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Abstract
Early implementations of software transactional memory (STM) assumed that sharable data would

be accessed only within transactions. Memory may appear inconsistent in programs that violate this
assumption, even when program logic would seem to make extra-transactional accesses safe. Designing
STM systems that avoid such inconsistency has been dubbed the privatization problem.

We argue that privatization comprises a pair of symmetric subproblems: private operations may fail
to see updates made by transactions that have committed but not yet completed; conversely, transactions
that are doomed but have not yet aborted may see updates made by private code, causing them to per-
form erroneous, externally visible operations. We explain how these problems arise in different styles of
STM, present strategies to address them, and discuss their implementation tradeoffs. We also propose a
taxonomy of contracts between the system and the user, analogous to programmer-centric memory con-
sistency models, which allow us to classify programs based on their privatization requirements. Finally,
we present empirical comparisons of several privatization strategies. Our results suggest that the best
strategy may depend on application characteristics.
Keywords: Transactional Memory, Privatization, RSTM, Obstruction Freedom

1 Introduction

Transactions, borrowed from the database world, have become a popular abstraction for parallel program-
ming. Transactional memory (TM) allows the programmer to encapsulate arbitrary memory operations into
a transaction, which is then guaranteed to be atomic (all of its effects appear or none of them do), isolated
(no intermediate state is ever externally visible, thereby ensuring serializability), and and consistent (any
transaction that preserves program invariants when run sequentially also does so when run in parallel).

Discussions of hardware (HTM) and software (STM) TM implementations have led to subdivision of
the isolation property [4, 16]: Strong isolation (aka strong atomicity) guarantees that transactions appear to
be isolated from non-transactional operations, in addition to other transactions. Weak isolation (aka weak
atomicity) only guarantees isolation from other transactions; non-transactional operations may observe or
affect intermediate states of a transaction.

In either case, an intuitive operational semantics of memory transactions is single lock atomicity [16]: “a
program executes as if all transactions were protected by a single, program-wide mutual exclusion lock”. As
per mutual exclusion lock semantics, simultaneous access to the same data by transactional and nontransac-
tional code results in a data race. Strong isolation, by definition, eliminates this race. Under weak isolation,
however, programmers and (often) TM implementors must take additional steps to guarantee correctness.

∗This work was supported in part by NSF grants CNS-0411127 and CNS-0615139, equipment support from Sun Microsystems
Laboratories, and financial support from Intel and Microsoft.
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1 initialize_list(L)
2 T1: T2:
3 begin transaction begin transaction
4 node = L->head i_node = locate(L,i)
5 L->head = null if (i_node != null)
6 end transaction i_node->data =
7 // L is privatized process(i_node)
8 process(node) end transaction

Figure 1: A privatization example.

Privatization The obvious way to cope with weak isolation is to ensure that no object is accessed by
transactional and nontransactional code at the same time. That is, program logic must partition objects, at
each point in time, into those that are shared, with access mediated by transactions, and those that are private
to some thread.1 The privatization problem arises when objects move from one category to the other: the
TM system must avoid violations of atomicity, isolation, or consistency during the transition.

In perhaps the simplest case, objects may be “privatized” via whole-program consensus: e.g., between
these two barriers, data in row i of matrix M is accessed only by thread i. More commonly, and more
problematically from the point of view of implementation, a privatizing transaction may modify shared
state in such a way that (once the transaction commits) no future successful transaction will access a certain
set of objects. In Figure 1, for example, thread T1 truncates list L at line 5, thereby privatizing its contents.
Thereafter T1 should be able to process the entire list without using transactions (as in line 8). If T1’s
transaction serializes before T2, T2’s condition on line 5 should fail.

Privatization is semantically straightforward under the single lock atomicity model. However, in this
paper we shall see that conventional STM implementations are incapable of guaranteeing correct program
behavior in the presence of privatization. Before we discuss this issue in more detail, it is important to
understand the two motivations for privatization: performance and escape from the semantic limitations of
transactions.

Performance Software transactions are often slower than non-transactional code, usually significantly
so [5,10,15,20,23]. Moreover comprehensive hardware TM appears unlikely to be commercially ubiquitous
anytime soon [5]. Privatization therefore presents a compelling opportunity to improve STM performance
by temporarily exempting objects from the overhead of transactional access. Many STM researchers now
envision a programming idiom in which code privatizes a set of objects, processes them nontransactionally,
and then “publicizes” them again.2

Semantic Limitations STM systems are typically optimistic: they achieve concurrency by pursuing trans-
actions in parallel and then aborting and rolling back in the event of conflict. Such systems are fundamentally
incapable of handling operations that cannot safely be rolled back—interactive I/O is the canonical example.
An obvious approach is to acquire a true global lock in any transaction that must perform an irreversible op-
eration, but this has obvious consequences for scalability. Privatization enables an alternative strategy: code
can splice out the objects that determine the behavior of the irreversible operation, perform that operation in
a conservative fashion, and subsequently return the objects to the transactional world.

