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Pro- and anti-inflammatory cytokines in 
cutaneous leishmaniasis: a review
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Cutaneous leishmaniasis (CL) is caused by different species of the genus Leishmania. Pro- and anti-inflammatory 
cytokines play different roles in resistance/susceptibility and the immunopathogenesis of Leishmania infection. The 
balance and dynamic changes in cytokines may control or predict clinical outcome. T helper 1 (Th1) inflammatory 
cytokines (especially interferon-γ, tumor necrosis factor-α and interleukin-12) are the crucial factors in the initiation 
of protective immunity against L. major infection, whereas T helper 2 cytokines including IL-5, IL-4, and IL-13 
facilitate the persistence of parasites by downregulating the Th1 immune response. On the other hand, aggravation 
of inflammatory reactions leads to collateral tissue damage and formation of ulcer. For this reason, immunity 
system such as T regulatory cells produce regulatory cytokines such as transforming growth factor-β and IL-10 
to inhibit possible injures caused by increased inflammatory responses in infection site. In this article, we review 
the role of pro- and anti-inflammatory cytokines in the immunoprotection and immunopathology of CL.
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Introduction
Cutaneous leishmaniasis (CL) is a significant health 
problem in large parts of the world, especially in under-
developed countries.1 At least 88 countries are endemic 
regions,1 where about one-third of cases occur in each of 
three epidemiological regions, including the Americas, the 
Mediterranean basin, and western Asia from the Middle 
East to Central Asia. Afghanistan, Algeria, Colombia, 
Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica, 
and Peru are the 10 countries with the highest incidence. 
It is estimated that about 0.7–1.2 million new cases of CL 
occur per year.1 Also, the estimated global mean age-stand-
ardised disability-adjusted life years for CL was 0.58 per 
100,000 people in 2013.2 CL is caused by different species 
of the genus Leishmania (e.g. L. major, L. tropica, and  
L. aethiopica in old world and L. amazonensis, L. mexi-
cana, and L. braziliensis in the new world).1

Leishmania parasite passes its life cycle in two hosts: 
sand flies and mammalian hosts such as humans, dogs, and 
rodents. When an infected sand fly feeds on a mammalian 
host, Leishmania metacyclic promastigotes are injected 
into the skin. Then, the promastigotes are phagocytosed 
by phagocytic cells, such as macrophages, neutrophils, and 
dendritic cells (DCs). The promastigotes are able to sur-
vive in macrophages (final host cells) because of complex 
defense mechanisms and transform into amastigote forms 
(Fig. 1). The Leishmania parasites proliferate in tissue 
macrophages and spread to other macrophages depending 

on various parasite and host factors. In CL, the infection 
is usually limited to the skin and lymphatic system, but it 
may influence on deeper tissues in diffuse CL or penetrate 
into the mucous membranes in MCL. The life cycle is 
completed when sand flies feed near the skin lesions and 
the amastigotes enter the midgut of the sand fly where they 
subsequently develop into promastigote forms.3–6

There are many complexities in immunity against 
leishmaniasis. It is well documented that resistance to 
leishmaniasis is related to T helper 1 (Th1) development 
and production of pro-inflammatory cytokines (e.g. inter-
leukin (IL)-12, IL-1, interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α, and/or IL-2) that lead to activation of 
macrophages and parasite killing.7,8 Conversely, sus-
ceptibility to the infection is linked to T helper 2 (Th2) 
development and production of Th2 cytokines such as 
IL-4, IL-5, and/or IL-13 leading to parasite replication 
and persistence.8–10 However, several paradoxes remain 
about the role of immune responses in immunoprotection 
and immunopathology of CL. For example, although Th1 
response and production of pro-inflammatory cytokines 
have pivotal roles for immunoprotection against CL,8,11 
their excessive production may concomitantly lead to 
severe immunopathology in the disease.12–15 On the 
contrary, Th2 development is associated with parasite 
persistence in the site of infection8,11 but production of 
anti-inflammatory cytokines at lower levels will also 
mitigate inflammatory reactions and accelerate wound 
healing process.15–17 In addition, other T cells, such as 
Th17 cells by production of inflammatory cytokines (e.g. 
IL-22, IL-17 and/or IFN-γ)18 and T regulatory (Treg) cells 
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by production of regulatory cytokines (e.g. IL-10 and/
or transforming growth factor (TGF)-β) contribute to 
disease progression or improvement depending on the 
Leishmania spp and also the genetic background of the 
host (Table 1).19 Hence, this review focuses on the role of 
pro- and anti-inflammatory cytokines in immunoprotec-
tion and immunopathology of CL.

Pro-inflammatory cytokines in CL
IFN-γ and TNF-α
IFN-γ and TNF-α are two important pro-inflammatory 
cytokines involved in the immunoprotection and immu-
nopathology of CL. IFN-γ is mainly secreted by Th1 CD4+ 

and CD8+ cytotoxic T lymphocytes, natural killer (NK) 
cells ,and natural killer T (NKT) cells. These cytokines 
have essential roles in control of intracellular pathogens 
and tumor cells, but their increased production may lead 
to autoimmune diseases.20 IFN-γ stimulates nitric oxide 
(NO) production in activated macrophages and inhibits 
intracellular parasite growth.21 Furthermore, IFN-γ pro-
motes differentiation of CD4+ T cells to the Th1 subset 
and inhibits the development of Th2 and Th17 cells.22 It 
is observed that IFN-γ-deficient C57BL/6 mice are more 
susceptible to Leishmania infection than wild-type coun-
terpart.23 Compared with wild-type mice, L. amazonensis 
infection in IFN-γ-deficient C57BL/6 mice showed larger 
lesions, increased parasite burden, and development of 
Th2-type responses associated with IL-4 elevations than 
wild-type mice.23

