
Purdue University
Purdue e-Pubs

Cyber Center Publications Cyber Center

4-2014

Private Searching on Streaming Data Based on
Keyword Frequency
Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Xun Yi
Victoria University, Austrailia, Xun.Yi@vu.edu.au

Jaideep Shrikant Vaidya
Purdue University

Chaoping Xing
Nanyang Technological University, xingcp@ntu.edu.sg

Follow this and additional works at: http://docs.lib.purdue.edu/ccpubs

Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences
Commons, and the Physical Sciences and Mathematics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Bertino, Elisa; Yi, Xun; Vaidya, Jaideep Shrikant; and Xing, Chaoping, "Private Searching on Streaming Data Based on Keyword
Frequency" (2014). Cyber Center Publications. Paper 618.
http://dx.doi.org/10.1109/TDSC.2013.36

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cc?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=docs.lib.purdue.edu%2Fccpubs%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages

Private Searching on Streaming
Data Based on Keyword Frequency

Xun Yi, Elisa Bertino, Fellow, IEEE, Jaideep Vaidya, and Chaoping Xing

Abstract—Private searching on streaming data is a process to dispatch to a public server a program, which searches streaming

sources of data without revealing searching criteria and then sends back a buffer containing the findings. From an Abelian group

homomorphic encryption, the searching criteria can be constructed by only simple combinations of keywords, for example, disjunction

of keywords. The recent breakthrough in fully homomorphic encryption has allowed us to construct arbitrary searching criteria

theoretically. In this paper, we consider a new private query, which searches for documents from streaming data on the basis of

keyword frequency, such that the frequency of a keyword is required to be higher or lower than a given threshold. This form of query

can help us in finding more relevant documents. Based on the state of the art fully homomorphic encryption techniques, we give

disjunctive, conjunctive, and complement constructions for private threshold queries based on keyword frequency. Combining the

basic constructions, we further present a generic construction for arbitrary private threshold queries based on keyword frequency. Our

protocols are semantically secure as long as the underlying fully homomorphic encryption scheme is semantically secure.

Index Terms—Private searching on streaming data, fully homomorphic encryption, binary linear code

Ç

1 INTRODUCTION

THE problem of private searching on streaming data was

first introduced by Ostrovsky and Skeith [17]. It was
motivated by one of the tasks of the intelligence community,

that is, how to collect potentially useful information from

huge volumes of streaming data flowing through a public

server. However, that data which is potentially useful and

raises a red flag is often classified and satisfies secret search

criteria. The challenge is thus how to keep the search criteria

classified even if the program residing in the public server

falls into adversary’s hands. This problem has many
applications for the purpose of intelligence gathering. For

example, in airports one can use this technique to find if any

of hundreds of passenger lists has a name from a possible

list of terrorists and, if so, to find his/hers itinerary without

revealing the secret terrorists list.
The first solution for private searching on streaming data

was given by Ostrovsky and Skeith [17], [18]. It was built on
the concept of public-key program obfuscation, where an

obfuscator compiles a given program f from a complexity
class C into a pair of algorithms (F;Dec), such that
DecðF ðxÞÞ ¼ fðxÞ for any input x and it is impossible to
distinguish for any polynomial time adversary which f from

Cwas used to produce a given code for F . The basic idea can
be briefly described as follows.

Assume that the public dictionary of potential keywords
is D ¼ fw1; w2; . . . ; wjDjg. To search for documents contain-
ing one or more of classified keywords K ¼ fk1; k2; . . . ;
kjKjg � D, the client generates a public/private key pair of a
public key cryptosystem and constructs a program F ,
composed of an encrypted dictionary EðDÞ from K and a
buffer IB which will store matching documents. Then the
client dispatches the program F to a public server, where
F filters a streaming documents and stores the encryptions
of matching documents in the buffer IB. After the buffer IB
returns, the client decrypts the buffer and retrieves the
matching documents. Because both the keywords and the
buffer are encrypted, the search criteria are kept classified
to the public.

On the basis of this idea, several solutions for private
searching on streaming data have been proposed in
literature as follows:

1. Ostrovsky and Skeith [17], [18] gave two solutions
for private searching on streaming data. One is
based on the Paillier cryptosystem [20] and allows to
search for documents satisfying a disjunctive condi-
tion k1 _ k2 _ � � � _ kjKj, i.e., containing one or more
classified keywords. Another is based on the Boneh
et al. cryptosystem [3] and can search for documents
satisfying ðk11 _ k12 _ � � � _ k1jK1jÞ ^ ðk21 _ k22 _ � � � _
k2jK2jÞ, an AND of two sets of keywords.

2. Bethencourt et al. [1], [2] also gave a solution to
search for documents satisfying a condition k1 _
k2 _ � � � _ kjKj. Like the idea of [17], an encrypted
dictionary is used. However, rather than using one
large buffer and attempting to avoid collisions like
[17], Bethencourt et al. stored the matching docu-
ments in three buffers and retrieved them by solving
linear systems.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014 155

. X. Yi is with the College of Engineering and Science, Victoria University,
Melbourne, Victoria 8001, Australia. E-mail: xun.yi@vu.edu.au.

. E. Bertino is with the Department of Computer Science, Cyber Center and
CERIAS, Purdue University, West Lafayette, IN 47907.
E-mail: bertino@cs.purdue.edu.

. J. Vaidya is with the Management Science and Information Systems
Department, Rutgers University, 1 Washington Park, Newark, NJ 07102.
E-mail: jsvaidya@business.rutgers.edu.

. C. Xing is with the School of Physical and Mathematical Science, Nanyang
Technological University, Singapore 637371. E-mail: xingcp@ntu.edu.sg.

Manuscript received 16 May 2013; revised 12 Aug. 2013; accepted 20 Aug.
2013; published online 29 Aug. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2013-05-0117.
Digital Object Identifier no. 10.1109/TDSC.2013.36.

1545-5971/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

3. Yi et al. [25] proposed a solution to search for
documents containing more than t out of n key-
words, so-called (t; n) threshold searching, without
increasing the dictionary size. The solution is built
on the state of the art fully homomorphic encryption
(FHE) technique and the buffer keeps at most
m matching documents without collisions. Searching
for documents containing one or more classified
keywords like [17], [18], [1], [2] can be achieved by
(1; n) threshold searching.

The existing solutions for private searching on streaming
data have not considered keyword frequency, the number
of times that keyword is used in a document. Search
engines like Google, Yahoo, and AltaVista display results
based on secret algorithms. Although we do not know the
equations, we believe that these are based mainly on
keyword frequency and link popularity.

Our contributions. In this paper, we consider a new private
query, which searches for documents from streaming data
based on keyword frequency, such that a number of times
that a keyword appears in a matching document is required
to be higher or lower than a given threshold. For example,
find documents containing keywords k1; k2; . . . ; kn such that
the frequency of the keyword kiði ¼ 1; 2; . . . ; nÞ in the
document is higher (or lower) than ti. We take the lower
case into account because terms that appear too frequently
are often not very useful as they may not allow one to retrieve
a small subset of documents from the streaming data.

This form of query can help us in finding more relevant
documents, but it cannot be implemented with traditional
homomorphic encryption schemes. Based on FHE, we give
disjunctive, conjunctive, and complement constructions for
private threshold queries based on keyword frequency:
1) Our disjunctive construction allows to search for docu-
ments satisfying a condition such as ðfðk1Þ � t1Þ _ ðfðk2Þ �
t2Þ _ � � � _ ðfðknÞ � tnÞ, where fðkiÞ denotes the frequency of
the keyword ki and ti is a given threshold; 2) Our

conjunctive construction allows to search for documents

satisfying a condition such as ðfðk1Þ � t1Þ ^ ðfðk2Þ �
t2Þ ^ � � � ^ ðfðknÞ � tnÞ; 3) We have two complement con-
structions. Our disjunctive complement construction allows
us to search for documents satisfying a condition such as
ðfðki1Þ � ti1Þ _ � � � _ ðfðkin1

Þ � tin1
Þ _ :ðfðkj1Þ � tj1

Þ _ � � � _
:ðfðkjn2

Þ � tjn2
Þ, i.e., ðfðki1Þ � ti1Þ _ � � � _ ðfðkin1

Þ � tin1
Þ _

ðfðkj1Þ < tj1
Þ _ � � � _ ðfðkjn2

Þ < tjn2
Þ, where : stands for

complement and n1 þ n2 ¼ n. Our conjunctive complement
construction allows to search for documents satisfying
a condition such as ðfðki1Þ � ti1Þ ^ � � � ^ ðfðkin1

Þ � tin1
Þ ^

:ðfðkj1
Þ � tj1Þ ^ � � � ^ ðfðkjn2

Þ � tjn2
Þ, i .e., ðfðki1Þ � ti1Þ ^

� � � ^ ðfðkin1
Þ � tin1

Þ ^ fðkj1Þ < tj1
Þ ^ � � � ^ ðfðkjn2

Þ < tjn2
Þ.

Furthermore, by combining the above basic construc-
tions, we present a generic construction for arbitrary
threshold query based on keyword frequency.

Like Yi et al.’s solution for the (t; n) threshold query [25],
our solutions encrypt the thresholds, compare them with
the ciphertexts and store a matching document into the
buffer by constructing an encryption of (L; ‘) linear code of
the document. Unlike the (t; n) threshold query solution
where only one threshold t is encrypted and enclosed to the
searching program, our solutions encrypt the frequency
threshold for each keyword because different keywords
may have different frequency thresholds.

In summary, our main contribution is a new type of
private threshold query based on keyword frequency,
which can help us in finding more relevant documents
from streaming data.