1A private object may be shared by more than one thread if access is mediated by some other form of synchronization (e.g.
locks). Such an object is still private from the TM system’s point of view. For simplicity of discussion, we consider only thread-
private data in the remainder of this paper.

2This idiom is not trivial, of course—the privatize-process-publicize cycle is not atomic—but it appears to be reasonable for
many applications.
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Figure 2: DSTM Metadata. Data Objects are reached through two levels of indirection. The value of Status
determines whether old or new version is current.

In this paper, we discuss the privatization problem for optimistic STMs using variants of the Rochester
Software Transactional Memory (RSTM) system as running examples. We identify two challenges to correct
privatization: (1) private code must see all updates made to privatized objects by previously-committed
transactions, and (2) actions in private code must not cause doomed but not-yet-aborted transactions to
perform erroneous, externally visible operations.

We consider cloning, undo-logs, and redo-logs as alternative means of buffering speculative writes. We
also consider both blocking and nonblocking implementations, and both visible and invisible readers (i.e.,
implementations in which reader transactions do or do not modify metadata to make their existence visible
to writers). For each of these we consider several different approaches to privatization, leading in turn to a
natural tradeoff between programming complexity and implementation efficiency. We suggest a taxonomy
of contracts between the system and the user, analogous to programmer-centric memory consistency mod-
els [2], which allow us to classify programs based on their privatization requirements. Our study indicates
that the best performing strategy depends on application characteristics.

In Section 2 we provide background on STM implementations in general, and on RSTM in particular.
In Section 3 we consider manifestations of the privatization problem. Our strategies to ensure correctness
appear in Section 4, followed by our taxonomy in Section 5. Section 6 discusses measured overheads.
Conclusions and future directions appear in Section 7.

2 Background

In this section we briefly categorize several existing STM systems and discuss a naive approach to nontrans-
actional access. In Section 3 we will show that a naive approach is incorrect.

2.1 Transactional Metadata

In general, software TM algorithms work by associating metadata with every shared variable. This per-
variable metadata may be embedded within the shared variable itself (in the case of object-oriented systems)
or computed based on the address of the variable. In Figures 2–4 we depict the metadata of three STMs:
DSTM [11], RSTM [18], and RSTM::RedoLock [25], which is similar to TL2 [6] and uses the RSTM
API. These systems also require a small amount of per-transaction metadata (a Transaction Descriptor) to
represent whether a transaction is logically committed, logically aborted, or still in progress.

Speculative Stores When a transaction writes to shared data, the stores must be performed in a manner
that can be undone in the event that the transaction eventually aborts. There are three techniques for making
writes speculative:
Cloning: In DSTM and RSTM, on first write the entire object is cloned, and all speculative writes are made
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Figure 3: RSTM Metadata. Data Objects are most often reached through one level of indirection, with old
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Figure 4: RSTM::RedoLock Metadata. There is no indirection header; instead speculative writes are copied
back to the master copy on commit. TL2-PO uses similar metadata, replacing per-object version numbers
with a globally consistent version timestamp.

to the clone. On commit, the clone becomes the master version of the object; it is discarded on abort.
Redo Logs: TL2 and (optionally) RSTM::RedoLock use redo logs. Writes are recorded in a private buffer.
On commit, the corresponding locations are locked and the buffered writes are re-issued. On abort, the
buffer is discarded.
Undo Logs: McRT [1, 20], Bartok [10], LibLTX [7] and (optionally) RSTM::RedoLock use undo logs.
Writes are made in-place, and old values are logged in a buffer that is applied on abort.

2.2 The Abstract STM Algorithm

The TM algorithm is essentially independent of its metadata and speculative store mechanism: A transaction
traverses memory, logging the locations it reads and speculatively storing modifications. At some point, each
to-be-written location is acquired, an action which writes the name of the writing transaction in the object’s
metadata. At the end of the transaction, if all locations previously read and written have not changed,
the transaction changes its state to committed with an atomic instruction. The transaction then performs
whatever metadata cleanup is required (such as cleaning pointers in RSTM or applying a redo log in TL2).
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2.3 Conflict Detection and Validation

When two transactions attempt to access the same location L, at least one transaction wishes to write L,
and the system cannot guarantee that the reading transaction will commit first, then at least one of the
transactions must abort. In the systems we consider, aborts manifest themselves in two ways:
Contention Management: When a transaction T attempts to access a location L for the first time, it may
detect that another active transaction A has acquired L. In this case, T may use a contention manager [22]
to decide whether to explicitly abort A (by setting A’s status to Aborted), to self-abort, or to wait, in the
hope that A will commit soon. Similarly, if T intends to write to L but the metadata lists an active reader, T
must call contention management.
Validation: When a transaction R reads L, if it does not mark itself as a reader of L, then it assumes
responsibility for ensuring that L is not acquired before R commits. Should this check fail, R must abort.
The process of checking that all read locations do not change is termed incremental validation. Absent a
heuristic [24] or global timestamp [6], the total cost to validate the entire read set each time a new location
is encountered is O(n2) for n objects.

