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540 M. Morrow

Introduction

The primary goal of this paper is to prove that algebraic K -theory satisfies a pro

Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both

zero and finite characteristic, at least assuming strong resolution of singularities. This

may also be interpreted as the well-definedness of a theory of K -groups with compact

support.

To state the main result, we first recall that an abstract blow-up square of schemes is a

pull-back diagram

Y ′ //

��

X ′

��
Y // X

where X ′→ X is proper, Y → X is a closed embedding, and the induced map on the open

subschemes X ′ \ Y ′→ X \ Y is an isomorphism. We denote by rY the r th infinitesimal

thickening of Y inside X , i.e., rY := SpecOX/Ir , where I ⊆ OX is the sheaf of ideals

defining Y , and similarly for other closed embeddings.

Our pro descent theorem is the following.

Theorem 0.1 (Pro cdh-descent for K -theory; see Theorem 3.7). Let k be an infinite perfect

field which has strong resolution of singularities. For any abstract blow-up square, as

above, consisting of finite type k-schemes, the resulting square of pro spectra

K (X) //

��

K (X ′)

��
{K (rY )}r // {K (rY ′)}r

is homotopy Cartesian. In other words, the canonical map of pro abelian relative K -groups

{Kn(X, rY )}r −→ {Kn(X ′, rY ′)}r

is an isomorphism for all n ∈ Z.

The main applications of Theorem 0.1 are to zero cycles; since the theorem may

be accepted as a black box for these applications, they are presented separately in an

accompanying paper [25]. There, we solve cases of an outstanding conjecture of Srinivas

and Bloch [30, p. 6] concerning the Levine–Weibel Chow group of zero cycles on singular

varieties, and relate Chow groups with modulus, which play a prominent role in Kerz

and Saito’s higher-dimensional class field theory [19], to both Levine–Weibel Chow groups

and K -theory via cycle class maps.

Theorem 0.1 may be interpreted as a definition of K -theory with compact support as

follows. Given a separated k-variety X , we may choose a proper compactification X ,

set Y := X \ X , and then define K c(X) := holimr K (X , rY ). Theorem 0.1 implies that

this definition does not depend on the chosen compactification X of X , and we prove

in Proposition 4.4 that there is a pushforward localization sequence relating K c(U )
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Pro cdh-descent for cyclic homology and K -theory 541

and K c(X) for any open subvariety U ⊆ X , thereby justifying the nomenclature of K c as

a theory with compact support.

In characteristic zero, we actually establish Theorem 0.1 in much greater generality,

namely for any abstract blow-up square of Noetherian, quasi-excellent, Q-schemes of finite

Krull dimension. This is obtained by first extending Haesemeyer’s argument [15, §§ 5, 6],

for checking whether a presheaf of spectra satisfies cdh-descent, to this generality; see

Proposition 3.6. This also allows us to prove the vanishing part of Weibel’s K -dimension

conjecture for such schemes; see Theorem 4.7.

To contextualize Theorem 0.1, we should make a few comments about cdh-descent.

Algebraic K -theory (as well as André–Quillen, Hochschild, topological Hochschild, cyclic,

and topological cyclic homologies) does not satisfy descent in Voevodsky’s cdh-topology

[33], in contrast to, for example, Weibel’s homotopy-invariant K -theory [15], or periodic

cyclic homology [4]. Since it is known that K -theory does satisfy Nisnevich descent,

this precisely means that taking the K -theory of an abstract blow-up square does not

necessarily yield a homotopy Cartesian square of spectra. In fact, the failure of K -theory

to satisfy cdh-descent in characteristic zero (respectively, p > 0) is precisely equal to

the analogous obstruction in cyclic homology [3, 4, 15] (respectively, topological cyclic

homology [12]); this has led to new calculations of the K -theory of singular algebraic

varieties, especially by Cortiñas, Haesemeyer, Schlichting, Walker, and Weibel [4–8] in

characteristic zero. The moral of Theorem 0.1 is that the failure of K -theory to satisfy

cdh-descent can be remedied by taking all infinitesimal thickenings of the exceptional

subschemes Y and Y ′ into account.

We now briefly discuss how Theorem 0.1 is proved and simultaneously state our other

main results. Using the aforementioned cdh comparison between K -theory and cyclic

homology, Theorem 0.1 in characteristic zero may be reduced to an analogous pro

Mayer–Vietoris assertion about cyclic homology, or even Hochschild or André–Quillen

homology. We establish this pro Mayer–Vietoris property in considerable generality

(see Theorem 2.10 for the André–Quillen case).

Theorem 0.2 (Pro descent for HH and HC with respect to abstract blow-ups; see

Theorem 3.3). Let k be a Noetherian ring, and let

Y ′

��

// X ′

��
Y // X

be an abstract blow-up square of Noetherian, finite Krull-dimensional k-schemes. Then

the canonical maps

{HH k
n (X, rY )}r −→ {HH k

n (X
′, rY ′)}r , {HCk

n (X, rY )}r −→ {HCk
n (X
′, rY ′)}r

are isomorphisms of pro abelian groups for all n ∈ Z.

We should mention at this point that our Hochschild and cyclic homology groups are

always computed in the derived sense, that is, after replacing rings by free simplicial

resolutions (see § 3.1 for details).
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542 M. Morrow

The key input to proving Theorem 0.2 is new formal function theorems for

André–Quillen, Hochschild, and cyclic homology, in the style of Grothendieck’s formal

functions theorem for coherent cohomology. In particular, in the case of Hochschild

homology, we prove the following (see Corollary 2.5 for the André–Quillen case).

Theorem 0.3 (Formal functions theorem for HH ; see Theorem 3.2(v)). Let A be a

Noetherian ring, I ⊆ A an ideal, and X a proper scheme over A of finite Krull dimension.

Then the canonical map

{HH A
n (X)⊗A A/I r

}r −→ {HH A/I r

n (X ×A A/I r )}r

is an isomorphism of pro A-modules for all n ∈ Z.

If A, as in the previous theorem, is moreover I -adically complete, then it follows that

the canonical map HH A
n (X) −→ lim

←−r
HH A/I r

n (X ×A A/I r ) is an isomorphism for all n ∈ Z,

which is the statement closest to the usual formulation of Grothendieck’s formal functions

theorem for coherent cohomology.

The proof of Theorem 0.1 in finite characteristic is similar in outline, except that the

results concerning André–Quillen, Hochschild, and cyclic homology in §§ 2 and 3.1 must

be replaced by similar results for topological Hochschild and cyclic homology. These

results are not contained in the current paper, but may rather be found in recent joint

work with Dundas [10], which includes in particular the THH analogue of Theorem 0.3.

The few details missing from [10], where for example the analogue of Theorem 0.2 for

THH and TC was not explicitly stated, are given in § 3.2.

Notation, etc. All rings are commutative, associative, and unital. If A• is a simplicial

abelian group, then we often abuse notation by identifying A• with its associated complex

N A•; in particular, we speak of the homology groups Hn(A•) of A•, rather than more

correctly, but equivalently, the simplicial homotopy groups πn(A•) or the homology

groups Hn(N A•).

1. Review of pro modules and Artin–Rees properties

1.1. Pro abelian groups and pro modules

Everything we need about categories of pro objects may be found in one of the standard

references, such as the appendix to [2], or [17]. We will often use Pro(A - mod), the category

of pro A-modules for some ring A, and Pro Ab, the category of pro abelian groups.

Let C be a category. In this paper, an object of Pro C is simply an inverse system

· · · → A2 → A1 of objects and morphisms in C, which is denoted {Ar }r or very

occasionally A∞. Morphisms in Pro C are given by the rule

HomProC({Ar }r , {Bs}s) := lim
←−

s
lim
−→

r
HomC(Ar , Bs),

where the right-hand side is a genuine pro-ind limit in the category of sets, and

composition is defined in the obvious way. For example, a pro object {Ar }r is isomorphic

to zero (assuming that a zero object exists in C, and hence also in Pro C) if and only if

for each r > 1 there exists s > r such that the transition map As → Ar is zero.
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There is a fully faithful embedding C → Pro C. Assuming that C has countable inverse

limits, this has a right adjoint Pro C → C, {Ar }r 7→ lim
←−r

Ar , which is left exact but not

right exact. Moreover, if C is an abelian category then so is Pro C: given a inverse system

of exact sequences

· · · −→ An−1(r) −→ An(r) −→ An+1(r) −→ · · · ,

the ‘limit as r →∞’, namely

· · · −→ {An−1(r)}r −→ {An(r)}r −→ {An+1(r)}r −→ · · · ,

is an exact sequence in Pro C.

