
Privately Computing
a Distributed k-nn Classifier�

Murat Kantarcıoǧlu and Chris Clifton

Purdue University, Department of Computer Sciences
250 N University St

West Lafayette, IN 47907-2066 USA
+1-765-494-6408, Fax: +1-765-494-0739
{kanmurat,clifton}@cs.purdue.edu

Abstract. The ability of databases to organize and share data often
raises privacy concerns. Data warehousing combined with data mining,
bringing data from multiple sources under a single authority, increases
the risk of privacy violations. Privacy preserving data mining provides
a means of addressing this issue, particularly if data mining is done in
a way that doesn’t disclose information beyond the result. This paper
presents a method for privately computing k − nn classification from
distributed sources without revealing any information about the sources
or their data, other than that revealed by the final classification result.

1 Introduction

The growing amount of information stored in different databases has lead to
an increase in privacy concerns. Bringing data from multiple sources under one
roof may improve processing and mining of the data, but it also increases the
potential for misuse. Privacy is important, and concerns over privacy can prevent
even the legitimate use of data. For example, the Data-Mining Moratorium Act
introduced in the U.S. Senate would have forbid any “data-mining program”
within the U.S. Department of Defense. Privacy concerns must be addressed, or
such over-reaction may prevent beneficial uses of data mining.

Consider the case of a physician who wants to learn the most likely diagnosis
for a patient by looking at diagnoses of similar symptoms at other hospitals.
Specifically, the physician wants to use a k-nearest neighbor (k-nn) classifier to
predict the disease of the patient. Revealing the patients particular test results
may not be a threat to privacy (if only the physician knows the identity of the
patient) but privacy of the different hospitals may be at risk. If this procedure is
implemented näıvely, the researcher may learn that two patients with the same
medical test results are diagnosed with different diseases in different hospitals.
This could damage the reputations of the hospitals. The possibility of such in-
cidents may prevent hospitals from participating in such a diagnostic tool. The
� This material is based upon work supported by the National Science Foundation

under Grant No. 0312357.

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 279–290, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

280 Murat Kantarcıoǧlu and Chris Clifton

obvious question is, can this be done without revealing anything other than the
final classification? The answer is yes: This paper presents an efficient method
with provable privacy properties for k-nn classification.

This work assumes data is horizontally partitioned, i.e., each database is able
to construct its own k-nearest neighbors independently. The distributed problems
are determining which of the local results are the closest globally, and finding
the majority class of the global k-nearest neighbors. We assume that attributes
of the instance that needs to be classified are not private (i.e., we do not try to
protect the privacy of the query issuer); we want to protect the privacy of the
data sources. The approach makes use of an untrusted, non-colluding party: a
party that is not allowed to learn anything about any of the data, but is trusted
not to collude with other parties to reveal information about the data.

The basic idea is that each site finds its own k-nearest neighbors, and encrypts
the class with the public key of the site that sent the instance for classification
(querying site). The parties compare their k-nearest neighbors with those of all
other sites – except that the comparison gives each site a random share of the
result, so no party learns the result of the comparison. The results from all sites
are combined, scrambled, and given to the untrusted, non-colluding site. This site
combines the random shares to get a comparison result for each pair, enabling it
to sort and select the global k-nearest neighbors (but without learning the source
or values of the items). The querying site and the untrusted, non-colluding site
then engage in a protocol to find the class value. Each site learns nothing about
other sites (the comparison results appears to be randomly chosen bits.) The
untrusted site sees k ∗ n encrypted results. It is able to totally order the results,
but since it knows nothing about what each means or where it comes from, it
learns nothing. The querying site only sees the final result.

Details of the algorithm are given in Section 3, along with a discussion of
the privacy of the method. Computation and communication costs are given in
Section 4. First, we discuss related work and relevant background.

2 Related Work

Finding the k-nearest neighbors of a multidimensional data point q [1] and build-
ing k-nn classifiers [2] have been well studied, but not in the context of security.