Organization of the rest of this paper. In the rest of this
paper, we will introduce the related work and the back-
ground necessary to understand our solutions in Sections 2
and 3, define the formal security model for private query in
Section 4, describe our two basic constructions for private
queries based on keyword frequency in Sections 5 and 6,
our complement construction in Section 7, and our generic
construction in Section 8. Security and performance analysis
is performed in Sections 9 and 10. Conclusions are outlined
in the last section.

2 RELATED WORK

In 2005, Ostrovsky and Skeith [17], [18] gave the first
solution for private searching on streaming data as follows.

Assume that the public dictionary of potential keywords
is D ¼ fw1; w2; . . . ; wjDjg. To construct a program searching
for documents containing one or more of classified keywords
K ¼ fk1; k2; . . . ; kjKjg � D, the client generates a pair of
public and private keys (pk; sk) for a homomorphic encryp-
tion scheme E, such as the Paillier cryptosystem [20], and
produces an array of ciphertexts EðDÞ ¼ fc1; c2; . . . ; cjDjg, one
for each keywordwi 2 D, such that ifwi 2 K, then ci ¼ Epkð1Þ
and ci ¼ Epkð0Þ otherwise. In addition, the client constructs a
buffer IB with �m boxes, each of them is initialized with two
ciphertexts (Epkð0Þ; Epkð0Þ), where m is the upper bound on
the number of matching documents the buffer can accom-
modate and m=2� should be negligible.

To perform private searching for keywords, Ostrovsky
and Skeith segmented the streaming data S into
streaming documents fM1;M2; . . .g, each of which is
composed of a number of words, and filtered one at a time.
To process a document Mi, the server, which is provided
with D; EðDÞ; IB, computes di ¼

Q
wj2Mi

cj ¼ EpkðjMi \KjÞ
and ei ¼ dMi

i ¼ EpkðMi� jMi \K jÞ, then copies (di; ei) into
� randomly chosen boxes in the buffer IB by multiplying
corresponding ciphertexts. If Mi \K ¼ ;, this step will add
an encryption of 0 to each box, having no effect on the
corresponding plaintext. If Mi \K 6¼ ;, the matching docu-
ment can be retrieved by computing Mi ¼ DskðeiÞ=DskðdiÞ
after the buffer returns. If two different matching docu-
ments are ever added to the same buffer box, a collision will
occur and both copies will be lost. To avoid the loss of
matching documents, the buffer size has to be sufficiently
large so that each matching document can survive in at least
one buffer box with overwhelming probability.

In 2009, Bethencourt et al. [1], [2] proposed a different
approach for retrieving matching documents from the
buffer. Like the idea of [17], an encrypted dictionary is
used, and no-matching documents have no effect on the
contents of the buffer. However, rather than using one
large buffer and attempting to avoid collisions, Bethen-
court et al. stored the matching documents in three
buffers—the data buffer IF, the count buffer CC, and the
matching indices buffer II, and retrieved them by solving
linear systems.

156 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Bethencourt et al.’s solution is able to process t documents
fM1;M2; . . . ;Mtg of streaming data. For each document Mi,
the server computes di and ei as the Ostrovsky-Skeith
protocol, and copies di and ei randomly over approximately
half of the locations across the buffers CC and IF, respectively.
A pseudorandom function gði; jÞ is used to determine with
probability 1/2 whether di (or ei) is copied into a given
location j. In addition, the server copies di into a fixed
number of locations in the buffer II. This is done by using
essentially the standard procedure for updating a Bloom
filter. Specifically, k hash functions h1; h2; . . . ; hk are used to
select the k locations. The locations of II that di is multiplied
into are taken to be h1ðiÞ; h2ðiÞ; . . . ; hkðiÞ.

To retrieve the matching documents, Bethencourt et al.
decrypted three buffers IF;CC; II to IF0;CC0; II0 at first. For each
of the indices i 2 f1; 2; . . . ; tg, h1ðiÞ; h2ðiÞ; . . . ; hkðiÞ are
computed and the corresponding locations in II0 are checked.
If all these locations are nonzero, i is added into the list of
potential matching indices, denoted as fi1; i2; . . . ; i‘g. The
values of c ¼ f�i1 ; �i2 ; . . . ; �i‘g, where �ij ¼ jMij \Kj, are
then determined by solving the system of linear equations
A � cT ¼ CC0T , where A ¼ ðgðj; iÞÞ is an jCCj � i‘ matrix. As the
last step, the content of the matching documents M 0 ¼
fMi1 ;Mi2 ; . . . ;Mi‘g are determined by solving the system of
linear equations A � diagðcÞ �M 0T ¼ IF0T .

The advantage of Bethencourt et al.’s approach [1], [2],
compared to Ostrovsky and Skeith solution [17], is that
buffer collisions do not matter because matching documents
can be retrieved by solving linear systems. Consequently,
the buffer size does not need to be sufficiently large in order
to maintain a high probability of recovering all matching
documents. In fact, the buffer size becomes optimal, i.e.,
OðmÞ. However, Bethencourt et al.’s approach has a
drawback as well. To determine the ordinal numbers of
potential matching documents in the decrypted buffer II0,
Bethencourt et al. had to check each of the indices i 2
f1; 2; . . . ; tg of the data stream. Therefore, the buffer
recovering has a running-time proportional to the size of
the data stream, i.e., Oðm2:376 þ t logðt=mÞÞ. This does not
fit the model given by Ostrovsky and Skeith in [17] and [18],
in which the buffer is decrypted at the cost which is
independent of the stream size.

The idea of private searching for documents containing
one or more of keywords can be modified to construct more
complicated queries. For example, a query composed of at
most a � AND operations can be performed simply by
changing the dictionary D to a dictionary D0 containing all
jDj� �-tuples of words in D, which of course comes at a
polynomial blow-up of program size.

Using results by Boneh et al. [3], Ostrovsky and Skeith
[17], [18] gave a solution for private queries involving an
AND of two sets of keywords without increasing the
program size. Their basic idea of searching for documents
M such that (M \K1 6¼ ;Þ ^ ðM \K2 6¼ ;Þ, where K1; K2

are two sets of potential keywords, is to construct two
arrays of ciphertexts C‘ ¼ fc‘1; c‘2; . . . ; c‘jDjgð‘ ¼ 1; 2Þ, where c‘i
is the encryption of 1 if wi 2 K‘ and 0 otherwise. To process
a document M, the program computes v‘ ¼

Q
wj\M c‘j ¼

EpkðjM \K‘jÞ (‘ ¼ 1; 2) and then v ¼ eðv1; v2Þ, where e is a
bilinear map. If ðM \K1 6¼ ;Þ ^ ðM \K2 6¼ ;Þ is true, v is an
encryption of a nonzero element and 0 otherwise. Then, M

is encrypted by replacing 1 with v and 0 with an encryption
of 0 and the ciphertext is copied into � randomly chosen
boxes in the buffer IB.

Ostrovsky and Skeith [19] showed that the general
methods used here to create protocols for searching on
streaming data (which are based essentially upon manip-
ulating homomorphic encryption) cannot be extended to
perform conjunctive queries beyond what has been accom-
plished as above. More specifically, if one builds a protocol
based on an Abelian group homomorphic encryption, then
no conjunctive (of more than one term) can be performed
without increasing (superlinearly) the dictionary size. It
seems that to make progress in significantly extending the
query semantics will likely require fundamentally different
approaches to the problem, unless major developments are
made in the design of homomorphic encryption scheme.

Gentry [9], [10], [11], [12] using lattice-based cryptogra-
phy constructed the first FHE scheme. In the same year,
Dijk et al. [7] presented a second FHE scheme. In 2010,
Smart et al. [22] presented a refinement of Gentry’s scheme
giving smaller key and ciphertext sizes. Recent break-
through in FHE makes it possible to perform more
complicated private queries on streaming data.

In 2012, based on FHE technique, Yi et al. [25] provided a
construction of the searching criteria for private (t; n)
threshold query on streaming data, which searches for
documents containing more than t out of n keywords,
without increasing the dictionary size. Like the idea of [17],
an encrypted dictionary EðDÞ ¼ fc1; c2; . . . ; cjDjg, where
correspondences to n keywords are encryptions of 1 and 0
otherwise, is used. Besides it, an encryption of the threshold
t ð� jDjÞ, denoted as EpkðtÞ, is attached to the program. To
process a document Mi, the program computes di ¼P

wj2Mi
cj ¼ EpkðjMi \KjÞ and compares jMi \Kj with t,

using di and EpkðtÞ on the basis of the fully homomorphic
property. It outputs a ciphertext �, which is an encryption
of 0 if jMi \Kj � t and an encryption of 1 otherwise. Then
Mi is encrypted by replacing 1 with �þ 1 and 0 with an
encryption of 0. The encryption of a matching document is
stored into the buffer by constructing an encryption of (L; ‘)
linear code of the document, where ‘ and L are the plain
document size and the plain buffer size, respectively, and
then positionwise adding the code into the buffer. To keep
up to m matching documents, the buffer size only needs to
be m‘k ð¼ LkÞ, where k is a security parameter. In addition,
the computational decoding cost is Oðm‘k2Þ independent of
the streaming size. Furthermore, the buffer can keep at
most m matching documents. In case there are more than
m matching documents in the streaming data, the buffer
stores the first m matching documents and throws the rest
away. Thus, the buffer collision is no longer an issue.