Note that when a transaction is explicitly aborted following contention management, it may continue
to execute for a brief period until it checks its state and notices the abort. Similarly, a transaction that
fails validation may have been in a “doomed” state for some period since its last successful validation. For
example, if transaction R starts reading object O, and then transaction W acquires O, makes changes, and
commits, then until R validates it is running in a doomed state. Indirection-based systems avoid errors by
ensuring that R only observes committed, immutable objects during execution, thereby preventing R from
reading part of O and part of the clone of O made by W . Indirection-free systems can ensure correctness
by performing postvalidation: on every read of a transactional object, the runtime verifies that the object is
consistent with past reads before returning a value to user code.

2.4 A Single-Threaded Approach to Privatization

If only one thread is active, then private access to transactional data is, in many systems, a simple operation
that depends only on the metadata layout. In indirection-free systems, locations can be accessed nontrans-
actionally without overhead. In RSTM, private accesses to sharable data require an indirection, but are
otherwise unencumbered. In DSTM, the overhead is higher: two indirections are required, plus an interven-
ing check of the status of the last acquiring transaction. (This overhead can be reduced, as in ASTM [17], by
simplifying the metadata on the first private or read-only reference.) We now turn our focus to privatization
in the face of concurrency, demonstrating how accesses that are safe in the single-threaded case can fail, and
then presenting thread-safe alternatives.

3 The Privatization Problem

In this section, we present examples that demonstrate erroneous externally visible effects from naive, single-
thread style access to privatized data.

3.1 Transactions Cause Incorrect Private Operation

Figure 5 depicts a simple transaction that privatizes a list suffix and prints that suffix. Using incremental
validation, a thread executing this code will validate its read set any time an object is read or written for
the first time within a transaction, and again at the end of the transaction. Thus line 2 will cause two
read-induced validations, line 4 will cause one read-induced validation, line 6 will cause a write-induced
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function excise_and_print(int v)
1 begin transaction
2 prev = list_head; curr = prev->next
3 while curr->val != v
4 prev = curr; curr = curr->next
5 if curr == NULL goto 7
6 prev->next = NULL
7 end transaction
8 while curr != NULL
9 print curr->val
10 curr = curr->next

Figure 5: Pseudocode to privatize the list suffix starting from element v and then print the suffix.

validation, and line 7 will cause a final validation. In systems that use in-place update, postvalidation is
required whenever a field is read transactionally (lines 2, 3, and 4).

Now consider a program with two threads: thread T1 calls excise and print(5) and thread T2 calls
excise and print(7). The list is initialized to {1 . . . 10}. If T1 executes before T2, the correct output is
T1 : {5, 6, 7, 8, 9, 10}, T2 : {}. If T2 executes first, the correct output is T1 : {5, 6}, T2 : {7, 8, 9, 10}. We
now demonstrate that a race within the TM runtime will cause incorrect output, regardless of whether the
TM uses indirection, redo logs, or undo logs.

Redo Log: T1 Does Not Observe Committed Out-Of-Place Writes In systems that employ redo logs,
there is a delay between when a successful transaction commits and when that transaction’s modifications
become visible to other threads. Let us consider the situation in which T2 executes first and commits. Within
the end transaction code (line 7), T2 must redo all transactional writes after logically committing. Let us
suppose that T2 is delayed in this task, and thus the write from line 6 (setting node 6’s next pointer to NULL)
is delayed. If T1 executes at this point, it will not read node 7 transactionally, and when it reaches line 10
with curr == node 6 the loop will not terminate. In this case the incorrect output T1 : {5, 6, 7, 8, 9, 10}
T2 : {7, 8, 9, 10} will be observed.

Undo Log: T1 Observes Aborted In-Place Writes Conversely, in systems that employ undo logs there
exists a delay between when a failed transaction aborts and when its speculative writes are rolled back.
Let us consider the same situation as above, but when T2 reaches line 7, it delays before its pre-commit
validation. Since T2 made changes in-place, on line 6 node 6’s next pointer was set to NULL. If T1
executes to completion at this point, then when it reaches line 7, its commit will logically force T2 to abort
and retry. When T2 does so, it will conclude that 7 is not in the list and will complete without generating
output. However, if T1 completes the function before T2 rolls back its state, the final output T1 : {5, 6}
T2 : {} will be incorrectly generated.