Interest has arisen in privacy-preserving data mining. One approach is to add
“noise” to the data before the data mining process, and use techniques that mit-
igate the impact of the noise on the data mining results. The other approach is
based on protecting the privacy of distributed sources. This was first addressed
for the construction of decision trees. This work closely followed the secure mul-
tiparty computation approach discussed below, achieving “perfect” privacy, i.e.,
nothing is learned that could not be deduced from one’s own data and the result-
ing tree. The key insight was to trade computation and communication cost for
accuracy, improving efficiency over the generic secure multiparty computation
method. Methods have since been developed for association rules, K-means and
EM clustering, and generalized approaches to reducing the number of “on-line”

Privately Computing a Distributed k-nn Classifier 281

parties required for computation. For a survey of this area see [3]. This paper
falls in the latter class: privacy preserving distributed data mining work. The
goal is to provably prevent disclosure of the “training data” as much as possible,
disclosing only what is inherent in the classification result.

To better explain the concept of provable privacy of distributed sources, we
give some background on Secure Multiparty Computation. Yao introduced a
solution with his millionaire’s problem: Two millionaires want to know who is
richer, without disclosing their net worth[4]. Goldreich proved there is a secure
solution for any functionality[5]. The idea is that the function to be computed is
represented as a combinatorial circuit. The idea is based on computing random
shares of each wire in the circuit: the exclusive-or of the shares is the correct
value, but from its own share a party learns nothing. Each party sends a random
bit to the other party for each input, and makes its own share the exclusive-or
(xor) of its input and the random bit. The parties then run a cryptographic
protocol to learn shares of each gate. At the end, the parties combine their
shares to obtain the final result. This protocol has been proven to produce the
desired result, and to do so without disclosing anything except that result.

The cost of circuit evaluation for large inputs has resulted in several algo-
rithms for more efficiently computing specific functionality. We do make use of
circuit evaluation as a subroutine for privately determining if a ≥ b. We also use
the definitions and proof techniques of Secure Multiparty Computation to verify
the privacy and security properties of our algorithm; these will be introduced as
needed. First, we give the details of the algorithm itself.

3 Secure k-nn Classification

We first formally define the problem. Let R be the domain of the attributes and
C be the domain of the class values. Let Di denote the database of instances
at site Si. Let (x, d, k) be the query originated by site O, where x ∈ R is the
instance to be classified, and d : R × R → [0, 1] is a distance function used to
determine which k items are closest to x (e.g., Euclidean distance, although any
metric could be used provided each site can compute d(x, xj) for every xj in its
database.) Given the data instance x, our goal is to find the k nearest neighbors
of x in the union of the databases and return the class of the majority of those
neighbors as the predicted class of x:

Cx = Maj

(∏
c

(
argmink

(xi,ci)∈D1∪D2...∪Dn

(d(xi, x))

))

where
∏

is the projection function and Maj is the majority function.
The security/privacy goal is to find Cx while meeting the following criteria:

– No site except O will be able to predict Cx better than looking at (x, d, k) and
its own database Di (E.g., if Site Si has k points xi such that d(x, xi) = 0,
it is likely that the majority class of the xi will be the result); and

– No site learns anything about the source of xi except its own.

282 Murat Kantarcıoǧlu and Chris Clifton

Fig. 1. Information flow in secure k-nn classification

Theorem 1 shows this by proving what is disclosed. Assuming the number of
sites n and the query (x, d, k) are public, site O learns only the result Cx. The
other sites learn only what they can infer from their own data and the query.

To achieve a secure and efficient solution, we make use of an untrusted, non-
colluding site, an approach first suggested in [6]. Such a site learns nothing in
isolation, however by colluding with other sites it could obtain information that
should not be revealed. Therefore, the only trust placed in the site is that it not
collude with any other sites to violate privacy. Although this seems like a strong
assumption, it often occurs in real life. For example, bidders or sellers on e-bay
assume that e-bay is not colluding with other bidders or sellers against them.
We emphasize that the untrusted site learns nothing except the public values k
and n. A diagram showing the information flow is given in Figure 1.