TNF-α is mostly produced by macrophages that play a 
crucial role in Leishmania clearance through increase in 
macrophage activity and NO synthesis.24 This cytokine 
is able to promote Th1/IFN-γ responses against L. major 

Figure 1 Leishmaniasis is transmitted by the bite of infected female phlebotomine sand flies. The sand flies inject the infective 
stage (i.e. promastigotes) from their proboscis during blood meals . Promastigotes that reach the puncture wound are 
phagocytized by macrophages  and other types of mononuclear phagocytic cells. Promastigotes transform in these cells into 
the tissue stage of the parasite (i.e. amastigotes) , which multiply by simple division and proceed to infect other mononuclear 
phagocytic cells . Parasite, host, and other factors affect whether the infection becomes symptomatic and whether cutaneous 
or visceral leishmaniasis results. Sand flies become infected by ingesting infected cells during blood meals ( , ). In sand 
flies, amastigotes transform into promastigotes, develop in the gut  (in the hindgut for leishmanial organisms in the Viannia 
subgenus; in the midgut for organisms in the Leishmania subgenus), and migrate to the proboscis . Source: Centers for 
Disease Control and Prevention (CDC). http://www.cdc.gov/dpdx/leishmaniasis/.

Table 1 Resistant and susceptible mouse strains in leish-
maniasis

Resistant mouse strains Susceptible mouse strains

C57BL/650,202 BALB/c50,202

CBA202

C3H/He202

http://www.cdc.gov/dpdx/leishmaniasis/
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infection.21 TNF-α-deficient C57BL/6 mice infected with 
L. major showed fatal visceral infection despite the pro-
duction of IFN-γ and IL-12 by macrophages.25 Treatment 
of BALB/c mice with TNF-α decreased the parasite burden 
and lesion size in CL.26 In contrast, neutralizing TNF-α 
receptor 1 led to non-healing lesions in resistant C57BL/6 
mice following L. major infection.27

Interestingly, it was observed that IFN-γ and TNF-α 
have synergistic killing effects against L. major infec-
tion through stimulation of macrophages to increased 
NO production.28 Also in clinical studies, both IFN-γ and 
TNF-α have been detected in the lesions of CL patients.29–33 
However, different studies demonstrated that upregula-
tion of the pro-inflammatory cytokines (especially TNF-α 
and IFN-γ) are associated with increased tissue damage 
at the site of infection. In this regard, a positive corre-
lation between lesion size with IFN-γ and TNF-α levels 
was observed in CL patients infected with L. braziliansis.  
Patients with greater lesions had higher levels of IFN-γ 
and TNF-α despite presence of IL-10 in the site of 
infection.31,34,35

Levels of FN-γ and TNF-α were lower in asympto-
matic L. brazielienzis-infected individuals than those in 
patients with typical signs of CL.36 Indeed, patients with 
typical signs of the disease had excessive levels of IFN-γ 
and TNF-α with inflammatory reactions and skin ulcers 
at the site of infection.36 In subclinical patients, the mod-
erate production of IFN-γ and TNF-α was associated with 
control of parasite growth without induction of tissue 
destruction.36 Th1 cells of ML patients have been reported 
to secrete a higher level of IFN-γ and TNF-α, and lower 
levels of IL-10 compared to Th1 cells of CL patients. In 
comparison to CL patients, lymphocytes isolated from ML 
patients exhibited a stronger proliferative response with 
higher secretion of these pro-inflammatory cytokines when 
stimulated with Leishmania antigen.37–39 Although IFN-γ 
and TNF-α production seems to be required for control of 
Leishmania infection, increased levels of these cytokines 
may lead to tissue destruction and development of pro-
gressive wounds.

IL-12
IL-12 acts as an essential cytokine for differentiation of 
Th1 cells in leishmaniasis.40,41 This cytokine is mainly 
produced by monocytes, macrophages, DCs, and B cells. 
IL-12 is involved in the development of Th1 response 
through IFN-γ production from NK and T cells.42 IL-12 
stimulates also differentiation of naïve T cells into Th1 
effectors and inhibits T cell apoptosis.43–46 The IL-12 
family of cytokines, including IL-12, IL-23, and IL-27 
share homology at the subunits, receptors, and signaling 
levels.47,48 Bioactive IL-12p70 is made up of two subunits, 
p35 and p40, which are essential for continued resist-
ance to L. major infection.49 Interestingly, the absence of 
each of these subunits promotes the development of Th2 
response and increases susceptibility to infections such as 