3 PRELIMINARIES

3.1 Fully Homomorphic Encryption

Previous homomorphic encryption schemes, such as [8],
[20], [6], allow homomorphic computation of only one
operation (either addition or multiplication) on plaintexts.
Recently, FHE schemes, such as [9], [10], [11], [12], [7], [22],
which can support evaluation of arbitrary depth circuits,
were successfully constructed. Among them, the some-
what fully homomorphic encryption scheme proposed by

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 157

Dijk et al. [7] is relatively easy to understand and can be
described as follows:

1. KeyGenðkÞ. Takes a security parameter k and
determines parameters �; �; �; � satisfying certain
conditions. Chooses a random odd �-bit integer p
from ð2ZZþ 1Þ \ ð2��1; 2�Þ as the secret key sk.
Randomly chooses q0; q1; . . . ; q� from ½1; 2�=pÞ subject
to the condition that the largest qi is odd and relabel
q0; q1; . . . ; q� so that q0 is the largest. Randomly
chooses r0; r1; . . . ; r� from ZZ \ ð2��; 2�Þ and sets x0 ¼
q0pþ 2r0 and xi ¼ qipþ 2ri mod x0. The public key is
pk ¼ <x0; x1; . . . ; x�>.

2. Encryptðpk;mÞ. To encrypt m 2 f0; 1g, chooses a
random subset S � f1; 2; . . . ; �g and a random
integer r from ð2��; 2�Þ and outputs

c ¼ EðmÞ ¼ mþ 2rþ
X
i2S

xiðmod x0Þ:

3. Decryptðsk; cÞ. To decrypts c, outputs

ðc mod pÞmod 2:

3.2 Fully Homomorphic Properties

In general, a fully homomorphic encryption scheme has the
following properties:

Eðm1Þ þ Eðm2Þ ¼ Eðm1 �m2Þ;

Eðm1ÞEðm2Þ ¼ Eðm1m2Þ;

for any m1;m2 2 f0; 1g.
Based on the above two properties, given Eðm1Þ and

Eðm2Þ, we can construct

Eðm1 ^m2Þ ¼ Eðm1ÞEðm2Þ;
Eðm1 _m2Þ ¼ Eðm1Þ þ Eðm2Þ þ Eðm1ÞEðm2Þ;

for any m1;m2 2 f0; 1g.
For a positive integer M ¼ ðm1m2 . . .m‘Þb (a binary

expression), we write EðMÞ ¼ ðEðm1Þ; Eðm2Þ; . . . ; Eðm‘ÞÞ.
Given EðM1Þ ¼ ðEðx1Þ; Eðx2Þ; . . . ; Eðx‘ÞÞ and EðM2Þ ¼ ðEðy1Þ;
Eðy2Þ; . . . ; Eðy‘ÞÞ, we can construct EðM1 þM2Þ as follows.

Assume that ðx1x2 . . .x‘Þb þ ðy1y2 . . . y‘Þb ¼ ðz0z1 . . . z‘Þb;
where z0 is the carry bit. On the basis of the digital circuit
for binary integer addition [21], we have

ci�1 ¼ xiyi _ ðxi � yiÞci;
zi ¼ xi � yi � ci;

for i ¼ ‘; . . . ; 2; 1, where c‘ ¼ 0 and z0 ¼ c0. Due to � _
� ¼ ð�� �Þ � ð��Þ, one can compute

Eðai�1Þ ¼ EðxiÞEðyiÞ ¼ Eðxi � yiÞ;
Eðbi�1Þ ¼ ðEðxiÞ þ EðyiÞÞEðciÞ ¼ Eððxi � yiÞciÞ;
Eðci�1Þ ¼ ðEðai�1Þ þ Eðbi�1ÞÞ þ Eðai�1ÞEðbi�1Þ

¼ Eððai�1 � bi�1Þ � ai�1bi�1Þ
EðziÞ ¼ EðxiÞ þ EðyiÞ þ EðciÞ ¼ Eðxi � yi � ciÞ;

for i ¼ ‘; . . . ; 2; 1, then let Eðz0Þ ¼ Eðc0Þ and EðM1 þ M2Þ ¼
ðEðz0Þ; Eðz1Þ; . . . ; Eðz‘ÞÞ. W e d e f i n e EðM1Þ tuþ EðM2Þ ¼
EðM1þ M2Þ.

3.3 Integer Comparison

In particular, given EðM1Þ and EðM2Þ where M1 and M2 are
two positive integers, we can compare M1 with M2 by
computing

EðM1Þ tuþ Eð�M2Þ ¼ EðM1 þ�M2Þ;

where M1 and �M2 are two’s complements of M1 and �M2,

respectively. Two’s complement system is the most com-

mon method of representing signed integers on computers

(please refer to [14], [15], [24]).
If M1 �M2, the most significant bit of M1 þ�M2 is 0

and 1 otherwise.
Given EðMÞ ¼ ðEðm1Þ; Eðm2Þ; . . . ; Eðm‘ÞÞ, we have

EðMÞ ¼ ðEð0Þ; Eðm1Þ; Eðm2Þ; . . . ; Eðm‘ÞÞ;
Eð�MÞ ¼ ðEð1Þ; Eðm1Þ þ 1; Eðm2Þ þ 1; . . . ; Eðm‘Þ þ 1Þ tuþ Eð1Þ:

3.4 Binary Linear Codes

An [n; k] binary linear code C of length n and dimension

k is a k-dimensional subspace of Fn
2 according to [16].

A generator matrix for C is a k� n matrix

G ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

� � � � � � � � � � � �
ak1 ak2 � � � akn

0
BB@

1
CCA;

where aij 2 F2, such that C ¼ fðb1; b2; . . . ; bkÞG j bi 2 F2g.
The matrix G corresponds to a map Fk

2 ! Fn
2 expanding a

message ðb1; b2; . . . ; bkÞ of length k to an n-bit string.
We say that binary linear codes C1; C2; . . . ; Cm are

orthogonal if Ci \ Cj ¼ ; and ci � cj ¼ 0 for any two code-
words ci 2 Ci and cj 2 Cjði; j ¼ 1; 2; . . . ;m; i 6¼ jÞ, where “�”
stands for the dot product operation. In case where
m ¼ n=k, there exist m simple orthogonal binary linear
codes C1; C2; . . . ; Cm. The generator matrix of Ci is

Gi ¼

� � � 1 0 � � � 0 � � � 0 0 � � � 0
� � � 0 1 � � � 0 � � � 0 0 � � � 0
� � � � � � � � � � � � � � � � � �
� � � 0 0 � � � 1 � � � 0 0 � � � 0

0
BB@

1
CCA;

where the element at (j; ði� 1Þkþ j) (for i ¼ 1; 2; . . . ;m and

j ¼ 1; 2; . . . ; k) is 1 and otherwise 0.

4 DEFINITIONS

Definitions for general private queries were given in [17] and

[18]. In this paper, slightly different definitions are given.
Like the streaming model given in [17] and [18], we

consider a universe of words W ¼ f0; 1g	, and a dictionary
D �W with jDj <1. We think of a document M just to be
an ordered, finite sequence of words in W , and a stream
of documents S just to be any sequence of documents.
We define a set of keywords to be any subset K � D.

Definition 1. A query Q over a set of keywords K, denoted as

QK , is a logical expression of keywords in K.

Definition 2. Given a document M and a query QK , we define

QKðMÞ ¼ 1 if M matches the query QK and QKðMÞ ¼ 0

otherwise.

158 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Definition 3. For a queryQK , a private query protocol is composed
of the following probabilistic polynomial time algorithms:

1. KeyGenðkÞ. Takes a security parameter k and
generates a pair of public and secret keys (pk; sk).

2. FilterGenðD;QK; pkÞ. Takes a dictionary D, a query
QK , the public key pk, and generates a program F .

3. FilterExecðS; F; pk;mÞ. Takes a stream of documents
S, F searches for any document M 2 S such that
QKðMÞ ¼ 1 (processing one document at a time),
and encrypts each matching document with the public
key pk, and keeps up to m encrypted matching
document in a buffer IB, and finally outputs an
encrypted buffer IB.

4. BufferDecðIB; skÞ. Decrypts the encrypted buffer IB,
produced by F as above, using the private key sk and
outputs a plain buffer IB	, a collection of the matching
documents from S.

Based on Definition 3, the model for privacy searching
on stream data can be illustrated in Fig. 1.

Definition 4 (Correctness of Private Query Protocol). Let
F ¼ FilterExecðS; F; pk;mÞ, where D is a dictionary, QK is
a query over keywords K, ðpk; skÞ ¼ KeyGenðkÞ, m is an
upper bound on the number of matching documents, we say
that a private query protocol is correct if the following holds:
Let F run on any document stream S, IB ¼ F ðSÞ, IB	 ¼
BufferDecðIB; skÞ.

1. (Compiled Program Conciseness) jF j ¼ OðjDjÞ.
2. (Output Conciseness) jIBj ¼ OðmÞ.
3. (Search Completeness) If jfM 2 S j QKðMÞ ¼ 1gj�

m, then

IB	 ¼ fM 2 S j QKðMÞ ¼ 1g:

4. (Collision Freeness) If jfM 2 S j QKðMÞ ¼ 1gj > m,
then

jIB	 \ fM 2 S j QKðMÞ ¼ 1gj ¼ m;

where the probabilities are taken over all coin-tosses of F ,
FilterGen, and KeyGen.

Definition 5 (Privacy). Fix a dictionary D. Consider the

following game between an adversary A, and a challenger C.
The game consists of the following steps:

1. The challenger C first runs KeyGenðkÞ to obtain a pair
of public and secret keys (pk; sk), and then sends pk
and m, the upper bound on the number of matching
documents, to A.

2. The adversary A chooses two queries for two sets of
keywords, Q0K0

;Q1K1
, with K0; K1 � D and sends

them to C.
3. The challenger C chooses a random bit b 2 f0; 1g and

executes FilterGenðD;QbKb
; pkÞ to create Fb, the

filtering program for the query QbKb
, and then sends

Fb back to A.
4. The adversary AðFb; pk;mÞ can experiment with code

of Fb in an arbitrary nonblack-box way, and finally
output b0 2 f0; 1g.