3.1 The Algorithm

Given the query, each site can find its own closest k items without exchanging
information. These n ∗ k candidate items must contain the k nearest neighbors
of x; what remains is to find the closest k among the candidates and return the
majority class of those k instances to site O. This poses two security challenges:

1. Determining which of the n ∗ k items are the k nearest neighbors without
revealing anything about the items, where they come from, or their distance
to the instance that needs to be classified; and

2. Learning the class value while disclosing it to only the originating site.

At first glance, this appears simple – have each site send their local k-nn
distances and classes to a third party C. C learns the result, but also learns
distances and the sites that contributes to the global k-nn result. A slightly more
sophisticated approach is for C to publish a candidate distance value, and have
local sites return the number of items within that distance, refining the value
until k items are within the distance. Then the class value can be computed.

Privately Computing a Distributed k-nn Classifier 283

This still reveals the sites that contribute to the global result, the distances to
the queried instance, the final classification result to C, and more. To ensure
privacy concerns are met, we provide a solution that (under the non-collusion
assumption) reveals nothing to any site that cannot be inferred by looking at
its own data and the instance, except that O learns the final result.

The use of an untrusted third party, along with public-key encryption, makes
it easy to solve challenge 2. Each site encrypts the class value with the public
key of O before passing it to the non-colluding site C. The data source sites are
then left out of the loop – since they never see the data again, they can learn
nothing after passing their data to C (e.g., they cannot test to see if their own
encrypted values match those selected for the result.) C and O will participate
in a special protocol to reveal only the majority class (explained later.)

Meeting challenge 1 is more difficult. Sending the distance d(xi, x) = di to C,
even with encrypted results, reveals information about the location of the points.
Instead site C is sent an n ∗ k− 1 length vector for each point xi, containing the
results of comparing xi with all other points. This enables C to order the points
and select the k nearest neighbors. Since the existence of a distance metric implies
a total ordering exists, and the number of points is fixed, C learns nothing.

Two problems remain. The first is that we must prevent C from learning
which point comes from which site, or it can learn the source of the k nearest
neighbors (among other things.) This is easily addressed – all points and their
associated comparison vectors are sent to one of the data sites Ss, which com-
bines them and scrambles the order before passing them on to C. Public key
encryption, using C’s public key, prevents Ss from learning anything.

The second issue is more challenging: How do we build the comparison vectors
at site Si without Si learning about values at other sites? If two sites just compare
items, they both learn something about the data at the other site (e.g., if Si’s
items are all closer to x than Sj ’s items, both learn that Sj does not have an
item that contributes to the result.) For this we use the share-splitting idea from
secure multiparty computation. Instead of containing the results of comparing xi

with other items, the vector contains a random share of the comparison result.
E.g., if di for xi is smaller than dj for xj , then the comparison di < dj should
return 0. Either the element of the di vector corresponding to dj and the element
of the dj vector corresponding to di both contain 0, or they both contain 1 –
0 ⊕ 0 = 1 ⊕ 1 = 0. However, knowing only one share tells nothing: a share 0
could mean either 0 ⊕ 0 = 0 or 0 ⊕ 1 = 1. From di’s view, the share has equal
probability of being 0 or 1 (a random choice), so it learns nothing.

To generate random shares of the comparison, we return to secure multiparty
computation. We stop the generic circuit comparison method before combining
shares to learn the final result. In other words, given two integers a and b, secure
comparison of a, b (f : {0, 1}∗ ×{0, 1}∗ �−→ {0, 1}× {0, 1}) is defined as follows:

f(a, b) =
{

(1 ⊕ r, r) if a > b
(0 ⊕ r, r) if a < b

where each site sees only one component of the function output. This states that
if a > b the xor of the shares of the participating sites will be 1, otherwise the xor

284 Murat Kantarcıoǧlu and Chris Clifton

of the shares will be 0. Using this function, each site can compare its elements
with all other elements and learn nothing about the result of the comparisons.