Pro spectral sequences play an important role in the paper, which we will discuss for

concreteness only in the case of abelian groups. Suppose that

E1
pq(r) H⇒ Hp+q(r),

for r > 1, are spectral sequences of abelian groups, which are functorial in that we

have morphisms of spectral sequences · · · → E•pq(2)→ E•pq(1). To avoid convergence

issues, suppose that each spectral sequence is bounded, by a bound independent of r ; for

example, each spectral sequence might be zero outside the first quadrant. Then we will

often ‘let r →∞’ to obtain a spectral sequence of pro abelian groups

E1
pq(∞) := {E

1
pq(r)}r H⇒ {Hp+q(r)}r .

For further discussion and a dummy example, see [24, Appendix A].

1.2. Artin–Rees properties

For the sake of reference, we now formally state a fundamental Artin–Rees result which

will be used several times; this result appears to have been first noticed and exploited by

André [1, Proposition 10 & Lemma 11] and Quillen [27, Lemma 9.9].

Theorem 1.1 (André–Quillen). Let A be a Noetherian ring, and I ⊆ A any ideal.

(i) If M is a finitely generated A-module, then the pro A-module {TorA
n (A/I r ,M)}r

vanishes for all n > 0.

(ii) The ‘completion’ functor

−⊗A A/I∞ : A - mod −→ Pro(A -mod)

M 7→ {M ⊗A A/I r
}r

is exact on the subcategory of finitely generated A-modules.

Sketch of proof. By picking a resolution P• of M by finitely generated projective

A-modules and applying the classical Artin–Rees property to the pair d(Pn) ⊆ Pn−1,

one sees that for each r > 1 there exists s > r such that the map

TorA
n (A/I s,M)→ TorA

n (A/I r ,M)

is zero. This proves (i). (ii) is just a restatement of (i).
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544 M. Morrow

Next, we quote a similar Artin–Rees result for André–Quillen homology from [24], a

companion to this paper which treats pro excision problems; the basics of André–Quillen

homology will be recalled in § 2.1:

Theorem 1.2. Let k → A be a homomorphism of Noetherian rings, I ⊆ A an ideal, and

M an A-module. Then the following hold.

(i) {Di
n(A/I r

|A,M/I r M)}r = 0 for all n > 0, i > 1.

(ii) The canonical map {Di
n(A|k,M/I r M)}r −→ {Di

n(A/I r
|k,M/I r M)}r is an iso-

morphism for all n > 0, i > 0.

Proof. This is [24, Theorem 4.4], where the pro H-unitality hypothesis of the cited

theorem is satisfied thanks to [24, Theorem 0.3].

2. Formal function properties and pro descent for André–Quillen homology

The aim of this section is to prove that André–Quillen homology of proper schemes

satisfies certain formal function properties. These will be established in § 2.2, after

preliminary material on André–Quillen homology is presented in § 2.1. From these formal

function properties we show in § 2.3 that André–Quillen homology satisfies the desired

pro Mayer–Vietoris property with respect to abstract blow-up squares; this is a key step

in deducing the same for K -theory in characteristic zero.

2.1. André–Quillen homology for schemes

In this preliminary section, we recall the fundamentals of André–Quillen homology

[1, 26, 28], though we expect that the reader already has some familiarity with it, before

extending it from algebras to schemes in the standard way using hypercohomology, as

was done for Hochschild and cyclic homology in [34, 38].

Let k → A be a homomorphism of rings; let P•→ A be a simplicial resolution of A by

free k-algebras, and set

LA|k := �
1
P•|k ⊗P• A.

Thus LA|k is a simplicial A-module which is free in each degree; it is called the cotangent

complex of the k-algebra A. The cotangent complex up to homotopy depends only on A,

since the free simplicial resolution P•→ A is unique up to homotopy.

Given simplicial A-modules M•, N•, the tensor product and alternating powers are

new simplicial A-modules defined degreewise: (M•⊗A N•)n = Mn ⊗A Nn and (
∧i

A M•)n =∧i
A Mn .

In particular, we set Li
A|k :=

∧i
A LA|k for each i > 1. The André–Quillen homology of

the k-algebra A, with coefficients in any A-module M , is defined by

Di
n(A|k,M) := Hn(Li

A|k ⊗A M),

for n > 0, i > 1. When M = A, the notation is simplified to

Di
n(A|k) := Di

n(A|k, A) = Hn(Li
A|k).

When i = 1, the superscript is often omitted, writing Dn(A|k,M) = Hn(LA|k ⊗A M) and

Dn(A|k) = Hn(LA|k) instead. If k → A is essentially of finite type and k is Noetherian,
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then Di
n(A|k,M) is a finitely generated A-module for all n, i , and for all finitely generated

A-modules M .

To avoid any ambiguity, we also remark that the notation Di
n(A|k,M) is defined in the

same way if i 6 0 or n < 0. However, Di
n(A|k,M) = 0 if n < 0 and

D0
n(A|k,M)=

{
M n = 0,
0 else,

since L0
A|k ⊗A M ' M .

Now, we extend the definition of André–Quillen homology to schemes; since we restrict

consideration to Noetherian schemes of finite Krull dimension, we may follow a classical

approach, as we explain in the next remark.

Remark 2.1 (Hypercohomology of non-bounded-below complexes). Our main results

concerning André–Quillen (and later Hochschild and cyclic) homology of schemes concern

Noetherian schemes or even varieties; therefore, we will restrict consideration throughout

to Noetherian schemes of finite Krull dimension to simplify the hypercohomology of

complexes which are not necessarily bounded below.

The Zariski hypercohomology of a cochain complex of sheaves M• on a Noetherian

scheme X of finite Krull dimension is defined as follows [23, Appendix C]: there exists

a quasi-isomorphism M•
∼
→ F•, where F• is a cochain complex of acyclic sheaves on X ,

and one shows that

H∗(X,M•) := H∗(F•(X))
is independent of F . We may use the Cartan–Eilenberg approach to construct F•: first,

pick functorial acyclic resolutions M p ∼
→ F p• of length 6 dim X for each p ∈ Z (e.g., the

Godement resolution), and then set F• = Tot F••; note that at most 1+ dim X terms

appear in each direct sum Fn
=
⊕

p+q=n F p q .

The familiar spectral sequences

E pq
1 = Hq(X,M p) H⇒ Hp+q(X,M•)

′E pq
2 = H p(X, Hq(M•)) H⇒ Hp+q(X,M•)

remain valid and bounded. We will also require two variations on Deligne’s spectral

sequence for the hypercohomology of a bounded-below filtered complex [9, 1.4.5], which

are not hard to prove given the boundedness assumptions we impose.

(i) Let M•• be a bounded (i.e., M p q is non-zero for only finitely many p, q in each

bounded region of the plane) double cochain complex of sheaves. Then there is a

bounded spectral sequence

E pq
2 = Hp(X, Hq

v (M
••)) H⇒ Hp+q(X,Tot M••),

where Hv indicates taking cohomology in the second index.

(ii) Let M• be a cochain complex of sheaves equipped with a descending filtration F M•

which satisfies F0 M• = M• and F p M• = 0 for p � 0. Then there is a bounded

spectral sequence

E pq
1 = Hp+q(X, grq M•) H⇒ Hp+q(X,M•).
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546 M. Morrow

Now, we are prepared to define André–Quillen homology of schemes. Let k be a

ring, and fix i > 0. First, notice that if A is a k-algebra then is possible to choose

a simplicial resolution P•(A)→ A by free k-algebras in a way which is functorial in

A, for example, via the comonad associating to A the free k-algebra generated by

the set A; see [37, e.g., 8.6.16]. So, given a scheme X over k, let P̃•(X) denote the

simplicial sheaf of k-algebras obtained by degreewise sheafifying U 7→ P•(OX (U )); also,

put Li
X |k := �

i
P̃•(X)/k

⊗P̃•(X)OX . Given a quasi-coherent OX -module M , and assuming

that X is Noetherian of finite Krull dimension, define the André–Quillen homology of X ,

relative to k, with coefficients in M to be

Di
n(X |k,M) := H−n(X,Li

X |k,neg⊗OX M),

where the subscript neg indicates replacing the simplicial sheaf Li
X |k by its associated

chain complex and then negating the indexing to get a cochain complex of sheaves.

We continue the standard notational abuses of omitting i when it equals 1 and omitting

M when it equals OX . Note, from the first two properties below, that Di
n(X |k) can be

non-zero for n both positive and negative.

