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ABSTRACT
Private matching between datasets owned by distinct parties is a
challenging problem with several applications. Private matching
allows two parties to identify the records that are close to each
other according to some distance functions, such that no additional
information other than the join result is disclosed to any party. Pri-
vate matching can be solved securely and accurately using secure
multi-party computation (SMC) techniques, but such an approach
is prohibitively expensive in practice. Previous work proposed the
release of sanitized versions of the sensitive datasets which allows
blocking, i.e., filtering out sub-sets of records that cannot be part of
the join result. This way, SMC is applied only to a small fraction of
record pairs, reducing the matching cost to acceptable levels. The
blocking step is essential for the privacy, accuracy and efficiency
of matching. However, the state-of-the-art focuses on sanitization
based on k-anonymity, which does not provide sufficient privacy.
We propose an alternative design centered on differential privacy,
a novel paradigm that provides strong privacy guarantees. The re-
alization of the new model presents difficult challenges, such as the
evaluation of distance-based matching conditions with the help of
only a statistical queries interface. Specialized versions of data in-
dexing structures (e.g., kd-trees) also need to be devised, in order
to comply with differential privacy. Experiments conducted on the
real-world Census-income dataset show that, although our meth-
ods provide strong privacy, their effectiveness in reducing matching
cost is not far from that of k-anonymity based counterparts.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
curity, integrity, and protection; H.2.8 [Database Management]:
Database applications—Statistical databases; H.2.m [Database Man-
agement]: Miscellaneous

General Terms
Security, Experimentation, Performance
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1. INTRODUCTION
Analysis and integration of information maintained by distinct

entities is critical for a large class of applications. For instance,
two competitor businesses may wish to share information about
customers with similar demographics (e.g., age, zipcode), if doing
so allows them to increase their revenues (e.g., to jointly support
a location-customized service for young subscribers). However,
to protect their customer base both parties want to keep data that is
not part of the join result private. In this scenario, the objective is to
match similar records that represent distinct individuals, therefore
matching based on unique identifiers (e.g., SSN) is not applicable.
Another setting that has received significant attention is the record
linkage problem, which attempts to match records stored at distinct
parties (e.g., hospitals), but which represent the same entity (e.g.,
patient). While it is acceptable for hospitals to share information
about a patient that they both have treated, it may be a privacy vio-
lation to disclose data of other patients.

Private linkage is a challenging problem, and previous research
[11] has shown that, in many situations, uniquely-identifying in-
formation may not be available, and linkage is performed based
on matching of other information, such as age, occupation, etc.
To complicate things further, such information may not always be
completely consistent across datasets (e.g., the weight of a patient
may vary between two admissions to different hospitals). There-
fore, it is important to devise methods that are capable of privately
linking records through a distance-based condition, rather than sim-
ple equi-joins computed using cryptographic hashes [2].

Two main approaches have been proposed for private matching:
sanitization methods and Secure Multi-party Computation (SMC)
protocols [14]. Methods in the former category perturb private in-
formation to prevent re-identification of individual records [23, 3,
21]. Typically, data attributes are suppressed, generalized, or trans-
formed in some other way to protect privacy. Sanitization methods
have two limitations: (i) the amount of privacy provided may not
be sufficient and (ii) the matching result may exhibit false posi-
tives/negatives. On the other hand, SMC methods provide strong
privacy and perfect accuracy, but incur prohibitive computational
and communication cost. All existing SMC techniques that we are
aware of [2, 7, 24, 15, 13, 18, 1] require O(n ∗m) cryptographic
operations where n (resp. m) is the number of records in the first
(resp. second) data set. If n=m=10000, such an integration task
will require 108 cryptographic operations. The cost of each individ-
ual operation is very high, and grows with the number of compared



attributes. Even with cryptographic accelerators, such a protocol is
still not usable for practical purposes [17].

The work in [16] has identified the benefits of a hybrid approach
that combines sanitization and SMC. The main idea is to identify
from the sanitized information those record pairs that cannot possi-
bly satisfy the join condition. This filtering process is called block-
ing. Record pairs that are not eliminated by blocking are included
in the SMC step, that can securely and accurately compute the join
result. However, the input to the SMC protocol may be consider-
ably smaller (up to 2 orders of magnitude) compared to the pure-
SMC approaches. Therefore, the hybrid technique can be used in
practical applications. Nevertheless, the approach in [16] sanitizes
data according to the k-anonymity paradigm, which may not be
sufficient to protect privacy [21]. Furthermore, as proven in [8] for
the general case, subsequent privacy formulations that improve on
k-anonymity, such as `-diversity [21] or t-closeness [20] may still
be vulnerable against adversaries with certain types of background-
knowledge.

Recently, the differential privacy [8] paradigm emerged as an
alternative to data sanitization techniques. Instead of publishing
perturbed versions of the dataset, differential privacy allows users
to interact with the database only by means of statistical queries.
Random noise is added to each query result to preserve data pri-
vacy. The work in [8, 9] explores differential privacy in a thorough
theoretical framework, and shows that the privacy guarantees pro-
vided are very strong. Specifically, an adversary that attempts to
attack the privacy of some individual entity r will not be able to dis-
tinguish from the interaction with the database (called a transcript)
whether a record representing r is present or not in the database.

Our objective is to design a blocking protocol that operates within
the differential privacy framework. Specifically, each participant
discloses only the perturbed results of a set of statistical queries.
Devising a differentially private blocking step is a challenging task,
due to the following reasons:

• The matching operation requires evaluations of distance -
based conditions, whereas differential privacy allows statis-
tical queries only.

• The amount of noise added by the statistical database to pro-
tect data is dependent on the sensitivity characteristic of the
answered queries (the sensitivity concept is formally defined
in Section 2.1). The matching protocols must be carefully de-
signed such that the sensitivity of the combination of queries
that are answered is kept low.

• Existing data-partitioning index structures, which are neces-
sary to improve blocking effectiveness, disclose a lot of in-
formation about data distribution, and are not compliant with
differential privacy. Specialized variations of such structures
must be carefully designed to ensure privacy.

In this paper, we develop a blocking protocol that supports effi-
cient private matching, and at the same time provides strong data
protection compliant with differential privacy. Our specific contri-
butions are:

(i) A new security model for private matching in the context of
differential privacy.

(ii) The design of indexing techniques that are compliant with
differential privacy, and a blocking protocol based on the re-
sulting data partitioning.

(iii) Several heuristics to improve blocking effectiveness and match-
ing accuracy in the presence of constraints on the maximum
number of SMC operations allowed.

(iv) An extensive experimental evaluation that shows the effec-
tiveness of the proposed protocol on real data sets.

Section 2 formally describes our security model, and introduces
the differential privacy framework. Section 3 gives an overview of
our method. Section 4 presents differentially-private mechanisms
for data partitioning, based on which we implement the blocking
process described in Section 5. Section 6 outlines the SMC post-
blocking operations, whereas Section 7 presents the experimental
evaluation. We survey related work in Section 8 and conclude with
directions for future work in Section 9.

2. BACKGROUND AND DEFINITIONS
Denote by A and B two data holder parties, and by T and V

their respective datasets. We assume that both T and V have the
same schema1, with attributes (A1, . . . , Ad). Without loss of gen-
erality, we also assume that each attribute domain is numerical, and
totally ordered. For categorical attributes, this requirement can be
enforced by introducing a unique numerical label for each attribute
value. We use the interval notation [xi, yi] to denote a sub-set of
the domain of attribute Ai that includes all values between xi and
yi (inclusive of the interval boundaries).

The two parties execute a private record matching protocol that
identifies similar records in T and V . Record matching is equiva-
lent to building a classifier, i.e., a function f : T (A1, . . . , Ad) ×
V (A1, . . . , Ad)→ {true,false} that labels record pairs as “Match”
if the value of f is true, or “Mismatch” otherwise.