leishmaniasis.48,50 The IL-12p40 (also called IL-12/23p40) 
subunit is linked to IL-23p19 subunit to form IL-23. IL-27 
is composed of IL-27p28 (p28) and Epstein–Barr virus- 
induced gene 3 (EBI3) subunits. IL-12 signals through 
the IL-12Rβ1 and IL-12Rβ2 subunits.51 Like IL-12, 
IL-23p40 subunit can bind to the IL-12Rβ1, however 
IL-23p19 subunit cannot bind to IL-12Rβ2 but has a sec-
ond IL-23 receptor (IL-23R) subunit.51,52 However, in the 
JAK/STAT signalling pathway, IL-12 mainly activates 
STAT4 specific molecules, while IL-23 and IL-27 prin-
cipally activate STAT3 and STAT1, respectively.51 IL-12 
is an essential cytokine for stimulation of Th1 cells in 
leishmaniasis.40,41 BALB/c mice are susceptible mouse 
models to CL, and this susceptibility is related to the loss 
of genetic ability of IL-12 production. Hence, the immune 
responses fail to develop Th1 cells in L. major-infected 
BALB/c mice and in this situation IL-4-induced Th2 cells 
develop that resulted in progressive skin lesions with vis-
ceral invasion.40 Conversely, genetically resistant mice 
lacking IL-12 developed Th2 response with high IL-4 
and low IFN-γ levels along with progressive skin lesions 
similar to susceptible BALB/c mice following L. major  
infection.50 IL-12 has been successfully used as an adjuvant for  
L. major vaccination.53–55 Moreover, immunotherapy with 
IL-12 led to resolution of L. major infection in BALB/c 
mice with concomitant reduction in parasite burden and 
lesion size,and increased IFN-γ and decreased IL-4 pro-
duction.42,56 Notably, neutralization of IL-12 during pri-
mary infection with L. major led to deterioration with 
progressive lesions.41 It is of interest that neutralization of 
IFN-γ repealed the treatment effect of IL-12 and restored 
Th2 cytokine responses.56 Therefore, IL-12 plays a cru-
cial role in the shift of T cell into Th1 or Th2 immune 
responses in CL.

IL-2
IL-2 is a growth factor that is mainly synthesized by 
CD4+Th cells and also in smaller amounts by CD8+ T 
cells, NK cells and NKT cells.57,58 IL-2 signals affect var-
ious lymphocyte subsets during differentiation, immune 
responses, and homeostasis. This cytokine promotes 
immune responses by increase in proliferation, cytokine 
secretion, and cytolytic activity in CD4+, CD8+, and NK 
cells.59,60 For example, IL-2 stimulates the production of 
IFN-γ by Th1 cells and activates propagation of cytotoxic 
T cells via binding to IL-2 receptors on lymphocytes.61 By 
contrast, IL-2 promotes autoimmune diseases through the 
death of activated T cells due to IL-2 deprivation, initiation 
of pro-apototic pathways by increase in FasL expression 
on activated T cells and development of CD4+CD25+ 
Tregs.59,62–65

Different studies have shown that IL-2 is involved in the 
protective immune response of CL.66–68 Together with IFN-
γ, IL-2 facilitates Th1 response and macrophage activa-
tion for killing Leishmania parasite.22 It has been observed 
that the sera of CL patients with primary infection contain 
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inflammasome-derived IL-1β production is responsible 
for non-healing lesions in C57BL/6 mice infected with  
L. major Seidman strain. NLRP3 inflammasome promotes 
susceptibility to L. major infection by production of IL-18 
and IL-1β so that BALB/c mice lacking the inflammasome 
components NLRP3, ASC, or caspase 1 were resistant to 
L. major infection and produced high levels of IFN-γ and 
low levels of IL-4 and IL-5 leading to smaller footpad 
swelling and lower parasite burden in comparison to con-
trol mice.84 IL-1β also promotes pathology and the for-
mation of exacerbated lesions in C57BL/6 mice infected 
with L. major through the development of Th17 cells and 
regulation of IL-17 levels.85 Also, IL-1 induces inflam-
matory responses in L. major infected BALB/c mice that 
leads to progressive disease and lack of IL-1 genes delays 
development of the disease and induces more attenuated 
systemic inflammatory responses.86 Another study showed 
that IL-1 signaling is dispensable for protection against 
CL in C57BL/6 mice.87 Human studies have demonstrated 
that IL-1 can also contribute to disease progression by 
promoting TNF-α production.88 Therefore, IL-1β promotes 
differentiation of protective CD4+ T cells, while excessive 
production of IL-1β during the chronic phase of infection 
leads to progression disease.

IL-18
IL-18 is a pleiotropic cytokine also named IFN-γ-inducing 
factor. IL-18 is secreted by different cells such as acti-
vated macrophages, DCs and Kupffer cells. IL-18 induces 
Th1 responses via IFN-γ production in collaboration with 
IL-12.89,90 Another study demonstrated that IL-18-deficient 
C57BL/6 mice show high susceptibility to L. major infec-
tion with decreased levels of IFN-γ and increased levels 
of IL-4 in comparison with wild-type mice.91 Monteforte 
et al.92 reported that IL-18−/− C57BL/6 mice promotes Th1 
responses in L. major infection. In this study, although 
IL-18−/− C57BL/6 mice developed larger lesions during 
early phase of infection, disease resolved eventually in 
IL-18-deficient mice by production of IL-12 and IFN-γ 
but no IL-4 similar to IL-18+/+ mice. However, it seems 
that the genetic background and cytokine milieu influ-
ence on induction of Th1 or Th2 responses by IL-18.93 
Treatment of L. major-infected BALB/c mice with recom-
binant IL-18 promotes Th2 responses in the absence of 
IL-4 and leads to exacerbated disease in comparison with 
untreated animals.93 In another study, NLRP3-dependent 
IL-18 production promotes Th2 responses during L. major 
infection so that neutralizing IL-18 reduces production of 
Th2 cytokines such as IL-4 and induces protection against 
L. major infection in BALB/c mice.94 Overall, it seems that 
IL-18 promotes Th1 or Th2 responses during CL depend-
ing upon cytokine milieu and genetic background.