The following consequences are either automatic from the construction, or follow from

the previous remark on hypercohomology and mimicking the arguments for Hochschild

homology given in [34, 38], bearing in mind that André–Quillen homology of rings behaves

well under localization.

i = 0i = 0i = 0: Since L0
X |k,neg⊗OX M ' M , we have D0

n(X |k,M) ∼= H−n(X,M).

Agreement on affines: If X = Spec A is an affine k-scheme, then Di
n(X |k,M) =

Di
n(A|k,M).

Mayer–Vietoris property: If U, V are an open cover of X , then there is a long exact

Mayer–Vietoris sequence

· · · →Di
n(X |k,M)→Di

n(U |k,M |U )⊕ Di
n(V |k,M |V )→Di

n(U ∩ V |k,M |U∩V )→ · · · .

Hypercohomology spectral sequence: There is a bounded fourth quadrant spectral

sequence

E pq
2 = H p(X,Di

−q(X |k,M)) H⇒ Di
−p−q(X |k,M),

where Di
−q(X |k,M) denotes the Zariski sheafification of U 7→ Di

−q(U |k,M |U ). This

shows that Di
n(X |k,M) = 0 for n < − dim X .

Moreover,

Homology long exact sequence: If 0→ M → N → P → 0 is a short exact sequence of

quasi-coherent OX -modules, then there is a long exact sequence of André–Quillen

homology

· · · −→ Di
n(X |k,M) −→ Di

n(X |k, N ) −→ Di
n(X |k, P) −→ · · · .

(Proof: This is the long exact hypercohomology sequence associated to a short exact

sequence of complexes of sheaves.)
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Higher Jacobi–Zariski spectral sequence: Let k → A be a homomorphism of rings, let X
be a Noetherian scheme over A of finite Krull dimension, let M be a quasi-coherent

OX -module, and fix i > 0. Then there is a natural bounded spectral sequence of

A-modules E1
pq H⇒ Di

p+q(X |k,M) whose columns may be described as follows.

(i) Suppose that p < −i or p > 0. Then E1
pq = 0.

(ii) Suppose that −i 6 p 6 0. Then the pth column of the E1-page is given by a

bounded spectral sequence

E2
αβ = D−p

α

(
A|k, Di+p

β (X |A,M)
)
H⇒ E1

p,α+β−p.

(Note that E2
αβ = 0 if α or β is < − dim X .)

(Proof: In the case that X is affine, this is due to Kassel and Sletsjøe [18].

Examining the proof in the affine case reveals that Li
X |k has a filtration with graded

pieces grp Li
X |k ' Lp

A|k ⊗A Li−p
X/A for p = 0, . . . , i . Tensoring by M , and applying

the variations on Deligne’s spectral sequence for a filtered complex given in the

Remark 2.1, one easily obtains the desired spectral sequence.)

Example 2.2. Suppose that X is smooth over k, or more generally that X has an affine

open cover by the spectra of geometrically regular k-algebras. Then Li
X |k ' �

i
X |k , and so

Di
n(X |k) ∼= H−n(X, �i

X |k) for all n ∈ Z, i > 0.

This completes our discussion of André–Quillen homology for schemes.

2.2. Formal function properties for AQ homology of schemes

Now that the basic properties of André–Quillen homology for schemes have been

established, we show that it satisfies formal function properties akin to Grothendieck’s

formal functions theorem. We begin with a lemma in the affine case.

Lemma 2.3. Let A→ B be an essentially finite type morphism of Noetherian rings, I ⊆ B
an ideal, and M a finitely generated B-module. Then the canonical map

{Di
n(B|A,M)⊗B B/I r

} −→ {Di
n(B|A,M/I r M)}r

is an isomorphism for all n, i > 0.

Proof. Given another B-module N , there is a natural first quadrant spectral sequence

E2
pq = TorB

p (D
i
q(B|A,M), N ) H⇒ Di

p+q(B|A,M ⊗B N ).

This is proved in the usual way by choosing a resolution of N by flat B-modules and

applying the Kunneth spectral sequence for a tensor product of complexes.

Applying this with N = B/I r gives spectral sequences

E2
pq(r) = TorB

p (D
i
q(B|A,M), B/I r ) H⇒ Di

p+q(B|A,M/I r M),
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and taking the limit over r yields a first quadrant spectral sequence of pro B-modules:

E2
pq(∞) = {TorB

p (D
i
q(B|A,M), B/I r )}r H⇒ {Di

p+q(B|A,M/I r M)}r .

Our hypotheses on A, B and M ensure that the B-modules Di
q(B|A,M) are finitely

generated, whence Theorem 1.1(i) implies that E2
pq(∞) = 0 for p > 0. We thus obtain

edge map isomorphisms {Di
n(B|A,M)⊗B B/I r

}
'
→ {Di

n(B|A,M/I r M)}, as desired.

In the following results, a sheaf of ideals I ⊆ OX plays a prominent role; to keep the

notation clear, we write rY for the r th infinitesimal thickening of the closed subscheme

defined by I, i.e.,

rY := SpecOX/Ir .

Theorem 2.4. Let A be a Noetherian ring and π : X → Spec A a Noetherian scheme over

A of finite Krull dimension; let I ⊆ OX be an ideal sheaf and M a coherent OX -module.

Then the following hold.

(i) The canonical map {Di
n(X |A,M/Ir M)}r −→ {Di

n(rY |A,M/Ir M)}r is an iso-

morphism for all n ∈ Z, i > 0.

(ii) Assuming that π is essentially of finite type, the canonical map of pro sheaves

{Di
n(X |A,M)⊗OX OX/Ir

}r −→ {Di
n(X |A,M/Ir M)}r is an isomorphism for all

n ∈ Z, i > 0.

Now, suppose further that π is proper and that I = IOX for some ideal I ⊆ A. Then the

following hold.

(iii) Di
n(X |A,M) is a finitely generated A-module for all n ∈ Z, i > 0.

(iv) The canonical map {Di
n(X |A,M)⊗A A/I r

}r −→ {Di
n(X |A,M/Ir M)}r is an iso-

morphism for all n ∈ Z, i > 0.

Proof. (i) By the Mayer–Vietoris long exact descent sequence, and the usual two

inductions starting with an affine open cover of X (note that X is quasi-separated, since

it is Noetherian), this claim reduces to the case that X is affine, in which case it is

Theorem 1.2(ii).

(ii) Assume that π is essentially of finite type. This claim also reduces to the affine

case, which is Lemma 2.3, but since this is the only occurrence of pro sheaves, we provide

a few more details. Fixing n ∈ Z and i > 0, let Kr and Cr respectively denote the kernel

and cokernel of the canonical map

Di
n(X |A,M)⊗OX OX/Ir

−→ Di
n(X |A,M/Ir M).

Let {Ui } be a finite cover of X by affine opens. Then, given r > 1 and applying the previous

lemma, there exists s > r such that the maps Ks(Ui )→ Kr (Ui ) and Cs(Ui )→ Cr (Ui )

are zero; since these are quasi-coherent sheaves, it follows that the maps Ks → Kr and

Cs → Cr are also zero, whence {Kr }r and {Cr }r vanish, completing the proof.

For the rest of the proof, we assume that π is proper and that I = IOX for some ideal

I ⊆ A.

(iii) Each OX -module Di
n(X |A,M) is coherent, since X is of finite type over A. Since

X is proper over A, this implies that each of the cohomology groups of Di
n(X |A,M) is
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a finitely generated A-module; so the claim follows from the hypercohomology spectral

sequence.

(iv) As explained in the proof of (iii), the hypercohomology spectral sequence

E pq
2 = H p(X,Di

−q(X |A,M)) H⇒ Di
−p−q(X |A,M)

consists of finitely generated A-modules. Since {−⊗A A/I r
}r is an exact functor on the

category of finitely generated A-modules, by Theorem 1.1(ii), we may apply it to the

spectral sequence to obtain a spectral sequence of pro A-modules

E pq
2 (∞) = {H p(X,Di

−q(X |A,M))⊗A A/I r
}r H⇒ {Di

−p−q(X |A,M)⊗A A/I r
}r .

This spectral sequence maps to the limit of the hypercohomology spectral sequences for

the OX -modules M/Ir M , namely

′E pq
2 (∞) = {H p(X,Di

−q(X |A,M/Ir M))}r H⇒ {Di
−p−q(X |A,M/Ir M)}r ,

and so to complete the proof it is enough to show that the canonical maps E pq
2 (∞)→

′E pq
2 (∞) are all isomorphisms.