In the private record matching problem, an accurate classifier
f is assumed to be available [22]. Therefore the focus of private
record matching methods is on applying the classifier to all record
pairs within the input datasets privately, accurately and efficiently.
Here, we consider distance-based classifiers [10].

We assume that both parties agree beforehand on the character-
istics of the classifier, which is expressed as a decision rule. For-
mally,

DEFINITION 1 (DECISION RULE). Denote by

disti : Dom(Ai)×Dom(Ai) → R
+

a distance function defined over the domain of attribute Ai, and by
θi ≥ 0 a matching threshold. Decision rule DR is defined as:

DR(t, v) =

{
true if ∀ 1 ≤ i ≤ d, disti(t[i], v[i]) ≤ θi

false otherwise

}
.

A record pair (t ∈ T, v ∈ V ) matches according to DR if
DR(t, v) = true. Our objective is to identify the join result
T ./DR(t,v) V in a privacy preserving manner, such that the re-
sult will be available to both data holders A, B and any record of T
and V that does not satisfy the join condition is not disclosed. Next,
we discuss the privacy model and assumptions of our work. Specif-
ically, in Section 2.1, we outline the differential privacy model [9]
that characterizes the maximum amount of information each party
is willing to disclose about its data. In Section 2.2 we discuss our
privacy assumptions and adversarial model.

2.1 Differential Privacy
A statistical database answers aggregate queries such as Count

or Sum queries. In our work, we consider aggregate range queries,
that can be expressed by d-dimensional hyper-rectangles in the at-
tribute domain space A1×. . .×Ad. A range query is represented as
1If this assumption is not met, the private schema matching proto-
col from [22] can be employed to obtain a shared schema.



a Cartesian product Q = [xQ
1 , yQ

1 ]×. . .×[xQ
d , yQ

d ] where [xQ
i , yQ

i ]
is the extent of Q on attribute Ai. For instance, the Count query

SELECT COUNT(∗) FROM T WHERE (40 ≤ Age ≤ 60);

has extent [40, 60] on attribute Age. Statistical databases allow
users to retrieve coarse-grained aggregate information. On the other
hand, it is important to preserve the privacy of individual records,
by not allowing fine-grained aggregate queries. One solution to
preserve privacy is to disallow queries that have extents smaller
than a certain threshold, e.g., 10 years of age, and 10k salary. How-
ever, this may not be sufficient. For instance, consider malicious
user Mallory who knows that his colleague Alice is the only one in
the company who is 51 years old. Mallory can issue the following
two queries:

Q1 : SELECT COUNT(∗) FROM T
WHERE (40 ≤ Age ≤ 50) AND (30k ≤ Salary ≤ 40k);

Q2 : SELECT COUNT(∗) FROM T
WHERE (40 ≤ Age ≤ 51) AND (30k ≤ Salary ≤ 40k).

Assume that the response to Q1 is 10, and the response to Q2

is 11. Then, Mallory can infer that Alice must be included in the
result of query Q2, and hence her salary is in the range [30k, 40k].
Note that, the attack was successful because Mallory was able to
access the query results for the two views T1 and T2 of table T that
differ in a single record (the record of Alice).

Differential privacy [9] aims to prevent this type of inferences, by
adding random noise to each query result. The interaction between
a user and the database is expressed as a transcript. Formally,

DEFINITION 2 (TRANSCRIPT). LetQ = {Q1, . . . , Qq} be a
set of aggregate queries, and denote by QT

i (1≤i≤q) the result of
answering query Qi on table T . A transcript

T RT
Q = {(Q1, a1), . . . , (Qq, aq)}

is the response of a statistical database to the query set Q on
database table T , where ai = QT

i .

A statistical database satisfies ε-differential privacy if the
ε-indistinguishability condition [9] is fulfilled:

DEFINITION 3 (ε-INDISTINGUISHABILITY). Consider a sta-
tistical database that produces the transcript U on the set of queries
Q = {Q1, . . . , Qq}, and let ε > 0 be an arbitrarily-small real con-
stant. Transcript U satisfies ε-indistinguishability if for every pair
of views T1, T2 such that |T1| = |T2| and T1, T2 differ in only one
record, it holds that

∣∣∣∣∣ln
Pr[T RT1

Q = U ]

Pr[T RT2
Q = U ]

∣∣∣∣∣ ≤ ε (1)

In other words, an attacker is not able to learn whether the transcript
was obtained by answering the query set Q on view T1, or on view
T2. To achieve ε-indistinguishability, a statistical database injects
noise into each query result QT

i . The amount of noise required is
proportional to the sensitivity of the query set Q, which is defined
as follows:

DEFINITION 4 (L1-SENSITIVITY). Over any two views T1,
T2 such that |T1| = |T2| and T1, T2 differ in only one record,
the L1-sensitivity of query set Q = {Q1, . . . , Qq} is measured as

SL1(Q) = max
∀T1,T2

q∑
i=1

|QT1
i −QT2

i |

The following theorem from [9] gives a sufficient condition for
a statistical database to satisfy ε-differential privacy:

THEOREM 1. Let Q be a set of queries and denote by SL1(Q)
the L1-sensitivity of Q. Then, differential privacy with parameter
ε can be achieved by adding to each query result random noise
X , i.e., QT

i ← QT
i + X , where X is a random, i.i.d. variable

drawn from a Laplace distribution with mean 0 and magnitude λ ≥
SL1(Q)/ε.

An essential operation in enforcing differential privacy is deter-
mining the sensitivity SL1(Q). Interestingly, it is shown in [9] that
SL1(Q) is independent of the dataset T , and can be determined
based on the query set Q alone. However, for arbitrary query sets,
it is shown in [25] that computing sensitivity is NP-hard. Never-
theless, if certain restrictions are imposed on Q, sensitivity (or its
approximation) for sets of Count queries can be efficiently com-
puted. Specifically:

(i) If all queries in Q have disjoint ranges, SL1(Q) = 2.

(ii) If queries inQ have overlapping ranges, then a 2-approxima-
tion of SL1(Q) is given by the maximum number of queries
that overlap the same point in the data space. Formally, for
any data space point p ∈ A1 × . . .×Ad, define

Qp = {Q ∈ Q|p ∈ Q}
i.e., the set of queries that cover point p. Then, we have

SL1(Q) ≤ 2 · max
p∈A1×...×Ad

|Qp|.

2.2 Privacy Definition
One of the most important aspects of SMC techniques is that

privacy guarantees of the underlying protocols can be proven un-
der reasonable assumptions. We believe that a similar theoretical
framework to prove privacy guarantees is needed for our hybrid
framework. Not surprisingly, our main goal will be to extend the
basic definitions and techniques used in SMC so that they apply
to our hybrid framework. Specifically, we will focus on extend-
ing security/privacy definitions given for the semi-honest model to
our hybrid framework where each party also reveals some sanitized
information about its data.2

The basic semi-honest behavior definition [14] states that a com-
putation is secure if the view of the dishonest parties (combined
view, as dishonest parties may collude) during the execution of the
protocol can be effectively simulated knowing only the input and
the output of the dishonest parties. This is not quite the same as
saying that all private information is protected. Obviously, under
this definition, disclosure of any information that can be deduced
from the final result is not considered a violation. For example, if
two entities that differ in only one attribute are not matched, in-
formation about how that attribute affects the matching is revealed.
Such inferences cannot be prevented in the context of SMC, as this
information can be deduced from the final result and the input.

