
Private-Key Hidden Vector Encryption with Key

Confidentiality

Carlo Blundo ∗ Vincenzo Iovino † Giuseppe Persiano ‡

September 4, 2009

Abstract

Predicate encryption is an important cryptographic primitive that has been recently studied [BDOP04,
BW07, GPSW06, KSW08] and that has found wide applications. Roughly speaking, in a predicate en-
cryption scheme the owner of the master secret key K can derive secret key K̃, for any pattern vector
~k. In encrypting a message M , the sender can specify an attribute vector ~x and the resulting ciphertext
X̃ can be decrypted only by using keys K̃ such that P (~x,~k) = 1, for a fixed predicate P . A predicate
encryption scheme thus gives the owner of the master secret key fine-grained control on which cipher-
texts can be decrypted and this allows him to delegate the decryption of different types of messages (as
specified by the attribute vector) to different entities.

In this paper, we give a construction for hidden vector encryption which is a special case of predicate
encryption schemes introduced by [BW07]. Here the ciphertext attributes are vectors ~x = 〈x1, . . . , x`〉
over alphabet Σ, key patterns are vectors ~k = 〈k1, . . . , k`〉 over alphabet Σ ∪ {?} and we consider the

Match(~x,~k) predicate which is true if and only if ki 6= ? implies xi = ki. Besides guaranteeing the
security of the attributes of a ciphertext, our construction also gives security guarantees for the key
patterns. We stress that security guarantees for key patterns only make sense in a private-key setting
and have been recently considered by [SSW09] which gave a construction in the symmetric bilinear setting
with groups of composite (product of four primes) order. In contrast, our construction uses asymmetric
bilinear groups of prime order and the length of the key is equal to the weight of the pattern, thus
resulting in an increased efficiency. We remark that our construction is based on falsifiable (in the sense
of [BW06, Nao03]) complexity assumptions for the asymmetric bilinear setting and are proved secure in
the standard model (that is, without random oracles).

Keywords: private-key predicate encryption, key confidentiality.

1 Introduction

Predicate encryption is an important cryptographic primitive that has been recently studied [BDOP04,
BW07, GPSW06, KSW08] and that has found wide applications. Roughly speaking, in a predicate encryption
scheme the owner of the master secret key SK, can derive secret key K̃, for any pattern vectors ~k. Similarly,
in encrypting a message M , the sender can specify an attribute vector ~x and the resulting ciphertext X̃ can
be decrypted only by using keys K̃ such that P (~x,~k) = 1, for a fixed predicate P .

In this paper, we consider hidden vector encryption that is a special class of predicate encryptions first
studied in [BW07]. In a hidden vector encryption scheme, ciphertexts are associated with attribute vectors
~x of length ` over an alphabet Σ and keys are associated with pattern vectors ~k of length ` over the alphabet
Σ∪{?}. The predicate we are interested in is the Match predicate defined as follows: Match(~x,~k) = 1 if and
only if for i = 1, . . . , ` either ki = ? or ki = xi. Constructions for hidden vector encryption have been given
in [BW07] (based on hardness assumptions in groups of composite order) and in [IP08] (based on hardness
assumptions in groups of prime order).
∗Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA), Italy. carblu@dia.unisa.it.
†Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA), Italy. iovino@dia.unisa.it.
‡Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA), Italy. giuper@dia.unisa.it.

1

Until now research has concentrated on guaranteeing the security of the ciphertext with respect to the
cleartext and to the attribute vector and not much attention has been devoted to the security of the key.
Specifically, one would like a key not to reveal the associated pattern. This is particularly important in
some applications in which a user generates the key for a certain pattern and gives it to a third party to
perform some operations. Knowledge of the pattern associated with the key might reveal some information
about the operation being performed. Obviously, this is impossible to achieve in a public-key setting. Indeed
an adversary A holding a key K̃ associated to a secret pattern ~k can simply produce a ciphertext X̃ with
attribute ~x and then try to decrypt X̃ using K̃. If A succeeds in decrypting K̃ then A knows that P (~x,~k) = 1.
This attack does not hold in the private key setting as A cannot produce ciphertext X̃. Simply keeping the
public key secret from the adversary does not seem to work for previous predicate encryption schemes (see,
for example [BW07, KSW08]) and the problem seems to call for a new construction. The scheme of [SSW09]
is constructed modifying the previous scheme of [KSW08], likewise, we build our scheme from the scheme of
[IP08].

Prior work and our contribution. Shen, Shi and Waters [SSW09] were the first to consider key con-
fidentiality in the context of predicate encryption and they provided a construction for the inner-product
predicate (that is, a key can decrypt a ciphertext if and only if the pattern vector of the key is orthogonal
to the attribute vector of the ciphertext). In this paper we present a construction for an hidden vector
encryption scheme which, besides guaranteeing privacy of the attribute vector of ciphertext, guarantees that
keys do not leak any information on the associated pattern, besides the location of the ?’s. We stress that
the construction of [SSW09] for the inner-product predicate implies (with a small loss of efficiency) a con-
struction also for hidden vector encryption scheme. The security of the construction of [SSW09] is based
on bilinear assumptions on groups of order product of four primes, and thus, it is less efficient. In our
construction we show that, by slightly relaxing the notion of key confidentiality, we can obtain construction
using asymmetric bilinear groups of prime order (which results in much more efficient constructions). We
remark that our construction is based on falsifiable (in the sense of [BW06, Nao03]) complexity assumptions
for the asymmetric bilinear setting for groups of prime order and are proved secure in the standard model
(that is, without random oracles).

Moving from composite order groups to prime order groups, besides giving very efficient constructions, is
also important since assumptions based on prime order groups are considered weaker than the corresponding
assumptions that intertwine and compound potential vulnerabilities from factoring and pairings (see the
discussion in [Boy08]).

Finally, we stress that the only previous construction of hidden vector encryption schemes based on prime
order groups of [IP08] does not give any security guarantee for the key.

2 Hidden Vector Encryption Schemes

In this paper we consider a special type of predicate encryption schemes called Hidden Vector Encryption
Scheme, (an HVE scheme, in short). We present the definition and the construction for Σ = {0, 1}. In
Section 8 we briefly explain how the constructions can be extended to larger alphabets.

An HVE scheme consists of four algorithms:
1. MasterKeyGen(1n, 1`): Given security parameter n, and number of attributes ` = poly(n), procedure

MasterKeyGen outputs the private key SK.
2. Enc(SK, ~x): Given attribute vector ~x ∈ {0, 1}` and secret key SK, procedure Enc outputs an encrypted

attribute vector X̃.
3. KeyGen(SK,~k): Given private key SK, a pattern vector ~k of length ` over the alphabet {0, 1, ?},

procedure KeyGen outputs a key K̃ for the ~k.
4. Test(X̃, K̃): given encrypted attribute vector X̃ and key K̃ corresponding to pattern ~k, procedure Test

returns Match(~x,~k) except with negligible probability.
We state security in the selective attribute model using the following experiments.

2

2.1 Semantic security

The first experiment considers an adversary that tries to learn information from an encryption. We model
this using an indistinguishability experiment in which the adversary A selects two challenge attribute vectors
~z0 and ~z1 and receives an encrypted attribute vector corresponding to a randomly chosen challenge attribute
vector. We allow the adversary to issue key queries for patterns ~y that match neither of ~z0 and ~z1 and
to see encryption of attribute vectors of his choice (see Section 7 for a stronger notion). Following is the
description of experiment SemanticExpA.

SemanticExpA(1n, 1`)
1. Initialization Phase. The adversary A announces two challenge attribute vectors ~z0, ~z1 ∈ {0, 1}`.
2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen procedure.
3. Query Phase I. A can make any number of key and encryption query.