First, since Di
−q(X |A,M) is a coherent sheaf and π is proper, Grothendieck’s formal

functions theorem1[13, Corollary 4.1.7] states that the canonical map

E pq
2 (∞) = {H p(X,Di

−q(X |A,M))⊗A A/I r
}r −→ {H p(X,Di

−q(X |A,M)⊗OX OX/Ir )}r

is an isomorphism. Second, part (ii) implies that the canonical map

{H p(X,Di
−q(X |A,M)⊗OX OX/Ir )}r −→ {H p(X,Di

−q(X |A,M/Ir M))}r = ′E
pq
2 (∞)

is also an isomorphism, completing the proof.

It is part (iv) of the previous theorem which will be so essential in § 2.3; a secondary

application of it is the following corollaries, which will not be needed but which most

closely mimic Grothendieck’s formal functions theorem for coherent cohomology.

Corollary 2.5. Let A be a Noetherian ring, X a proper scheme over A of finite Krull

dimension, I ⊆ A an ideal, and M a coherent OX -module. Then the canonical map

{Di
n(X |A,M)⊗A A/I r

}r −→ {Di
n(rY |A/I r ,M/I r M)}r

is an isomorphism for all n ∈ Z, i > 0, where rY = X ×A A/I r .

Proof. Using parts (iv) and (i) of Theorem 2.4, it remains only to prove that the canonical

map {Di
n(rY |A,M/I r M)}r → {Di

n(rY |A/I r ,M/I r M)}r is an isomorphism. From the

higher Jacobi–Zariski spectral sequence, this follows from the vanishing of {Di
n(A/I r

|A)}r ;

the details are as follows.

Applying the higher Jacobi–Zariski spectral sequences to the homomorphism A→
A/I r and A/I r -scheme rY , we obtain a bounded spectral sequence of pro A-modules

1This theorem is normally stated as the isomorphism lim
←−r H p(X, N )⊗A A/I r '

→ lim
←−r H p(X, N/Ir N ) for

any coherent OX -module N . But a quick examination of the cited proof in EGA shows that the stronger

isomorphism of pro A-modules {H p(X, N )⊗A A/I r
}r
'
→ {H p(X, N/Ir N )}r also holds.
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E1
pq(∞) H⇒ {D

i
p+q(rY |A,M/I r M)}r which is supported in the range −i 6 p 6 0, where

it is described by bounded right-half-plane spectral sequences

E2
αβ(∞) = {D

−p
α (A/I r

|A, Di+p
β (rY |A/I r ,M/I r M))}r H⇒ E1

p,α+β−p(∞).

For any r, α > 0, Theorem 1.2(i) may be applied to the ideal I r and module

Di+p
β (rY |A/I r ,M/I r M) to deduce that there exists s > 1 such that the second of the

following maps, and hence the composition, is zero:

D−p
α (A/I sr

|A, Di+p
β (srY |A/I sr ,M/I sr M)) −→ D−p

α (A/I s
|A, Di+p

β (rY |A/I r ,M/I r M))

−→ D−p
α (A/I r

|A, Di+p
β (rY |A/I r ,M/I r M)).

That is, E2
αβ(∞) = 0 for α 6= 0. Also, E2

0β(∞) = 0 for p 6= 0. So the E-spectral sequences

degenerate to edge map isomorphisms

E1
p,n−p(∞)

∼=

{
0 p 6= 0,
Di

n(rY |A/I r ,M/I r M) p = 0.

Thus the E-spectral sequence degenerates to the desired edge map isomorphisms.

Corollary 2.6 (Formal functions theorem for André–Quillen homology). Under the

hypotheses of the previous corollary, the canonical map

Di
n(X |A,M )̂ −→ lim

←−
r

Di
n(rY |A/I r ,M/I r M)

is an isomorphism for all n ∈ Z, i > 0, where Di
n(X |A,M )̂ denotes the I -adic completion

of Di
n(X |A,M).

Proof. Take lim
←−r

of the pro isomorphism of the previous corollary.

Remark 2.7. Let A be a Noetherian ring, X a proper scheme over A of finite Krull

dimension, and I ⊆ A an ideal with respect to which A is assumed to be adically complete.

Applying Corollary 2.6 to M = OX , and noting that Di
n(X |A) is a finitely generated

A-module, and hence already I -adically complete, we obtain

Di
n(X |A)

'
−→ lim
←−

r
Di

n(rY |A/I r ).

2.3. Pro descent for AQ homology with respect to blow-up squares

With the formal function theorems for André–Quillen homology established, we may now

proved that André–Quillen homology satisfies the desired pro Mayer–Vietoris property

with respect to abstract blow-up squares. We begin by developing further the results of

Theorem 2.4 in the case that π is an isomorphism away from V (I ).

Lemma 2.8. Let k → A be a homomorphism of Noetherian rings, I ⊆ A an ideal, and

X a proper scheme over A of finite Krull dimension such that the induced morphism
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X \ V (IOX )→ Spec A \ V (I ) is an isomorphism. Then the following canonical maps are

isomorphisms for all n ∈ Z, i > 0.

(i) {Di
n(X |A, I rOX )}r −→ {I r Di

n(X |A)}r
(∗)
∼= 0

(vanishing (∗) not necessarily valid if i = n = 0).

(ii) {Di
n(A|k, I r )} −→ {Di

n(X |k, I rOX )}r .

Proof. (i) The short exact sequences 0→ I rOX → OX → OX/I rOX → 0 induce a long

exact sequence of pro A-modules

· · · −→ {Di
n(X |A, I rOX )}r −→ Di

n(X |A) −→ {D
i
n(X |A,OX/I rOX )}r −→ · · · .

According to Theorem 2.4(iv), {Di
n(X |A,OX/IOX )}r ∼= {Di

n(X |A)⊗A A/I r
}r , from which

it follows that the long exact sequences breaks into short sequences and induce the desired

isomorphisms {Di
n(X |A, I rOX )}r

'
→ {I r Di

n(X |A)}r .

Regarding the vanishing claim, suppose first that i = 0; then D0
n(X |A) = H−n(X,OX ),

which is a finitely generated A-module (since X is proper over A) which is supported on

V (I ) when n 6= 0 (since X \ V (IOX ) ∼= Spec A \ V (I )), and hence is killed by a power of

I . Next, suppose that i > 0; in this case, the vanishing claim merely requires that X be

essentially of finite type over A; induction on the size of an affine open cover of X reduces

us to proving that if B is an essentially finite type A-algebra then Di
n(B|A) is killed by

a power of I . But Di
n(B|A) is a finitely generated B-module supported on V (I B), since

André–Quillen homology behaves well under localization; thus it is killed by a power of

I , completing the proof of all the vanishing claims.

(ii) The higher Jacobi–Zariski spectral sequence states that for each r > 1 there is a

natural, third quadrant, bounded spectral sequence

E1
pq(r) H⇒ Di

p+q(X |k, I rOX )

which vanishes outside −i 6 p 6 0, and whose columns in the range −i 6 p 6 0 are

described by natural, first quadrant spectral sequences

E2
αβ(r) = D−p

α (A|k, Di+p
β (X |A, I rOX )) H⇒ E1

p,α+β−p(r).

According to part (i), {E2
αβ(r)}r = 0 unless β = 0 and p = −i , whence the limit of the

spectral sequences collapse to edge map isomorphisms

{Di
n(A|k, D0

0(X |A, I rOX ))}r
'
→ {Di

n(X |k, I rOX )}r .

Since {D0
0(X |A, I rOX )}r ∼= {I r D0

0(X |A)}r = {I
r H0(X,OX )}r by part (i) and the usual

description of André–Quillen homology when i = 0, we will have completed the proof as

soon as we show that the canonical map

{I r
}r −→ {I r H0(X,OX )}r

is an isomorphism of pro A-modules. Write B := H0(X,OX ), which is a finite A-algebra

with the property that Ap
'
→ B⊗A Ap for each prime ideal p ⊆ A not containing I ; hence
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the kernel K and cokernel C of the structure map A→ B are killed by a power of I .

Now, consider the following commutative diagram of pro A-modules:

0 // K //

(1)
��

A //

(2)
��

B //

(3)
��

C //

(4)
��

0

0 // {K ⊗A A/I r
}r // {A/I r

}r // {B⊗A A/I r
}r // {C ⊗A A/I r

}r // 0

The top row is an exact sequence of finitely generated A-modules, whence the bottom

row is an exact sequence of pro A-modules by Theorem 1.1(ii). Since K and C are killed

by a power of I , maps (1) and (4) are isomorphisms, and so the central square in the

diagram is bicartesian. It follows that maps (2) and (3) have isomorphic kernels; i.e.,

{I r
}r
'
→ {I r B}r , as required.