Indirection: T1 Reads Logically Unreachable Clone As discussed in Section 2.4, a correct single-thread
approach to privatization in indirection-based systems is to assume that the last transaction committed, and
use the corresponding object (for RSTM, the object reached with one indirection). This choice leaves T1
vulnerable to the exact same error as undo log-based STM implementations. When T1 reaches line 10 with
curr = node 5, it will choose the wrong version of node 6: rather than use the old, immutable version, T1
will read the private copy of node 6 that is under active modification by T2. On the next iteration, T1 will
conclude that there is no node 7, and will stop, generating the incorrect output T1 : {5, 6} T2 : {}.
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function init()
1 D->binary_data = get_data()
2 C->is_private = false
3 C->next = D
4 A->next = C

function privatize() // T1
5 begin transaction
6 B = A->next
7 A->next = NULL
8 end transaction
9 B->is_private = true
10 modify(B->next->binary_data)

function custom_transaction // T2
11 begin transaction
12 z = A
13 y = z->next
14 x = y->next
15 complex_operation(y, x)
16 end transaction

function complex_operation(y, x)
...

98 if (y->is_private)
99 print(x->binary_data)

...

Figure 6: Pseudocode for concurrent transactional and nontransactional accesses with a potentially unsafe
function call.

3.2 Private Operations Cause Incorrect Transactional Actions

We now turn our attention to private actions that cause transactions to perform erroneous operations that
are externally visible. We assume that private actions do not acquire the locations that they access privately
(to do so would require a heavyweight atomic read-modify-write on every location, as well as bookkeeping
to release all privately acquired objects should subsequent de-privatization be required). This characteristic
permits “doomed” transactions (transactions that are destined to fail but that have not yet detected that they
cannot succeed) to read privatized data.

Consider the code in Figure 6. The init function is called to initialize a three-element list. Then thread
T1 executes privatize() while thread T2 executes custom transaction(). Transactional reads of new locations
cause incremental validation on lines 6, 12, 13, and 14. Lines 7, 8, and 16 also trigger incremental validation
(due to a write to new location or end of transaction). TMs that do not use indirection will postvalidate the
reads on lines 6, 13, 14, 98, and 99.

Indirection: T2 Reads Private Write Suppose that T2 executes custom transaction() and calls complex
operation() (code that is sometimes called from outside transactions as well). T2 completes line 97 and then

7



is delayed. At this time, T1 begins privatize() and executes through line 10 before T2 resumes. Since
indirection-based TMs assume that readable objects are immutable, T2 does not perform postvalidation on
y, and since y has already been accessed, T2 does not validate its read set. Consequently, T2 does not detect
that A has changed, and that it is doomed. In its doomed state, T2 reads y->is private and sees the write
made by T1 on line 9. T2 continues to line 99 and incorrectly prints x->binary data. Clearly it is incorrect
for T2 to perform this write. Furthermore, it is possible that T1 is in the process of modifying the data T2
is printing, so that the printed data does not correspond to any correct state for object B.

No Indirection: Post-validation Does Not Detect Invalid Read Since custom transaction does not write
to shared memory, we consider systems based on either undo log and redo log. These systems follow the
same protocol for incremental validation as indirection-based systems, and thus it is sufficient to show that
postvalidation does not prevent these systems from also executing line 99. Recall that neither private actions
nor transactional reads modify metadata. Since T1 only reads B within a transaction, and only accesses C
outside of a transaction, T1 has no cause to modify the metadata of B or C, and thus postvalidation of y and
x on lines 98 and 99 will not detect that the objects have been changed. Consequently, postvalidation will
not prevent the transaction from executing line 99.

3.3 Incomplete Solutions

We briefly consider techniques that can resolve some, though not all, dimensions of the privatization prob-
lem.

Visible Readers The problem of private operations causing incorrect transactional actions can be avoided
in a TM that implements visible reads with post-validation. In such a system, transactions write themselves
as readers of every object accessed transactionally, and writers of an object must explicitly abort all readers
before acquiring an object. Since an object cannot change without its readers being explicitly aborted,
postvalidation does not check that the object version is consistent, but instead simply tests that the reading
transaction remains active. In our example, when T1 commits (line 8), it is certain that T2’s state is aborted,
and that on T2’s next read of a shared word, T2 will detect that it has aborted and will cease operation.

Indirection Another partial solution is for indirection-based systems to require that on the first nontrans-
actional access of an object, the thread does a full inspection of object metadata. This avoids the problem
of private operations reading logically unreachable clones, though it does nothing to avoid the problem of
private operations causing incorrect transactional actions.

Managed Code With sufficient compiler and runtime support, one can sandbox transactions to ensure they
have no externally visible effects. The costs of sandboxing are not well documented, but appear significant.
In particular, the system would need to: instrument every write that cannot be statically proven to reference
already-acquired transactional data; instrument every indirect jump and potentially irreversible system call;
install handlers for various run-time exceptions (e.g., divide-by-zero); and arrange for periodic validation,
triggered by timers, to interrupt infinite loops.

3.4 Untenable Solutions

Additional techniques, though correct, appear to be unacceptable in practice.