The adversary wins the game if b0 ¼ b and loses otherwise.

We define the adversary A’s advantage in this game to be

AdvAðkÞ ¼ jPrðb0 ¼ bÞ � 1=2j. We say that a private query

protocol is semantically secure if for any probabilistic

polynomial time (PPT) adversary A, we have that AdvAðkÞ
is a negligible function, where the probability is taken over

coin-tosses of the challenger and the adversary.
In the rest of this paper, we will use the notations as

listed in Table 1.

5 DISJUNCTIVE THRESHOLD QUERY BASED ON

KEYWORD FREQUENCY

Formally, a disjunctive threshold query over keywords K ¼
fk1; k2; . . . ; kng can be expressed as

QK ¼ ðfðk1Þ � t1Þ _ ðfðk2Þ � t2Þ _ � � � _ ðfðknÞ � tnÞ;

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 159

Fig. 1. Model for private searching on streaming data.

TABLE 1
Notations

where fðkiÞð1 � i � nÞ is the frequency of the keyword ki in
the document and ti is the given threshold. It is easy to see
the following lemma.

Lemma 1. Given a document M, a disjunctive threshold query
QKðMÞ ¼ 1 if and only if there exists i such that fðkiÞ � ti.

5.1 Construction

Following the model described in Section 4, our protocol
for disjunctive threshold queries is composed of four
algorithms KeyGen, FilterGen, FilterExec, BufferDec. Our
construction is based on a fully homomorphic encryption
scheme and can be formally presented as follows.

Key Generation. KeyGenðkÞ. Run the key generation
algorithm for the underlying fully homomorphic encryp-
tion scheme to produce the private key sk and the public
key pk.

Filter Program Generation. FilterGenðD;QK; pkÞ. This
algorithm outputs a filter program F for disjunctive
threshold query QK based on keyword frequency.

Assume that the public dictionary D ¼ fw1; w2; . . . ; wjDjg,
keywordsK ¼ fk1; k2; . . . ; kng � D,d ¼ dlog2 jMjewhere jMj
stands for the maximal number of words the document M
may contain, then F consists of the dictionary D, disjunctive
query sign (denoted as 00), and an array of ciphertexts

D̂ ¼ fŵ1; ŵ2; . . . ; ŵjDjg;

where ŵi ¼ EpkðtiÞ and

ti ¼
frequency threshold for kj if wi ¼ kj 2 K
2d � 1 if wi 62 K:

�

Remark. Because the document M contains at most 2d �
1 words, the frequency of any word in M is less than
2d � 1. In practice, a document which repeats a word for
2d � 1 times is unusual. We do not consider this special
case in our paper. We set the frequent threshold of a
nonkeyword as 2d � 1 so that its frequency in M is never
more than the threshold.

Assume ti ¼ ðai1ai2 . . . aidÞb, where aij 2 f0; 1g, then
ŵi ¼ EpkðtiÞ ¼ ðEpkðai1Þ; Epkðai2Þ; . . . ; EpkðaidÞÞ. The array of
ciphertexts D̂ contains n encryptions of frequency thresh-
olds and jDj � n encryptions of 2d � 1.

Filter Program Execution. FilterExecðS; F ; pk;mÞ. This
algorithm outputs an encrypted buffer IB keeping up to
m matching documents.

First of all, the program F constructs a data buffer IB
with m‘ boxes, each of them is initialized with Epkð0Þ, where
‘ is the size of the document. Next, F constructs a base
buffer GG with m boxes, which are initialized with
ðEpkð0Þ; . . . ; Epkð0Þ; Epkð1ÞÞ.
Remark. The data buffer IB is used to store the matching

documents and the base buffer GG is used to ensure
the first m matching documents are stored in IB
without collision.

In addition, the program F constructs the encryption of
the two’s complement of �ti (denoted as �ti) with
ŵi ¼ EpkðtiÞ, that is,

Epkð�tiÞ ¼ ðEpkð1Þ; Epkðai1Þ þ 1; . . . ; EpkðaidÞ þ 1Þ tuþ Epk:ð1Þ

The leftmost bit of the two’s complement of an negative
integer is 1 and otherwise 0.

Upon receiving an input document M ¼ ðm1m2 . . .m‘Þb
from the stream S, to determine if M is a matching
document or not, the program F homomorphically com-
pute a ciphertext Epkðc0Þ such that M is a matching
document if c0 ¼ 1 and 0 otherwise. It proceeds with the
following steps:

1. (Word Collection). The program F first collects

Ĥ ¼ fwi; fðwiÞ j wi 2M \Dg;

where fðwiÞ is the frequency ofwi in the documentM.

Remark. Ĥ is the set of common words in the
document M and the dictionary D and their
frequencies in M.

Next, F constructs the encryption of the two’s

complement of fðwiÞ ¼ ðbi1bi2 � � � bidÞb, denoted as

fðwiÞ, for each wi 2 Ĥ, that is,

EpkðfðwiÞÞ ¼ ðEpkð0Þ; Epkðbi1Þ; Epkðbi2Þ; . . . ; EpkðbidÞÞ:

Remark. Because fðwiÞ < 2d � 1, we only consider
the encryptions of the d bits and one sign bit.

2. (Frequency Comparison). For each wi 2 Ĥ, the pro-
gram F homomorphically compares the frequency
fðwiÞ and the frequency threshold ti by computing

EpkðfðwiÞ þ �tiÞ
¼ EpkðfðwiÞÞ tuþ Epkð�tiÞ
¼ ðEpkðci0Þ; Epkðci1Þ; Epkðci2Þ; . . . ; EpkðcidÞÞ;

from which only Epkðci0Þ is extracted. In two’s
complement system, if ci0 ¼ 0, then fðwiÞ � ti and
otherwise fðwiÞ < ti.

Next, the program F computes

Epkðc0Þ ¼ Epk
� _
wi2Ĥ

ðci0 � 1Þ
�

ð1Þ

by repeatedly using Epkðci0 _ sÞ ¼ Epkðci0Þ þ EpkðsÞ þ
Epkðci0ÞEpkðsÞ.

If c0 ¼ 1, then there exists i such that ci0 � 1 ¼ 1
(i.e., ci0 ¼ 0 and fðwiÞ � ti). If wi 62 K, then ti ¼
2d � 1 and it is impossible that fðwiÞ � 2d � 1. This
means that wi 2 K and fðwiÞ � ti. According to
Lemma 1, M is a matching document.

If c0 ¼ 0, then ci0 � 1¼ 0 (i.e., ci0 ¼ 1 and fðwiÞ<ti)
for all wi 2M \D. According to Lemma 1, M is not
a matching document.

3. (Document Storing). Assume that the state of the base
buffer GG is ðĝm; ĝm�1; . . . ; ĝ1Þ, where ĝi is an encryp-
tion of either 0 or 1, the program F constructs an
encrypted ‘� L generator matrix G for an [L; ‘]
binary linear code as follows:

G ¼
ĝ1 0̂ � � � 0̂ � � � ĝm 0̂ � � � 0̂
0̂ ĝ1 � � � 0̂ � � � 0̂ ĝm � � � 0̂
� � � � � � � � � � � � � � �
0̂ 0̂ � � � ĝ1 � � � 0̂ 0̂ � � � ĝm

0
BB@

1
CCA;

160 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

where L ¼ m‘ and the element at (i; ðj� 1Þ‘þ i) (for

i ¼ 1; 2; . . . ; ‘ and j ¼ 1; 2; . . . ;m) is ĝj and otherwise

0̂ (an encryption of 0).
To store the encryption of the document M into

the data buffer IB, the program F computes

M̂ ¼ Epkðc0ÞEpkðMÞG
¼ ðEpkðc0m1Þ; . . . ; Epkðc0m‘ÞÞG;

and positionwise adds the result into the data buffer

IB, denoted as

IB ¼ IBþ M̂:

If c0 ¼ 1, then M̂, the encryption of the binary linear

code of the matching document M, is kept in the

data buffer IB. If c0 ¼ 0, then M̂ is the encryption of

0, which has no effect on the data buffer IB.
4. To avoid collision when storing next matching

document into the data buffer IB, the program F
updates the base buffer GG by homomorphically
shifting Epkð1Þ in the base buffer GG to the left one
position if M is a matching document and 0 position
otherwise. This is done by computing

GG0 ¼ GG tuþ Epkðc0ÞGG;

where GG is treated as the encryption of an m-bit

integer, and replacing GG with GG0.

Remark. Initially, GG ¼ ðEpkð0Þ; . . . ; Epkð0Þ; Epkð1ÞÞ. If

c0 ¼ 0, the buffer does not change. Only when c0 ¼ 1,

the buffer is updated by shifting Epkð1Þ one position

to the left. We only consider the encryptions of the

right m bits. After shifting m times, the buffer

becomes the encryptions of all zeros. The buffer

contains at most one encryption of 1 all the time.