We extend the basic semi-honest model [14] by including the
sanitized data (e.g., statistical query results that satisfy differential
privacy definitions) as public data that is accessible by all partici-
pants. Formally, let ā = (a1, . . . , am) be the sanitized data of all
the parties. Let f : ({0, 1}∗)m 7−→ ({0, 1}∗)m be a probabilistic,
polynomial-time functionality, where fi (x1, x2, . . . , xm) denotes
the ith component of f (x1, x2, . . . , xm) and let Π be an m-party
2We would like to stress that the semi-honest model is the most
commonly used model in SMC-based privacy preserving data ana-
lytics algorithms [7].



Figure 1: Overview of the hybrid model

protocol for computing f (in the context of this paper, f is the pri-
vate record matching procedure). For I = {i1, i2, . . . , it} ⊆ [m]
where [m] denotes the set {1, 2, . . . , m}, we let fI (x1, x2, . . . , xm)
denote the sub-sequence fi1 (x1, . . . , xm),. . . , fit (x1, . . . , xm).
Let the view of the ith party during an execution of protocol Π on
x̄ = (x1, x2, . . . , xm), denoted viewΠ

i (x̄), be
(
xi, ri, m

1
i , . . . , m

t
i

)

where ri represents the outcome of the ith party’s internal coin
tosses, and mj

i represents the jth message received by the ith party.
Also, given I = {i1, i2, . . . , it}, we let viewΠ

I (x̄) denote the sub-
sequence

(
I, viewΠ

i1 (x̄) . . . viewΠ
it

(x̄)
)
.

We say that protocol Π privately computes f if there exists a
probabilistic polynomial time algorithm, denoted S, such that for
every I ⊆ [m], it holds that

{(S (I, (xi1 , . . . , xit) , ā, fI (x̄)) , f (x̄))}x̄∈({0,1}∗)m

C≡
{(

viewΠ
I (x̄, ā) , outputΠ (x̄)

)}
x̄∈({0,1}∗)m

where
C≡ denotes computational indistinguishability [14].

Compared to the existing privacy definitions in the semi-honest
model, we assume that all sanitized data (e.g., statistical query
results that satisfy differential privacy) are available to any coali-
tion of parties (as shown in Figure 1) and the ultimate goal of the
privacy-preserving protocol is to reveal nothing more than what can
be inferred by all sanitized information, original inputs of the par-
ties that are part of the coalition and the final function result (e.g.,
the final result of the record linkage procedure).

Compared to classic SMC models, in our hybrid model we can
trade off privacy versus efficiency easily. For example, if no sani-
tized data is revealed, our model will be equivalent to SMC models
(e.g., ā is an empty set in the above definition). On the other hand,
as we show in this paper, by revealing the statistical query results
that satisfy differential privacy, it is possible to improve the effi-
ciency of the SMC protocols without sacrificing accuracy.

3. OVERVIEW OF THE SOLUTION
Consider two datasets T and V , owned by parties A and B, re-

spectively. Both parties want to learn the result of T ./DR V ,
without disclosing to the other party any records that are not part of
the result. In a naive approach, A and B would engage in an SMC
protocol that takes as input sets T and V , and privately evaluates
the decision rule DR on all record pairs of the Cartesian product
T ×V . However, such an approach incurs excessive computational
and communication costs.

To reduce the private matching cost, A and B partition their
data into sub-sets {Ti}1≤i≤m and {Vj}1≤i≤n. For each sub-set,
the corresponding extent and cardinality are disclosed to the other
party. Based on sub-set extents, it can be determined that records
from certain sub-set pairs (Ti, Vj) cannot contain matching records,
hence such pairs are not included in the SMC phase. The filter-
ing of sub-set pairs is called blocking, and can considerably reduce
matching overhead.

Note that, if the extent of a sub-set is expressed as its minimum
bounding hyper-rectangle, then the information disclosed is equiv-
alent to answering an aggregate Count query with a rectangular
range. Therefore, cardinalities of {Ti}1≤i≤m and {Vj}1≤i≤n are
equivalent to transcripts in the statistical database model. To pro-
tect the privacy of its records, each party controls the amount of
information disclosed according to differential privacy for a given
privacy parameter ε, decided by each party independently3.

The proposed private matching technique consists of three phases:
(i) construction of transcripts satisfying differential privacy, (ii) sub-
set based blocking and (iii) SMC-based matching of sub-set pairs
that are not filtered during blocking. In Section 3.1, we discuss
transcript generation. Next, we show how blocking is performed in
Section 3.2. The SMC protocol is presented in detail in Section 6.

3.1 Transcript Generation
The transcript construction executed by each party consists of

two steps: partitioning and output perturbation. We illustrate these
steps using the record sets T and V shown in Figure 2(a). There
are two attributes, Age and Gender, and the join decision rule for
a pair of records (t ∈ T, v ∈ V ) is

DR(t, v) =





true if (t.Gender = v.Gender)
and (|t.Age− v.Age| < 5)

false otherwise



 .

Partitioning. In this step, each party generates a set of d-dimen-
sional hyper-rectangles and partitions its dataset accordingly. To
ensure correctness, every record should be included in at least one
hyper-rectangle. A natural way of obtaining these hyper-rectangles
is to perform an indexing of the record set. In Section 4 we explore
several alternatives, based on BSP-trees, kd-trees and R-trees.

Notice that the structure of the index may reveal sensitive infor-
mation about data distribution. For example, R-trees do not cover
empty regions of the data space. Similarly, kd-trees reveal the me-
dian values along the split dimension. To protect against such dis-
closures, the index itself may be perturbed by the privacy mecha-
nism.

Consider an indexing algorithm that accesses the dataset in terms
of range queries only. If the transcript of all queries issued by the
algorithm is protected with differential privacy, then the outcome
(i.e., the perturbed index) does not leak any private information4.
This is exemplified in Section 4.2, where we present the Adaptive-
kd algorithm.

Figure 2(b) shows the set of hyper-rectangles T1, . . . , T6 gener-
ated by party A and the records associated with each hyper-rectangle.
The example considers disjoint ranges, such that L1-sensitivity is
easy to compute.

Output Perturbation. To facilitate blocking, each party must
disclose to the other party: (1) the extents of the hyper-rectangles
obtained from the partitioning step, and (2) the cardinality of each
partition. Assuming that the partitioning step respects privacy, the
extents can be directly disclosed. However, random noise must be
injected into the record counts of every partition (recall that each
count is equivalent to answering a Count query over the extent
of the corresponding partition). The amount of noise depends on
the privacy parameter ε as well as the sensitivity of the partitioning
step. Specifically, party A determines sensitivity ST

L1 and generates

3Without loss of generality, throughout the rest of the paper, we
will assume that privacy parameters of the parties are equal (i.e.,
εA = εB = ε).
4In effect, this process is equivalent to perturbing the response to a
complex query that requests a particular index of the dataset.



Figure 2: Solution Overview

noise drawn from a Laplace distribution with mean 0 and magni-
tude ST

L1/ε. Continuing our example, since partitions T1, . . . , T6

have disjoint extents, the resulting sensitivity has value 2.5 There-
fore, party A injects Laplace noise with magnitude 2/ε into the
cardinality of each partition.

Note that, the noise can have both positive and negative values,
and is not necessarily integral. Integrality can be addressed by
rounding-up to the closest integer value. Positive noise is incor-
porated by adding fake records to the dataset, while negative noise
requires suppressing some of the original records. For instance,
in Figure 2(c), record t3 from rectangle T1 is removed, whereas
t′8 is added in T3. Figure 2(c) shows the cardinalities |T1|, . . . , |T6|
obtained after perturbation. Figure 2(d) shows the perturbation out-
come for record set V .