Explicit Copying Without modifying TM runtimes at all, safe privatization could be achieved through
explicit copies. In effect, the memory space of an application would be partitioned into one shared heap,
only accessed transactionally, and per-thread private heaps. Privatizing transactions would simply copy data
from the shared heap to the appropriate private heap, commit a transaction to delete the shared data, and
then operate on the private heap.
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For large or complex data structures, the cost of creating the private buffer may be unacceptable. For
example, if an application needed to privatize a large tree before searching for k elements, the O(n) cost of
copying would dwarf the O(k log n) cost of searching.

Transactional “Private” Access Similarly, we could require private code to continually read and write
the metadata of privatized objects in a manner consistent with ongoing transactions. Such code would need
to acquire any to-be-written objects, releasing them again at some point after the write. It would also need
to perform modifications out-of-place (in redo logs or clones) if required by the STM system. Finally, it
would need either to postvalidate its reads or to register in the object’s metadata as a visible reader. Any
transaction encountering data acquired or visibly read by private code would self-abort.

Given these conventions, private code could safely perform I/O and other irreversible operations. Its
contention management could be somewhat simpler than that of true transactions. It could also skip post-
access validation of anything for which it became a visible reader, since it could never be aborted. It seems
likely, however, that the overhead of acquires, visible reading, and out-of-place updates would eliminate
most of the performance advantage one might normally expect from privatization.

4 Solutions to the Privatization Problem

Our examples in Section 3 expose the complex interactions between privatized and nonprivatized code
in an STM, and demonstrate that privatization requires some degree of additional synchronization above
that provided by existing transactional frameworks. We now consider mechanisms using traditional or
transactional constructs that resolve the privatization problem.

4.1 Partitioning by Consensus

Before exploring general solutions to the privatization problem, we mention a programmatic solution of
interest. If all threads agree, outside any transaction, that certain data is private, then the thread that “owns”
that data can use it safely. The simplest way to obtain such agreement is via a conventional barrier. Our
largest existing benchmark for RSTM, an implementation of Delaunay Mesh triangulation,3 begins by bin-
sorting its data set into geometrically partitioned regions. It then spends the overwhelming fraction of its
time in a phase that triangulates, in parallel, the points in each geometric region. This phase is delimited
by conventional barriers that guarantee private access is safe. Additional, briefer barrier-delimited private
phases occur during a “stitching up” operation that joins triangulated regions.

Privatization is safe in the mesh application because the barrier marks a point at which all transactional
metadata is in a clean and stable state. The implementation of transactions is immaterial: during a barrier-
delimited private phase, no thread performs a transaction. Correctness would still be maintained even with
a mix of transactional and nontransactional actions during a barrier phase, so long as program logic ensures
that no individual object is accessed both transactionally and nontransactionally. By extension, it would
also be maintained in any program whose control flow guarantees that all threads have reached consensus,
outside any transaction, as to the identity of private data.

4.2 Pessimistic Concurrency Control (PCC)

PCC forces a transaction to acquire reader-writer locks on objects accessed by transactions. The lock pro-
tocol is inherently blocking. Suppose, for example, that transaction T1 wishes to acquire a write lock on

3This application was inspired by, but independent of, the work of Kulkarni et al. [14].

9



object O, and that T2 already holds a read lock on O. T1 may attempt to abort T2, but T1 cannot con-
tinue until T2 has either committed or explicitly acknowledged that it has aborted and cleaned up. As a
result, if a transaction commits it is guaranteed that all prior transactions and all conflicting transactions
have completed any necessary cleanup operations.

Since the privatization problem occurs precisely when this guarantee cannot be made, pessimistic lock-
ing avoids the problems described in Section 3. Unfortunately, prior work suggests [20] that PCC entails
unacceptable overhead, primarily due to the overhead of reader locking.

4.3 Explicit Fences

Given the preceding discussion, we turn now to what we consider the interesting case: privatizing transac-
tions with optimistic concurrency control. In this section we present two solutions that introduce blocking,
but only for transactions that make part of shared memory private to the executing thread, and that wish to
subsequently operate on that data without the overhead of transactions.

The Transactional Fence In Section 4.1, we noted that barriers solve the privatization problem by ensur-
ing that every thread has “agreed” to privatization while outside any transaction. We can similarly assure
the safety of a privatizing transaction by waiting, at the privatizer’s commit point, for all active transactions
to commit or to abort, and to finish any necessary cleanup. We call this wait a transactional fence.

The transactional fence mechanism already exists in certain STM systems designed for unmanaged
languages, among them RSTM, FSTM [9, Section 5.2.3], and McRT [13]. Lacking automatic garbage col-
lection, these systems need the functionality of the fence to ensure that explicitly deleted data can safely be
reclaimed. In this vein, the transactional fence also resembles the epoch mechanism of RCU synchroniza-
tion [19], which avoids overhead in readers by waiting to reclaim old versions of shared data until some
distinguished event (e.g., return from the kernel to user space) guarantees that all readers that may have been
using the data have completed. Our contribution is to note that a transactional fence suffices to solve the
privatization problem as well: following such a fence, threads are guaranteed that private data will reflect all
updates performed by prior transactions, and will never subsequently be viewed by a doomed transaction.