A key query for pattern ~k is answered as follows. If Match(~z0,~k) = 0 and Match(~z1,~k) = 0 then A
receives the output of KeyGen(SK,~k). Otherwise, A receives ⊥. An encryption query for attribute
vectors ~x is answered by returning Enc(SK, ~x).

4. Challenge construction. η is chosen at random from {0, 1} and A is given Enc(SK, ~zη).
5. Query Phase II. Identical to Query Phase I.
6. Output Phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 1 An HVE scheme (MasterKeyGen,Enc,KeyGen,Test) is semantically secure, if for all probabilis-
tic poly-time adversaries A ∣∣Prob[SemanticExpA(1n, 1`) = 1]− 1/2

∣∣
is negligible in n for all ` = poly(n).

2.2 Key confidentiality

In this section we present our definition for key confidentiality. We model this property by using an indistin-
guishability experiment in which the adversary A outputs two challenge patterns ~k0 and ~k1 of his choice. A
is then allowed to issue encryption queries for vectors ~x that match neither of ~k0 and ~k1 and key queries for
patterns ~k of his choice. At the end A is presented with the key associated with a randomly chosen challenge
pattern. In our notion of key confidentiality, the adversary is limited to challenges on patterns in which the
“don’t care” entries (that is, ?) are in the same positions.

KeyExpA(1n, 1`)
1. Initialization Phase. The adversary A announces two challenge patterns ~k0,~k1 ∈ {0, 1, ?}`. If the set

of positions for which ~k0 and ~k1 have ? differ then the experiment returns 0.
2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen procedure.
3. Query Phase I. A can make any number of key and encryption query.

A key query for pattern ~k is answered by returning KeyGen(SK,~k).
An encryption query for attribute vector ~x is answered as follows.
If Match(~x,~k0) = Match(~x, ~k1) = 0 then A receives Enc(SK, ~x). Otherwise, A receives ⊥.

4. Challenge construction. η is chosen at random from {0, 1} and receives KeyGen(SK,~kη).
5. Query Phase II. Identical to Query Phase I.
6. Output Phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 2 A predicate encryption scheme (MasterKeyGen,Enc, KeyGen,Test) is key secure if for all
probabilistic poly-time adversaries A,∣∣Prob[KeyExpA(1n, 1`) = 1]− 1/2

∣∣
is negligible in n for all ` = poly(n).

3

2.3 Secure HVE

Finally we have,

Definition 3 An HVEscheme (MasterKeyGen,Enc,KeyGen,Test) is secure if it is both semantically secure
and key secure.

Remark on the notion of key confidentiality. In our notion of key confidentiality the key might
reveal the position of the ?’s in the associated pattern, since no requirement is made for adversary choosing
challenge patterns with ?’s in different positions. In some applications, this might not be a drawback. For
example, predicate encryption can be used for performing searches on encrypted data. For example, a user
interested in selecting ciphertexts for which Name=Alex and Sex=M gets a key corresponding to a pattern
that has ? in all positions other than Name and Sex. An eavesdropper learns that the user is searching the
fields Name and Sex but no information is given on the name the user is searching for and whether the user
is searching for a male or a female. We remark that the construction of [SSW09] hides all information of the
key, but their construction is less efficient than ours since it uses groups of composite order of four primes.
Roughly speaking, by slightly relaxing the security notion, we manage to build a more efficient scheme.

3 Complexity Assumptions

We work in asymmetric prime order bilinear groups of ’Type 3’ (see [Boy08]). Specifically, we have cyclic
multiplicative groups G1,G2 and GT of order p such that there exists no efficiently computable morphism
from G1 to G2 or from G2 to G1. In addition we have a non-degenerate pairing function e : G1 ×G2 → GT ;
that is, for all x ∈ G1, y ∈ G2, x 6= 1 or y 6= 1, we have e(x, y) 6= 1 and for all a, b ∈ Zp we have
e(xa, yb) = e(x, y)ab. We denote by g1, g2, and e(g1, g2) generators of G1,G2, and GT , respectively.

We call a tuple I = [p,G1,G2,GT , g1, g2, e] an asymmetric bilinear instance and assume that there exists
an efficient generation procedure G that, on input security parameter 1n, outputs an instance with |p| = Θ(n).

We now present a new assumption, which we call the (d,m)-Q Assumption, on which we base the proof
of key security of our construction. Semantic security is based instead on the Decision Linear Assumption
and on the Bilinear Decision Diffie-Hellman Assumption which we review in Section 3. We present the
assumption in the form of a game between a challenger Ch and a distinguisher D on input the security
parameter n.

Game (d,m)-Q(1n)
1. The challenger Ch picks a random asymmetric bilinear instance I = [p,G1, G2, GT , g1, g2, e] by running

generator G on input security parameter 1n and sets ChOutput = ∅.
2. For i = 1, . . . , d and b = 0, 1, Ch chooses random t̂i,b, v̂i,b ∈ Zp.
3. For i = 1, . . . , d, Ch chooses random âi ∈ Zp such that their sum is equal to 0.
4. Define set of pairs JH = {(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j 6= h or j = h, m+ 1 ≤ j ≤ d}.

For (j, h) ∈ JH, Ch chooses a random ŝ(j,h) ∈ Zp and computes matrices Aj,h and Bj,h as follows, where
× denotes a missing entry in the matrices:1

Aj,h = 

[
g
ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂h,0
1 , . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,h t̂j,1
1 , . . . , × . . . , g

ŝj,h t̂d,1
1

]
if j 6= h and j, h ≤ m

[
g
ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,h t̂j,1
1 , . . . , g

ŝj,h t̂d,1
1

]
if j = h and j > m

1For the sake of simplicity of exposition, in the definition we have implicitly assumed that j ≤ h.

4

and Bj,h =

[
g
ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂h,0
1 , . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , × . . . , g

ŝj,hv̂d,1
1

]
if j 6= h and j, h ≤ m

[
g
ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , g

ŝj,hv̂d,1
1

]
if j = h and j > m

Ch appends the above matrices to ChOutput.
5. For i = 1, . . . , d and b = 0, 1, Ch computes and appends to ChOutput

Ci,b = g
1/t̂i,b
2 and Di,b = g

1/v̂i,b
2 .

6. Ch chooses random η ∈ {0, 1} and let ~z = 〈z1, . . . , zd〉 = ηm · 0d−m.
For i = 1, . . . , d, Ch computes

Ei = C âii,zi and Fi = Dâi
i,zi

and appends the values Ei and Fi to ChOutput.
7. Challenger Ch runs D on input sequence ChOutput and receives output η′.

We define the advantage AdvD(n, d,m) of distinguisher D in the Game (d,m)-Q(1n) as

AdvD(n, d,m) =
∣∣∣∣Prob[η = η′]− 1

2

∣∣∣∣ .
We are now ready to formally state Assumption (d,m)-Q.

Assumption 1 (Assumption (d,m)-Q) For all probabilistic poly-time distinguishers D, we have that AdvD(n, d,m)
is negligible in n, for d = poly(n), and 1 ≤ m ≤ d.

The (d,m)-Q Assumption can be justified by extending the framework of the Uber-Assumption [BBG05,
Boy08] to rational functions along the lines of [Boy08]. In the rest of this section we review other hardness
assumptions used in the paper.

Bilinear Decision Diffie-Hellman Given a tuple [g1, g2, ga1 , g
b
1, g

a
2 , g

b
2, g

c
1, Z] for random exponents a, b, c ∈

Zp it is hard to distinguish between Z = e(g1, g2)abc and a random Z from GT . More specifically, for an
algorithm A we define experiment BDDHExpA as follows.