IL-15
IL-15 is a pleiotropic cytokine that plays the role in the 
homeostasis of the innate and adaptive immunity through 

higher concentrations of IFN-γ and IL-2 in comparison to 
uninfected individuals or those with secondary infection.69 
In humans, genetic mutations that lead to reduced IL-2 
production are associated with exacerbated human CL.68 
Co-administration of recombinant IL-2/diphtheria toxin 
fusion protein (rIL-2/DTx) depletes Treg cells.70 In this 
regard, Divanovic et al.70 used rIL-2/DTx as adjunctive 
therapy for experimental L. major infection in a murine 
model. They observed that rIL-2/DTx therapy suppressed 
lesional Tregs, increased IFN-γ production, decreased par-
asite burden, and enhanced wound healing process. They 
also found an additive therapeutic effect when rIL-2/DTx 
combined with sodium stibogluconate (a choice drug 
for leishmaniasis treatment) that lead to a reduction in 
dose and duration of sodium stibogluconate therapy.70 
Conversely, IL-2 can also stimulate proliferation of Th2 
cells through generation of IL-4.71 The IL-2 receptor is 
composed of multiple subunits and the common gamma 
chain is shared between IL-2 and IL-4.72,73 It is reported 
that neutralization of IL-2 in L. major infected BALB/c 
mice leads to decreased IL-4 and increased IFN-γ pro-
duction in their lymph nodes.74 Collectively, IL-2 seems 
to play as a bifunctional cytokine that may promote sus-
ceptibility or resistance to CL.

IL-1
The IL-1 family consists of two main agonistic proteins, 
including IL-1α and IL-1β that are involved in various 
immunopathologies and inflammatory disorders, as well 
as protective immune responses against infectious path-
ogens. IL-1 is an important pro-inflammatory cytokine 
that is mainly secreted by macrophages and like TNF-α 
act as ‘alarm cytokine.’75–79 IL-1 is a critical regulator for 
early differentiation of Th17 cells and Th17-mediated 
autoimmunity. Also, IL-1 along with IL-6 and IL-23 
regulates Th17 differentiation and maintains cytokine 
expression in effectors Th17 cells.80 IL-1 can induce pro-
tective or pathogenic effects during Leishmania infection. 
For example, the production of IL-1α in lymph nodes of  
L. major-infected BALB/c mice decreased three times in 
comparison to resistant C57BL/6 mice. Local treatment 
with IL-1α significantly decreased lesion size and parasite 
burden in infected animals and led to enhancement of the 
Th1 response via high production of IFN-γ and low pro-
duction of IL-4.7 Leishmania infection promotes Nod-like 
receptor protein 3 (NLRP3) inflammasome-derived IL-1β 
productions that leads to host resistance to infection by 
NO production.81

Similar to IL-12, IL-1 acts as an adjuvant that sup-
ports the generation of IFN-γ-secreting T cells and helps 
in IgG2a production.82 Short-term treatment of L. major- 
infected C57BL/6 mice using IL-1β during early phases 
of infection promotes Th1 response and protects against 
leishmaniasis.83 In contrast, continuous treatment of  
L. major-infected C57BL/6 mice with IL-1α induces Th2 
response and exacerbates the disease outcome.83 NLRP3 
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IL-17
IL-17 is a highly inflammatory cytokine that is produced 
by Th17 cells and mediates tissue inflammation. IL-17 also 
induce different pro-inflammatory cytokines (such as IL-6 
and TNF-α) and chemokines.120 IL-1β and IL-23 promote 
developments of Th17 cells. Also, TGF-β plus IL-6 differ-
entiates naive T cells into Th17 cells. Furthermore, IL-6 
leads to upregulation of IL-21 and IL-23, which promotes 
further Th17 development.121,122 IFN-γ suppresses differ-
entiation of Th17 cells and IL-17 production by downreg-
ulation of TGF-β and IL-6 or IL-1β and IL-23.123–126 Th2 
cytokines such as IL-4 and IL-13 suppress IL-6 and TGF-
β-induced differentiation of Th17 cells.123,124,127 IL-27 and 
IL-25 also regulate Th 17 cells by development of Th1 and 
Th2 responses.128–130 Also different studies demonstrate 
that IL-17 is involved in the immunopathology of CL.85,131 
For example, lack of IL-10 in L. major-infected C57BL/6 
mice induced severe immunopathology associated with 
elevated IL-17 and neutrophil production.85 Lopez Kostka 
et al.131 observed that neutrophil-derived IL-17 promotes 
susceptibility to L. major infection in BALB/c mice. They 
found that IL-17-deficient BALB/c mice infected with 
L. major develop smaller cutaneous lesions with fewer 
parasite burden associated with a decreased number of 
neutrophils and decreased CXCL2-accumulation in the 
lesion site. Gonzalez-Lombana et al.85 found that increased 
IL-17 production is responsible for immunopathology in 
IL-10-deficient C57BL/6 mice infected with L. major by 
infiltration of neutrophils at the site of infection. Bacellar 
et al.132 showed that lymphocytes of patients with mucosal 
leishmaniasis and CL produced a significantly higher level 
of IL‐17 in comparison with uninfected control subjects. In 
contrast, several studies demonstrate that Leishmania vac-
cines in mouse and human models induce elevated IL-17 
and IL-22 levels that play complementary roles with Th1 
cytokines in protection against CL.19,133,134 Taken together, 
there are contradictory results about the role of IL-17 in 
pathogenesis and protection against leishmaniasis.