The Validation Fence A major shortcoming of the transactional fence is that it can induce unnecessary
delays. Let us consider a program with two threads (T1 and T2) accessing a single list. T1 reads the first
element of the list as the first step of a complex read-only operation on the first K elements of the list.
Meanwhile, T2 privatizes the sublist beginning at element K + 2. There is no reason why T2 should wait
until T1 completes its transaction. Instead, T2 need only wait until T1 reaches its next validation point. As
soon as T1 begins validation, T2 can be sure that T1 will not observe T2’s privatized data–either T2 and T1

conflict, in which case T1 will abort, or else they do not conflict, in which case the validation will succeed,
affirming that T1 does not have a reference to T2’s private data.

We use the term validation fence to describe an operation in which the caller waits until every thread
T has either been outside a transaction or has validated its own (T -local) read set. We expect a validation
fence to have significantly lower latency than a transactional fence, particularly when there are long-running
transactions that do not conflict with the privatizer. As just described, however, the validation fence ensures
only that doomed transactions will never incorrectly observe post-privatization actions. The privatizer is not
guaranteed that all preceding committed and aborted transactions have finished cleaning up their speculative
writes.

To prevent incorrect reads in private operations, the privatizing thread must inspect (and possibly clean)
the metadata associated with an object when it accesses that object for the first time outside of a transaction.
(Since determining the first access is in general uncomputable, the compiler may need to make conservative
assumptions or, if metadata inspection is expensive, insert run-time first-access checks.) When metadata
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indicates that the object is dirty (either due to in-place modification by an aborted transaction or uncom-
mitted out-of-place modification by a committed transaction), the privatizing thread either steals cleanup
responsibility or waits for the appropriate thread to cleanup, depending on the underlying TM implementa-
tion. For indirection-based systems, cleanup usually entails a single CAS of an object header, after which
all dereferences of that header can be performed without testing or branching. In direct-update systems, the
private thread may have to apply a redo or undo log.

Interestingly, a pair of consecutive validation fences provides the functionality of a full transactional
fence. The first validation fence ensures that all conflicting transactions will commit or abort in future
without accessing any new data in a conflicting fashion. The second guarantees that conflicting transactions
have already cleaned up their speculative writes. This approach certainly imposes higher initial latency on
privatizing threads, but eliminates the need for metadata inspection thereafter.

Several different validation strategies have been implemented in extant STM systems [6,8,11,20,21,24].
Correspondingly, the validation fence has varying costs in these systems. In systems that perform validation
only at commit time or periodically [8, 20] the validation fence can be expected to be as expensive as a full
transactional fence. The validation fence should also be as expensive as a transactional fence in TL2 [6],
where version numbers are used to postvalidate objects on every access, and full validation happens only at
commit time. On the other hand, systems that validate the entire read set on every new object access [11,21]
will benefit significantly from the validation fence. Finally, privatizers should benefit from the global commit
counter heuristic of Spear et. al. [24], which retains the correctness guarantees of full validation on every
new object access, but avoids most of the work when no transaction (including a privatizer) has committed
since the last such validation.

4.4 Nonblocking Privatization

While fences limit the amount of metadata manipulation required for private data, they introduce blocking
that may be undesirable in an otherwise nonblocking STM. In this section, we propose a construct for
obstruction-free privatization.

In the previous section, we observed that a single validation fence cannot ensure the cleanup of specula-
tive writes, but that metadata inspection on first private access can. Should we discard the validation fence,
metadata inspection must be performed on every access. Suppose transaction T wishes to acquire object O.
Suppose further that T is delayed immediately before it issues its acquiring compare-and-swap (CAS) in-
struction, at which time thread P privatizes the entire heap and begins writing O. Since we do not require P
to modify O’s metadata, T ’s CAS will succeed. In any correct TM, T will subsequently abort before writing
to O, but in indirection-based TMs there exists a window where nontransactional dereferences of O’s header
will point to T ’s version, instead of the version written by P . Metadata inspection on every private access is
therefore necessary. When a private thread discovers that an access is invalid, it must assume responsibility
for cleanup to ensure nonblocking progress.

On the other side of the interaction, in the absence of a validation fence, a doomed transaction may see
writes performed by private code, causing erroneous behavior. Our solution to this problem is to perform
full validation (of the entire read set) on each transactional access. To keep costs under control, we suggest
a heuristic similar to the global commit counter proposed in our earlier work [24]. Whenever a privatizing
thread commits, rather then execute a fence we require the thread to atomically increment a global privati-
zation counter (pcount). We then augment the TM validation mechanism so that transactions poll pcount
as part of per-access postvalidation. Whenever pcount changes, threads must perform a full validation.
Furthermore, threads must poll pcount both before and after full validation, and if pcount changes, they
must re-validate. The key observation is that if pcount does not change, then no transaction has privatized
anything since the last full validation in the transactional thread, so the location just accessed was valid.
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Revalidation is unfortunate, but necessary in the face of multiple privatizers. Consider a transaction
T that has read objects {O1 . . . Ok}. If privatizer P1 privatizes object Ok + 1, T will validate on its next
access to shared memory. After this validation begins, and T has validated {O1 . . . Ok/2}, another privatizer
P2 may privatize O1 and commit. If T does not revalidate, it will not detect that it is doomed, and may
incorrectly access memory that has been privatized.