BDDHExpA(1n)
1. Choose instance I = [p,G1,G2,GT , g1, g2, e] with security parameter 1n.
2. Choose a, b, c ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = abc.
5. Set A = ga1 , B = gb1, Â = ga2 , B̂ = gb2, C = gc1 and Z = e(g1, g2)z.
6. Let η′ = A(I, A,B, Â, B̂, C, Z).
7. If η = η′ then return 1 else return 0.

Assumption 2 (Bilinear Decisional Diffie-Hellman (BDDH)) For all probabilistic poly-time algorithms
A, |Prob[BDDHExpA(1n) = 1]− 1/2| is negligible in n.

5

Decision Linear Given a tuple [g1, g2, gz11 , g
z2
1 , g

z1
2 , g

z2
2 , g

z1z3
1 , gs1, Z] for random exponents z1, z2, z3, s ∈ Zp

it is hard to distinguish between Z = g
z2(s−z3)
1 and a random Z from G1. More specifically, for an algorithm

A we define experiment DLExpA as follows.

DLExpA(1n)
1. Choose instance I = [p,G1,G2,GT , g1, g2, e] with security parameter 1n.
2. Choose u1, u2, u3, u ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = u2(u− u3).
5. Set U1 = gu1

1 , U2 = gu2
1 , Û1 = gu1

2 , Û2 = gu2
2 , U13 = gu1u3

1 , U = gu1 , and Z = gz1 .
6. Let η′ = A(I, U1, U2, Û1, Û2, U13, U, Z).
7. If η = η′ then return 1 else return 0.

Assumption 3 (Decision Linear (DLinear)) For all probabilistic poly-time algorithms A,

|Prob[DLExpA(1n) = 1]− 1/2|

is negligible in n.

Note that Decision Linear implies Decision BDDH and the Decision Linear assumption has been used
in [BW06].

4 The basic scheme

In this section, we describe our proposal for a secure HVE.

The MasterKeyGen procedure. On input security parameter 1n and the number of attributes ` = poly(n),
MasterKeyGen proceeds as follows.

1. Select an asymmetric bilinear instance I = [p, q,G1,G2,GT , g1, g2, e] with |N | = Θ(n) by running G.
2. Pick y at random in Zp and set Y = e(g1, g2)y.

For i = 1, . . . , `,
Choose ti,0, ti,1, vi,0, vi,1 at random from Zp.
Set

Ti,0 = g
ti,0
1 , Ti,1 = g

ti,1
1 , Vi,0 = g

vi,0
1 , Vi,1 = g

vi,1
1 ,

T̄i,0 = g
1/ti,0
2 , T̄i,1 = g

1/ti,1
2 , V̄i,0 = g

1/vi,0
2 , V̄i,1 = g

1/vi,1
2 .

Set SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1V̄i,0, V̄i,1,).
3. Return SK = (I, Y, y,SK1, . . . ,SK`).

The Enc procedure. On input secret key SK and attribute vector ~x of length `, Enc proceeds as follows.
1. Pick s at random from Zp and set Ω = Y −s.
2. For i = 1, . . . , `,

pick si at random from Zp.
set Xi = T s−sii,xi

and Zi = V sii,xi .

3. Return encrypted attribute vector X̃ = (Ω, (Xi, Zi)`i=1).
In the following sometimes will use the writing Enc(SK, ~x; s, s1, . . . , s`) to denote the encrypted attribute
vector X̃ output by Enc on input SK and ~x when using s, s1, . . . , s` as random elements.

6

The KeyGen procedure. On input secret key SK and pattern vector ~k, KeyGen proceeds as follows.
1. Let S~k be the set of positions in which ki 6= ?.
2. Choose (ai)i∈S~k at random in Zp under the constraint that their sum is y.

3. For i ∈ S~k, set Ri = T̄ aii,ki and Wi = V̄ aii,ki .

4. Return K̃ = (i, Ri,Wi)i∈S~k .
In the following sometimes will use the writing KeyGen(SK,~k; (ai)i∈S~k) to denote the key K̃ computed by
KeyGen on input SK and ~k and using (ai)i∈S~k as random elements.

The Test procedure. On input an encrypted attribute vector X̃ = (Ω, (Xi, Zi)`i=1) and a key K̃ =
((i1, Ri1 ,Wi1), . . . , (im, Rim ,Wim)), Test proceeds as follows.

1. Compute a = Ω ·
∏m
j=1 e(Xij , Rij)e(Zij ,Wij).

2. If a = 1 then return TRUE else return FALSE.

We next prove that the quadruple is indeed a predicate encryption scheme.

Theorem 1 The quadruple of algorithms (MasterKeyGen,Enc,KeyGen,Test) specified above is a predicate
encryption scheme.

Proof. It is sufficient to verify that the procedure Test returns 1 when Match(~x,~k) = 1. Let X̃ =
(Ω, (Xi, Zi)`i=1) be the output of Enc(SK, ~x; s, s1, . . . , s`) and let K̃ = (i, Ri,Wi)i∈S~k be the output of
KeyGen(SK,~k; (ai)i∈S~k). Then we have

Test(X̃, K̃)

= Ω ·
∏
i∈S~k

e(Xi, Ri) · e(Zi,Wi)

= e(g1, g2)−ys ·
∏
i∈S~k

e(T s−sii,xi
, T̄ aii,ki) · e(V sii,xi , V̄

ai
i,ki

) (since xi = ki for i ∈ S~k)

= e(g1, g2)−ys ·
∏
i∈S~k

e(T s−sii,ki
, T̄ aii,ki) · e(V sii,ki , V̄

ai
i,ki

)

(since e(Ti,ki , T̄i,ki) = e(Vi,ki , V̄i,ki) = e(g1, g2) ∈ GT)

= e(g1, g2)−ys ·
∏
i∈S~k

e(g1, g2)(s−si)ai · e(g1, g2)siai

= e(g1, g2)−ys ·
∏
i∈S~k

e(g1, g2)sai (since
∑
i∈S~k

ai = y)

= e(g1, g2)−ys · e(g1, g2)ys = 1.

5 Proof of Semantic Security

In this section, we prove that the scheme presented in Section 4 is semantically secure. Consider the following
experiments, for j = 0, · · · , `.

SemanticExpA(1n, 1`, ~z, j)
1. Key-generation Phase. Compute SK = (I, y,SK1, · · · ,SK`) by executing MasterKeyGen(1n, 1`).
2. Query Phase I. Answer Enc queries for attribute vectors ~x by using secret key SK.

Answer KeyGen queries for pattern vectors ~k such that Match(~z,~k) = 0 using secret key SK.
3. Challenge Construction.

1. If j = 0 set Ω = e(g1, g2)−ys.

7

2. If j ≥ 1 choose Ω uniformly at random from GT .
3. For i = 1, . . . , j − 1,

choose Xi and Zi uniformly at random in G1.
4. If j = 0 set α = 1 else set α = j.
5. For i = α, . . . , `,

choose si uniformly at random in Zp and set Xi = g
ti,zi (s−si)
1 and Zi = g

sivi,zi
1 .

6. Set X̃ = (Ω, (Xi, Zi)`i=1).
7. Query Phase II. Identical to Query Phase I.
8. return: A(X̃).

We will use the writing SemanticExpA(1n, 1`, ~z, j; s, sα, . . . , s`) to denote the tuple X̃ computed by
SemanticExpA(1n, 1`, ~z, j) using s, sα, . . . , s` as random values, where α = 1 for j = 0 and α = j for j > 0.