Corollary 2.9. Let k be a Noetherian ring, let X ′→ X be a proper morphism between

Noetherian k-schemes of finite Krull dimension, and suppose that I ⊆ OX is an ideal

sheaf such that the induced morphism X ′ \ V (IOX ′)→ X \ V (I) is an isomorphism. Then

the canonical map

{Di
n(X |k, Ir )}r −→ {Di

n(X
′
|k, IrOX ′)}r

is an isomorphism for all n ∈ Z, i > 0.

Proof. By the usual two inductions starting with an affine open cover of X (since X
is Noetherian, and hence quasi-separated) we may assume that X = Spec A is affine, in

which case the statement is precisely Lemma 2.8(ii) (with X rechristened X ′).

We are now equipped to prove our main theorem about André–Quillen homology of

schemes, namely that it satisfies the pro Mayer–Vietoris property with respect to abstract

blow-up squares. Recall that an abstract blow-up square of schemes is a pull-back diagram

Y ′ //

��

X ′

��
Y // X

where X ′→ X is proper, Y → X is a closed embedding, and the induced map on the

open subschemes X ′ \ Y ′→ X \ Y is an isomorphism.

To state our descent result, we need the following piece of notation which we did not

introduce in Remark 2.1 when discussing hypercohomology: if M• is a cochain complex

of sheaves, and M•
∼
→ F• is a quasi-isomorphism to a cochain complex of acyclic sheaves,

then set

H(X,M•) := F•(X),

which is well defined up to quasi-isomorphism and satisfies H∗(H(X,M•)) = H∗(X,M•)
by definition.

The following theorem is true more generally with a coherent module M in place of

OX , but we omit it to simplify the notation.
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Theorem 2.10 (Pro descent for AQ homology with respect to abstract blow-ups). Let k
be a Noetherian ring, and let

Y ′

��

// X ′

��
Y // X

be an abstract blow-up square of Noetherian, finite Krull-dimensional k-schemes. Then

the following square of cochain complexes of pro k-modules is homotopy Cartesian

H(X,Li
X |k,neg)

//

��

H(X ′,Li
X ′|k,neg)

��
{H(rY,Li

rY |k,neg)}r
// {H(rY ′,Li

rY ′|k,neg)}r

resulting in a long exact Mayer–Vietoris sequence of pro k-modules

· · · −→ Di
n(X |k) −→ {D

i
n(rY |k)}r ⊕{Di

n(X
′
|k)}r −→ Di

n{(rY ′|k)}r −→ · · · .

Proof. According to Theorem 2.4(i), the cohomologies of the complexes in the bottom

row of the diagram are unchanged if we replace them by

{H(X,Li
X |k,neg⊗OX OX/Ir )}r −→ {H(X ′,Li

X ′|k,neg⊗OX ′
OX ′/IrOX ′)}r ,

where I is the sheaf of ideals defining Y . Having made this replacement, we must show

that the homotopy fibres of the two resulting vertical arrows

H(X,Li
X |k,neg)

��

H(X ′,Li
X ′|k,neg)

��
{H(X,Li

X |k,neg⊗OX OX/Ir )}r {H(X ′,Li
X ′|k,neg⊗OX ′

OX ′/IrOX ′}r )

are quasi-isomorphic. These homotopy fibres are respectively

{H(X,Li
X |k,neg⊗OX Ir )}r and {H(X ′,Li

X ′|k,neg⊗OX ′
IrOX ′)}r ,

between which the canonical map is indeed a quasi-isomorphism, since {Di
n(X |k, Ir )}r

'
→

{Di
n(X
′
|k, IrOX ′)}r for all n ∈ Z, i > 0, by Corollary 2.9.

3. Formal function properties and pro descent for HH , HC, THH , TC, and

K -theory

Now, we extend the main results of § 2 to Hochschild and cyclic homology of schemes,

and their topological counterparts, and then deduce that K -theory also satisfies the pro

Mayer–Vietoris property with respect to abstract blow-up squares of varieties.
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3.1. Hochschild and cyclic homology

Here, we discuss the theories of derived Hochschild and cyclic homology for schemes

which will concern us.

Let k → A be a homomorphism of commutative rings. Given an A-module M , we

let Hnaive,k
∗ (A,M) denote the ‘usual’ Hochschild homology of A as a k-algebra with

coefficients in M ; it is the homology of the Hochschild complex Ck
• (A,M). In particular,

HHnaive,k
∗ (A) = Hnaive,k

∗ (A, A) denotes the usual Hochschild homology of A as a k-algebra.

However, we will work throughout with the derived version of Hochschild homology, for

which we use the notation H k
∗ (A,M). That is, letting P•→ A be a simplicial resolution

of A by free k-algebras, H k
∗ (A,M) is defined to be the homology (of the diagonal) of the

bisimplicial A-module

Ck
q (Pp,M) = M ⊗k P⊗kq

p . (p, q > 0)

In the special case when A = M , we write HH k
∗ (A) = H k

∗ (A, A).
Next, we discuss cyclic homology. First, HCnaive,k

∗ (A) denotes the usual cyclic homology

of the k-algebra A, which is the homology of the cyclic bicomplex CCk
••(A). Just as for

Hochschild homology, we prefer to denote by HCk
∗(A) the derived version, defined as the

homology of (the diagonal of) the simplicial tricomplex CCk
••(P•), where P•→ A is a

simplicial resolution of A by free k-algebras. The usual SBI sequence remains valid in the

derived setting:

· · · −→ HH k
n (A)

I
−→ HCk

n (A)
S
−→ HCk

n−2(A)
B
−→ · · · .

Next, consider a Noetherian scheme X of finite Krull dimension over k. As in § 2.1, let

P̃k
• (X) denote the simplicial sheaf of k-algebras obtained by degreewise sheafifying U 7→

P•(OX (U )), where P•(OX (U ))→ OX (U ) is a functorially chosen simplicial resolution by

free k-algebras. Given a quasi-coherent OX -module M , set

Ck
• (X,M) := M ⊗k P̃k

• (X)
⊗k•,

and let Ck
neg(X,M) be the cochain complex of quasi-coherent OX -modules, supported in

negative degrees, obtained by negating the numbering of the chain complex of Ck
• (X,M).

Define the derived Hochschild homology of X , relative to k, with coefficients in M to be

its hypercohomology

H k
∗ (X,M) := H−∗(X,Ck

neg(X,M)).

In the special case when M = OX , we write Ck
• (X) = Ck

• (X,OX ) and HH k
∗ (X) =

H k
∗ (X,OX ). The obvious analogues of the ‘Agreement on affines’, ‘Mayer–Vietoris

property’, ‘Hypercohomology spectral sequence’, and ‘Homology long exact sequence’

stated for André–Quillen homology in § 2.1 are true for this derived Hochschild homology

of schemes.

We omit the analogous construction of derived cyclic homology for schemes, since the

procedure should now be clear. As in the affine case, the usual SBI sequence remains

valid:

· · · −→ HH k
n (X)

I
−→ HCk

n (X)
S
−→ HCk

n−2(X)
B
−→ · · · .

The relationships between André–Quillen homology, derived Hochschild/cyclic

homology, and usual Hochschild/cyclic homology are summarized by the next lemma.
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Lemma 3.1. Let k be a ring, X a Noetherian scheme of finite Krull dimension over k,

and M a quasi-coherent OX -module. Then the following hold.

(i) If X is flat over k, then the canonical maps

H k
n (X,M)→ Hnaive,k

n (X,M) and HCk
n (X)→ HCnaive,k

n (X)

are isomorphisms for all n ∈ Z, where Hnaive,k and HCnaive,k denote the ‘usual’

Hochschild and cyclic homology of a scheme, as constructed in, for example, [34].

(ii) There is a bounded spectral sequence of k-modules

E2
pq = Dq

p(X |k,M) H⇒ H k
p+q(X,M).

Proof. We briefly explain the proofs of these standard results in the affine case when

X = Spec A, after which the case of a scheme should be clear. (i) If A is flat over k then the

map M ⊗k P⊗kq
• → M ⊗k A⊗kq is a quasi-isomorphism for all q > 0, and so the diagonal

of the bisimplicial A-module Ck
• (P•,M) is quasi-isomorphic to Ck

• (A,M). (ii) This is the

spectral sequence associated to the bisimplicial A-module Ck
• (P•,M), since Ck

• (Pp,M)
has homology �∗Pp/k ⊗Pp M for each p > 0.

The following formal function results for Hochschild homology are the analogues of

those given for André–Quillen homology in § 2.

Theorem 3.2. Let k → A be a homomorphism of Noetherian rings and π : X → Spec A
a Noetherian scheme over A of finite Krull dimension; let I ⊆ OX be an ideal sheaf and

M a coherent OX -module. Then the following hold.