Buffer Decryption. BufferDecðIB; skÞ. Using the secret key

sk, the algorithm decrypts the encrypted data buffer IB, sent

back by the filter program F , one box at a time. Assume that

the decrypted data buffer is ðm01m02 . . .m0LÞb where L ¼ m‘,
then the set of matching documents is

IB	 ¼ fM ¼ ðm0i‘þ1 . . .m0i‘þ‘Þb jM 6¼ 0; i ¼ 0; 1; . . . ;m� 1g:

5.2 Correctness

The filter program F is composed of D (the dictionary) and

D̂ (the encryption of the frequency thresholds). The size of

D̂ is jDjdk, where k is the security parameter. Therefore, the

size of the filter program jF j ¼ OðjDjÞ.
The data buffer IB has m‘ boxes (where ‘ is the size of the

document), each keeps a ciphertext of one bit. The size of

the buffer jIBj ¼ m‘k ¼ OðmÞ.
We need to show that if the number of matching

documents is less than or equal to m, then IB	 ¼ fM 2 S j
QKðMÞ ¼ 1g (search completeness) and otherwise we have

jIB	 \ fM 2 S j QKðMÞ ¼ 1gj ¼ m (collision freeness).
Assume that the matching documents in the stream

S ¼ fM1;M2; . . . ; g are fMi1 ;Mi2 ; . . .g. Initially, the data

buffer IB ¼ ðEpkð0Þ; Epkð0Þ; . . . ; Epkð0ÞÞ, the base buffer

GG ¼ ðEpkð0Þ; . . . ; Epkð0Þ; Epkð1ÞÞ and the generator matrix

G ¼
1̂ 0̂ � � � 0̂ � � � 0̂ 0̂ � � � 0̂
0̂ 1̂ � � � 0̂ � � � 0̂ 0̂ � � � 0̂
� � � � � � � � � � � � �
0̂ 0̂ � � � 1̂ � � � 0̂ 0̂ � � � 0̂

0
BB@

1
CCA;

where 1̂ and 0̂ are encryptions of 1 and 0, respectively.
For a nonmatching document M, we have c0 ¼ 0 and

thus M̂ ¼ Epkðc0ÞEpkðMÞG ¼ ðEpkð0Þ; Epkð0Þ; . . . ; Epkð0ÞÞ, the

data buffer IB ¼ IBþ M̂ ¼ IB and the base buffer GG0 ¼
GG tuþ Epkðc0ÞGG ¼ GG, which means that the content of IB and

GG do not change.
When the filter program F deals with the matching

document Mij (1 � j � m), we have c0 ¼ 1 and the state of

the base buffer GG is evolved from ðEpkð0Þ; . . . ; Epkð0Þ; Epkð1ÞÞ
by shifting Epkð1Þ to the left j� 1 positions because there are

j� 1 matching documents before Mij . Therefore, the

generator matrix

G ¼
� � � 1̂ 0̂ � � � 0̂ � � � 0̂ 0̂ � � � 0̂
� � � 0̂ 1̂ � � � 0̂ � � � 0̂ 0̂ � � � 0̂
� � � � � � � � � � � � � � � � � �
� � � 0̂ 0̂ � � � 1̂ � � � 0̂ 0̂ � � � 0̂

0
BB@

1
CCA;

and M̂ij ¼ Epkðc0ÞEpkðMijÞG ¼ ðEpkð0Þ; . . . ; EpkðMijÞ; . . . ;

Epkð0ÞÞ a n d IB ¼ IB þ M̂ij ¼ ðEpkðMi1Þ; . . . ; EpkðMij�1
Þ,

EpkðMijÞ; Epkð0Þ; . . . ; Epkð0ÞÞ. After that, the ba se buffer GG

is updated to GG tuþ Epkðc0ÞGG ¼ GG tuþ GG, i.e., shifting Epkð1Þ
further to the left one position.

In case when the filter program F deals with the

matching document Mij ðj > mÞ, although c0 ¼ 1, the base

buffer GG contains the encryptions of all zeros and so does

the generator matrix G. Therefore, M̂ij ¼ Epkðc0ÞEpkðMijÞG ¼
ðEpkð0Þ; Epkð0Þ; . . . ; Epkð0ÞÞ and IB ¼ IBþ M̂ij ¼ IB. This

means the matching document Mijðj > mÞ has no effect

on the data buffer IB.
In summary, both search completeness and collision

freeness are true.

6 CONJUNCTIVE THRESHOLD QUERY BASED ON

KEYWORD FREQUENCY

Formally, a conjunctive threshold query over keywords

K ¼ fk1; k2; . . . ; kng can be expressed as

QK ¼ ðfðk1Þ � t1Þ ^ ðfðk2Þ � t2Þ ^ � � � ^ ðfðknÞ � tnÞ;

where fðkiÞð1 � i � nÞ is the frequency of the keyword ki in

the document and ti is the given threshold. It is easy to see

Lemma 2. Given a document M, a conjunctive threshold query

QKðMÞ ¼ 1 if and only if fðkiÞ � ti for 1 � i � n.

6.1 Construction

Following the model described in Section 4, our protocol of

conjunctive threshold query is composed of four algorithms

KeyGen, FilterGen, FilterExec, BufferDec. Our conjunctive

construction can be formally presented as follows.
Key Generation. KeyGenðkÞ. Run the key generation

algorithm for the underlying fully homomorphic encryp-

tion scheme to produce the private key sk and the public

key pk.

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 161

Filter program generation. FilterGenðD;QK; pkÞ. This algo-

rithm outputs a filter program F for conjunctive threshold

query QK based on keyword frequency.
Assume that the public dictionary D ¼ fw1; w2; . . . ; wjDjg,

keywords K ¼ fk1; k2; . . . ; kng � D, d ¼ dlog2 jMje where

jMj stands for the maximal number of words the document

M can contain, then F consists of the dictionary D,

conjunctive query sign (denoted as 01), and an array of

ciphertexts

D̂ ¼ fŵ1; ŵ2; . . . ; ŵjDjg;

where ŵi ¼ EpkðtiÞ and

ti ¼
frequency threshold for kj if wi ¼ kj 2 K
0 if wi 62 K:

�

Remark. Because the document M contains at most 2d � 1

words, both ti and t ¼
P

wi2K ti must be less than 2d � 1.

We set the frequent threshold of a nonkeyword as 0 so

that its frequency is always more than the threshold.

Assume ti ¼ ðai1ai2 . . . aidÞb where aij 2 f0; 1g, then ŵi ¼
EpkðtiÞ ¼ ðEpkðai1Þ; Epkðai2Þ; . . . ; EpkðaidÞÞ. The array of cipher-

texts contains n encryptions of frequency thresholds and

jDj � n encryptions of 0.
Filter program execution FilterExecðS; F ; pk;mÞ. This

algorithm outputs an encrypted buffer IB keeping up to

m matching documents.
First of all, the program F constructs a data buffer IB

with m‘ boxes, each of them is initialized with Epkð0Þ. Next,

F constructs a base buffer GG with m boxes, which are

initialized with ðEpkð0Þ; . . . ; Epkð0Þ; Epkð1ÞÞ. In addition, the

program F constructs the encryption of the two’s comple-

ment of �ti (denoted as �ti) with ŵi ¼ EpkðtiÞ, that is,

Epkð�tiÞ ¼ ðEpkð1Þ; Epkðai1Þ; . . . ; EpkðaidÞÞ tuþ Epkð1Þ;

and the encryption of t ¼
P

wi2K ti with D̂ (please note that

ti ¼ 0 when wi 62 K), that is,

tuþjDji¼1ŵi ¼ ŵ1 tuþ ŵ2 tuþ � � � tuþ ŵjDj;

and the encryption of the two’s complement of �t (denoted

as �t) with EpkðtÞ, that is,

Epkð�tÞ ¼ ðEpkð1Þ; Epkð�1Þ; . . . ; Epkð�dÞÞ tuþ Epkð1Þ:

Upon receiving an input document M ¼ ðm1m2 . . .m‘Þb
from the stream S, to determine if M is a matching

document or not, the program F homomorphically com-

pute a ciphertext Epkðc0Þ such that M is a matching

document if c0 ¼ 1 and 0 otherwise. It proceeds with the

following steps:

1. (Word Collection). The program F first collects

Ĥ ¼ fwi; fðwiÞ j wi 2M \Dg;

where fðwiÞ is the frequency of wi in the document

M. Next, F constructs the encryption of the two’s

complement of fðwiÞ ¼ ðbi1bi2 . . . bidÞb, denoted as

fðwiÞ, for each wi 2 Ĥ, that is,

EpkðfðwiÞÞ ¼ ðEpkð0Þ; Epkðbi1Þ; Epkðbi2Þ; . . . ; EpkðbidÞÞ;

and the encryption of the two’s complement of
t0 ¼

P
wi2Ĥ ti ¼ ð�1; �2; . . . ; �dÞ, denoted as t0, that is

Epkðt0Þ ¼ ðEpkð0Þ; Epkð�1Þ; Epkð�2Þ; . . . ; Epkð�dÞÞ:

Remark: Epkðt0Þ ¼ ðEpkð�1Þ; Epkð�2Þ; . . . ; Epkð�dÞÞ can
be obtained with tuþwi2Ĥŵi. Because the sum t0 is never
more than 2d � 1, we consider d bits of t0 only.

2. (Frequency Comparison). For each wi 2 Ĥ, the pro-
gram F homomorphically compares fðwiÞ and ti by
computing

EpkðfðwiÞ þ �tiÞ
¼ EpkðfðwiÞÞ tuþ Epkð�tiÞ
¼ ðEpkðci0Þ; Epkðci1Þ; Epkðci2Þ; . . . ; EpkðcidÞÞ;

from which only Epkðci0Þ is extracted. If ci0 ¼ 0, then
fðwiÞ � ti and otherwise fðwiÞ < ti.

In addition, the program F homomorphically
checks if the document M contains all keywords in
K by computing

Epkðt0 þ �tÞ
¼ Epkðt0Þ tuþ Epkð�tÞ
¼ ðEpkð�0Þ; Epkð�1Þ; Epkð�2Þ; . . . ; Epkð�dÞÞ;

from which only Epkð�0Þ is extracted. If �0 ¼ 0, then
t0 � t and thus t0 ¼ t and the document contains all
keywords in K. If �0 ¼ 1, then t0 < t and the
document does not contain all keywords in K.

