assumption that the MDS code is systematic. Thus, the
vector representing all the responses of the systematic nodes
to the ith sub-query can be written as follows,

r1,i
r2,i

...
rk,i

 = diag(XTUiP
T ) +

 0i−1×1
xfi

0k−i×1

 , (52)

where diag(·) is the diagonal of the corresponding matrix.
Denoting by p′j the jth column of P , the response of parity

node l, l = k + 1, . . . , n, can be written as

rl,i = uTl−k,iwl (53)

= wT
l ul−k,i (54)

= p′
T
l−kX

Tul−k,i, (55)

where (55) follows from the fact that the coded data stored on
parity node l can be written as wl = p′

T
l−kX. Thus, similarly

to (52), we can write all the responses of the parity nodes in
vector form as

rk+1,i

rk+2,i

...
rn,i

 = diag(PTXTUi
T ). (56)

Next, we want to show that xfi can be decoded as follows,

xfi =

k∑
l=1

rl,i −
k+b∑
l=k+1

rl,i.

Indeed, we have

k∑
l=1

rl,i = tr(XTUiP
T ) + xf1 (57)

= tr(PTXTUi) + xf1 (58)

=

b∑
l=1

rl+k,i + xf1 (59)

=

k+b∑
l=k+1

rl,i + xf1 , (60)

where tr(·) is the trace operator, (57) follows from (52), (58)
follows from the trace property, tr(ABC) = tr(CAB), and
(59) follows from (56).

This means that the responses of the systematic nodes and
those of the parity nodes cancel out to leave the part required,
i.e., xfi . Therefore, we showed that in the ith, i = 1, . . . , k
sub-query, the user can decode xfi and by the completion of
the kth sub-query the user would have obtained the whole file
Xf .
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