We will denote by pAj (~z) the probability that experiment SemanticExpA(1n, 1`, ~z, j) returns 1. Notice that
in SemanticExpA(1n, 1`, ~z, 0) adversary A receives a valid encrypted attribute vector X̃ for attribute vector
~z and secret key SK whereas in SemanticExpA(1n, 1`, ~z, `) adversary A receives X̃ consisting of one random
element of GT and 2` random elements of G1. Next we prove that, under the Decision Linear assumption,
for all attribute vectors ~z, the difference |pA0 (~z)− pA` (~z)| is negligible. This implies the semantic security of
the scheme.

Lemma 1 Assume BDDH holds. Then for any attribute string ~z and for any adversary A,

|pA0 (~z)− pA1 (~z)|

is non-negligible.

Proof. Suppose that there exist PPT adversary A and attribute vector ~z for which

|pA0 (~z)− pA1 (~z)|

is non-negligible. We construct a successful adversary B for the experiment BDDHExp.
B takes in input [I, A = ga1 , B = gb1, Â = ga2 , B̂ = gb2, C = gc1, Z]. B, depending on whether Z = e(g1, g2)abc

or Z is a random element of GT , simulates experiment SemanticExp(1n, 1`, ~z, 0) or SemanticExp(1n, 1`, ~z, 1)
for A. We next describe algorithm B.
B starts by simulating the Key-generation Phase. B sets Y = e(A, B̂), which implicitly sets y = a · b. For

i = 1, . . . , `, B chooses random t′i,0, t
′
i,1, v

′
i,0, v

′
i,1 ∈ Zp and sets

Ti,zi = g
t′i,zi
1 , Vi,zi = g

v′i,zi
1 , Ti,1−zi = Bt

′
i,1−zi , Vi,1−zi = Bv

′
i,1−zi .

This setting implicitly defines values T̄i,d and V̄i,d as follows

T̄i,zi = g
1/t′i,zi
1 , V̄i,zi = g

1/v′i,zi
1 , T̄i,1−zi = g

1/(bt′i,1−zi
)

2 , V̄i,1−zi = g
1/(bv′i,1−zi

)

2 .

Therefore, after this step key SK = (I, Y, y,SK1, . . . ,SK`) with
SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1V̄i,0, V̄i,1) is implicitly defined. Notice that SK has the same distribution

as a key given in output by MasterKeyGen.
B answers A’s Enc queries for vector ~x by executing procedure Enc. Notice that Enc only needs values

Ti,d’s and Vi,d’s, for d = 0, 1, which are known to B from the previous step.

A’s queries to KeyGen for pattern vector ~k such that Match(~z,~k) = 0 are answered as follows. Let j ∈ S~k
be an index for which zj 6= kj (there must exist at least one such index). If ki = zi then B sets

Ri = B̂a
′
i/t
′
i,ki and Wi = B̂a

′
i/v
′
i,ki

whereas, if ki 6= zi, B sets

Ri = g
a′i/t

′
i,ki

2 and Wi = g
a′i/v

′
i,ki

2 .

8

Finally, B sets

Rj = Â
1/t′j,kj · g

−a′/t′j,kj
2 and Wj = Â

1/v′j,kj · g
−a′/v′j,kj
2 ,

where a′ =
∑
i∈S~k\{j}

a′i. B returns K̃ = (Ri,Wi)i∈S~k .

We next show that, even though B does not have complete access to SK, K̃ has the same distribution of
the output of the KeyGen procedure on input SK and ~k.

Set aj = b(a− a′) and ai = ba′i for i ∈ S~k \ {j}. Then we have

Rj = g
(a−a′)/t′j,kj
2 = T̄

b(a−a′)
j,kj

= T̄
aj
j,kj

.

Similarly, we have
Wj = V̄

aj
j,kj

.

For i ∈ S~k \ {j} such that zi = ki we have

Ri = g
ai/t

′
i,ki

2 = T̄ aii,ki

and similarly we have that Wi = V̄ aii,ki . Finally, for i ∈ S~k \ {j} such that zi 6= ki we have

Ri = g
ai/(bt

′
i,ki

)

2 = T̄ aii,ki

and Wi = V̄ aii,ki . We can thus conclude that K̃ = KeyGen(SK,~k; (ai)i∈S~k). Notice that the ai are randomly
chosen in Zp under the constraint that

∑
i∈S~k

ai = ab = y. Therefore the answer A receives from B has the
same distribution as in SemanticExp(1n, 1l, ~z, 0) and SemanticExp(1n, 1l, ~z, 1).

When B is asked by A to provide encrypted attribute vector X̃, B picks si at random from Zp, for
i = 1, . . . , `, and sets Ω = Z−1 and

Xi = Ct
′
i,ziT−sii,zi

and Zi = V sii,zi .

B returns X̃ = (Ω, (Xi, Zi)`i=1).

Observe that, if Z = e(g1, g2)abc, then Ω = Y −c, Xi = g
t′i,zic
1 · T−sii,zi

= T c−sii,zi
, Zi = g

v′i,zi
si

1 = V sii,zi , for
i = 1, . . . , `, and thus X̃ = Enc(SK, ~z; c, s1, · · · , sl). Since c is random in Zp we can conclude that X̃ has the
same distribution as in SemanticExpA(1n, 1`, ~z, 0). If instead Z is random in GT then X̃ is distributed as in
SemanticExpA(1n, 1`, ~z, 1).

Finally B returns A’s output.

By the above reasoning, we have that when Z = e(g1, g2)abc, B outputs 1 with probability pA0 (~z) and if
Z is random then B outputs 1 with probability pA1 (~z). Since the difference between the two probabilities is
assumed non-negligible, B breaks the BDDH assumption.

Lemma 2 Assume DLinear holds. Then, for any attribute string ~z, for any adversary A, and for 1 ≤ j ≤
`− 1

|pAj (~z)− pAj+1(~z)|
is negligible.

Proof. Suppose that there exist PPT adversary A and attribute vector ~z for which |pAj (~z) − pAj+1(~z)|
is non-negligible. We next construct an adversary B for the experiment DLExp. B takes in input [I, U1 =
gu1
1 , U2 = gu2

2 , Û1 = gu1
2 , Û2 = gu2

2 , U13 = gu1u3
1 , U = gu1 , Z], and depending on whether Z = g

u2(u−u3)
1 or Z

is a random element of G1 simulates experiment SemanticExp(1n, 1`, ~z, j) or SemanticExp(1n, 1`, ~z, j + 1) for
A. We next describe algorithm B.
B start by simulating the key-generation phase and sets Y = e(U1, Û2) thus implicitly setting y = u1 ·u2.

B chooses random t′i,0, v
′
i,0, t

′
i,1, v

′
i,1 ∈ Zp, for i = 1, . . . , `, and computes Tj,d and Vj,d as follows. If zj = 0, B

sets
Tj,0 = U

t′j,0
2 , Tj,1 = U

t′j,1
1 , Vj,0 = U

v′j,0
1 , Vj,1 = U

v′j,1
1 ,

9

whereas, if zj = 1, B sets

Tj,0 = U
t′j,0
1 , Tj,1 = U

t′j,1
2 , Vj,0 = U

v′j,0
1 , Vj,1 = U

v′j,1
1 .

This setting implicitly defines values T̄j,d and V̄j,d induced by the values Tj,d and Vj,d, for i 6= j. Then B
computes values Ti,d and Vi,d for i 6= j as follows. If zi = 0 then B sets

Ti,1 = U
t′i,1
1 , Ti,0 = g

t′i,0
1 , Vi,1 = U

v′i,1
1 , Vi,0 = g

v′i,0
1 ,

whereas, if zi = 1, then B sets

Ti,1 = g
t′i,1
1 , Ti,0 = U

t′i,0
1 , Vi,1 = g

v′i,1
1 , Vi,0 = U

v′i,0
1 .