Remark. Because t0 ¼
P

wi2Ĥ ti ¼
P

wi2Ĥ\K ti �P
wi2K ti ¼ t, the inequality t0 � t means that t0 ¼ t,

Ĥ \K ¼ K, and the document contains all key-

words in K. Reversely, the inequality t0 < t means

that Ĥ \K � K and the document does not contain

all keywords in K.
Next, the program F computes

Epkðc0Þ ¼ Epk
�
ð�0 � 1Þ

^
wi2Ĥ

ðci0 � 1Þ
�

¼ ðEpkð�0Þ þ Epkð1ÞÞ
Y
wi2Ĥ

ðEpkðci0Þ þ Epkð1ÞÞ:

ð2Þ

If c0 ¼ 1, then �0 ¼ 0 and ci0 ¼ 0 for all wi 2 Ĥ. As
discussed above, �0 ¼ 0 means Ĥ \K ¼ K while
ci0 ¼ 0 for all wi 2 Ĥ means fðwiÞ � ti for all wi 2 Ĥ.
It is obvious that fðwiÞ � 0 for all wi 62 K. According
to Lemma 2, M is a matching document.

If c0 ¼ 0 and �0 ¼ 1, M does not contain all
keywords in K. According to Lemma 2, M is not a
matching document. If c0 ¼ 0 and �0 ¼ 0, M does
contain all keywords in K, but there exists i such
that fðwiÞ < ti. According to Lemma 2, M is not a
matching document.

The rest of the algorithm and the buffer decryp-
tion algorithm are the same as our disjunction
threshold query.

162 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

The correctness of our conjunctive threshold query can
be proved in the same way as we prove the correctness of
our disjunctive threshold query.

7 COMPLEMENT THRESHOLD QUERY BASED ON

KEYWORD FREQUENCY

We have two complement constructions for private thresh-
old queries based on keyword frequency. They are
disjunctive complement and conjunctive complement.

7.1 Disjunctive Complement

Formally, a disjunctive complement threshold query over
keywords K ¼ fk1; k2; . . . ; kng can be expressed as

QK ¼ ðfðki1Þ � ti1Þ _ � � � _ ðfðkin1
Þ � tin1

Þ
_ :ðfðkj1

Þ � tj1Þ _ � � � _ :ðfðkjn2
Þ � tjn2

Þ
¼ ðfðki1Þ � ti1Þ _ � � � _ ðfðkin1

Þ � tin1
Þ

_ ðfðkj1Þ < tj1
Þ _ � � � _ ðfðkjn2

Þ < tjn2
Þ;

where : stands for complement (i.e., negation), fki1 ; . . . ;
kin1

; kj1
; . . . ; kjn2

g ¼ K and n1 � 0, n2 � 0. It is easy to see

Lemma 3. Given a document M, a conjunctive complement
query QKðMÞ ¼ 1 if and only if there exists l such that
fðkilÞ � til or fðkjlÞ < tjl .

Our construction for the conjunctive complement query
is composed of KeyGen, FilterGen, FilterExec, and
BufferDec, where KeyGen and BufferDec are the same as
the disjunctive threshold query described in Section 5.

Filter program generation. FilterGenðD;QK; pkÞ. This
algorithm outputs a filter program F , which consists of
the public dictionary D ¼ fw1; w2; . . . ; wjDjg, disjunctive
complement sign (denoted as 10), an array of ciphertexts
D̂ ¼ fŵ1; ŵ2; . . . ; ŵjDjg, where ŵi ¼ EpkðtiÞ and

ti ¼
frequency threshold for kj if wi ¼ kj 2 K
2d � 1 if wi 62 K;

�

and an array of ciphertexts D̂0 ¼ fŵ01; ŵ02; . . . ; ŵ0jDjg, where
ŵ0i ¼ EpkðsiÞ and

si ¼
1 if wi 2 fkj1

; . . . ; kjn2
g

0 otherwise:

�

Remark. The encryptions of s1; s2; . . . ; sn are used to
indicate the complement positions in QK in private.

Filter program execution. FilterExecðS; F; pk;mÞ. This
algorithm outputs an encrypted buffer IB keeping up to
m matching documents.

The algorithm is the same as the filter program execution
in the disjunctive threshold query described in Section 5
except that F computes

Epkðc0Þ ¼ Epk
� _
wi2Ĥ

ðci0 � 1� siÞ
�
; ð3Þ

on the basis of homomorphic properties described in
Section 3.

If c0 ¼ 1, then there exists l such that cl0 � 1� sl ¼ 1 (i.e.,
cl0 � sl ¼ 0). If wl 2 fki1 ; . . . ; kin1

g, then sl ¼ 0 and thus
cl0 ¼ 0, which means that fðwlÞ � tl. If wl 2 fkj1 ; . . . ; kjn2

g,
then sl ¼ 1 and thus cl0 ¼ 1, which means that fðwlÞ < tl. If
wl 62 K, then sl ¼ 0 and thus cl0 ¼ 0, which means that
fðwlÞ � tl ¼ 2d � 1. It is impossible and this event never
occurs when c0 ¼ 1. According to Lemma 3, M is a
matching document when c0 ¼ 1.

If c0 ¼ 0, then cl0 � 1� sl ¼ 0 (i.e., cl0 � sl ¼ 1) for all

wl 2M \D. If wl 2 fki1 ; . . . ; kin1
g, then sl ¼ 0 and thus

cl0 ¼ 1, which means that fðwlÞ < tl. If wl 2 fkj1 ; . . . ; kjn2
g,

then sl ¼ 1 and thus cl0 ¼ 0, which means that fðwlÞ � tl.
According to Lemma 3, M is not a matching document

when c0 ¼ 0.

Remark. A disjunctive complement query becomes a

disjunctive query if letting si ¼ 0 for all i. In addition,

if letting si ¼ 1 for all i, a disjunctive complement query

becomes

QK ¼ ðfðk1Þ < t1Þ _ ðfðk2Þ < t2Þ _ � � � _ ðfðknÞ < tnÞ:

7.2 Conjunctive Complement

Formally, a conjunctive complement threshold query over

keywords K ¼ fk1; k2; . . . ; kng can be expressed as

QK ¼ ðfðki1Þ � ti1Þ ^ � � � ^ ðfðkin1
Þ � tin1

Þ
^ :ðfðkj1

Þ ^ tj1Þ _ � � � ^ :ðfðkjn2
Þ � tjn2

Þ
¼ ðfðki1Þ � ti1Þ ^ � � � _ ðfðkin1

Þ � tin1
Þ

^ ðfðkj1Þ < tj1
Þ ^ � � � _ ðfðkjn2

Þ < tjn2
Þ;

where : stands for complement (i.e., negation), fki1 ; . . . ;

kin1
; kj1 ; . . . ; kjn2

g ¼ K and n1 � 0, n2 � 0. It is easy to see

Lemma 4. Given a documentM, a conjunctive complement query

QKðMÞ ¼ 1 if and only if, for any kl 2 fki1 ; ki2 ; . . . ; kin1
g,

fðklÞ � tl, and for any kl 2 fkj1 ; kj2
; . . . ; kjn2

g, fðklÞ < tl.

Our construction for the conjunctive complement query

is composed of KeyGen, FilterGen, FilterExec, and

BufferDec, where KeyGen and BufferDec are the same as

the disjunctive threshold query described in Section 5.
Filter program generation. FilterGenðD;QK; pkÞ. This

algorithm outputs a filter program F , which consists of

the public dictionary D ¼ fw1; w2; . . . ; wjDjg, conjunctive

complement sign (denoted as 11), an array of ciphertexts

D̂ ¼ fŵ1; ŵ2; . . . ; ŵjDjg, where ŵi ¼ EpkðtiÞ and

ti ¼
frequency threshold for kj if wi ¼ kj 2 K
0 if wi 62 K;

�

and an array of ciphertexts D̂0 ¼ fŵ01; ŵ02; . . . ; ŵ0jDjg, where

ŵ0i ¼ EpkðsiÞ and

si ¼
1 if wi 2 fkj1

; . . . ; kjn2
g

0 otherwise:

�

Filter program execution. FilterExecðS; F ; pk;mÞ. This

algorithm outputs an encrypted buffer IB keeping up to

m matching documents.

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 163

The algorithm is the same as the filter program execution
in the conjunctive threshold query described in Section 6
except that F computes

Epkðc0Þ ¼ Epk
�
ð�0 � 1Þ

^
wi2Ĥ

ðci0 � 1� siÞ
�

¼ ðEpkð�0Þ þ Epkð1ÞÞ
Y
wi2Ĥ

ðEpkðci0Þ þ Epkð1Þ þ ŵ0iÞ;

ð4Þ

according to homomorphic properties described in Section 3.
If c0 ¼ 1, then �0 ¼ 0 and cl0 � 1� sl ¼ 1 (i.e., cl0 þ sl ¼ 0)

for all wl 2 Ĥ. �0 ¼ 0 means Ĥ \K ¼ K. If wl 2 fki1 ; . . . ;
kin1
g, then sl ¼ 0 and thus cl0 ¼ 0, which means that

fðwlÞ � tl. If wl 2 fkj1
; . . . ; kjn2

g, then sl ¼ 1 and thus
cl0 ¼ 1, which means that fðwlÞ < tl. According to Lemma 4,
M is a matching document when c0 ¼ 1.

If c0 ¼ 0 and �0 ¼ 1, M does not contain all keywords in
K. According to Lemma 4, M is not a matching document.
If c0 ¼ 0 and �0 ¼ 0, M does contain all keywords in K, but
there exists l such that cl0 � 1� sl ¼ 0 (i.e., cl0 � sl ¼ 1). If
wl 2 fki1 ; . . . ; kin1

g, then sl ¼ 0 and thus cl0 ¼ 1, which
means that fðwlÞ < tl. If wl 2 fkj1 ; . . . ; kjn2

g, then sl ¼ 1
and thus cl0 ¼ 0, which means that fðwlÞ � tl. According
to Lemma 4, M is a matching document when c0 ¼ 0.