Two additional details. First, the identifiers used to track the dj in the com-
parison share vector for di must not disclose anything. One option would be for
the combining site Ss to assign identifiers, but this would require independent
encryption of the single bits of the comparison shares, and single bit encryption
is problematic. Instead, each site generates pseudo-random unique identifiers site
C cannot distinguish from random. One simple and secure way to handle this
problem is using a pseudo-random permutation function. With a fixed key, DES
is assumed to be such a function. The sites agree on a key K, and each site Si

generates k identifiers by evaluating EK(ik), EK(ik + 1), . . . , EK(ik + k − 1).
Since encryption is assumed to be secure and a permutation, each site will get
non-intersecting identifiers that appear random to any (polynomial time) adver-
sary not knowing K (in particular, C). The identifiers are also used to determine
which of a comparison pair will be the left-hand side in a comparison: The item
with the smaller identifier corresponds to x in the comparison function f(x, y).

The second detail is equality. Identifying that two items are at equal distances
reveals information. We must disambiguate consistently, without giving even a
probabilistic estimate on the likelihood of equality. The solution is to add extra
low-order bits to each distance, based on a unique mapping from the identifier
that appears random to C - the same trick used to generate identifiers. The
distance used for comparison is actually d||Eu(ik + j), where the encryption
function E is as above, but with a different key. This ensures that distances are
unique, guaranteeing a total ordering of equal distances.

Protocol 1 gives the algorithm details. Note that at the end of the k-nearest
neighbor selection phase, C has the class of the k-nearest neighbors encrypted
with Eo. Assuming the usage of Blum-Goldwasser encryption, each class value
classi will have ciphertext of the form (ŕ, classi ⊕ r), where O has enough in-
formation to determine r given ŕ, enabling decryption to get classi. Instead of
sending these values to O, C will xor each of these values with a random value
ri. C then sends (ŕ, classi ⊕ r ⊕ ri) to O. O decrypts to get class′i = classi ⊕ ri,
indistinguishable (to O) from a random value. O and C now use the generic
secure circuit evaluation approach to evaluate the majority function:

Maj(class′1 ⊕ r1, . . . , class′k ⊕ rk).

This is a simple circuit with size complexity dependent on k and number of
distinct classes. The cost is dominated by the k-nearest neighbor selection phase.

To clarify, we give an example for k = 1 and n = 3.

Example 1. Given (x, d, 1), each site finds its 1-nearest neighbor. Assume that
site S1 has (d(x, x1),

∏
c(x1, c1) = (0.1, c1), site S2 has (x2, c2) at distance 0.2,

and site S3 has (x3, c3) at 0.15. After generating random identifiers, S1 has
(3, 0.1, c1), S2 has (1, 0.2, c2), and S3 has (2, 0.15, c3). (For simplicity we omit
the low-order bit disambiguation.) In generating the comparison vector for c1

and c2, S1 notes that c1.id = 3 > 1, so it has the right argument of f(a, b) and
generates a random bit (say 0) as its share of the output. Since 0.2 ≥ 0.1, S2

Privately Computing a Distributed k-nn Classifier 285

Protocol 1 Privacy-preserving k-nn classification algorithm
Require: n sites Si, 1 ≤ i ≤ n, each with a database Di; permuting site Ss (where

s may be in 1, . . . , n); and untrusted non-colluding site C (distinct from Si or Ss).
Query (x, d, k) generated by originating site O. Public encryption keys Ec for site C
and Eo for site O, key generation function EK and Eu known only to the Si.
for all sites Si, in parallel do

{Build vector of random key, distance, and result for local closest k}
Select k items (d(xi, x),