IL-22
IL-22 is secreted from Th cell subsets, including T helper 
22 (Th22), Th17 and Th1 cells, as well as innate lympho-
cytes.135 This cytokine has antimicrobial properties and 
plays a pivotal role in tissue repair. Although IL-22 is a 
beneficial cytokine for host, it is involved in many infec-
tious and inflammatory disorders and can be pathogenic 
due to its inherent pro-inflammatory properties, especially 
when it is released together with other pro-inflammatory 
cytokines such as IL-17.136 IL-22 plays a protective role 
against tissue damage during CL. For example, Gimblet 
et al.137 reported that IL-22 deficient C57BL/6 mice 
infected with L. major develop more severe pathologi-
cal changes with a higher parasite burden than wild-type 
mice.137 In another study, IL-22 improves the efficacy of 
DNA vaccines against L. major in BALB/c mice138,139 so 

various mechanisms.95 IL-15 is produced mainly by 
DCs, monocytes, macrophage, and epithelial cells.96 This 
cytokine in collaboration with IL-12 facilitates IFN-γ 
and TNF-α production by NK and T cells.97 IL-15 also 
enhances protective immune responses against intracellu-
lar pathogens.98 Some studies also demonstrate that IL-15 
is involved both in the development of Th1 responses by 
inducing IFN-γ production99–101 as well as Th2 responses by 
increase in IL-5 and IL-13 production.98,100,102 D’Agostino 
et al.103 showed that similar to IFN-γ, IL-15 induces 
leishmanicidal activity in macrophages via both IL-12-
dependent and IL-12-independent pathways.103 In the 
recent study, endogenous IL-15 suppresses Th2 cytokines 
such as IL-4 in L. infantum infection without production 
of Th1 cytokines.104

IL-8
IL-8 is a strong proinflammatory cytokine that plays an 
essential role in the recruitment and activation of neutro-
phils in the course of inflammation.105 This cytokine is 
secreted by tissue-resident macrophages in response to 
Leishmania infections and plays a key role in the initial 
stages of infection or tissue damage.22 Monocytes iso-
lated from L. major-infected individuals exhibited a high 
level of IL-8 expression.106 IL-8 (a chemoattractant for 
neutrophils) and neutrophils are involved in early defense 
against Leishmania parasite in the site of infection.105,107 
In leishmaniasis, neutrophils play different roles in stim-
ulation of the immune response to infection. Neutrophils 
may kill the parasites or protect them depending on the 
parasite species and the host. For example, neutrophils 
can contribute to kill L. amazonensis and L. braziliensis 
promastigotes by neutrophil extracellular traps or by the 
activation of infected macrophages to kill parasites.108–111 
Upon inoculation of L. major promastigotes, neutrophils 
are the first cells that migrate to the infected site.112,113 
Two CXC chemokines, namely macrophage inflamma-
tory protein-2 and KC (murine homologues of IL-8) are 
quickly produced by distinct cell types in the skin, that 
act as neutrophil chemoattractants and lead to the early 
neutrophil accumulation.107 Infected neutrophils with  
L. major secrete high levels of IL-8 that lead to increased 
infiltration of neutrophils for phagocytosis of the para-
site.114,115 Neutrophils increase the production of DCs 
by CC-chemokine ligand 3-dependent mechanism.116  
L. major-infected neutrophils express apoptotic factors in 
their surface that promotes their preferential elimination 
by DCs and inhibits cross-presentation function in DCs. 
Consequently, reduction in DC activation leads to sup-
pression of Th1 cell and CD8+ T cell function.117,118 Also, 
the capture of Leishmania infected neutrophils by mac-
rophages can limit the activation of macrophages and leads 
to parasite survival.119 Collectively, IL-8 plays a significant 
role in death or survival of Leishmania parasites through 
the production of neutrophils.
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B cells) .153–158 In addition, IL-10 suppresses macrophage 
activation and maturation of DCs. IL-10 production by 
Th1 cells limits immune responses against intracellu-
lar parasite infections such as L. major and Toxoplasma  
gondii.159 This cytokine is associated with the susceptibility 
to leishmaniasis and parasite persistence in infection site.160 
While infection of IL-10−/− C57BL/6 Mice with L. major 
led to inhibit production of IL-10 by Treg cells during the 
chronic phase of CL that consequently lead to parasite 
clearance and wound healing.161 IL-10 and Treg cells limit 
the effective function of Th1 responses to control infec-
tion in the skin.161 Indeed, treatment of L. major-infected 
mice with anti-IL-10 receptor antibodies led to sterile cure 
and parasite clearance.160 Castellano et al.162 reported that 
CL patients with active lesions had higher levels of Th1 
and Th2 cytokines including IFN-γ, TNF-α, IL-12, IL-4, 
and IL-10 in comparison with cured patients, while cured 
patients had higher level of IFN-γ. Salhi et al.163 reported 
that L. braziliensis-infected individuals with active lesions 
had polarized Th2 or mixed Th1/Th2 responses, both 
associated with increased IL-10 levels.163 These results 
suggested that downmodulation of IL-10 and IL-4 and 
elevation of IFN-γ is associated with clinical cure in CL 
patients.162 Buxbaum and Scott164 found that L. Mexicana-
infected C57BL/6 wild-type mice had minimal immune 
response and chronic lesions, but 10−/− mice resolved their 
lesions and had increase production of IFN-γ, NO and 
delayed-type hypersensitivity.164 The quantitative IFN-γ/
IL-10 ratio is important to the result of vaccination against 
CL. A low ratio has been found to result in vaccine failure 
whereas a high ratio provided vaccine success.165 IL-10 
production by Treg cells has been found to suppress the 
magnitude and quality of the Th1 response, while neutrali-
zation of IL-10 increased magnitude and quality of the Th1 
response after vaccination.166 Despite suppressive effects 
of IL-10 that leads to disease progression and parasite 
persistence, this cytokine is a vital immuneregulator that 
modulates immunopathology and tissue damage caused by 
excessive Th1 immune response and their inflammatory 
cytokines, especially IFN-γ in CL.167