This setting implicitly defines values T̄i,d and V̄i,d induced by the values Ti,d and Vi,d. After this step key
SK = (I, Y, y,SK1, . . . ,SK`) with SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1, V̄i,0, V̄i,1) is implicitly defined. Notice
that SK has the same distribution as a key given in output by MasterKeyGen.
B answers A’s Enc queries for vector ~x by executing procedure Enc. Notice that Enc only needs values

Ti,b’s and Vi,b’s which are known to B from the previous step.

To describe how B answers A’s queries to the oracle KeyGen we distinguish two cases.

Case 1: kj = zj or kj = ?. In this case there exists index h ∈ S~k such that zh 6= kh. Then, for i ∈ S~k \{j},
B chooses random a′i ∈ Zp, and sets a′ =

∑
i∈S~k\{j,h}

a′i.
For i ∈ S~k \ {j, h}, if ki = zi then B sets

Ri = Û
a′i/t

′
i,ki

1 and Wi = Û
a′i/v

′
i,ki

1

and if ki 6= zi then B sets

Ri = g
a′i/t

′
i,ki

2 and Wi = g
a′i/v

′
i,ki

2 .

Moreover, if j ∈ S~k, B sets

Rj = Û
a′j/t

′
j,kj

1 and Wj = Û
a′j/t

′
j,kj

2 .

Finally, B sets

Rh = Û
(1−a′j)/t

′
h,kh

2 · g
−a′/t′h,kh
2 and Wh = Û

(1−a′j)/v
′
h,kh

2 · g
−a′/v′h,kh
2 .

B returns K̃ = (Ri,Wi)i∈S~k .
We next show that, even though B does not have complete access to SK, K̃ has the same distribution of

the output of the KeyGen procedure on input SK and ~k.
Set ai = u1a

′
i, for i ∈ S~k \ {h, j}, aj = u1u2a

′
j , and ah = u1u2 − u1u2a

′
j − u1a

′. Then we have that for
i ∈ S~k \ {j, h}, if ki = zi then

Ri = Û
a′i/t

′
i,ki

1 = g
ai/t

′
i,ki

2 = T̄ aii,ki .

Instead if ki 6= zi then

Ri = g
a′i/t

′
i,ki

2 = g
u1a
′
i/u1t

′
i,ki

2 = g
ai/u1t

′
i,ki

2 = T̄ aii,ki .

Similarly, we have in both cases
Wi = V̄ aii,ki .

Furthermore, we have that if j ∈ S~k then

Rj = Û
a′j/t

′
j,kj

1 = g
u1a
′
j/t
′
j,kj

2 = g
u1u2a

′
j/u2t

′
j,kj

2 = g
aj/u2t

′
j,kj

2 = T̄
aj
j,kj

.

10

and similarly we have that Wj = V̄ aij,kj . Finally, we have

Rh = Û
(1−a′j)/t

′
h,kh

2 g
−a′/t′h,kh
2 = g

(u2−u2aj−a′)/t′h,kh
2 = g

u1(u2−u2aj−a′)/u1t
′
h,kh

2

= g
ah/u1t

′
h,kh

2 = T̄ ahh,kh .

and similarly we have that Wh = V̄ ahh,kh .

We can thus conclude that K̃ = KeyGen(SK,~k; (ai)i∈S~k). Moreover, the ai’s are independently and
randomly chosen in Zp under the constraint that their sum is u1u2 = y. Hence K̃ is distributed according
to KeyGen(SK,~k).

Case 2: xj 6= kj In this case, for i ∈ S~k \ {j} B chooses random a′i ∈ Zp and sets a′ =
∑
i∈S~k\{j}

a′i and
sets Ri and Wi as in the previous case. To compute Rj and Wj , B sets

Rj = Û
1/t′j,kj
2 · g

−a′/t′j,kj
2 and Wj = Û

1/v′j,kj
2 · g

−a′/v′j,kj
2 .

If we set aj = u1u2 − u1a
′ and, for i ∈ S~k \ {j}, ai = u1a

′
i, we have that

Rj = Û
1/t′j,kj
2 · g

−a′/t′j,kj
2 = g

(u2−a′)/t′j,kj
2 = g

u1(u2−a′)/u1t
′
j,kj

2 = g
aj/u1t

′
j,kj

2 = T̄
aj
j,kj

.

Similarly, we have Wj = V̄
aj
j,kj

. Furthermore, like in the previous case, for i ∈ S~k \{j} we have that Ri = T̄ aii,ki
and Wi = V̄ aii,ki .We thus conclude that K̃ = KeyGen(SK,~k; (ai)i∈S~k). Moreover, the ai’s are independently
and randomly chosen in Zp under the constraint that their sum is u1u2 = y. Hence, also in this case, K̃ is
distributed according to KeyGen(SK,~k).

When B is asked to provide encrypted attribute vector for ~z, B chooses random Ω ∈ GT and, for j ≤ i ≤ `,
chooses random si ∈ Zp.
B then constructs the tuple X̃ = (Ω, (Xi, Zi)`i=1) in the following way, For i < j, Xi and Zi are chosen

uniformly from G1. For i > j, B computes Xi and Zi as

Xi = U t
′
i,zi g

−t′i,zisi
1 and Zi = g

v′i,zi
si

1

Finally, Xj and Yj are computed as

Xj = Z
t′j,zj and Zj = U

v′j,zj
13

Suppose that Z = g
u2(u−u3)
1 and set s = u and sj = u3. Then, it is easy to verify that X̃ = SemanticExp(1n, 1`, ~z, j−

1; s, sj , · · · , s`). Moreover s and the si’s are random in Zp and thus we can conclude that X̃ is distributed
as in SemanticExp(1n, 1`, ~z, j + 1).

Suppose instead that Z is random in G1. Then Xj and Yj are also random and it is easy to verify that
X̃ = SemanticExp(1n, 1`, ~z, j; s, sj+1, · · · , s`). Since s and the si’s are random in Zp, we can conclude that
the challenge received by A is distributed as in SemanticExp(1n, 1`, ~z, j + 1).

Finally B returns A’s output.
By the observations above, we can say that if Z = g

u2(u−u3)
1 thenA’s view is the same as in SemanticExp(1n, 1`, ~z, j)

and if Z is randomly and uniformly distributed in G1 then A’s view is the same as in SemanticExp(1n, 1`, ~z, j+
1). This contradicts the DLinear assumption.

Combining Lemma 1 and Lemma 2 and by noticing that DLinear implies BDDH, we have the following
lemma.

Lemma 3 Assume DLinear. Then predicate encryption (MasterKeyGen,Enc, KeyGen,Test) is semantically
secure.

11

6 Proof of Key Confidentiality

In this section, we prove the construction of Section 4 is key secure, under Assumption Q. We use the
following experiments for η ∈ {0, 1}.

KeyExpA(1n, 1`, ~z0, ~z1, η)
1. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen procedure.
2. Query Phase I. A can make any number of key and encryption query.

A key query for pattern ~k is answered by returning KeyGen(SK,~k).
An encryption query for attribute vector ~x is answered as follows.
If Match(~x, ~z0) = Match(~x, ~z1) = 0 then A receives Enc(SK, ~x). Otherwise, A receives ⊥.

3. Challenge construction.
A receives KeyGen(SK, ~zη).

4. Query Phase II. Identical to Query Phase I.
5. Output Phase. A returns η′.
We denote by pA(~z0, ~z1, η) the probability that KeyExpA(1n, 1`, ~z0, ~z1, η) returns η. In the next lemma, we

prove that, if ~z0 and ~z1 have no ?-entry and they differ in exactly m positions then the (`,m)-Q assumption
implies that

|pA(~z0, ~z1, 0)− pA(~z0, ~z1, 1)|

is negligible for all probabilistic poly-time adversaries. A similar (omitted) proof shows that, if ~z0 and ~z1
contain k ?’s in the same positions and differ in exactly m positions then the (`−k,m)-Q assumption implies
that

|pA(~z0, ~z1, 0)− pA(~z0, ~z1, 1)|

is negligible.