∏
ci

(xi, ci)) with smallest d(xi, x) from Di into Ni

Ri = ∅
for j = 0..k − 1 {Compute identifiers and “extended” local distances} do

Ri = Ri ∪ {(EK(ik + j), Ni[j].d||Eu(ik + j), Eo(Ni[j].result))} {|| is string
concatenation}

end for
ERi = ∅
for each (id, d, Eo(c)) ∈ Ri {Comparison phase} do

v = ∅
for each site h = i . . . n {If i = h, just generate values locally.} do

for j = 0 . . . k − 1 do
if id < Rh[j].id then

v = v ∪ {(Rh[j].id, Si’s share of f(d, Rh[j].d)}
vhj = vhj ∪ {(id, Sj ’s share of f(d, Rh[j].d)}

else if id > Rh[j].id then
v = v ∪ {(Rh[j].id, Si’s share of f(Rh[j].d, d)}
vhj = vhj ∪ {(id, Sj ’s share of f(Rh[j].d, d)}

end if
end for

end for
ERi = ERi ∪ (id, Ec(v), Eo(c))

end for
send ERi to Ss

end for
{At site Ss: Permutation phase}
set ER = ∪n

i=1(ERi)
permute ER and send it to C
{At site C: k nearest neighbor selection phase}
Decrypt the encrypted shares of the comparison results
Use the pairwise comparisons to find the global k nearest neighbors
Let R be the set of encrypted class values(Eo(c)) of the global k nearest neighbor
for all R.Eo(ci) {encrypted as (ŕ, ci ⊕ r)} do

NR[i] = R.Eo(ci) ⊕ random ri

end for
Site C sends NR to O
{At site O:}
for all NR[i] {= (ŕ, ci ⊕ r ⊕ ri)} do

Find r using ŕ and the private key
NRd[i] = ci ⊕ r ⊕ ri ⊕ r

end for
Find Maj from the random shares of C and NRd using secure circuit evaluation.

286 Murat Kantarcıoǧlu and Chris Clifton

learns that its share should be 1 ⊕ 0 = 1. (Neither S2 or S1 learns the other’s
share, or the comparison result.) Secure comparisons with the other sites are
performed, giving each site tuples containing its share of the comparison with
all other items. These are encrypted with C’s public key to give:

S1 : (3, Ec((1, 1), (2, 0)), Eo(c1))
S2 : (1, Ec((2, 1), (3, 0)), Eo(c2))
S3 : (2, Ec((1, 1), (3, 1)), Eo(c3))

The above are sent to S3, which permutes the set, strips source information, and
sends it to C. Site C decrypts the comparison share vectors to get:

(2, ((1, 1), (3, 1)), Eo(c3))
(3, ((1, 1), (2, 0)), Eo(c1))
(1, ((2, 1), (3, 0)), Eo(c2))

C now compares the items to find the nearest neighbor. As an example, to
compare items 2 and 3, we take the pair (3, 1) from the first (2) row and the pair
(2, 0) from the second (3) row. Combining the share portions of these pairs gives
1 ⊕ 0 = 1, so d(x, x2) ≥ d(x, x3). Likewise, comparing 1 and 3 gives 0 ⊕ 1 = 1,
so d(x, x1) ≥ d(x, x3). Therefore, x1 is closest to x. C sends Eo(c1) to O, which
decrypts to get c1, the correct result. (With k > 1, C and O would engage in a
protocol to determine which ci was in the majority, and send Eo(ci) to O.)

3.2 Security of the Protocol

We now prove that Protocol 1 is secure. We assume that sites O and C are not
among the Si. We have discussed the need for C being a separate site. O cannot
be a data source, as it would be able to recognize its own Eo(x) among the
results, thus knowing if it was the source of some of the k nearest neighbors.

To define security we use definitions from the Secure Multiparty Computation
community, specifically security in the semi-honest model. Loosely speaking, a
semi-honest party follows the rules of the protocol, but is free to try to learn
additional information from what it sees during the execution of the protocol.

The formal definition is given in [7]. Basically, it states that the view of
each party during the execution of the protocol can be effectively simulated
knowing only the input and the output of that party. Extending this definition
to multiple parties is straightforward. The key idea is that of simulation: If we
can simulate what is seen during execution of the protocol knowing only our
own input and our portion of the final output, then we haven’t learned anything
from the information exchanged in a real execution of the protocol. Under certain
assumptions, we can extend our protocols to malicious parties (those that need
not follow the protocol). Due to space limitations we omit the discussion here.