Based on cell surface markers or secreted cytokines, 
Treg cells are divided into two subsets: first, natural (n) 
Tregs that develop in thymus and express CD4, CD25 
(IL-2 receptor α chain) and also Forkhead box pro-
tein 3 (Foxp3) (a specific marker for nTregs). nT reg 
(CD4+CD25+Treg) subset represents 5–10% of the adult 
peripheral CD4 T cells and are vital for self-tolerance and 
avoid autoimmune diseases.168–171 Second, acquired (a)/
induced (i) Tregs develop from conventional T cells and 
are grouped two subsets: T regulatory1 (Tr1) and T-helper 
3 (Th3). Tr1 cells do not express Foxp3172 and are able to 
produce high levels of IL-10 and TGF-β,173 while Th3 cells 
express Foxp3174 and produce elevated levels of TGF-β.175 
Overall, Treg cells with high levels of Foxp3 (Foxp3high) 
suppress the function of effector T cells (Th1 and Th2) 
and DCs by IL-10 production but promote differentiation 

that IL-22 plus a DNA vaccine encoding LACK antigen 
resulted in increased IFN-γ and decreased IL-4 levels 
than LACK gene alone.139 However, conflicting results 
have been reported indicating an independence of IL-22 
in host resistance of C57BL/6 mice to L. major.140 Overall, 
although there are a few studies about the role of IL-22 in 
leishmaniasis, it seems that this cytokine has a protective 
role against Leishmania infection.

Anti-inflammatory cytokines in CL
IL-6
IL-6 is a pleiotropic cytokine that acts as both a pro- 
inflammatory and anti-inflammatory cytokine.141 IL-6 is 
produced by several cell types, including macrophages, 
DCs, and T cells.141 Also, this cytokine acts as a B-cell 
growth factor.142 IL-6 plus TGF-β stimulate the devel-
opment of Th17 responses and produce IL-17 and IL-10 
cytokines and lead to restrain pathogenic function of Th17 
cells.122 Animal experimentations demonstrated that IL-6 
promotes Th2 responses in CL.143,144 Moskowitz et al.144 
showed that IL-6-deficient C57BL/6 mice infected with 
L. major can control infection and promote strong Th1 
responses as efficiently as wild-type C57BL/6 mice. Titus 
et al.142 reported that the production of both Th1 and T2 
cytokines decreased in L. major-infected IL-6−/− BALB/c 
mice but there were no significant difference between 
lesion size and parasite burden in IL-6-deficient and wild-
type mice.142 Hatzigeorgiou et al.145 found that pretreat-
ment of macrophages with IL-6 suppressed IFN-γ and 
TNF-α production against L. amazonensis in vitro. Taken 
together, IL-6 is a susceptibility factor in CL.

IL-27
IL-27 is a pleiotropic cytokine produced by activated APCs 
such as macrophages and DCs.146 IL-27 plays two-sided 
roles in immune responses. It acts as an inflammatory 
cytokine that initiates Th1-type responses, but also sup-
presses inflammatory T-cell responses.147,148 IL-27 inhibits 
production of pro-inflammatory cytokines, including IL-17 
and IL-23 and promotes production of IL-10 from CD4+ 
T Cells.149,150 IL-27 initiates Th1 responses and induces 
protection against Leishmania infection so that IL-27R-
deficient mice were susceptible to early L. major infection 
that associated with impaired Th1 response by decrease 
in IFN-γ production.151 Another study showed that IL-27 
induces IFN-γ production and controls the infection only 
in the presence of IL-4.152 Therefore, IL-27 seems to play 
a bifunctional factor that may promote susceptibility or 
resistance to leishmaniasis.

IL-10
Although IL-10 is known to be a potent immunoregulatory 
cytokine, it is produced by different innate immunity cells 
(e.g. DCs, macrophages, mast cells, NK cells, eosinophils, 
and neutrophils) and adaptive immunity cells (e.g. Th1, 
Th2 and Th17 cell subsets, Treg cells, CD8+ T cells, and 
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et al.190 found that neutralization of IL-4 by anti-IL-4 mAb 
inhibits development of Th2 response in L. major-infected 
BALB/c mice so that IFN-γ mRNA expression increased 
fourfold in the lymph nodes of infected mice. They also 
found that neutralization of IL-4 led to complete cure in 
85% of infected mice and attenuation of infection in 100% 
of animals.190

Heinzel et al.191 found that IL-4 mRNA was expressed 
only in BALB/c mice infected with L. major but not in 
infected C57BL/6. However, IFN-γ mRNA increased in 
draining nodes and spleen of C57BL/6 mice than that 
in BALB/c mice except at 4 and 6 weeks of infection, 
when splenic IFN-γ levels were transiently comparable. 
In this study, neutralization of IL-4 by anti-IL-4 mAb led 
to disease healing by a reduction in serum IgE, lesion size, 
and parasite burden in infected BALB/c mice.191 Another 
study showed although both IL-4 and IL-4Rα-deficient 
BALB/c mice were more resistant to L. major infection in 
comparison to wild-type mice, IL-4Rα−/− mice efficiently 
controlled infection by reduction of Th2 responses, while 
IL-4−/− mice partially controlled the infection.192 In con-
trast, Noben-Trauth et al.193 showed that disruption of 
the IL-4 gene in L. major-infected BALB/c mice did not 
promote polarization of Th1 response and had no effect 
on wound healing and parasite clearance. Although IL-4 
plays a critical role in susceptibility to Leishmania infec-
tion, several contributing factors help in its susceptibility. 
For example, IL-4−/− and IL-13−/− L. mexicana-infected 
BALB/c mice revealed that IL-4 plays a pivotal role in 
initiation of lesion development, but IL-13 plays a cru-
cial role in development of chronic and non-healing infec-
tion.194 Failure of IL-12 production is another contributing 
factor that leads to susceptibility to L. major infection.195 
Also study in IL-4-deficient BALB/c mice demonstrated 
that different parasite isolates, and differences in the age 
of the mice and in the arginase activity are other influ-
encing factors of susceptibility to L. major infection of 
IL-4−/− BALB/c mice.10,196 Therefore, IL-4 is an important 
cytokine in susceptibility to Leishmania infection.