Adding and suppressing records must not affect matching cor-
rectness. When a record is added, it is marked as fake, and assigned
remote values (outside attribute domains6) so that the decision rule
never evaluates to true when fake and original records are matched
in the SMC phase. Therefore, no information is disclosed to the
other party about which partitions contain fake records. We empha-
size that fake records are never disclosed other than in encrypted
form (i.e., equivalent to releasing only record counts).

On the other hand, every suppressed record is placed in a special
partition T ′ (respectively V ′), which is always included in the SMC
matching phase against the entire dataset of the other party (i.e., the
SMC phase is performed for T ′ × V and T × V ′, respectively).
This way, completeness of the matching result is preserved. In the
example, T ′ = {t3} and V ′ = {v3}.

3.2 Blocking
The blocking phase filters out pairs of partitions from the sets

{Ti}1≤i≤m and {Vj}1≤i≤n that cannot contain matching records
based on the given decision rule. Since extents of the partitions are
disclosed according to differential privacy, such filtering can be per-
formed efficiently, i.e., without any SMC protocols. For instance,
due to the DR condition on attribute Gender, none of the records
in partitions T1, T2 or T3 can match neither V4, nor V5. Similarly,
none of T4, T5 or T6 matches V1, V2 or V3.

The decision rule also specifies that the difference between the
ages of matching records should be strictly smaller than 5. T1

has extent [40, 50) on attribute Age, hence it cannot match V3,
which spans Age range [55, 65). Similarly, T4 with Age range
[40, 45) cannot match V5 which spans Age range [50, 65), etc.
After the blocking phase, the following partition pairs are kept
as candidates for matching in the SMC phase: (T1, V1), (T1, V2),
(T2, V2), (T2, V3), (T3, V2), (T3, V3), (T4, V4), (T5, V4), (T5, V5)

5Here, we assume that the sensitivity of the partitioning step is 0.
6Such values can be generated based on domain knowledge (pos-
sibly obtained during private schema matching).

and (T6, V5). The total number of record pairs that are consid-
ered in matching the above partition pairs is 22. Furthermore, the
sets of suppressed records T ′ and V ′ must also be joined with
the entire record set of the other party. Since |T ′ × V | = 6 and
|T × V ′| = 7, the total number of records considered in the SMC
step is 22+13 = 35. Compared to the cardinality of |T×V | = 42,
this represents a saving of (42−35)

42
× 100 ≈ 17%.

Considering each partition as a small dataset by itself, any exist-
ing solution for privacy preserving record matching can be applied
to match the set of non-blocked partition pairs. Section 6 details
our SMC solution for matching records of non-blocked partition
pairs.

4. PARTITIONING STEP
A partition p consists of a set of points, Points(p) and a d-

dimensional hyper-rectangle Region(p) such that for all points t,
t ∈ Point(p) ⇒ t ∈ Region(p). In other words, every point in
Points(p) should be contained by the region of partition p. We de-
note the interval covered by a region r on dimension Ai as [xi, yi],
where xi is the lower bound on attribute Ai and yi is the upper
bound. Alternatively, r[xi] (resp. r[yi]) denotes the lower (resp.
upper) bound of region r on Ai.

Given dataset D, a partitioning algorithm outputs a set of par-
titions P D = {p1, ..., pk}. We classify partitioning methods into
two groups: space partitioning and data partitioning.

Space partitioning algorithms output partitions that cover the en-
tire data space. Formally,

∪k
i=1Region(pk) = A1 × · · · ×Ad.

On the other hand, data partitioning algorithms output partitions
that cover the entire dataset:

∪k
i=1Points(pk) = D.

Unless records are scattered evenly across the entire data space,
partitions generated by data partitioning algorithms tend to leave
out empty regions (e.g., T6 of Figure 2(b)). Such empty regions
may leak considerable amounts of sensitive information. For ex-
ample, following our example in Section 1, if A and B are com-
petitor businesses, B can infer that A’s customer base excludes el-
derly females. To prevent these disclosures, empty regions should
be represented as partitions as well and perturbed accordingly.

Another issue that arises with data partitioning methods is the
problem of overlapping hyper-rectangles (i.e., partition regions).
To ensure correctness, it is sufficient to include a record enclosed
by multiple partition regions in only one rather than all.

THEOREM 2. Let P r = {p1, . . . pk} be the set of partitions
whose (overlapping) regions contain the record r ∈ T . Including
r in only one partition p∗ ∈ P r does not affect the correctness.



PROOF. The proof follows directly from the correctness of the
entire protocol. Suppose that for any partition p, all records in
Points(p) are correctly classified according to the decision rule
after protocol execution. Then, regardless of which partition of P r

includes r, ∀s ∈ V, (r, s) will be labeled correctly.

We observe that including r into multiple partitions of P r will
only increase the costs. On the other hand, the overall cost of
matching record r with those of V depends on how p∗ is chosen.
In most cases an optimal procedure that specifies the best choice
might not be available, leaving parties with heuristic solutions.

Below, we briefly describe BSP-tree, kd-tree and R*-tree data
structures and present our algorithms for releasing a perturbed par-
titioning of the data.

4.1 BSP-Trees
In d-dimensional space, BSP-trees are constructed by recursively

dividing the space into two sub-spaces using (d − 1)-dimensional
hyperplanes. For example in 2D, each step corresponds to heuris-
tically selecting a line and partitioning the space based on this line
until certain requirements are met. In 3D, instead of lines, planes
are used to split the space. The heuristic method for selecting the
splitting hyperplanes depends on the application area, as does the
stopping condition.

To simplify the BSP-tree construction process and reduce the
data-dependence of the heuristics for splitting hyperplane selection,
we only consider axis-orthogonal hyperplanes. The axis is chosen
based on the depth of the tree node which is being split. Specif-
ically, if the depth of node n is denoted Depth(n), the splitting
hyperplane is orthogonal to axis Depth(n)%d + 1 and splits the
space into two equal halves.7

Figure 3 exemplifies a BSP-tree of height 3 in 2D space con-
structed by this heuristic. Data space is first partitioned into equal
partitions on A1 axis through the line A1 = 0.5. For all interme-
diate nodes at level 1, the next splitting line is orthogonal to A2,
A2 = 0.5. At level 2, the splitting line partitions on A1 axis again.
The resulting partitions are the leaf nodes of the tree: p1, ...p8. Par-
titions cover the same volume of space and their regions do not
depend on data distribution.

Figure 3: BSP-Tree example

Let Qh be a query that asks for the BSP-tree index on some
dataset D. Since partition extents are built based on attribute do-
mains only, Qh is equivalent to a set of 2h count queries, one for
each leaf node’s extent. Notice that regardless of h and the dis-
tribution of D, the query regions will be disjoint. Therefore, the
sensitivity of Qh is 2.

4.2 Adaptive construction of kd-trees
kd-trees are another space-partitioning indexing technique. The

root node covers the entire space. At each step, a splitting dimen-
sion and a split value from the range of the current node on that
7The +1 only maps dimension indices from [0, d− 1] to [1, d].

dimension are chosen heuristically to divide the space into sub-
spaces. Again, the algorithm halts when pre-defined requirements
(such as tree height or number of elements covered by a node) are
met.

When used as an index for efficient access to spatial objects,
a balanced tree where leaf nodes contain approximately the same
number of points is of interest. For this purpose, similar to what we
have suggested for BSP-tree construction, the splitting dimension
dim is chosen based on node depth: dim = Depth(n)%d + 1.
The split value on the dimension dim is chosen based on the distri-
bution of the points. Selecting the median value on dim-axis of the
points distributes the points evenly among the left and right child
nodes.

We start our analysis by calculating the sensitivity of a query
median(Aj) that returns the median across attribute Aj .

THEOREM 3. Let domain of Aj have the range [Amin
j , Amax

j ].
Sensitivity of median(Aj) is (Amax

j −Amin
j ).