We need one additional tool to prove the security of the protocol. The en-
crypted items seen by Ss and C during execution of the protocol may disclose
some information. The problem is that two items corresponding to the same

Privately Computing a Distributed k-nn Classifier 287

plaintext map to the same ciphertext. If multiple items are of the same class (as
would be expected in k-nn classification), the permuting site Ss would learn the
class entropy in the k-nn of each site as well as the number of identical results
between sites. The comparison site C would learn this for the data as a whole.
Neither learns the result, but something of the distribution is revealed.

Fortunately, the cryptography community has a solution: probabilistic public-
key encryption. The idea is that the same plaintext may map to different cipher-
texts, but these will all map back to the same plaintext when decrypted. Using
probabilistic public-key encryption for Eo allows us to show Protocol 1 is secure.
(Deterministic public-key encryption is acceptable for Ec, as the set of nk − 1
identifiers in the set v are different for every item, so no two plaintexts are the
same.) The Blum-Goldwasser probabilistic encryption scheme[8], with a cipher
text of the form (ŕ, M ⊕ r) for message M , is one example. In this, given ŕ and
the private key, it is possible to compute r to recover the original message.

Theorem 1. Protocol 1 privately computes the k-nn classification in the semi-
honest model where there is no collusion; only site O learns the result.

Proof. To show that Protocol 1 is secure under the semi-honest model, we
must demonstrate that what each site sees during the execution of the proto-
col can be simulated in polynomial time using only its own input and output.
Specifically, the output of the simulation and the view seen during the execution
must be computationally indistinguishable. We also use the general composition
theorem for semi-honest computation: if g securely reduces to f and there is a
way to compute f securely, then there is a way to compute g securely. In our
context, f is the secure comparison of distances, and g is Protocol 1. We show
that our protocol uses comparison in a way that reveals nothing.

We first define the simulator for the view of site Si. Before the compari-
son phase, Si can compute its view from its own input. The comparison phase
involves communication, so simulation is more difficult. If we look at a single
comparison, Si sees several things. First, it sees the identifier Rh[j].id. Since Si

knows EK , h, and j; the simulator can generate the exact identifier, so the sim-
ulator view is identical to the actual view. It also sees a share of the comparison
result. If i = h, Si generates the values locally, and the simulator does the same.
If not local, there are two possibilities. If id > Rh[j].id, it holds the second ar-
gument, and generates a random bit as its share of the comparison result. The
simulator does the same. Otherwise, the secure comparison will generate Si’s
share of the comparison. Assume d < Rh[j].d: Si’s share is 0⊕ r, where r is Sh’s
randomly chosen share. Assuming Sh is equally likely to generate a 1 or 0, the
probability that Si’s share is 1 is 0.5. This is independent of the input – thus, a
simulator that generates a random bit has the same likelihood of generating a 1
as Si’s view in the real protocol. The composition theorem (and prior work on
secure comparison) shows the algorithm so far is privacy preserving.

We can extend this argument to the entire set of comparisons seen by Si

during execution of the protocol. The probability that the simulator will output
a particular binary string x for a given sequence of comparisons is 1

2nk−1 . Since

288 Murat Kantarcıoǧlu and Chris Clifton

actual shares of the comparison result are chosen randomly from a uniform
distribution, the same probability holds for seeing x during actual execution:

Pr
[
V IEW

vj

Si
= x

]
=

1
2nk−1

= Pr [Simulatori = x]

Therefore, the distribution of the simulator and the view is the same for the
entire result vectors. Everything else is simulated exactly, so the views are com-
putationally indistinguishable. Nothing is learned during the comparison phase.

The sites Si now encrypt the result vectors; again the simulator mimics the
actual protocol. Since the sources were indistinguishable, the results are as well.