(i) The canonical map {H A
n (X,M/Ir M)}r −→ {H A

n (rY,M/Ir M)}r is an isomorphism

for all n ∈ Z.

(ii) Assuming that π is essentially of finite type, the canonical map of pro sheaves

{HA
n (X,M)⊗OX OX/Ir

}r −→ {HA
n (X,M/Ir M)}r is an isomorphism for all n ∈ Z.

Now, suppose further that π is proper and that I = IOX for some ideal I ⊆ A. Then the

following hold.

(iii) H A
n (X,M) is a finitely generated A-module for all n ∈ Z,

and the following canonical maps are isomorphisms for all n ∈ Z.

(iv) {H A
n (X,M)⊗A A/I r

}r −→ {H A
n (X,M/Ir M)}r .

(v) {H A
n (X,M)⊗A A/I r

}r −→ {H
A/I r

n (rY,M/Ir M)}r .

Now suppose still further that the induced morphism X \ V (IOX )→ Spec A \ V (I ) is an

isomorphism. Then the following canonical maps are isomorphisms for all n ∈ Z.

(vi) {H A
n (X, I rOX )}r −→ {I r HH A

n (X)}r
(∗)
∼= 0

(vanishing (∗) not necessarily valid if n = 0).

(vii) {H k
n (A, I r )}r −→ {H k

n (X, I rOX ))}r .
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Proof. Thanks to the André–Quillen to Hochschild homology spectral sequence for

schemes, i.e., Lemma 3.1(ii), these claims immediately reduce to the analogous assertions

for André–Quillen homology, which we have already proved. For the sake of reference,

(i)–(iv) correspond to Theorem 2.4, (v) to Corollary 2.5, and (vi) and (vii) to

Lemma 2.8.

Given a closed embedding Y → X of Noetherian schemes of finite Krull dimension, we

will write HH k
∗ (X, Y ), HCk

∗(X, Y ) for the relative derived Hochschild and cyclic homology

groups, fitting into long exact sequences

· · · −→ HH k
n (X, Y ) −→ HH k

n (X) −→ HH k
n (Y ) −→ · · ·

· · · −→ HCk
n (X, Y ) −→ HCk

n (X) −→ HCk
n (Y ) −→ · · · .

Now, we prove the analogue of Theorem 2.10 for HH and HC , namely that they also

satisfy the pro Mayer–Vietoris property for abstract blow-up squares.

Theorem 3.3 (Pro descent for HH and HC with respect to abstract blow-ups). Let k be

a Noetherian ring, and let

Y ′

��

// X ′

��
Y // X

be an abstract blow-up square of Noetherian, finite Krull-dimensional k-schemes. Then

the canonical maps

{HH k
n (X, rY )}r −→ {HH k

n (X
′, rY ′)}r , {HCk

n (X, rY )}r −→ {HCk
n (X
′, rY ′)}r

are isomorphisms of pro abelian groups for all n ∈ Z.

Proof. The claim for HH is equivalent to the statement that the following square

of cochain complexes of pro k-modules is homotopy Cartesian, where H is the

hypercohomology replacement functor introduced immediately proceeding Theorem 2.10:

H(X,Ck
neg(X)) //

��

H(X ′,Ck
neg(X

′))

��
{H(rY,Ck

neg(rY ))}r // {H(rY ′,Ck
neg(rY ′))}r

This is proved exactly as it was for André–Quillen homology in Theorem 2.10, using the

appropriate parts of Theorem 3.2. More precisely, by Theorem 3.2(i), we may replace the

bottom of the diagram by

{H(X,Ck
neg(X,OX/Ir ))}r −→ {H(X,Ck

neg(X
′,OX ′/IrOX ′))}r
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without changing the cohomologies of the complexes, where I is the sheaf of ideals

defining Y . Then the map between the homotopy fibres of the vertical arrows becomes

{H(X,Ck
neg(X, Ir ))}r −→ {H(X,Ck

neg(X
′, IrOX ′))}r ,

which is a quasi-isomorphism by part Theorem 3.2(vii) (to be precise, by the HH analogue

of Corollary 2.9, which follows from Theorem 3.2(vii) by induction on the size of an affine

open cover of the base). This proves the claim for HH .

To pass to HC , use the five lemma and induction up the limit of the SBI sequences

· · · // HH k
n (X, rY ) //

��

HCk
n (X, rY ) //

��

HCk
n−2(X, rY ) //

��

· · ·

· · · // HH k
n (X

′, rY ′) // HCk
n (X
′, rY ′) // HCk

n−2(X, rY ) // · · ·

(note that it is possible to start the induction since the SBI sequences vanish in degrees

< −max{dim X, dim X ′}).

3.2. Topological Hochschild and cyclic homology

The analogues for topological Hochschild and cyclic homology of the formal function

properties given in Theorem 3.2 were recently proved in joint work with Dundas [10];

from this we will quickly prove that these theories also satisfy the pro Mayer–Vietoris

property with respect to abstract blow-up squares.

We will assume that the reader is familiar with topological Hochschild and cyclic

homology, and so only offer a brief summary. For a quasi-compact quasi-separated

scheme X , the spectra THH(X), TRm(X; p), and TCm(X; p) were defined by Geisser

and Hesselholt in [11] in such a way that all these presheaves of non-connective spectra

satisfy Zariski descent (see the proof of [11, Corollary 3.3.3]). They were shown in [10] to

have reasonable finiteness and continuity properties under the assumption of F-finiteness,

where we fix a prime number p.

Definition 3.4. A Z(p)-algebra is said to be F-finite if and only if the Fp-algebra A/p A
is finitely generated over its subring of pth-powers. A Z(p)-scheme is said to be F-finite

if and only if it admits a finite open cover by the spectra of F-finite Z(p)-algebras.

In particular, given a Noetherian F-finite Z(p)-algebra A, the ring of truncated p-typical

Witt vectors Wm(A) is again a Noetherian F-finite Z(p)-algebra; see [10, § 2] for a detailed

discussion of such issues. Recall that TRm
n (A; p) is naturally a Wm(A)-algebra.

The following establishes that topological Hochschild homology and the related theories

all have the pro Mayer–Vietoris property for abstract blow-up squares.

Theorem 3.5 (Pro descent for THH , TRm , TCm with respect to abstract blow-ups). Let

Y ′

��

// X ′

��
Y // X
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be an abstract blow-up square of Noetherian, F-finite, finite Krull-dimensional

Z(p)-schemes. Then the canonical maps

{THHn(X, rY ;Z/pv)}r −→ {THHn(X ′, rY ′;Z/pv)}r
{TRm

n (X, rY ; p,Z/pv)}r −→ {TRm
n (X

′, rY ′; p,Z/pv)}r
{TCm

n (X, rY ; p,Z/pv)}r −→ {TCm
n (X

′, rY ′; p,Z/pv)}r

are isomorphisms of pro abelian groups for all n ∈ Z and m, v > 1.

Proof. Since THH = TR1, and since TCm
= holim(TRm 1−F

−−→ TRm−1), it is sufficient to

prove the claim for TRm . By Zariski descent, we may assume that X = Spec A is affine.

That is, A is a Noetherian F-finite Z(p)-algebra, I ⊆ A is an ideal, π : X ′→ Spec A is

a proper morphism which induces an isomorphism X ′ \ V (IOX )→ Spec A \ V (I ), and we

must prove that the square of pro spectra

TRm(A; p,Z/pv) //

��

TRm(X ′; p,Z/pv)

��
{TRm(A/I r

; p,Z/pv)}r // {TRm(X ′×A A/I r
; p,Z/pv)}r

(†)

is homotopy Cartesian. By [10, Theorem 5.6], the hypotheses imply that the canonical

maps

{TRm
n (A; p,Z/pv)⊗Wm (A) Wm(A/I r )}r −→ {TRm

n (A/I r
; p,Z/pv)}r

{TRm
n (X

′
; p,Z/pv)⊗Wm (A) Wm(A/I r )}r −→ {TRm

n (X
′
×A A/I r

; p,Z/pv)}r

are isomorphisms of pro Wm(A)-modules for all n ∈ Z. Hence the vertical arrows in (†)
induce surjections at the level of the homotopy groups, and so it is sufficient to show that

the induced horizontal map on the kernels, namely

{Wm(I r ) TRm
n (A; p,Z/pv)}r −→ {Wm(I r ) TRm

n (X
′
; p,Z/pv)}r ,

is an isomorphism for all n ∈ Z. The rest of the proof is devoted to proving this

isomorphism.