PROOF. Since the result of a median query is always equal to
one of the attribute domain values, the difference between any two
median queries (and consequently between two median queries on
tables that differ in a single record) is at most (Amax

j − Amin
j ).

Hence, this is an upper bound for the value of S
median(Aj)

L1
. Next,

we show that this is also a lower bound. Consider dataset T with
2q + 1 records such that the value of the ith record ti on attribute
Aj , ti[A] is Amin

j if 1 ≤ i ≤ (q + 1), and Amax
j otherwise. The

result of median(Aj) over T is Amin
j . Suppose we change the

value of the (q + 1)st record from Amin
j to Amax

j , yielding table
T ′ such that ti[Aj ] = Amin

j if 1 ≤ i ≤ q, and Amax
j otherwise.

It follows immediately that the median query for T ′ returns Amax
j .

Since T and T ′ differ in only one record and |T | = |T ′|, the lower
bound on S

median(Aj)

L1
is (Amax

j −Amin
j ).

The fact that the sensitivity of a median query depends on the do-
main size may be undesirable for various reasons. Firstly, domain
size can be too large for certain attributes (e.g., income). Secondly,
any noisy median outside the interval [Amin

j , Amax
j ] is useless for

partitioning the data.
One workaround consists of replacing the median query with

(Amin
j −Amax

j ) count queries, one for each value within the range,
and calculating the median based on these noisy counts. The sensi-
tivity of this approach is fixed, SL1 = 2, because query regions are
disjoint.

If the range of dim is too wide, the noisy median computed by
explicit count may be far from the actual one due to noise accumu-
lation. In such cases, an alternative is to use the noisy mean as the
split value instead of the median. For a region r, over dimension
dim, the following queries are issued:

Q3 : SELECT SUM(t.dim) FROM T AS t WHERE t ∈ r;
Q4 : SELECT COUNT(∗) FROM T AS t WHERE t ∈ r;

Here, query Q3 retrieves the sum over dim and Q4 retrieves the
count. Although the responses to both queries will be noisy, the
mean can be approximated as Q3T /Q4T . In our analysis, we as-
sume that the split value is the noisy median (calculated from noisy
counts) for categorical attributes and the noisy mean for numerical
attributes.

Algorithm 1 provides the entire protocol for adaptive kd-tree
construction. The root node covers the entire d-dimensional space.
While tree height is below the maximum value h, the next available
node is chosen for splitting. The splitting dimension dim is deter-
mined by the node depth. For numerical attributes, the split value



Algorithm 1 Adaptive kd-tree construction
Require: h, maximum height of the tree

Region(root) ← A1 × · · · ×Ad

Stack s ← ∅
s.Push(root)
while Stack is not empty and tree height ≤ h do

Node n ← s.Pop()
Dimension dim ←Depth(n)%d + 1
if dim is numerical then

Sum ← Query Sum(dim) over Region(n)
Count ← Query Count(∗) over Region(n)
val ← Sum/Count

else
for all Categories c in Region(n)dim do

Counts[c] ← Query Count(∗) over
Region(n) ∩A1 × · · · ×Adim−1 × {c} × · · · ×Ad

end for
val ← median calculated from Counts

end if
Left(n) ← Left-split of Region(n) on dim at val
Right(n) ← Right-split of Region(n) on dim at val
s.Push(Left(n)), s.Push(Right(n))
Adjust tree height

end while

val is the noisy mean. For categorical attributes, val is the noisy
median.

If the sensitivity of the set of queries exceeds the preset thresh-
old ελ during execution of Algorithm 1, according to differential
privacy, the database should not respond with an answer. To pre-
vent this from happening, we now calculate an upper bound on the
sensitivity of Algorithm 1. The noise added to each partition will
be computed according to this bound.

THEOREM 4. Let Qh = {Qh
1 , ..., Qh

q } be the query set that
adaptively constructs a kd-tree of height h. The largest subset
Qh
∗ ⊆ Qh of queries with overlapping query regions has size

nh = 2×
h−1∑
i=0

I(Ai%d+1 is numerical)

+

h−1∑
i=0

I(Ai%d+1 is categorical).

PROOF. When h = 1, the kd-tree contains 2 leaf nodes and the
root node. Q1 consists of the queries that determine the split value
of the root on attribute A1. If A1 is categorical, then Q1 is a set of
non-overlapping count queries and n1 = 1. On the other hand, if
A1 is numerical, Q1 consists of a sum and a count query over the
entire data space and n1 = 2. Using indicator functions I(.), n1

can be expressed as

n1 = 2× I(A1 is numerical) + I(A1 is categorical).

Now consider the case h = i > 1. Assume that |Qh−1
∗ | = nh−1

holds. We want to show that |Qh
∗ | = nh.

Adding another level to the tree requires splitting the current leaf
nodes. Based on our dimension selection heuristic, every node at
level h−1 has to be split on the same attribute A(h−1)%d+1 = A#.

Suppose A# is categorical. The queries that determine the split
values are exactly the set Qh − Qh−1. However, none of these
queries overlap with each other because by definition of space par-
titioning algorithms, any two nodes at the same level cover disjoint

areas of the data space. Therefore, at most one new query is added
toQh−1

∗ . In other words, when A# is categorical, nh = nh−1 +1.
If A# is numerical, B asks two overlapping queries (sum and

count) per leaf node to determine the split values. Again, queries
regarding sibling nodes do not overlap with each other. In this sce-
nario, Qh−1

∗ grows by 2.
Accordingly, we can calculate nh as

nh = nh−1 + 2× I(A1 is num.) + I(A1 is cat.)

= 2×
h−1∑
i=0

I(Ai%d+1 is num.) +

h−2∑
i=0

I(Ai%d+1 is cat.).

Next, we formulate the sensitivity of Qh.

THEOREM 5. L1-sensitivity of Qh is 2nh.

PROOF. The proof follows directly from the definition of L1-
sensitivity. Changing one record of the dataset changes the result of
count queries by at most 2. For sum queries, assuming the numer-
ical attribute in question is normalized to [0, 1], the maximum dis-
tance in L1-norm corresponds to changing some record’s attribute
value from 0 to 1. Here again, the L1-norm distance changes by at
most 2. Normalization can be performed as a preprocessing step8.
In total, adaptively building the kd-tree (or equivalently retrieving
the partition regions) has sensitivity 2nh.

In order to obtain the partition cardinalities themselves, query
counts over all partition regions should be issued too. Including
these queries, the overall sensitivity of the partitioning step using
Algorithm 1 becomes 2nh + 2. Qh

∗ grows by only one query be-
cause partitions do not overlap with each other but only with their
parents. Therefore changing one record affects at most 2 additional
query responses. Hence, the overall sensitivity is 2nh + 2.

4.3 Data Partitioning Index Structures
So far, we have considered only space partitioning indexing tech-

niques. However, many data partitioning indexing methods exist
(e.g., R-trees, TV-trees, X-trees, M-trees, etc) that usually obtain
better record clustering accuracy than their space partitioning coun-
terparts. In our work, we consider R∗-trees [5], an R-tree variation
with good clustering properties. Note that, in general, there are no
guarantees that the leaf set will completely cover the data space. To
satisfy differential privacy, an additional partition p′ is added to the
transcript, which covers the entire data space and includes all data
points. A 2-bound of L1-sensitivity is computed with respect to all
leaf nodes and p′, as described in Section 2.1.