Remark. A conjunctive complement query becomes a
conjunctive query if letting si ¼ 0 for all i. In addition,
if letting si ¼ 1 for all i, a disjunctive complement query
becomes

QK ¼ ðfðk1Þ < t1Þ ^ ðfðk2Þ < t2Þ ^ � � � ^ ðfðknÞ < tnÞ:

8 GENERIC THRESHOLD QUERY BASED ON

KEYWORD FREQUENCY

By combining the above basic constructions for private
threshold queries based on keyword frequency, we present
a construction for a generic threshold query without
asymptotically increasing the program size as follows.

Assume that D is the public dictionary of potential
keywords and QðiÞKi

ði ¼ 1; 2; . . . ; �Þ stands for a disjunctive,
or conjunctive, or complement query over keywords
Ki � D, we consider a generic threshold query

�
�
Q
ð1Þ
K1
; Q
ð2Þ
K2
; . . . ; Q

ð�Þ
K�

�
;

where operators in � belong to f_;^;�g and Ki \Kj for
any i and j is not necessary to be empty.

Our construction for the generic threshold query over
keywords Ki (i ¼ 1; 2; . . . ; �) is composed of KeyGen,
FilterGen, FilterExec, and BufferDec, where KeyGen and
BufferDec are the same as the threshold queries described
in Section 5.

Filter program generation. FilterGenðD;Qð1ÞK1
;Qð2ÞK2

; . . . ;Q�
K�
;

pkÞ. This algorithm outputs a filter programF , which consists
of fF1; F2; . . . ; F�g, where Fi ¼ FilterGenðD;QðiÞKi

; pkÞ.
Filter program execution. FilterExecðS; F; pk;mÞ. This

algorithm outputs an encrypted buffer IB keeping up to
m matching documents. Upon receiving an input document

M ¼ ðm1m2 . . .m‘Þb from the stream S, the program F

proceeds with the following steps:

1. The program F runs the programs Fi to compute

EpkðcðiÞ0 Þ based on (1)-(4).
2. The program F computes

Epkðc0Þ ¼ Epk
�
�
�
c
ð1Þ
0 ; c

ð2Þ
0 ; . . . ; c

ð�Þ
0

��
;

according to homomorphic properties described in
Section 3.

If c0 ¼ 1, M is a matching document. If c0 ¼ 0, M
is not a matching document.

The rest of the construction is the same as
FilterExec of the disjunction threshold query de-
scribed in Section 5.

Remark. All kind of private threshold queries based on

keyword frequency can be expressed as �ðQð1ÞK1
; Q
ð2Þ
K2
; . . . ;

Q
ð�Þ
K�
Þ, where QðiÞKi

is either disjunctive, conjunctive, or

complement threshold query, and operators in � belong

to f_;^;�g. Therefore, our solution supports arbitrary

private threshold queries.

9 PRIVACY

The privacy of our threshold query protocols is built
on the underlying fully homomorphic encryption scheme.
We have:

Theorem 1. Assume that the underlying fully homomorphic
encryption scheme is semantically secure, then our threshold
query protocols based on keyword frequency are semantically
secure according to Definition 5.

Proof. We consider the privacy of the disjunctive threshold
query based on keyword frequency in the proof. The
privacy of other threshold queries can be proved in the
same way.

Denote by E the underlying fully homomorphic
encryption scheme. Suppose that there exists an adver-
sary A that can gain a nonnegligible advantage 	 in our
semantic security game from Definition 5. Then, A can be
used to gain a nonnegligible advantage in breaking the
semantic security of the underlying fully homomorphic
encryption scheme as follows:

Initiate the semantic security game for the encryption
scheme with some challenger C, which will send us the
public key pk for the challenge. For messages m0 and
m1, we choose m0 ¼ 0 2 f0; 1g and m1 ¼ 1 2 f0; 1g.
After sending m0;m1 back to the challenger C, we will
receive eb ¼ EðmbÞ, an encryption of one of these two
values. Next, we initiate the private query game with
the adversary A, who will give us two disjunctive
threshold queries QK0

;QK1
for two sets of keywords

K0 � D and K1 � D with frequency thresholds fti0gði ¼
1; 2; . . . ; jDjÞ for QK0

and frequency threshold fti1gði ¼
1; 2; . . . ; jDjÞ for QK1

. We pick a random bit q, and
construct a private filter program F for QKq

, i.e., D̂ ¼
fŵ1q; ŵ2q; . . . ; ŵjDjqg as follows.

For a word wi in D�Kq, tiq ¼ 2d � 1 ¼ ð11 . . . 1Þb, we
construct ŵiq ¼ ðEpkð1Þ; Epkð1Þ; . . . ; Epkð1ÞÞ with Epkð1Þ.

164 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Note that Epkð1Þ is the encryption of 1 with the public key
pk and different randomness are chosen in Eð1Þ for
different words and bits.

For a word wi in Kq, tiq ¼ ðb1b2 . . . bdÞb, we construct
ŵiq ¼ ðEpkðb1Þ; Epkðb2Þ; . . . ; EpkðbdÞÞ by replacing EpkðbjÞ
with Epkð1Þ when bj ¼ 1 and with Eð0Þ þ eb when bj ¼ 0.

Now we give the filter program F to the adversary A,
who then returns a guess q0. With probability 1/2, eb is
the encryption of 1, and hence D̂ are the encryption of all
2b � 1 and no documents can meet the search criterion,
and in this event A’s guess is independent of q, and
hence the probability q0 ¼ q is 1/2. However, with
probability 1/2, eb ¼ Eð0Þ, hence F is the filter program
that searches for QKq

, constructed exactly as in FilterGen
algorithm, and hence in this case with probability
1=2þ 	, A will guess q correctly, as our behavior was
indistinguishable for an actual challenger. We determine
our guess b0 as follows: If A guesses q0 ¼ q correctly, then
we will set b0 ¼ 1, and otherwise we will set b0 ¼ 0.

Putting it all together, we can now compute the
probability that our guess is correct:

Prðb0 ¼ bÞ ¼ 1

2

�
1

2

�
þ 1

2

�
1

2
þ 	
�
¼ 1

2
þ 	

2
:

Therefore, we have obtained a nonnegligible advantage
in the semantic security game for the underlying fully
homomorphic encryption scheme, a contradiction to our
assumption. Thus, our protocol is semantically secure
according to Definition 5. tu

10 PERFORMANCE ANALYSIS

We have presented two basic constructions for threshold
query based on keyword frequency. They are disjunctive
and conjunctive.

In our disjunctive construction (Section 5), the client can
pregenerates the public/private key pair. In addition, the
client needs to encrypt the frequency of each classified
keyword in the phase of the filter program generation and to
decrypt the buffer IB to retrieve the matching documents
after the buffer returns. If we do not consider the key
generation, the total computation complexity of the client is
OðdjDjÞ encryptions to generate the program F and Oðm‘Þ
decryptions to retrieve the matching documents from the
buffer, where jDj is the number of words in the dictionaryD,
2d is the maximal number of words contained in each
document, ‘ is the number of bits of each document, andm is
the maximal number of matching documents in the buffer.

After receiving the filter program F , the server processes
each document Mi in three steps. We assume
 ¼ jMi \Dj.
At first, the server needs to compute Epkðc0Þ. The computa-
tion complexity of the first step is Oð
dÞ encryptions to
encrypt
 frequencies with d bits, Oð
Þ homomorphic
additions of integers with d bits, Oð
Þ homomorphic
multiplications of bits, and Oð
Þ homomorphic additions
of bits (please refer to (1)). Then, the server needs to add Mi

into the buffer IB if Mi is a matching document or add
0 into the buffer otherwise. The computation complexity of
the second step is Oðm‘2Þ homomorphic multiplications of

bits and Oðm‘2Þ homomorphic addition of bits. At last, the
server needs to update the buffer base GG. The computation
complexity of the third step is OðmÞ homomorphic multi-
plications of bits and Oð1Þ homomorphic addition of
integers with m bits.

The communication complexity of our disjunctive con-
struction is OðdjDkCjÞ bits for the query and Oðm‘jCjÞ bits
for response, where jCj is the size of the ciphertext.

Unlike our disjunctive construction, our conjunctive
construction (Section 6) needs to compute Epkð�0Þ and then
Epkðc0Þ. The computation complexity for the server to
compute Epkð�0Þ is OðjDjÞ homomorphic additions of
integers. Although the two constructions computes Epkðc0Þ
with two different equations (please refer to (1) and (2)),
their complexities for this computation are almost the same.

Our disjunctive complement construction (Section 7) is
different from our disjunctive construction in two ways.
The query contains an extra array of ciphertexts to indicate
the complement positions in private and the server
computes Epkðc0Þ with (3), which is different from (1). The
differences do not affect the computation complexity of the
server, but the computation complexity of the client is
increased by OðjDjÞ encryptions of bits and the commu-
nication complexity is increased by OðjDkCjÞ bits on the
basis of the performance of our disjunctive construction.

Similarly, our conjunctive complement construction
(Section 8) is different from our conjunctive construction
in two ways. The differences do not change the computation
complexity of the server, but the computation complexity of
the client is increased by OðjDjÞ encryptions of bits and
the communication complexity is increased byOðjDkCjÞ bits
on the basis of our conjunctive complement construction.

The performance of our generic construction (Section 9)
depends on the performance of the underlying basic
constructions.

The performance comparison of our threshold query
protocols can be summarized in Table 2, where enc. and
dec. stand for encryption and decryption of bit, add. and
multi. denote the homomorphic addition and multiplica-
tion of bits, and ADD. represents the homomorphic
addition of integers.