IL-13
IL-13 shares signaling pathway with IL-4.197 Like IL-4, 
IL-13 is produced by Th2, mast cells, and basophils.181 
IL-13 decreases the inflammatory responses via down 
regulation of pro-inflammatory cytokines such as IL-1, 
IL-6, TNF-α, and IL-12.198,199 IL-13 inhibits the produc-
tion of IL-12 by macrophages and limits L. major kill-
ing.200,201 Therefore, upregulation of IL-13 in transgenic 
animals delays the onset of a Th1 response subsequent 
to L. major infection.202 IL-13 can limit NO production 
in human mesangial cells through downregulation of 
iNOS.203 Subsequently, NO suppression decreases the 
parasiticidal activity of macrophage.199 IL-13 makes 
specific T cells unresponsive to IL-12 by downregula-
tion of the IL-12Rβ2 chain.204 As observed by Bourreau 
et al.204 IL-13 was the predominant Th2 cytokine in 

of Th17 cells by TGF-β production. Treg cells with low 
levels of Foxp3 (Foxp3low) promote Th2 responses by IL-4 
and IL-10 production. Treg cells lacking Foxp3 (Foxp3 
null) may transform into different types of effectors T cells 
(Th1, Th2, and Th17).170

During infection with L. major, CD4+CD25+ T 
cells accumulate in the dermis and suppress function of 
CD4+CD25− effectors T cells to eliminate the parasite 
from infection site by both IL-10-dependent and IL-10-
independent mechanisms. CD4+CD25+ T cells are respon-
sible for the persistence of L. major in healed lesions that 
leads to concomitant immunity and host resistance to rein-
fection.153 In another study, increased level of IL-10 in 
CD4+CD25−Foxp3−Th1 cells is responsible for develop-
ment of nonhealing lesions following L. major infection.176

Taken together, IL-10 acts as a double-edged sword 
that suppresses cellular immune response and production 
of inflammatory cytokines (IFN-γ and TNF-α) that lead to 
parasite persistence in the infection site. On the other hand, 
IL-10 inhibits an exacerbated immunopathology and tissue 
damage following increased production of inflammatory 
cytokines and plays a central role in the regulation of tissue 
remodeling during wound healing.177

IL-4
IL-4 plays an important role in the differentiation of Th0 
cells into Th2 cells.178 IL-4 is mainly produced by Th2, 
mast cells, basophils, and activated eosinophils.179–181 
IL-4 production drives upregulation of arginase and poly 
amine biosynthesis that inhibits leishmanicidal activity 
of macrophages and prolonged survival of parasites.10 
IL-4 limits the generation of Th1 cytokines through 
downregulation IL-12 production.182 Furthermore, IL-4 
downregulates the production of chemokines that recruit 
Th1-type cells to the infection site.183 Pro-inflammatory 
cytokines such as IFN-γ stimulate M1 macrophages that 
lead to NOS2 activation, NO release, and parasite death, 
while Th2 cytokines such as IL-4 and IL-13 stimulate M2 
macrophages to induce arginase activity which result in 
parasite survival and inhibition of inflammation by coun-
teracting the effects of NOS2 activation and nitric. Indeed, 
the balance between classically activated macrophage 
(M1) and alternatively activated macrophage (M2) reg-
ulates inflammatory responses and leads to homeostasis 
in immunity system and wound healing.184–187 Also, IL-4 
suppresses IL-6 and TGF-β-induced differentiation of 
Th17 cells that leads to inhibition of immunopathology 
caused by IL-17.123,124,127 Studies using IL-4 transgenic 
and knockout mice have shown an important role of IL-4 
in susceptibility to Leishmania infection. Kopf et al.188 
found that IL-4-deficient BALB/c mice are resistant to  
L. major infection. Also, they observed that IL-4 transgenic 
C57BL/6 mice were more susceptible to L. major infection 
in comparison to wild-type mice.188 Radwanska et al.189 
showed that deletion of IL-4Rα on CD4 T cells lead to 
resistance of BALB/c mice to L. major infection. Sadick 
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TGF-β is an immunoregulatory cytokine that inhibits 
Th1 responses against Leishmania parasite by down-
regulation of IFN-γ, inactivation of macrophages, and 
inhibition of IL-2R stimulation.224 TGF-β enhances sus-
ceptibility to Leishmania infection by suppression of NO, 
TNF and IFN-γ production.225 This cytokine exacerbates 
infection due to L. amazonensis and L. braziliensis via 
stimulation of production of Th2 cytokines such as IL-10. 
TGF-β modulates differentiation of T cells into Th1 cells 
via down regulation of T-bet, an independent mechanism 
of down regulation of IL-12 receptor β2 chain expression 
leading to decrease in IFN-γ production and inhibits par-
asite clearance.226 Barral et al.227 reported that the addition 
of recombinant TGF-β to murine or human macrophages 
increased the parasite load in vitro.227 Similar studies 
showed that in vivo immunotherapy with TGF-β for 
resistant mice changed their immune response and led to 
overexpression of IL-10 in draining lymph nodes, whereas 
treatment of susceptible animals with anti-TGF-β mAb led 
to the decrease in IL-4 expression and increase in IFN-γ 
expression in draining lymph nodes.228,229 Hence, TGF-β 
acts as an infection promoting factor in CL.228,229 Another 
study230 showed that local inoculation of anti-TGF-β mAb 
into the Leishmania lesion led to decrease in parasite bur-
den and more rapid healing of wound without alteration 
in IL-4 and IFN-γ production. Immunohistochemical test 
showed that anti-TGF-β treatment increased NO produc-
tion within parasitized lesions.230 This study suggested 
that TGF-β may act as an important regulatory cytokine 
during chronic stages of CL that inhibits NO production 
in macrophages.230 In addition, this study expressed that 
during the lack of TGF-β, even with dominant Th2-type 
responses, relatively low levels of IFN-γ are sufficient to 
activate macrophages for parasite killing within parasitized 
lesions.230 Also, several studies have reported that IL-10 
and TGF-β expression increase in long lasting lesions than 
acute lesions in CL.231–233 TGF-β modulates lymphocyte 
proliferation and production of inflammatory cytokines as 
it limits increased inflammatory reactions that are respon-
sible for tissue damage.234,235 Moreover, TGF-β plus IL-6 
promote the differentiation of Th17 cells from naïve T 
cells.236,237 In contrast, increased production of TGF-β and 
IL-6 restimulates activated Th17 cells that have resulted 
in IL-10 production to control immunopathology caused 
by Th17 cells (a self-regulating mechanism).122 TGF-β is 
a crucial immunoregulatory cytokine that limits inflamma-
tory reactions by downregulating inflammatory cytokines 
in leishmaniasis.