Lemma 4 Assume Assumption (`,m)-Q holds. Then, for all probabilistic poly-time adversaries A and for
all vectors ~z0, ~z1 ∈ {0, 1}` which differ in exactly m positions, we have that

|pA(~z0, ~z1, 0)− pA(~z0, ~z1, 1)|

is negligible.

Proof. Write ~z0 = 〈z0,1, . . . , z0,`〉 and ~z1 = 〈z1,1, . . . , z1,`〉 and assume, without loss of generality, that ~z0
and ~z1 differ in exactly the first m positions and that ~z0 = 0m · 0`−m and ~z1 = 1m · 0`−m.

We proceed by contradiction. We assume that the lemma does not hold for some probabilistic poly-time
adversary A, and prove that there exists a probabilistic poly-time distinguisher B that has a non-negligible
advantage for Assumption (`,m)-Q.

We now describe B. B takes as input a challenge ChOutput for Assumption (`,m)-Q, simulates KeyExpA
with parameters (1n, 1`, ~z0, ~z1, η) for A and uses A’s output to obtain non-negligible advantage in the game
of Assumption (`,m)-Q.

Initialization Phase. B starts by choosing random y ∈ Zp and by setting Y = e(g1, g2)y. Define JH =
{(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j 6= h or j = h, m+ 1 ≤ j ≤ d}. For (j, h) ∈ JH, B sets2

Gj,h = e(Aj,h[1, j], Cj,1).

Throughout the simulation we will consider secret key SK = (I, Y, y,SK1, . . . ,SK`) implicitly defined by
ChOutput, with SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1, V̄i,0, V̄i,1), for i = 1, . . . , `, where, for i = 1, . . . , ` and
b = 0, 1,

Ti,b = g
t̂i,b
1 , Vi,b = g

v̂i,b
1 ,

T̄i,b = Ci,b, T̄i,1 = Di,1.

2Hereafter, we assume that Aj,h’s (Bj,h’s) rows are indexed by 0 and 1.

12

This implies that, for i = 1, . . . , ` and b = 0, 1,

ti,b = t̂i,b and vi,b = v̂i,b.

Since, for i = 1, . . . , `, and for b = 0, 1 the values t̂i,b, v̂i,b are random from Zp, the key SK is uniformly
distributed as the output of MasterKeyGen. We stress that B only has indirect access to SK through ChOutput
and in what follows we show that this is sufficient for simulating KeyExp.

Answering encryption queries. To answer queries to the Enc oracle for attribute vectors ~x = 〈x1, . . . , x`〉,
we distinguish two cases.
Case 1. The vector ~x is such that there exists and index j ≥ m+1 such that xj = 1. B chooses s′, s′1, . . . , s

′
`

at random in Zp, sets Ω = G−ys
′

j,j and, for i = 1, . . . , `, sets

Xi = (Aj,j[xi, i])s
′−s′i and Zi = (Bj,j[xi, i])s

′
i .

B returns X̃ = (Ω, (Xi, Zi)`i=1) as output of the query.
Case 2. The vector ~x is such that xj = 0 for m + 1 ≤ j ≤ `. Since Match(~x, ~z0) = Match(~x, ~z1), then
there exist two indices j and h such that xj = 1 and xh = 0. B chooses s′, s′1, . . . , s

′
` at random in Zp, sets

Ω = G−ys
′

j,h and, for i = 1, . . . , `, sets

Xi = (Aj,h[xi, i])s
′−s′i and Zi = (Bj,h[xi, i])s

′
i .

B returns X̃ = (Ω, (Xi, Zi)`i=1) as output of the query.
We notice that, in both above described cases, B can perform the computation as it has access to the needed
values from ChOutput and from the initialization phase. Let us now argue that the output returned by B
has the same distribution as in KeyExp. By setting, in Case 1, s = s′ŝ(j,j) and si = s′iŝ(j,j), for i = 1, . . . , `;
and, in Case 2, s = s′ŝ(j,h) and si = s′iŝ(j,h), for i = 1, . . . , `, we have that Xi = T s−sii,xi

and Zi = V sii,xi . Thus,
X̃ = Enc(SK, ~x; s, s1, . . . , s`). Moreover, since s and the si’s are random and independently chosen from Zp
we can conclude that X̃ has the same distribution as the answers obtained by A in KeyExpA.

Answering key queries. To answer to the queries to the KeyGen oracle for attribute vector ~k = 〈k1, . . . , k`〉,
B, for i ∈ S~k, chooses random ai ∈ Zp such that their sum is y and sets

Ri = Caii,ki and Wi = Dai
i,ki

.

B returns K̃ = (Ri,Wi)i∈S~k . Notice that, for i = 1, . . . , `, we have Ci,ki = T̄i,ki and Di,ki = V̄i,ki . Therefore,
we can conclude that K̃ = KeyGen(SK,~k; (ai)i∈S~k). Since the ai are random in Zp under the constraint
that their sum is y, we can conclude that that K̃ has the same distribution as the answers obtained by A in
KeyExpA.

Challenge construction. We describe how B prepares the challenge for A.
B chooses, for i = m + 1, . . . , `, random b′i ∈ Zp under the constraint that their sum is y and returns
K̃ = ((R1,W1), . . . , (R`,W`)) computed as follows. For i = 1, . . . ,m, B sets

Ri = Ei and Wi = Fi;

while, for i = m+ 1, . . . , `, B sets

Ri = Ei · C
b′i
i,0 and Wi = Fi ·D

b′i
i,0.

Notice that, for i = m + 1, . . . , `, we have Ri = T̄ aii,0 and Wi = V̄ aii,0 where ai = âi + b′i. In addition,
for i = 1, . . . ,m, we have Ri = T̄ aii,zηi

and Wi = V̄ aii,zηi
where ai = âi. Therefore, we can conclude that

K̃ = KeyGen(SK, ~zη, (a1, . . . , a`)). Finally, we observe that the ai’s are random in Zp under the constraint
that their sum is y. Thus, K̃ is distributed as in KeyExpA(1n, 1`, ~z0, ~z1, η).

13

Finally, when A halts and returns η′, B halts and returns η′.

Since the simulation provided by B is perfect, by our assumption on A’s advantage, we can conclude that
the advantage of B is also non-negligible thus contradicting Assumption (d,m)-Q.

We thus have the following lemma.

Lemma 5 Under Assumptions (d,m)-Q predicate encryption scheme (MasterKeyGen,Enc,KeyGen,Test) is
key secure.

Combining Lemma 3 and Lemma 5 we have the main result of this paper.

Theorem 2 Under Assumptions (d,m)-Q and Decision Linear predicate encryption scheme (MasterKey-
Gen,Enc,KeyGen,Test) is secure HVE.

7 Match Concealing

In this section, we show that, under the Double Decision Linear Assumption, the scheme presented in
Section 4 actually enjoys a stronger notion of semantic security in which the adversary A is allowed to make
queries for keys associated to any pattern ~k provided only that Match(~z0,~k) = Match(~z1,~k). We call this
notion match concealing. In the notion presented in the main body of the paper, A is restricted to queries
for patterns ~k such that Match(~z0,~k) = Match(~z1,~k) = 0. This latter notion is called match revealing (see
[SBC+07]).

We now present the Double Decision Linear Assumption by means of the following experiment DDLExpA.