The next step is to show that Ss learns nothing from receiving ERi. Site
Ss can generate the identifiers ERi[j].id it will receive, as in simulating the
comparison phase. By the security definitions of encryption, the Ec(v) must be
computationally indistinguishable from randomly generated strings of the same
length as the encrypted values, provided no two v are equal (which they can-
not be, as discussed above.) Likewise, the definition of probabilistic encryption
ensures that the Eo(x) are computationally indistinguishable from randomly
generated strings of the same length. Since Ec and Eo are public, Ss knows the
length of the generated strings. The simulator chooses a random string from the
domain of Ec and Eo; the result is computationally indistinguishable from the
view seen during execution of the protocol. (If Ss is one of the Si, the simula-
tor must reuse the ERs generated during the comparison simulation instead of
generating a new one.)

C receives n ∗ k tuples consisting of an identifier, an encrypted comparison
set v, and encrypted class value Eo(c). Since the identifiers are created with an
encryption key unknown to C, the values are computationally indistinguishable
from random values. The simulator for C randomly selects k ∗n identifiers from
a uniform distribution on the domain of ERi. The outcomes Eo(c) are simulated
the same as by Ss above. The hardest part to simulate is the comparison set.
Since the comparison produces a total ordering, C cannot simply generate ran-
dom comparison results. Instead, the simulator for C picks an identifier i1 to be
the closest, and generates a comparison set consisting of all the other identifiers
and randomly chosen bits corresponding to the result shares. It then inserts into
the comparison set for each other identifier ik the tuple consisting of i1 and the
appropriate bit so that the comparison of i1 with ik will show i1 as closest to q.
For example, if i1 ≥ ik, then f(ik, i1) should be 1. If the bit for i1’s share is chosen
to be 0, the tuple (i1, 1) is placed in ik’s comparison set. By the same argument
used in the comparison phase, this simulator generates comparison values that
are computationally indistinguishable from the view seen by C. Since the actual
identifiers are computationally indistinguishable, and the value of the compari-
son is independent of the identifier value, the order of identifiers generated by C
is computationally indistinguishable from the order in the real execution. The
simulator encrypts these sets with Ec to simulate the data received.

In the final stage, O sees the NR[i]. The simulator for O starts with NRd[i] =
ci ⊕ ri. The one-time pad ri (unknown to O) ensures NRd can be simulated by

Privately Computing a Distributed k-nn Classifier 289

random strings of the length of NRd[i]. Xor-ing the NRd[i] with r simulates
NRd. The final step reveals Eo(c) to O, where c is the majority class. Since O
knows the result c, the simulator generates Eo(c) directly. Applying the com-
position theorem shows that the combination of the above simulation with the
secure circuit evaluation is secure.

We have shown that there is a simulator for each site whose output is com-
putationally indistinguishable from the view seen by that site during execution
of the protocol. Therefore, the protocol is secure in the semi-honest model.

The algorithm actually protects privacy in the presence of malicious parties,
providing O and C do not collude. The proof is omitted due to space restrictions.

4 Communication and Computation Cost Analysis

Privacy is not free. Assume m is the size required to represent the distance, and
q bits are required to represent the result. A simple insecure distributed k-nn
protocol would have the Si send their k nearest neighbor distances/results to O,
for O(nk(m+q)) bit communication cost. The computation by O could easily be
done in O(nk log(k)) comparisons. (One pass through the data, inserting each
item into the appropriate place in the running list of the k nearest neighbors.)
Although we do not claim this is optimal, it makes an interesting reference point.

In Protocol 1, each site performs k2 comparisons with every other site. There

are
(

n
2

)
site combinations, giving O(n2k2) comparisons. An m bit secure com-

parison has communication cost O(mt), where t is based on the key size used
for encryption. Thus, the total communication cost of the comparison phase of
Protocol 1 is O(n2k2mt) bits. Assuming Blum-Goldwasser encryption, each site
then sends O(nk+ t) bits of encrypted comparison shares for each item, plus the
O(q + t) result, to Ss and on to C. This gives O(n2k2 +nkq +nkt) bits. C sends
O(k(q + t)) bits of encrypted result to O. The dominating factor is the secure
comparisons, O(n2k2mt).