Note that, in most cases, data partitioning index structures do
not fulfill the condition that distinct leaf nodes have disjoint extents
in the attribute domain space. Due to overlaps, the L1-sensitivity
of the resulting leaf set may have large values (recall from Sec-
tion 2.1 that sensitivity is proportional to the amount of overlap
in query ranges). Therefore, a trade-off emerges: on one hand,
the leaf nodes have smaller extents, leading to better matching ac-
curacy. On the other hand, the sensitivity is increased, requiring
more noise to be added to the reported cardinalities, hence decreas-
ing blocking efficiency. Our experimental results (Section 7) show
that the latter factor has a very high negative influence, indicating
that sets of overlapping hyper-rectangles are not suitable for private
matching in the differential privacy context.

8We assume that the ranges of continuous attributes are determined
before the record linkage process (i.e., during schema matching).



5. BLOCKING STEP
Given two regions R1 and R2, let dinf

i (R1, R2) denote the infi-
mum distance between any pair of records within R1 and R2 over
the ith dimension. Formally,

dinf
i (R1, R2) = inft∈R1

v∈R2

(disti(t, v)).

By definition, dinf
i (R1, R2) is the greatest lower bound on the dis-

tance. If dinf
i (R1, R2) > θi for some 1 ≤ i ≤ d, then any two

points from R1 and R2 cannot match.
We define the supremum distance similarly:

dsup
i (R1, R2) = supt∈R1

v∈R2

(disti(t, v)).

Supremum distance function helps matching two regions. By defi-
nition, dsup

i (R1, R2) limits from above the maximum distance be-
tween two arbitrary points of R1 and R2. If these distance values
never exceed the threshold for any attribute, then all points within
R1 ×R2 should match.

Based on infimum and supremum distance functions, the block-
ing decision rule BDR(R1, R2) can be defined as follows:

BDR(R1, R2) =





N if ∃ 1 ≤ i ≤ d dinf
i (R1, R2) > θi

M if ∀ 1 ≤ i ≤ d dsup
i (R1, R2) ≤ θi

U otherwise





Here the return values M, N and U refer to match, non-match and
undecided respectively. As exemplified in Section 3.2, not all pairs
of regions can be classified as M and N . Whenever an accurate
decision cannot be drawn, the pair is labeled U . Records belonging
in such regions will be labeled privately through the SMC protocols
described in Section 6.

5.1 Overall protocol for blocking
Let {Ti}1≤i≤m (resp. {Vj}1≤j≤n) be the set of partitions ex-

tracted from party A’s (resp. B’s) data. Let us denote the region
covered by a partition p as Region(p) and the perturbed set of
records within the region as Points(p). Recall from Section 4 that
all suppressed records are returned in special additional partitions
T ′ of T and V ′ of V .

Algorithm 2 Protocol for the blocking step
Require: T = {Ti}1≤i≤m ∪ T ′ and V = {Vj}1≤j≤n ∪ V ′

1: for all Partitions Ti ∈ T do
2: for all Partitions Vj ∈ V do
3: if BDR(Region(Ti), Region(Vj)) = U then
4: Privately match Points(Ti)× Points(Vj)
5: else if BDR(Region(Ti), Region(Vj)) = M then
6: Add Points(Ti)× Points(Vj) to the result
7: end if
8: end for
9: end for

10: Privately match Points(T ′)× V
11: Privately match Points(V ′)× T

Algorithm 2 describes the overall protocol for the blocking step.
For every partition {Ti}1≤i≤m of T and {Vj}1≤j≤n of V , the
blocking decision rule BDR is evaluated. In step 3, record pairs
that will be labeled with SMC protocols are identified. Step 5 in-
serts matching record pairs to the result set. Finally, in steps 10
and 11, suppressed records are labeled.

6. SMC STEP
For pairs of records that are not blocked, it is necessary to se-

curely determine whether disti(t[i], v[i]) ≤ θi, for all attributes
Ai. The decision rule can be evaluated securely using generic SMC
circuit evaluation techniques [14]. However, less expensive tech-
niques can be employed, such as commutative encryption [2] and
homomorphic encryption [18]. In our work, we use a protocol that
relies on the latter9.

Let Epk(.) denote the encryption function with public key pk
and Dpr(.) the decryption function with private key pr. A se-
cure public key cryptosystem is called homomorphic if it satisfies
the following requirements: (1) Given ciphertexts Epk(m1) and
Epk(m2) of messages m1 and m2, there exists an efficient algo-
rithm to compute the public key encryption of m1 + m2, denoted
as Epk(m1+m2) := Epk(m1)+h Epk(m2). (2) Given a constant
k and the encryption of m1, Epk(m1), there exists an efficient al-
gorithm to compute the public key encryption of km1, denoted as
Epk(km1) := k ×h Epk(m1).

Using homomorphic encryption, L1 distances can be immedi-
ately determined. We focus further on how to privately compute
Euclidean distances, i.e., disti(t[i], v[i]) = (t[i]−v[i])2 = (t[i])2−
2 × v[i] × t[i] + (v[i])2. Party A creates a homomorphic pub-
lic/private key pair, and sends the public key to party B. A also
sends to B encrypted values {tid, Epk((t[i])2), Epk(−2 × t[i])}
where tid is a randomly generated record identifier for record t.
Next, party B computes for each of its records vid the value
Epk((t[i])2) +h (Epk(−2× t[i])×h v[i]) +h Epk((v[i])2) which
is equal to Epk((t[i] − v[i])2). Party B creates message {rid,
Epk((t[i] − v[i])2)} for each record pair comparison, and keeps
a local entry stating that the comparison with random identifier rid

is comparing records identified by tid and vid. To prevent party A
from learning how many records of B are candidate matches for
each hyper-rectangle disclosed by A, party B shuffles randomly
the messages and sends them to A. Note that, such secure distance
evaluation could be combined with a secure comparison protocol,
such that the actual distance is not revealed, but only its relative
value to threshold θi. Using the private key, party A can decrypt
the distance value, and find out the rid of the matching records. The
selected rid values are sent to party B, which outputs the matching
identifier pairs tid and vid.

6.1 Limited SMC budget
In the record linkage community, efficiency of a blocking scheme

is measured by the reduction ratio metric [10]. Given a baseline
comparison space S, reduction ratio (RR) is the fraction of sav-
ings from the comparison space attained by the blocking scheme.
We compare our results to a naive solution that privately evaluates
DR over all record pairs in the Cartesian product T × V .10 There-
fore, |S| = |T × V | = |T | × |V |. Then, RR can be defined
formally as

RR = 1− number of decision rule evaluations
|T | × |V | .

When the input datasets T and V are large, even after consid-
erable amount of reduction in comparison space, costs of apply-
ing our solutions might still be higher than the amount anticipated
by the participants. In order to prevent such concerns related to
high costs from hampering the record matching process, we now
discuss an extension to our methods where participants can deter-
mine an upper bound on the number of SMC protocol invocations
9Please note that our framework could be used with any SMC pro-
tocol.

10Existing SMC protocols usually compare all record pairs.



that evaluate the decision rule DR. We call this upper bound the
SMC_budget.

Similar to RR, we represent SMC_budget as a fraction of the
Cartesian product size. For example, if |T | = |V | = 103, then
|T × V | = 106 and SMC_budget = 0.01 implies DR will be
evaluated at most 106×0.01 = 104 times using the SMC protocols
of Section 6.

Notice that all record pairs that were unlabeled after the blocking
step are labeled in the SMC step. In this case, SMC protocols need
to compare (1−RR)×|T |×|V | pairs. If 1−RR ≤ SMC_budget,
then there is no challenge in enforcing the limits over SMC oper-
ations because the budget meets or exceeds the need. However,
when 1−RR > SMC_budget, then some record pairs cannot be
properly labeled.