DDLExpA(1n)
01. Choose instance I = [p,G1,G2,GT , g1, g2, e] with security parameter 1n.
02. Choose u1, u2, u3, u4, u5, u ∈ Zp at random.
03. Choose η ∈ {0, 1} at random.
04. If η = 1, then
05. set Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 ;
06. else, set Z = g

u5(u−u3)
1 and Z0 = gu4u3

1 .
07. Set U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 = gu2u4u5
2 .

08. Set U145 = gu1u4u5
2 , U125 = gu1u2u5

2 , U124 = gu1u2u4
2 , U = gu1 .

09. Let η′ = A(I, U1, Û1, U2, U4, U5, U245, U145, U125, U124, U, Z, Z0).
10. If η = η′ then return 1 else return 0,

Assumption 4 (Double Decision Linear (DDLinear)) For all probabilistic poly-time algorithms A,

|Prob[DDLExpA(1n) = 1]− 1/2|

is negligible in n.

Suppose that ~z0, ~z1 are two attribute vectors in {0, 1}` which differ only in position j. Consider the
following experiments.

SemanticExpA(1n, 1`, ~z0, ~z1, η)
1. Key-generation Phase. Compute SK = (I, y,SK1, · · · ,SK`) by executing MasterKeyGen(1n, 1`).
2. Query Phase I. Answer Enc queries for attribute vectors ~x by using secret key SK. Answer KeyGen

queries for pattern vectors ~k such that Match(~z0,~k) = Match(~z1,~k) using secret key SK.
3. Challenge Construction.

1. Choose random s, s1, . . . , s` ∈ Zp and set Ω = e(g1, g2)ys.

14

2. For 1 ≤ i 6= j ≤ `
set Xi = g

ti,z0,i (s−si)
1 and Zi = g

sivi,z0,i
1 .

3. set Xj = g
tj,zη,i (s−sj)
1 and Zj = g

sjvj,zη,j
1 .

4. Set X̃ = (Ω, (Xi, Zi)`i=1).
5. Query Phase II. Identical to Query Phase I.
6. return A(X̃).

We will use the writing SemanticExp(1n, 1`, ~z0, ~z1, η; s, s1, . . . , s`) to denote the tuple X̃ computed by
SemanticExp(1n, 1`, ~z0, ~z1, η) using s, s1, . . . , s` as random values. We will denote by pAη (~z0, ~z1) the probability
that experiment SemanticExpA(1n, 1`, ~z0, ~z1, η) returns η. Notice that, since ~z0 and ~z1 differ only in position j,
then in SemanticExpA(1n, 1`, ~z0, ~z1, 0) adversary A receives a valid encrypted attribute vector X̃ for attribute
vector ~z0 whereas in SemanticExpA(1n, 1`, ~z0, ~z1, 1) adversary A receives X̃ for attribute vector ~z1. Next we
prove that, under the Double Decision Linear assumption, for all attribute vectors ~z0, ~z1 which differ only in
position j, the difference |pA0 (~z0, ~z1)− p1`

A(~z0, ~z1)| is negligible. This implies the match concealing semantic
security of the scheme.

Lemma 6 Assume DDLinear holds. Then, for any j, for any attribute strings ~z0 and ~z1 which differ only
in position j, and for any adversary A,

|pA0 (~z0, ~z1)− pA1 (~z0, ~z1)|
is negligible.

Proof. Suppose that there exist PPT adversary A and attribute vector ~z0, ~z1 for which |pA0 (~z0, ~z1) −
pA1 (~z0, ~z1)| is non-negligible. We assume without loss of generality that, for i 6= j, we have z0,i = z1,i = 0
and that z0,j = 0 and z1,j = 1. We next construct a PPT adversary B for the experiment DDLExp. B
takes in input [I, U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 = gu2u4u5
2 , U145 = gu1u4u5

2 , U125 =
gu1u2u5
2 , U124 = gu1u2u4

2 , U = gu1 , Z, Z0], and depending on whether Z = g
u2(u−u3)
1 and Z0 = gu1u3

1 or
Z = g

u5(u−u3)
1 , Z0 = gu4u3

1 , simulates experiment SemanticExp(1n, 1`, ~z0, ~z1, 0) or SemanticExp(1n, 1`, ~z, 1)
for A. We next describe algorithm B.

Initialization Phase. B simulates the key-generation phase by choosing random y′ ∈ Zp and sets Y =
e(Uy

′

1 , g2). This implicitly sets y = u1y
′. B chooses random t′i,0, v

′
i,0, t

′
i,1, v

′
i,1 ∈ Zp, for i 6= j, and then

computes values Ti,0, Ti,1, Vi,0, and Vi,1 as follows.

Ti,0 = g
t′i,0
1 , Ti,1 = U

t′i,1
1 , Vi,0 = g

v′i,0
1 , and Vi,1 = U

v′i,1
1 .

These settings implicitly define ti,0 = t′i,0, ti,1 = u1 · t′i,1, vi,0 = v′i,0, and vj,1 = u1 · v′i,1 which in turn define
values T̄i,0, T̄i,1, V̄i,0, and V̄i,1. Then, B computes Tj,0, Tj,1, Vj,0, and Vj,1 by setting

Tj,0 = U2, Tj,1 = U5, Vj,0 = U1, and Vj,1 = U4,

thus implicitly setting tj,0 = u2, tj,1 = u5, vj,0 = u1, and vj,1 = u4 which in turn define values T̄j,0, T̄j,1, V̄j,0
and V̄j,1.

After this step key SK = (I, Y, y,SK1, . . . ,SK`) with SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1, V̄i,0, V̄i,1) is
implicitly defined even though B does not completely know SK. Notice that SK has the same distribution
as a key given in output by MasterKeyGen.
Answering Queries. B answers A’s Enc queries for vector ~x by executing procedure Enc. Notice that Enc
only needs values Ti,b’s and Vi,b’s which are known to B from the previous step. To describe how B answers
A’s KeyGen queries for vector ~k, we distinguish the following cases.

Case 1: kj 6= ?. In this case there exists index h ∈ S~k such that kh = 1, for otherwise we would
have Match(~z0,~k) 6= Match(~z1,~k). Then, for i ∈ S~k, B chooses random values a′i ∈ Zp, and sets a′ =∑
i∈S~k\{j,h}

a′i. For i ∈ S~k \ {j, h}, B computes Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′i/t

′
i,ki

1 and Wi = Û
a′i/v

′
i,ki

1

15

else B sets
Ri = g

a′i/t
′
i,ki

2 and Wi = g
a′i/v

′
i,ki

2 .

B then computes Rj and Wj as follows. If kj = 0, then B sets

Rj = U
a′j
145 and Wj = U

a′j
245,

else B sets
Rj = U

a′j
124 and Wj = U

a′j
125.

Finally, B sets

Rh = U
−a′j/t

′
h,kh

245 g
(y′−a′)/t′h,kh
2 and Wh = U

−a′j/v
′
h,kh

245 g
(y′−a′)/v′h,kh
2 .

B returns K̃ = (Ri,Wi)i∈S~k .
We next show that, even though B does not have complete access to SK, K̃ has the same distribution of the
output of the KeyGen procedure on input SK and ~k.
Set ai = u1a

′
i, for i ∈ S~k\{h, j}, aj = u1u2u4u5a

′
j , and ah = u1y

′−u1u2u4u5a
′
j−u1a

′. Then, for i ∈ S~k\{j, h}
such that ki = 0 we have

Ri = Û
a′i/t

′
i,ki

1 = g
u1a
′
i/t
′
i,ki

2 = g
ai/t

′
i,ki

2 = T̄ aii,0.