First, since TRm
n behaves well under localization (see Lemma 5.1 of [10] and its proof),

the canonical map

TRm
n (X

′
; p,Z/pv)⊗Wm (A) Wm(A f ) −→ TRm

n (X
′
×A A f ; p,Z/pv)

is an isomorphism for any f ∈ A. In particular, if f ∈ I whence X ′×A A f ∼= Spec A f ,

then the canonical map

TRm
n (A; p,Z/pv)⊗Wm (A) Wm(A f ) −→ TRm

n (X
′
; p,Z/pv)⊗Wm (A) Wm(A f )

is an isomorphism. Since the rest of the proof is commutative algebra, write

M := TRm
n (A; p,Z/pv) and N := TRm

n (X
′
; p,Z/pv); these are finitely generated as

Wm(A)-modules, by [10, Theorem 5.3], and we have just proved that the map M → N
becomes an isomorphism after applying −⊗Wm (A) Wm(A f ) for any f ∈ I .
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Second, we claim that the spectra Spec Wm(A f ), f ∈ I , form an open affine cover of

Spec Wm(A) \ V (Wm(I )). This follows from the following two facts:

Wm(A f ) = Wm(A)[ f ],

Wm(I )M
⊆ 〈ideal of Wm(A) generated by [ f ] : f ∈ I 〉 for M � 0,

where [ f ] ∈ Wm(A) denotes the Teichmüller lift of an element f ∈ A. Both these facts

are relatively standard results about Witt rings; for example, see [29, Lemma A.6(i)] and

[10, Lemma 2.1 & Remark 2.2], respectively.

It now follows from commutative algebra that the kernel and cokernel of the map

M → N are killed by a power of Wm(I ). So, by the same argument as used at the end of

the proof of Lemma 2.8, the induced map {Wm(I )r M}r → {Wm(I )r N }r is an isomorphism.

Finally, to complete the proof, note that the chains of ideals Wm(I )r and Wm(I r ) are

intertwined, by [10, Lemma 2.1].

3.3. Pro cdh-descent for K -theory

We now prove the main theorem of the paper, namely that K -theory satisfies the pro

Mayer–Vietoris property with respect to abstract blow-up squares of varieties.

In the interest of not being restricted to varieties over a field, we prefer to work in

the generality of Noetherian quasi-excellent schemes whenever possible. Recall that a

Noetherian scheme X is called quasi-excellent if and only if the formal fibre of each

point of X is geometrically regular and the regular locus of any finite type X -scheme is

open. All ‘naturally occurring’ schemes in algebraic geometry are quasi-excellent, and the

notion is intimately related to resolution of singularities: according to Grothendieck [14,

Proposition 7.9.5], if X is a Noetherian scheme with the property that every integral finite

type X -scheme admits a desingularization, then X is quasi-excellent. If X is furthermore

assumed to be a Q-scheme, then the converse is true by Hironaka [16] and Temkin [31,

Theorem 2.3.6].

The following refinement of the Haesemeyer argument is the key to understanding

Noetherian quasi-excellent Q-schemes; I am grateful to Haesemeyer for discussions about

this.

Proposition 3.6. Let E be a presheaf of spectra on the category of Noetherian

quasi-excellent Q-schemes with the following properties: E is invariant under nilpotent
extensions, satisfies Nisnevich descent, and satisfies the Mayer–Vietoris property for

blow-ups along regularly embedded centres. Then E satisfies the Mayer–Vietoris property

for all abstract blow-up squares.

Proof. To simplify the explanation, we begin by indicating an abstract blow-up square

of Noetherian quasi-excellent Q-schemes and its value under E :

(1) Y ′ //

��

X ′

��
Y // X

(2) E(X) //

��

E(X ′)

��
E(Y ) // E(Y ′)
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According to the Haesemeyer argument [15, §§ 5, 6], axiomized into the form in

which we are using it in [4, Theorem 3.12], our assumptions apply that square (2) is

homotopy Cartesian as soon as square (1) consists of finite type k-schemes for some

characteristic-zero field k. However, examination of Haesemeyer’s original argument

reveals that the only required properties of k are that it be infinite and have strong

resolution of singularities in the sense specified in [15, Theorem 2.4]. But Hironaka [16]

proved strong resolution of singularities over any Noetherian quasi-excellent local ring A
with characteristic-zero residue field; so Haesemeyer’s argument works in this generality,

and we deduce that square (2) is homotopy Cartesian whenever square (1) consists of

finite type A-schemes, for such a ring A.

Finally, let square (1) consist of arbitrary Noetherian quasi-excellent Q-schemes. Since

E satisfies Zariski descent, square (2) is homotopy Cartesian as soon as the squares

E(SpecOX,x ) //

��

E(X ′×X SpecOX,x )

��
E(Y ×X SpecOX,x ) // E(Y ′×X SpecOX,x )

are homotopy Cartesian for all points x ∈ X . But, since A = OX,x is a Noetherian

quasi-excellent local ring with characteristic-zero residue field, these squares are indeed

homotopy Cartesian by the previous paragraph.

We have reached the main theorem of the paper.

Theorem 3.7 (Pro descent for K -theory with respect to abstract blow-ups). Let

Y ′ //

��

X ′

��
Y // X

be an abstract blow-up square of either

(i) Noetherian quasi-excellent Q-schemes of finite Krull dimension; or

(ii) finite type schemes over an infinite perfect field k which has strong resolution of

singularities.

Then the canonical map

{Kn(X, rY )}r −→ {Kn(X ′, rY ′)}r

of pro abelian relative K -groups is an isomorphism for all n ∈ Z.

Proof. (i) For any quasi-compact quasi-separated Q-scheme Z , let HNQ(Z) and HPQ(Z)
denote its negative and periodic cyclic homologies over Q, as formulated in [4]. The

infinitesimal K -theory of Z is defined to be the homotopy fibre of the Chern character

from K -theory to negative cyclic homology, i.e.,

K inf(Z) := hofib(K (Z)
ch
−→ NHQ(Z)).
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According to [4, Theorem 4.6] and [4, Corollary 3.13], or rather their improvements using

Proposition 3.6, the presheaves of spectra K inf and HP carry any abstract blow-up square

of Noetherian quasi-excellent Q-schemes to a homotopy Cartesian square of spectra; so

the canonical maps of relative spectra

K inf(X, rY ) −→ K inf(X ′, rY ′), HPQ(X, rY ) −→ HPQ(X ′, rY ′)

are weak equivalences for all r > 1.

From the long exact sequence · · · → HNQ
n → HPQ

n → HCQ
n−2 → · · · , Theorem 3.3 with

k = Q, and the usual five lemma argument, we may now deduce that the canonical map

{HNQ
n (X, rY )}r → {HNQ

n (X ′, rY ′)}r is an isomorphism for all n ∈ Z. Applying the same

argument to the long exact sequence · · · → K inf
n → Kn → NHn → · · · , we deduce that

{Kn(X, rY )}r → {Kn(X ′, rY ′)}r is an isomorphism for all n ∈ Z, as desired.

(ii) We may evidently assume that p := char k is non-zero, since otherwise the claim is

covered by case (i). The infinitesimal K -theory {K inf,m(Z)}m of a finite type k-scheme Z
is defined to be the pro spectrum arising as the homotopy fibres of the trace map from

K -theory to topological cyclic homology, i.e.,

K inf,m(Z) := hofib(K (Z)
tr
−→ TCm(Z; p)).

According to [12, Theorem B] (see also [20]), the square of pro spectra

{K inf,m(X)}m //

��

{K inf,m(X ′)}m

��
{K inf,m(Y )}m // {K inf,m(Y ′)}m

is homotopy Cartesian. Therefore our claim for K -theory follows, in a similar way to

characteristic zero, from the analogous assertion for topological cyclic homology, namely

Theorem 3.3 (note that the hypotheses of Theorem 3.3 are satisfied for finite type

k-schemes, and that for such schemes the finite coefficients can be eliminated everywhere;

see [10, Corollary 5.9] for related discussion).

Remark 3.8. There are three special cases in which Theorem 3.7 is already known or can

be otherwise deduced.

(i) If Y → X is a regular immersion and X ′ is the blow-up of X along Y , then it follows

from Thomason’s blow-up formula [32] that there are short exact sequences of pro

abelian groups

0 −→ Kn(X) −→ {Kn(rY )}r ⊕ Kn(X ′) −→ {Kn(rY ′)}r −→ 0,

which is a stronger statement than the conclusion of Theorem 3.7.

(ii) If X ′→ X is a finite morphism, then Theorem 0.1 reduces to pro excision, which

was established for arbitrary commutative Noetherian rings in [24].