Nonblocking privatization bears considerable overhead: private code pays more for every access, and
transactions validate more often. Traditionally, validation of a transaction T ’s read set must occur whenever
a new object is encountered, resulting in O(n2) overhead for n objects. With nonblocking privatization, the
overhead rises to O(n2+nP ), where P is the average number of threads who privatize during T ’s operation.

We argue that nonblocking privatization is obstruction-free. First we note that to the privatizing thread
we have only added a single atomic increment, which is certainly nonblocking given the hardware instruc-
tions already used to implement nonblocking STM. Furthermore, we note that in the absence of privatizing
threads, a transaction will issue exactly D additional checks of pcount, where D is the number of accesses
to shared data within the transaction. This additional work is bounded, and thus in the absence of other
conflicts there is no obstacle to the transaction completing.

Lastly, we note that with visible readers, the pcount variable is unnecessary. Privatizing transactions
will explicitly abort readers of an object that becomes private. Consequently, with visible readers per-access
validation need only verify that the transaction is still Active. Privatizing transactions will abort readers ex-
plicitly. This suggests that in the face of nonblocking privatization, the tradeoff between invisible and visible
readers [24] may shift away from invisible readers, especially given abundant privatizing transactions.

5 A Taxonomy for Single Lock Atomicity

As part of her Ph.D. research some 17 years ago, Sarita Adve proposed that the bewildering array of
hardware-centric memory consistency models be reconceptualized as programmer-centric contracts be-
tween the application and the underlying system [2]. This approach is now standard in the field: program-
mers may view their system as sequentially consistent provided that they follow a specified programming
model—generally some variant of data-race freedom [3].

In a similar vein, we propose that the privatization problem be conceptualized as a contract under which
programmers may view transactions as strongly isolated provided that they follow a specified program-
ming model. And just as increasingly restrictive programmer-centric memory models (DRF0 → DFR1 →
PLpc) allow the underlying system to implement more memory optimizations, so do increasingly restrictive
programmer-centric sharing models allow the underlying STM system to minimize run-time overheads.

Based on the discussion in preceding sections, we propose the following set of sharing models. We list
them from most-restrictive/lowest-STM-overhead to least-restrictive/highest-STM-overhead. Note, how-
ever, that in contrast to the typical case with memory models, performance will not necessarily be maximized
by using the most restrictive sharing model, since this may limit the programmer’s choice of algorithms.

Static Partition Every data object is transactional or nontransactional for the full life of the program.
Transactional objects cannot be accessed by nontransactional code. Privatization, whether for performance
or for irreversible operations (e.g., I/O), must be achieved by means of copying, as described in Section 3.4.

Partition within Global Consensus Phases Every data object is either transactional or nontransactional
at any particular point in time. Objects move from one category to the other only as a result of full-program
consensus, achieved outside transactions. Typically, as in our Delaunay mesh application, barriers will be
used to delineate private phases.

Privatizing Transactions (Explicit or Implicit) Data objects may be privatized by any committed trans-
action. Program logic must ensure that the transactional/private status of every object is well defined at all
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Figure 7: Privatization microbenchmark throughput for a bounded buffer with 10 elements. “CC” indicates
that the global commit counter was used to reduce validation overheads.

times—i.e., that this status is never the subject of a race. The implementation may ensure the safety of pri-
vatization via pessimistic concurrency control (Section 4.2), transactional or validation fences (Section 4.3),
or nonblocking privatization (Section 4.4). Fences, if present, may be explicit (invoked by the program)
or implicit (invoked automatically by the library or compiler-generated code on the first use of a sharable
object outside a transaction).

Strong Isolation Transactions appear to execute atomically and to serialize not only with each other, but
with nontransactional reads and writes as well. For performance reasons some data (e.g., stack locals)
may be inherently unsharable, but sharable data can always be accessed safely in nontransactional code,
even in the presence of concurrent transactional accesses, without breaking isolation. This model may be
implemented by hardware, or, at considerable cost, either by transactional “private” access, as described in
Section 3.4 or through extensive compiler integration [12].

Just as there is no consensus on the “right” programmer-centric memory model, we do not expect to
see agreement soon on the “right” sharing model for privatization. The choice is likely to depend on the
programming language, the underlying STM (or HTM), and the expected expertise of programmers. It also
seems likely that refinements of the models presented here will emerge from future work.