11 CONCLUSION AND DISCUSSION

On the basis of the state of the art fully homomorphic
encryption techniques, we have presented constructions

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 165

TABLE 2
Performance Comparison

for disjunctive, conjunctive, and complement threshold
queries based on keyword frequency and then a construc-
tion for a generic threshold query based on keyword
frequency. Our protocols are semantically secure as long
as the underlying fully homomorphic encryption scheme is
semantically secure.

Our construction for disjunctive threshold query is able

to search for documents containing at least one of a set of

keywords as [17], [18], [1], [2] by letting the threshold ti ¼ 1

for keyword ki 2 K. Our construction for generic threshold

query can search for documents M such that ðM \K1 6¼
;Þ ^ ðM \K1 6¼ ;Þ as [17], [18] by letting Qð1ÞK1

and Qð2ÞK2

be two disjunctive threshold queries with the threshold

ti ¼ 1 for keyword ki 2 K and �ðQð1ÞK1
;Qð2ÞK2

Þ ¼ Qð1ÞK1
^Qð2ÞK2

Þ.
Therefore, their solutions are special cases of ours.

To improve the performance of our constructions, we can
compress or postprocess the ciphertext of a bit in the final
stage of filter program execution as [7]. In this case, the
ciphertext of a bit can have the same size as an RSA
modulus asymptotically.

Theoretically, any search criteria can be constructed with
fully homomorphic encryption scheme in private searching
on streaming data. Even if so, different queries will need
different constructions. As long as the underlying fully
homomorphic encryption scheme is practical, our protocols
will be practical. So far, fully homomorphic encryption
schemes are impractical for many applications according to
[13], because ciphertext size and computation time increase
sharply as one increases the security level. Recently, many
research efforts have been devoted to construct efficient
fully homomorphic encryption schemes, such as the ones by
[23], [4], [5]. We believe that our protocols for private
threshold queries based on keyword frequency will be
made practical with the performance improvement of fully
homomorphic encryption techniques in the future.

Privacy is gaining increasingly higher attention, and
future computing paradigms, for example, cloud comput-
ing, will only become viable if privacy of users is
thoroughly protected. For example, Google Alerts is a
service offered by Google that notifies its users by e-mail, or
as a feed, about the latest Web and news pages of their
choice. As in the case of the AOL search data leak, it is not
hard to imagine queries which could be privacy sensitive.
With our private searching solutions, it is possible for a user
to make a filtering program according to the frequencies of
some classified keywords and submit it to Google, which
executes the program on all latest Web and news pages. The
program can notify to the user its discovery according to the
search criteria specified by the user. While the program is
executed by Google, the search criteria of the user can be
kept confidential to Google.

ACKNOWLEDGMENTS

This work was supported by the ARC Discovery Project
(DP0988411) “Private Data Warehouse Query” and the US
National Science Foundation Award (1016722) “TC: Small:
Collaborative: Protocols for Privacy-Preserving Scalable
Record Matching and Ontology Alignment.” The authors
would like to thank blind reviewers for their constructive
comments, which helped them to improve this paper.

REFERENCES

[1] J. Bethencourt, D. Song, and B. Water, “New Construction and
Practical Applications for Private Streaming Searching,” Proc.
IEEE Symp. Security and Privacy, 2006.

[2] J. Bethencourt, D. Song, and B. Water, “New Techniques for
Private Stream Searching,” ACM Trans. Information and System
Security, vol. 12, no. 3, pp. 1-32, 2009.

[3] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF Formulas on
Ciphertext,” Proc. Second Int’l Conf. Theory of Cryptography, pp. 325-
341, 2005.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully Homo-
morphic Encryption without Bootstrapping,” http://eprint.
iacr.org/2011/277, 2011.

[5] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homo-
morphic Encryption from (Standard) LWE,” http://eprint.
iacr.org/2011/344, 2011.

[6] I. Damgard and M. Jurik, “A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System,”
Proc. Fourth Int’l Workshop Practice and Theory in Public Key
Cryptography (PKC ’01), pp. 119-136, 2001.

[7] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
Homomorphic Encryption over the Integers,” Proc. Advances in
Cryptology (EUROCRYPT ’10), pp. 24-43, 2010.

[8] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Information Theory,
vol. 31, no. 4, pp. 469-472, July 1985.

[9] C. Gentry, “Fully Homomorphic Encryption Scheme,” PhD thesis,
Stanford Univ., http://crypto.stanford.edu/craig, 2009.

[10] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
Proc. 41st Ann. ACM Symp. Theory of Computing (STOC ’09),
pp. 169-178, 2009.

[11] C. Gentry, “Computing Arbitrary Functions of Encrypted Data,”
Comm. ACM, vol. 53, no. 3, pp. 97-105, 2010.

[12] C. Gentry, “Toward Basing Fully Homomorphic Encryption on
Worst-Case Hardness,” Proc. Advances in Cryptology (CRYPTO ’10),
pp. 116-137, 2010.

[13] C. Gentry and S. Halevi, “Implementing Gentry’s Fully-
Homomorphic Encryption Scheme,” Proc. 30th Ann. Int’l
Conf. Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’11), pp. 129-148, 2011.

[14] D. Harris, D.M. Harris, and S.L. Harris, Digital Design and
Computer Architecture. Morgan Kaufmann, 2007.

[15] D.J. Lilja and S.S. Sapatnekar, Designing Digital Computer Systems
with Verilog. Cambridge Univ. Press, 2005.

[16] S. Ling and C.P. Xing, Coding Theory: A First Course. Cambridge
Press, 2004.

[17] R. Ostrovsky and W. Skeith, “Private Searching on Streaming
Data,” Proc. Advances in Cryptology (CRYPTO ’05), pp. 223-240,
2005.

[18] R. Ostrovsky and W. Skeith, “Private Searching on Streaming
Data,” J. Cryptology, vol. 20, no. 4, pp. 397-430, 2007.

[19] R. Ostrovsky and W. Skeith, “Algebraic Lower Bounds for
Computing on Encrypted Data,” Proc. Electronic Colloquium on
Computational Complexity (ECCC ’07), 2007.

[20] P. Paillier, “Public Key Cryptosystems Based on Composite
Degree Residue Classes,” Proc. 17th Int’l Conf. Theory and
Application of Cryptographic Techniques (EUROCRYPT ’99),
pp. 223-238, 1999.

[21] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
second ed. Oxford Univ. Press, 2010.

[22] N. Smart and F. Vercauteren, “Fully Homomorphic Encryption
with Relatively Small Key and Ciphertext Sizes,” Proc. 13th Int’l
Conf. Practice and Theory in Public Key Cryptography (PKC ’10),
pp. 420-443, 2010.

[23] D. Stehle and R. Steinfeld, “Faster Fully Homomorphic Encryp-
tion,” Proc. Advances in Cryptology (ASIACRYPT ’10), pp. 377-394,
2010.

[24] J.F. Wakerly, Digital Design Principles and Practices, third ed.
Prentice Hall, 2000.

[25] X. Yi and C.P. Xing, “Private (t, n) Threshold Searching on
Streaming Data,” Proc. Int’l Conf. Social Computing Privacy,
Security, Risk and Trust (PASSAT ’12), pp. 676-683, 2012.

166 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Xun Yi is a professor at the College of
Engineering and Science, Victoria University,
Australia. His research interests include applied
cryptography, computer and network security,
mobile and wireless communication security, and
privacy-preserving data mining. He has pub-
lished more than 100 research papers in con-
ference proceedings and international journals,
such as the IEEE Transactions on Knowledge
and Data Engineering, the IEEE Transactions on

Wireless Communication, the IEEE Transactions on Dependable and
Secure Computing, the IEEE Transactions on Circuit and Systems, the
IEEE Transactions on Technologies, the IEEE Communication Letters,
and the IEEE Electronic Letters. He has undertaken program committee
members for more than 20 international conferences. Recently, he has
led a few Australia Research Council Discovery Projects.

Elisa Bertino is currently a professor in the
Computer Science Department, Purdue Univer-
sity, and serves as research director of
CERIAS and director of the Cyber Center,
Purdue University. Her main research interests
include security, privacy, digital identity man-
agement systems, database systems, distribu-
ted systems, and multimedia systems. She
received the 2002 IEEE Computer Society
Technical Achievement Award for outstanding

contributions to database systems and database security and
advanced data management systems and the 2005 IEEE Computer
Society Tsutomu Kanai Award for pioneering and innovative research
contributions to secure distributed systems. She is a fellow of both the
IEEE and the ACM.

Jaideep Vaidya is an associate professor in
the Management Science and Information
Systems Department, Rutgers University. His
primary research interests include at the inter-
section of privacy, security, data analysis, and
data management. As such, he is very inter-
ested in the field of secure information sharing
and its various applications, as also the
application of secure computation technologies
to business processes such as supply chain

management and optimization. He is also interested in security and
privacy issues raised by data mining, and the use of data mining
techniques to enhance security, such as in role engineering.

Chaoping Xing is a professor at the School of
Physical and Mathematical Science, Nanyang
Technological University, Singapore. He is the
deputy head (research) of the Division of
Mathematical Sciences, Nanyang Technologi-
cal University. His research interests include
algebraic curves over finite fields, application
of algebraic geometry, and number theory to
block coding, quantum coding, space-time
coding, cryptography, quasi-Monte Carlo meth-
ods, and lattice packings.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YI ET AL.: PRIVATE SEARCHING ON STREAMING DATA BASED ON KEYWORD FREQUENCY 167

	Purdue University
	Purdue e-Pubs
	4-2014

	Private Searching on Streaming Data Based on Keyword Frequency
	Elisa Bertino
	Xun Yi
	Jaideep Shrikant Vaidya
	Chaoping Xing

	untitled