Similarly, for i ∈ S~k \ {j, h} such that ki = 1,

Ri = g
a′i/t

′
i,ki

2 = g
u1a
′
i/u1t

′
i,ki

2 = g
ai/u1t

′
i,ki

2 = T̄ aii,1.

Similarly, we have in both cases that Wi = V̄ aii,ki . Furthermore, if kj = 0 we have

Rj = U
a′j
145 = g

u1u4u5a
′
j

2 = g
u1u2u4u5a

′
j/u2

2 = g
aj/u2
2 = T̄

aj
j,0.

Similarly, for kj = 1 and for Wj . Finally, we have

Rh = U
−a′j/t

′
h,1

245 g
(y′−a′)/t′h,1
2

= g
(−u2u4u5a

′
j+y

′−a′)/t′h,1
2

= g
u1(−u2u4u5a

′
j+y

′−a′)/th,1
2

= g
ah/th,1
2

= T̄ ahh,1.

To conclude notice that the ai’s are random under the constraint that their sum is u1y
′ = y and thus the

simulation is perfect.

Case 2: kj = ?. In this case, for i ∈ S~k, B chooses random values a′i ∈ Zp which sum up to y′, and computes
Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′i/t

′
i,ki

1 and Wi = Û
a′i/v

′
i,ki

1

else B sets
Ri = g

a′i/t
′
i,ki

2 and Wi = g
a′i/v

′
i,ki

2 .

If we set, for i ∈ S~k, ai = u1a
′
i, we have that if ki = 0 then

Ri = Û
a′i/t

′
i,ki

1 = g
u1a
′
i/t
′
i,ki

2 = g
ai/t

′
i,ki

2 = g
ai/ti,ki
2 = T̄ aii,0,

and if ki = 1 then

Ri = g
a′i/t

′
i,ki

2 = g
u1a
′
i/u1t

′
i,ki

2 = g
ai/ti,ki
2 = T̄ aii,1.

16

Similarly, we have Wi = V̄ aii,ki . We thus conclude that K̃ = KeyGen(SK,~k; (ai)i∈S~k). Moreover, the ai’s are
independently and randomly chosen in Zp under the constraint that their sum is u1y

′ = y. Hence, also in
this case, K̃ is distributed according to KeyGen(SK,~k).

Challenge construction. When B is asked to provide encrypted attribute vector for ~z0 or ~z1, B constructs
the tuple X̃ = (Ω, (Xi, Zi)`i=1) in the following way. B sets Ω = e(U, Û1)−y

′
, thus implicitly setting s = u.

For i 6= j, B chooses random si ∈ Zp and computes Xi and Zi as

Xi = U t
′
i,0g
−t′i,0si
1 and Zi = g

v′i,0si
1 .

Notice that the above settings implies

Xi = U t
′
i,0g
−t′i,0si
1 = g

ut′i,0
1 T−sii,0 = T s−sii,0 and Zi = g

v′i,0si
1 = V sii,0.

Finally, Xj and Yj are computed as
Xj = Z and Zj = Z0.

Finally B returns A’s output.

Suppose that Z = g
u2(u−u3)
1 , Z0 = gu1u3

1 and sj = u3. Then, we have

Xj = Uu−u3
2 = Tu−u3

j,0 = T s−s3j,0 and Zj = Uu3
1 = V u3

j,0 = V s3j,0

and thus X̃ = SemanticExp(1n, 1`, ~z0, ~z1, 0; s, s1, . . . , s`). Moreover s and the si’s are random in Zp and thus
we can conclude that X̃ is distributed as in SemanticExp(1n, 1`, ~z0, ~z1, 1).

Suppose instead that Z = g
u5(u−u3)
1 and Z0 = gu4u3

1 , and sets sj = u3 as before. Then we have

Xj = Uu−u3
5 = Tu−u3

j,1 = T s−s3j,1 and Zj = Uu3
4 = V u3

j,1 = V s3j,1

and thus X̃ = SemanticExp(1n, 1`, ~z0, ~z1, 1; s, s1, . . . , s`). Since s and the si’s are random in Zp, we can
conclude that the challenge received by A is distributed as in SemanticExp(1n, 1`, ~z, 1). Furthermore notice
that setting s = u and y = u1y

′ then Ω has the correct distribution.
By the observations above, we can say that if Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 , then A’s view is the same
as in SemanticExp(1n, 1`, ~z0, ~z1, 0); whereas, if Z = g

u5(u−u3)
1 and Z0 = gu4u3

1 , then A’s view is the same as
in SemanticExp(1n, 1`, ~z0, ~z1, 1). This contradicts the DDLinear assumption.

Simple hybrid arguments can extend the lemma to arbitrary ~z0 and ~z1 (and not just for vectors differing
in one position).

Lemma 7 Assume DDLinear. Then predicate encryption (MasterKeyGen,Enc, KeyGen,Test) is match con-
cealing semantically secure.

8 Larger alphabets

Our constructions have been presented for binary attribute vectors. The extension to larger alphabets is
straightforward. Specifically, for an alphabet Σ of size s we would have a master secret key consisting of
an instance I and of one element of GT , 2 · ` · s elements of G1, and 2 · ` · s elements of G2. The length of
the encrypted attribute vectors and of the keys are independent of the size of Σ and only depend on `. We
can make the length of the secret key SK independent from the size of Σ by employing a pseudo-random
function F. Specifically, we randomly select a k-bit string R and set ti,σ = FR(i||σ) and vi,σ = FR(i||σ) for
i = 1, . . . , ` and σ ∈ Σ.

Acknowledgements

The work of the authors has been supported in part by the European Commission through the EU ICT
program under Contract ICT-2007-216646 ECRYPT II and through the FP6 program under contract FP6-
1596 AEOLUS.

17

References

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
440–456, Aarhus, Denmark, May 22–26, 2005. Springer-Verlag, Berlin, Germany.

[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 506–522, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag,
Berlin, Germany.

[Boy08] Xavier Boyen. The uber-assumption family – a unified complexity framework for bilinear groups.
In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography - Pair-
ing 2008, Second International Conference. Prooceedings, volume 5209 of LNCS, pages 39–56,
Egham, UK, September 1–3, 2008. Springer-Verlag, Berlin, Germany.

[BW06] Xavier Boyen and Brent Waters. Anonymous Hierarchical Identity-Based Encryption (Without
Random Oracles). In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
290–307, Santa Barbara, CA, USA, August 20–24, 2006. Springer-Verlag, Berlin, Germany.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset and range queries on encrypted data. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554, Amsterdam, The
Netherlands, February 21–24, 2007. Springer-Verlag, Berlin, Germany.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for
Fine-Grained Access Control for Encrypted Data. In ACM CCS 06, pages 89–98, Alexandria,
VA, USA, October 30 - November 3, 2006. ACM Press.

[IP08] Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption with groups of prime order.
In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography - Pair-
ing 2008, Second International Conference. Prooceedings, volume 5209 of LNCS, pages 75–88,
Egham, UK, September 1–3, 2008. Springer-Verlag, Berlin, Germany.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption Supporting Disjunction,
Polynomial Equations, and Inner Products. In Nigel Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 146–162, Istanbul, Turkey, April 13–17, 2008. Springer-Verlag, Berlin,
Germany.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109, Santa Barbara, CA, USA, August 17–21,
2003. Springer-Verlag, Berlin, Germany.

[SBC+07] Elaine Shi, John Bethencourt, Hubert Chan, Dawn Song, and Adrian Perrig. Multi-Dimensional
Range Query over Encrypted Data. In 2007 IEEE Symposium on Security and Privacy, Oakland,
CA, 2007. IEEE Computer Society Press.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 457–473, San Francisco, CA, USA,
2009. Springer-Verlag, Berlin, Germany.

18