The computation cost is dominated by encryption, both direct and in the
oblivious transfers (the dominating cost for secure circuit evaluation). There are
O(nk) encryptions of the query results, each of size q, and O(nk) encryptions of
comparison sets of size O(nk). The dominating factor is again the O(n2k2) secure
comparisons. Each requires O(m) 1 out of 2 oblivious transfers. An oblivious
transfer requires a constant number of encryptions, giving O(n2k2m) encryptions
as the dominating computation cost. Assuming RSA public-key encryption for
the oblivious transfer, the bitwise computation cost is O(n2k2mt3).

The parallelism inherent in a distributed system has a strong impact on the
execution time. Since the secure comparisons may proceed in parallel, the time
complexity O(nk2mt3). Batching the comparisons between each pair of sites
allows all comparisons to be done in a constant number of rounds. Thus, the
dominating time factor would appear to be decryption of the nk comparison
sets, each of size O(nk). Note that m must be greater than log(nk) to ensure
no equality in distances, so unless n is large relative to the other values the

290 Murat Kantarcıoǧlu and Chris Clifton

comparisons are still likely to dominate. Once decrypted, efficient indexing of
the comparison vectors allows the same O(nk log(k)) cost to determine the k
nearest neighbor as in the simple insecure protocol described above.

A more interesting comparison is with a fully secure k-nn algorithm based
directly on secure circuit evaluation. For n parties and a circuit of size C, the
generic method requires O(n2C) 1 out of 2 oblivious transfers: a communication
complexity O(n2Ct). To compare with the generic method, we need a lower
bound on the size of a circuit for k-nn classification on nk (m + q)-bit inputs.
An obvious lower bound is Ω(nk(m + q)): the circuit must (at least) be able to
process all data. This gives a bit complexity of O(n2nk(m + q)t). Our method
clearly wins if n > k and is asymptotically superior for fixed k; for n ≤ k the
question rests on the complexity of an optimal circuit for k-nn classification.

5 Conclusions

We have presented a provably secure algorithm for computing k-nn classification
from distributed sources. The method we have presented is not cheap – O(n2k2)
where n is the number of sites – but when the alternative is not performing the
task at all due to privacy concerns, this cost is probably acceptable. This leads
us to ask about lower bounds: can we prove that privacy is not free. Privacy ad-
vocates often view privacy versus obtaining knowledge from data as an either/or
situation. Demonstrating that knowledge can be obtained while maintaining pri-
vacy, and quantifying the associated costs, enables more reasoned debate.

References

1. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. In Vijayaraman, T.M., Buchmann,
A.P., Mohan, C., Sarda, N.L., eds.: Proceedings of 22th International Conference
on Very Large Data Bases, Mumbai (Bombay), India, VLDB, Morgan Kaufmann
(1996) 215–226

2. Fukunaga, K.: Introduction to statistical pattern recognition (2nd ed.). Academic
Press Professional, Inc. (1990)

3. : Special section on privacy and security. SIGKDD Explorations 4 (2003) i–48
4. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE

Symposium on Foundations of Computer Science, IEEE (1986) 162–167
5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-

pleteness theorem for protocols with honest majority. In: 19th ACM Symposium
on the Theory of Computing. (1987) 218–229

6. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th
ACM Symposium on the Theory of Computing (STOC). (1994) 554–563

7. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptog-
raphy. Volume 2. Cambridge University Press (2004)

8. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption that hides
all partial information. In Blakely, R., ed.: Advances in Cryptology – Crypto 84
Proceedings, Springer-Verlag (1984)

	1 Introduction
	2 Related Work
	3 Secure k-nn Classification
	3.1 The Algorithm
	3.2 Security of the Protocol

	4 Communication and Computation Cost Analysis
	5 Conclusions
	References