In order to prevent disclosure of irrelevant record pairs, we as-
sume that all such records are excluded from the result set (i.e., as-
sumed to be mismatching record pairs). Whenever SMC_budget
is insufficient, record pairs should be chosen carefully to maximize
the number of matching record pairs found in the SMC step. This
notion is captured by the recall measure. Let H be some heuris-
tic that guides us in selecting the record pairs towards which the
SMC_budget is spent. Then the recall of H , denoted RecallH ,
is the fraction of matching record pairs that H can identify in the
SMC step. Formally, denoting matching record pairs by the set
nM , the recall of heuristic H is defined as

RecallH =
number of matching pairs found by H

|nM | .

A naive approach to enforce SMC_budget would be choosing a
random subset of unlabeled record pairs. Yet, it makes more sense
to use the information contained in the partition regions. Below
we discuss various heuristics that help identify possibly matching
record pairs. Among these, the heuristic that has maximum recall
should be favored.

6.2 Selection heuristics
We propose the following heuristics. An empirical evaluation of

these heuristics is provided in Section 7.6.
H1- Minimum comparison cost first. In this heuristic, par-

titions of T are sorted with respect to the number of secure DR
evaluations required to find all matching records of V . Then, the
partitions are processed in ascending order. The idea is maximizing
the fraction of records of T that are matched against V . H1 would
be advantageous if the partitions were weighted based on some cri-
teria. For example, in a hospital dataset, matching cancer patients
might be given priority over patients of less lethal illnesses.

H2- Minimum volume partition first. In this heuristic, par-
titions p of T are sorted with respect to the volume of their re-
gions, Region(p). Then, partitions are processed in ascending or-
der. Considering records as random variables supported over their
partition regions, this heuristic assumes that lower volumes imply
less uncertainty in estimating the actual value of a record. Based
on this idea, partitions with the smallest region are processed first.

H3- Partition pair (p1, p2) with maximum Region(p1)
∩Region(p2) volume first. This heuristic assumes that the vol-
ume of the intersection between partition regions is an accurate in-
dicator of possibly matching partition pairs. Therefore pairs of par-
titions are ordered based on the intersection volume and processed
in descending order.

7. EXPERIMENTAL ANALYSIS
Our solutions aim at reducing the costs of private record match-

ing. Therefore a natural metric of efficiency is the reduction in the

number of SMC operations compared to the baseline solution that
privately evaluates DR over all record pairs. This notion is cap-
tured by the reduction ratio, RR, defined in Section 6.1.

Apart from reduced costs, another important advantage of our
solutions (or hybrid methods, in general) is the efficient retrieval of
possibly matching record pairs under limited SMC resources. In
Section 6.2, we suggested several selection heuristics to perform
this task. Our secondary measure is the recall of such heuristics,
defined in Section 6.1.

Experimental results involving differential privacy exhibit high
variance due to the randomness involved. Therefore we provide
results averaged over 10 runs, each initialized with distinct seeds of
randomness.

We used the real-world Census − income dataset from the
UCI Machine Learning Repository11. This dataset has been used
heavily in privacy preserving data analysis research and also fa-
cilitates easy comparison of our results against [16]. As prepro-
cessing, we first combined the training and test datasets. Then
all records with missing attribute values were removed. In order
to build two datasets, we shuffled the remaining 142,521 records
and partitioned them into 3 subsets: d1, d2, d3 containing 47,507
records each. Then we merged d1 and d2 to build the first dataset
D1 and, d2 and d3 to build the second dataset D2. This way regard-
less of the matching thresholds of the decision rule, the records in
D1 ∩D2 = (d1 ∪ d2) ∩ (d2 ∪ d3) = d2 match one another.

The Census − income dataset contains 40 different attributes.
Among these, we have selected the following quasi-identifying at-
tributes: numerical age and categorical education, marital status,
race and sex attributes. The reason why we select quasi-identifying
attributes should be clear: by nature, quasi-identifiers help identify
similar records in absence and/or irrelevance of unique identifiers.

For categorical attributes, we set the matching threshold θ to 0
and use Hamming distance. For numerical attributes, after nor-
malization to [0, 1], the matching threshold is set to 0.05 and the
distance is measured by Euclidean distance.

Another important experiment parameter is the ε of ε-differential
privacy. Given the L1 sensitivity SL1(Q) of a query set Q, ε-
differential privacy requires that Laplace noise with mean 0 and
magnitude λ be added to the query results such that SL1(Q) ≤ ελ.
With fixed sensitivity, smaller values of ε imply adding more noise
and consequently higher levels of privacy. The default value of ε in
our experiments is 0.3.

We implemented all partitioning algorithms discussed in Sec-
tion 4. For R*-tree experiments, results with 3 different page sizes
(2K, 4K and 8K bytes each) are presented. Page sizes are indicated
next to the labels (e.g., R*-tree (2K) represents the results for pages
of size 2K bytes). The default heights of BSP-trees and Adaptive-
kd trees are set to 10.

In addition to the partitioning algorithms, we also provide some
results obtained with the hybrid private record linkage method de-
scribed in [16]. To this end, we implemented the Mondrian k-
anonymization method of [19]. The results for these experiments
are labeled as Mondrian in the figures. The default value of k in
our experiments is 250.

7.1 Dataset Size
In this experimental scenario, we incremented the sizes of the

input datasets T and V that are linked. Fractions on the x-axis of
Figure 4 indicate the proportion of the preprocessed dataset from
which T and V are built. Thus, 1/1 implies the entire Census-
income dataset was used in the experiment.

11http://www.ics.uci.edu/ mlearn/MLRepository.htm
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Figure 4: Reduction ratio vs. dataset size

As expected, increasing the dataset size without changing the
privacy parameter ε increases the reduction ratio. The height of
BSP-trees and Adaptive-kd trees is fixed in this experiment sce-
nario. At fixed height, the number of partitions obtained is the
same irrespective of the dataset size. Since the regions covered
by the partitions remain approximately (exactly for BSP-trees) the
same as well, adding new records simply increases the number of
records in each partition. With more records in every partition and
fixed ε, disadvantages associated with the added noise decrease.
Hence, the reduction ratio improves.

Note that, the R∗-tree partitioning performs quite poorly, due
to the overlap between leaf nodes, which increases L1-sensitivity.
The effect of the overlap is more pronounced for small block sizes
(2K), as the number of leaf nodes is larger. In addition, a small
node capacity means that the effect of the added noise is more
significant, compared to the block size. As block size increases,
the performance of the R∗-tree partitioning improves, but it is still
considerably worse than its non-overlapping indexing counterparts.
We do not consider R∗-trees further.

7.2 Number of Attributes
Figure 5 reports the reduction ratio as a function of increasing

number of attributes. In the experiments, an attribute set of size
n : 1 < n < 10 consists of the first n elements of the set age,
education, marital status, race, sex, wage per hour, capital gains,
capital losses, dividends from stocks.

According to our results, reduction ratio does not vary much
with the number of attributes. While the values for BSP-tree and
Adaptive-kd tree experiments fluctuate considerably, this is evident
from the results with Mondrian. For 6, 7 and 8 attributes, RR of
Mondrian remains the same. The variance in BSP and Adaptive-
kd tree measurements stem from the randomness introduced by the
privacy mechanism.

7.3 Privacy Level: ε

The parameter ε is inversely related to the privacy guarantees of
differential privacy. In other words, at lower values of ε, Laplace
noise of larger magnitude is added to query responses. Conse-
quently one would expect less efficient blocking as ε declines. This
finding is also supported by Figure 6.

7.4 Tree height, h

Our results with varying height of BSP and Adaptive-kd trees
are provided in Figure 7. Interestingly, the reduction ratio initially
improves as the trees grow deeper. But above some threshold value,
building even deeper trees damages the efficiency of blocking.