Conclusion
Cytokines play vital roles in cell propagation and differ-
entiation toward defense against pathogens. However, 
the balances of pro- and anti-inflammatory cytokines are 
needed to prevent immunopathological disorders. In leish-
maniasis, protective immunity depends predominantly 
on a Th1 response and production of pro-inflammatory 

peripheral blood mononuclear cells of L. guyanensis- 
infected patients, while the absence of IL-12Rβ2 chain 
in lesions indicated the pivotal role of IL-13 in sus-
ceptibility to CL caused by L. guyanensis.204 Matthews  
et al.202 found that IL-13 is a susceptible factor for L. major 
infection, while IL-13-deficient BALB/c mice are resist-
ant to the infection. Overexpression of IL-13 in C57BL/6 
mice leads to suppression of IFN-γ and IL-12 expression 
and increases susceptibility to L. major infection, even 
in the absence of IL-4 expression.202 Additionally, trans-
genic mice expressing IL-13 failed to control L. major 
infection and showed 1000-fold higher parasite load 
than wild-type C57BL/6 mice. In contrast, Sosa et al.205 
showed that IL-13-deficient C57BL/6 mice were suscepti-
ble to infection and indicated progressive and non-healing 
wounds as the wild-type mice infected to L. mexicana, 
but IL-4−/−/IL-13−/− mice were highly resistant with lower 
parasite burden and higher levels of IL-12 and IFN-γ than 
wild-type and IL-13−/− mice. The study shows that IL-13 
is not a major susceptible factor to L. mexicana but IL-4 
is a dominant cytokine for pathogenesis of cutaneous  
L. mexicana infection. Indeed, IL-4 may compensate lack 
of IL-13 and promotes susceptibility to L. mexicana in 
C57BL/6 mice and led to pathogenesis of L. mexicana 
infection. Alexander et al.194 using L. mexicana-infect-
ed-IL-4/IL-13−/− mice demonstrated that IL-13 is a crucial 
factor to maintaining non-healing forms of CL in chronic 
phase but IL-4 plays a crucial role in primary lesion for-
mation. Collectively, IL-13 plays a vital in susceptibility 
to leishmaniasis, especially in promoting chronic phase 
of disease.

TGF-β
TGF-β is a pleiotropic growth factor with significant 
anti-inflammatory and immunosuppressive properties and 
plays central roles in homeostasis of immune system.206 
TGF-β is produced by different cells, including CD4+ 
T cells (Tregs), monocytes, neutrophils, and DCs.207–210 
TGF-β cytokine and Treg cells are essential for control of 
immune responses against foreign pathogens, the main-
tenance of homeostasis, and promoting immune toler-
ance.170,208,211,212 TGF-β suppresses both adaptive immune 
response and the innate immune response by inhibiting the 
function of inflammatory cells and promoting the function 
of Treg cells.213–215 Also, TGF-β suppresses differentiation 
of T cells to Th1 and Th2 subsets.216,217 In addition, TGF-β 
suppresses generation of activated T cells by inhibiting 
production of IL-2 and IL-1.218,219 TGF-β differentiates 
CD4+CD25− naïve T cells to iTreg cells (CD4+CD25+ 
Tregs) in peripheral lymphoid organs and other tissues.220 
Although nTregs does not require TGF-β for their dif-
ferentiation in the thymus, TGF-β is essential for sur-
vival and function of nTregs221–223 nTregs and iTregs (Tr1 
andTh3 cells) produce high levels of TGF-β.169,170,172,173,175 
Therefore, Tregs produce TGF-β and provide a positive 
feedback loop.
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of the immunity mechanisms can help researchers find 
new therapeutic strategies and development of effective 
vaccines.
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