6 Evaluation

As a preliminary step toward evaluation of tradeoffs in the implementation of privatization, we have used a
simple microbenchmark to compare the transactional fence, the validation fence, and nonblocking privatization—
the three implementations we identified as belonging to the privatizing transactions category in the taxon-
omy of Section 5. Though preliminary, these results suggest that the tradeoffs are both workload dependent
and non-trivial.
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Figure 8: Privatization microbenchmark throughput for a bounded buffers of 100 elements. “CC” indicates
that the global commit counter was used to reduce validation overheads.

As noted in Section 4, we have also experimented with a large-scale implementation of Delaunay tri-
angulation. Because this benchmark uses barriers to separate private and transactional phases, it does not
require a system-level solution to the privatization problem. At the same time, because it spends the bulk
of its time in private work (over 98% with more than 1000 points), it is critically sensitive to per-access
overhead in private code. In particular, it suffers a roughly 2× slowdown with indirection-based STM, and
a roughly 2× reduction in the number of points it can handle before falling out of the cache (at which point
it suffers an additional 6× slowdown).

Our microbenchmark captures a simple producer-consumer scenario: producer transactions add an el-
ement to a shared buffer; when the buffer is full, a consumer privatizes its entire content. The buffer is
implemented as a list of N tokens; a privatizing thread simply truncates the list within a transaction and
commits. The privatizing thread thereafter traverses the privatized list and frees its nodes. This choice of
consumer behavior was made for its simplicity.

Our experiments were conducted on a 16 processor cache-coherent SunFire 6800. We experimented with
both nonblocking (indirection-based) RSTM and blocking (indirection-free) RSTM::RedoLock, both with
and without the global commit counter [24], and with both eager and lazy acquire.4 In all cases we used the
Polka contention manager [22]. We do not present results for eager acquire, since lazy acquire consistently
out-performed it. We also present results for invisible readers only; they outperformed visible readers in
similar prior experiments. Finally, since the results for the nonblocking and redo-lock RSTM systems
were qualitatively similar (redo-lock was generally 20% faster, but with the same scalability), we present
results for the nonblocking version only: it is conceptually more compatible with nonblocking privatization.
Experimenting with various buffer sizes N , we found values of 10, 100, and 1000 to yield dramatically

4Eager acquire performs contention management at the time of the first conflicting access; lazy acquire delays until commit
time.
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Figure 9: Privatization microbenchmark throughput for a bounded buffer of 1000 elements. “CC” indicates
that the global commit counter was used to reduce validation overheads.

different results, particularly for transactional and validation fences. All results are the average of three
runs.

Single Threaded Performance and Scalability Figures 7–9 show throughput in transactions per second
for the configurations mentioned above. Fences are clearly faster in single threaded runs: the nonblocking
scheme incurs extra overhead on every private access (to verify that a doomed transaction has not just
acquired the object) and on every transactional access (to verify that private code has not just modified the
object). Moreover, with only one active thread, the fence-based schemes incur no waiting overhead. At the
same time, the fence-based schemes, as one would expect, do not scale as well as the nonblocking scheme.
Their performance deteriorates particularly badly beyond 16 processors, due to preemption of threads for
which a privatizer must wait. The global commit counter improves performance in all cases—dramatically
so for long transactions.

Transaction Length Our results also demonstrate that the fence schemes are surprisingly expensive for
short transactions: the fence becomes a contention hotspot as transactions repeatedly update their state. Note
however that with increasing transaction length the difference between performance of the fence and non-
blocking schemes progressively reduces. Thus, with substantially large transactions and nontransactional
work, scalability problems are mitigated in the fence-based schemes, whereas the overhead of metadata in-
spection on every transactional access is exacerbated in the nonblocking scheme. With 1000 elements, the
fence-based schemes outperform the nonblocking scheme up to 10 threads, after which the fences’ over-
heads exceed the cost of per-access validation.
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7 Conclusions

In this paper we characterized the privatization problem, described the subtle errors it can introduce across a
variety of STM algorithms, and proposed several techniques to ensure the safety of operations on privatized
data. In a simple microbenchmark, we found that variations in workload characteristics, including working
set, contention, and preemption, can dramatically shift the relative performance of privatization techniques.

As transactional memory moves into the programming mainstream, privatization is likely to play an
important role, allowing programmers (a) to escape the semantic limitations of transactions (e.g., with regard
to I/O) and (b) to use application-specific knowledge to improve performance by avoiding STM overhead
on private computation. We believe that programmer-centric sharing models can facilitate these efforts, by
allowing programmers to think of transactions as strongly isolated so long as they follow the rules.

In a broader context, our experimentation with several variants of RSTM confirms the value of indirection-
freedom. This value only increases in the presence of privatization: the relative cost of indirection increases
in the absence of other overheads. Our experience with the Delaunay mesh confirms the usefulness of RSTM
as a platform for experimentation with STM implementation techniques. At the same time, it confirms that
ease of use—the principal argument for transactions—will eventually require language and compiler sup-
port.
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