The number of partitions generated by our space partitioning
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Figure 5: Reduction ratio vs. number of attributes
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Figure 6: Reduction ratio vs. privacy level, ε

trees is bounded from above by 2h. For small values of h, only
a few partitions are output in the partitioning step. In order to cover
the entire space, each of these partitions typically covers large vol-
umes of space and contains large amounts of records. Efficiency of
our blocking step depends on the granularity of partition regions.
Higher granularity partitions of deeper trees perform better in the
blocking step. That’s why up to a certain threshold (h = 9 for BSP-
trees and h = 6 for Adaptive-kd trees), reduction ratio improves.

The height h that maximizes reduction ratio depends on two pa-
rameters: sensitivity of the partitioning algorithm and granularity
of the partition regions. As h increases, partitions cover smaller
volumes and contain less records. However, sensitivity either does
not change (i.e., BSP-trees) or increases (i.e., Adaptive-kd trees).
In both cases, while partition sizes decline, magnitude of the added
noise does not. Therefore the ratio of fake records (added to the
partitions) and suppressed records (removed from the partitions)
to actual records increases, and reduction ratio deteriorates. Since
sensitivity of the BSP-tree algorithm is less than Adaptive-kd tree
algorithm, this occurs at a larger value of h.

Notice that the reduction ratio of BSP-trees does not change af-
ter h = 16. This is because for h > 16, the tree height saturates,
i.e., there is no allowable split. The same situation occurs with
the Adaptive-kd experiments as well, but in this case sensitivity of
the queries are pre-set based on h. Therefore h still affects the re-
sults. Since larger h implies higher sensitivity, the same partitions
are perturbed with larger and larger magnitudes of noise. Conse-
quently, the reduction ratio of Adaptive-kd keeps declining as h
increases.

7.5 Minimum partition size
In this experiment scenario we compare our hybrid solutions that
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Figure 7: Reduction ratio vs. maximum tree height

rely on differential privacy to the hybrid solutions of [16] based
on anonymization. For this purpose, we use BSP-trees as the par-
titioning algorithm and Mondrian as the anonymization method.
Figure 8 provides the results. In each experiment, the x-axis value
corresponds to the parameter k of k-anonymity for Mondrian.

In order to enforce the minimum size requirement on BSP-trees,
we set the maximum height h to infinity and let the tree grow in-
definitely. At the lowest level of intermediate nodes that violates
the minimum partition size requirement, tree growth is halted and
partitions are generated from the nodes at the previous level (say,
l). Since magnitude of the Laplace noise (of differential privacy)
does not depend on h, this method outputs exactly the same tree as
the method described in Section 4.1 would with height parameter
h = l.

Unfortunately, a similar approach fails with Adaptive-kd trees.
As described in Section 4.2, sensitivity of the adaptive algorithm
depends heavily on the tree height h. We do not know apriori,
which value of h will suffice to obtain the maximum-height tree
that does not violate the partition size condition. Obviously setting
h to a considerably high value would solve the problem, but then
again, the comparison would not be fair. That’s why we do not
provide any results with the Adaptive-kd algorithm.

According to Figure 8, the relationship between reduction ratio
and minimum partition size is very similar to the relationship be-
tween reduction ratio and tree height h (see Figure 7). This result
is rather intuitive. Satisfying a larger partition size requirement is
only possible if the tree growth is halted at an earlier stage.

The reduction ratio obtained by Mondrian is always higher than
that of the BSP-trees. Mondrian is also more resistant against larger
values of the minimum size requirement. This is an inevitable result
of the stronger privacy guarantees of differential privacy. Even if
the two methods generate the same partitioning of the data space,
our solution using BSP-trees suffers from the added noise.

7.6 Selection Heuristics
We implemented the selection heuristics proposed in Section 6.2.

In Figure 9 we provide the results with varying SMC_budget.
With both methods, increasing the SMC budget allows more pri-
vate evaluations of the decision rule. As expected, for higher values
of SMC_budget, recall improves. Every heuristic provides per-
fect recall when SMC_budget = 1 − RR for the corresponding
method. At SMC_budget = 0, SMC operations are not allowed,
hence matching can only be done in the blocking step. Unfortu-
nately, none of the algorithms finds any matches and recall is 0.

At any value of SMC_budget > 0, recall depends heavily on
the reduction ratio. When RR is high, the same SMC budget cov-
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Figure 8: Reduction ratio vs. minimum partition size
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Figure 9: Recall of various selection heuristics

ers a larger fraction of the un-blocked records pairs. Therefore, one
would expect BSP-trees to achieve higher recall than Adaptive-kd.
However, this is not the case. In fact, the recall of Adaptive-kd is
almost always higher than BSP-trees (except lower SMC budgets
with H1). The reason is the way Adaptive-kd selects the split val-
ues. By choosing the median as the split value, Adaptive-kd takes
into account the density of records. BSP, on the other hand, makes
the decision based purely on the domain. Therefore, Adaptive-kd
is able to create smaller partitions in dense areas and yield higher
recall.

Among the three heuristics, the highest recall by BSP-trees is
achieved through H1 (i.e., min. comparison cost first). Since all
partition regions are of the same volume, H2 (i.e., min. volume
partition first) cannot distinguish one partition pair from another.
H3 (i.e., max. intersection volume first) has similar problems: two
partitions either entirely overlap or do not intersect at all.

With Adaptive-kd-trees, the generated partitions have various
volumes and can be located arbitrarily within the data space (recall
that BSP outputs a tiling of the space). In this setting, H2 performs
more consistently and on average better than both H1 and H3. For
smaller SMC budgets, H3; and for bigger budgets H1 performs
better.

8. RELATED WORK
Record linkage has been studied for more than four decades [11].

However, few methods for private record matching have been in-
vestigated. Some initial approaches are motivated by the privacy
requirements of e-health applications [6]. The work most closely
related to ours is by Al Lawati et al. [4] who propose a secure
blocking scheme to reduce costs. However, their approach works



only for a specific comparison function, whereas ours can be used
with several such functions.

In addition to the above approaches, there are two major areas
that are closely related to our work, even though no work in such
areas addresses our exact problem: secure set intersection and pri-
vate data sharing. Several approaches have investigated the se-
cure set intersection problem [18]. Secure set intersection meth-
ods deal with exact matching and are too expensive to be applied
to large databases due their reliance on cryptography. Furthermore,
these protocols deal with the intersection of sets of simple elements,
and are not designed for exploiting the semantics behind database
records. Agrawal et al. [2] formalize a general notion of private in-
formation sharing across databases that relies on commutative en-
cryption techniques. This work has opened the way to many other
related protocols [12, 1].

Cryptographic methods usually require extensive communica-
tion and computation between participants. An alternative that has
recently become popular is anonymization. Anonymization tech-
niques rely on the fact that privacy of sensitive data is a concern
only if the individuals related to the data can be identified. How-
ever, removing personal identifiers does not always protect individ-
uals against disclosure of identity. The most popular solution to the
anonymity problem is k-anonymity, which requires that an individ-
ual should be indistinguishable from at least (k − 1) others [23].

Inan et al. present a hybrid method for private record linkage that
combines cryptographic methods and anonymization methods [16].
Their approach is based on k-anonymizing the input datasets and
linking as many record pairs as possible through the k-anonymous
versions released by the data holders. At reasonable levels of anony-
mity, determined by the privacy parameter k, this hybrid approach
attains over 90% savings in terms of costly cryptographic opera-
tions. However, the privacy guarantees are limited to those of k-
anonymity. In this study, we propose another hybrid method that
obtains comparable savings under a much stronger definition of pri-
vacy, namely differential privacy.

9. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel approach that combines dif-

ferential privacy and cryptographic methods to solve the private
record linkage problem. Our method allows participants to trade-
off between accuracy, privacy and costs. As future work, we will
experiment with other multidimensional indexes (such as R+-trees)
and consider their alternatives (e.g., clustering).
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