(iii) If X is a Cohen–Macaulay variety over an infinite field with only isolated

singularities, Y = Xsing, and X ′→ X is a resolution of singularities, then a

technique of Weibel [35] using minimal reduction ideals implies that X ′ may be
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obtained by first blowing up X along a regular immersion and then normalizing.

So, in this case, Theorem 3.7 reduces to combining cases (i) and (ii). This case

of desingularizing a Cohen–Macaulay variety with isolated singularities was first

proved by Krishna [21, Proof of Theorem 1.2] in characteristic zero.

The validity of these special cases of Theorem 3.7 was our motivation for establishing

it in full generality. It is a commonly encountered issue in cdh-descent problems that

typical resolutions of singularities cannot be factored into regularly embedded blow-ups

and normalizations; see, for example, [15, e.g., 6.3]. Since the Haesemeyer argument of

Proposition 3.6 is not valid here (the pro spectra depend not only on the given schemes,

but also on the embeddings), there appears to be no way to assemble the aforementioned

cases (i)–(iii) into a proof of Theorem 3.7.

4. Applications of Theorem 3.7

As mentioned in the introduction, the main applications of Theorem 3.7, which are to zero

cycles on singular varieties, are presented in an accompanying paper [25]. Here, we offer

some more straightforward applications to demonstrate its use, first by reformulating it

as a definition of K -theory with compact support, and then using it to give a quick proof

of parts of Weibel’s K -dimension conjecture on negative K -theory.

For simplicity, we adopt the following conventions in this section.

A field k will be called good if and only if it is infinite, perfect, and has strong

resolution of singularities; for example, char k = 0 suffices.

A k-variety means simply a finite type k-scheme; further assumptions will be

specified when required, and the reference to k will occasionally be omitted.

4.1. K -theory with compact support

Here, we explain how Theorem 3.7 may be interpreted as the well-definedness of ‘K -theory

with compact support’; I am grateful to H. Gillet for suggesting this interpretation to

me. In this section, k is a good field.

By Nagata, any separated k-variety X has a compactification X , i.e., X is proper over

k and X is a dense open subset of X ; we refer the reader to [22] for the proof.

Definition 4.1. Let X be a separated k-variety. Let X be any compactification of X , and

set Y = X \ X , equipped with any structure as a closed subscheme. The K -theory of X
with compact support is defined to be the spectrum

K c(X) := holimr K (X , rY ),

and the K -groups of X with compact support are defined to be its homotopy groups.

The content of the following proposition is equivalent to taking homotopy limits in

Theorem 3.7 in the case of separated k-varieties.

Proposition 4.2. The previous definition does not depend on the chosen compactification

X of X .
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Proof. Suppose that X i , i = 1, 2, are different compactifications of X ; then, by [22,

Corollary 2.4], there exists a third compactification X3 which is a blow-up of both X1 and

X2. Let Y1, Y2, Y3 be the complements of X in the compactifications. Then, the diagram

Y3 //

��

X3

��
Yi // X i

is an abstract blow-up square for i = 1, 2, and so Theorem 3.7 implies that the maps

{Kn(X1, rY1)}r −→ {Kn(X3, rY3)}r ←− {Kn(X2, rY2)}r

are isomorphisms for all n ∈ Z. Hence the maps

holimr K (X1, rY1) −→ holimr K (X3, rY3)←− holimr K (X2, rY2)

are weak equivalences, as required.

Remark 4.3. If X is a proper variety containing X as an open, but not necessarily dense,

subscheme, then

Y ′ := X ′ \ X //

��

X ′

��
Y := X \ X // X

is an abstract blow-up square, where X ′ denotes the closure of X inside X . So Theorem

3.7 implies that K c(X) ' holimr K (X , rY ). In other words, K c(X) may be defined with

respect to any proper variety containing X as an open subset: it is not necessary that X
be dense. This will be implicitly used in the next result.

To justify its definition as a theory with compact support, we show that K c fits into a

localization sequence.

Proposition 4.4. Let Y → X be a closed embedding of separated k-varieties, with open

complement U ⊆ X . Then there is a functorial homotopy fibre sequence

K c(U ) −→ K c(X) −→ holimr K c(rY ).

Proof. The proof is a chase of the definitions in which some care is required regarding

infinitesimal thickenings.

First, we may suppose that Y is reduced since that does not affect its system of

thickenings in X . Let X be a compactification of X , and set Z := X \ X and W := X \U ,

with their reduced subscheme structure to obtain closed embeddings Z → W → X . Then

there is a resulting commutative diagram of homotopy fibre sequences

K (X , rX Z) //

��

K (X) // K (rX Z)

��
K (X , rX W ) // K (X) // K (rX W )
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in which the notations rX Z = r Z and rX W = r W are to remind the reader and author

that the infinitesimal thickenings are taken inside X . Taking holimr and homotopy cofibres

of the vertical maps yields a homotopy fibre sequence

K c(U ) −→ K c(X) −→ holimr K (rX W, rX Z).

Next, we claim that the open complement of the closed embedding rX Z → rX W is

precisely rX Y , where this latter infinitesimal thickening is taken inside X ; this follows

from the identifications

rX Z ×X X = rX (Z ×X X) = rX Y.

Hence K c(rX Y ) = holims K c(rX W, s(rX Z)), where we are taking the sth infinitesimal

thickening of rX Z inside rX W . To complete the proof, it remains to check that the

canonical map

holimr,s K (rX W, s(rX Z)) −→ holimr K (rX W, rX Z)

is a weak equivalence. This is true, simply because the inverse systems on each side are

intertwined. (This is easiest to see in the affine case, when X = Spec A, W = Spec A/J ,

and Z = Spec A/I with I ⊇ J ; then the canonical map of interest can be written as

holimr,s K (A/J r , (J r
+ I sr )/J r )→ holimr K (A/J r , I r/J r ), in which the two systems are

intertwined because the transition map K (A/J sr , I sr/J sr )→ K (A/J r , I r/J r ) factors

through K (A/J r , (J r
+ I sr )/J r ).)

Remark 4.5. We finish this section with two remarks about this K -theory with compact

support.

(i) More generally, suppose that π : X → S is a separated morphism of k-varieties.

Picking a proper morphism X → S of k-varieties compactifying π , and setting Y :=
X \ X , we may define the K -theory with compact support of the family π as

K c(X/S) := holimr K (X , rY ).

Repeating the proofs of Propositions 4.2 and 4.4 verbatim, we see that this is well

defined and satisfies localization.

(ii) The construction in (i) remains valid for any separated morphism of Noetherian

quasi-excellent Q-schemes of finite Krull dimension. For example, if char k = 0 and

X is a smooth proper variety over k((t)), then

K c(X/k[[t]]) := holimr K (X , rY )

is a well-defined invariant of X , where X → Spec k[[t]] is any proper model of X ,

with special fibre Y := X ×k[[t]] k. It seems likely that K c
0(X/k[[t]]) is related to

nearby cycles.

4.2. Negative K -groups

The following conjecture concerning negative K -theory was raised by Weibel in 1980

[36, Qu. 2.9].

K -dimension conjecture: If X is a Noetherian scheme of dimension d, then

Kn(X) = 0 for n < d, and X is K−d -regular.
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The conjecture was proved in [4] for varieties over characteristic-zero fields, where it

was also shown that K−d of any such scheme is a finitely generated group (this is not

explicitly stated, but is a straightforward consequence of [4, Theorem 0.2(1)]), which had

been proved earlier for mild types of singularities in [15, § 8].

The vanishing part of the conjecture was proved in [12] and [20] for varieties over good

fields of finite characteristic.

Our aim in this section is to show that Theorem 3.7 offers a very quick proof of the

vanishing part of the K -dimension conjecture, and of the finite generation of K−d , for

the following types of scheme:

(i) Noetherian quasi-excellent Q-schemes; and

(ii) varieties over good fields of finite characteristic.

We do not consider the K−d -regularity part of the conjecture.

The following standard lemma reduces the problems to reduced schemes.

Lemma 4.6. If X is a Noetherian scheme of dimension d, then the canonical map

Kn(X)→ Kn(Xred) is an isomorphism for n 6 −d.

Proof. Given a nilpotent ideal I of a ring R, the canonical map Kn(R)→ Kn(R/I ) is

an isomorphism for n = 0, and hence for n < 0. So the canonical map from the descent

spectral sequence for X , namely

E pq
2 = H p(X,K−q,X ) H⇒ K−p−q(X),

to that for Xred,

redE pq
2 = H p(Xred,K−q,Xred

) H⇒ K−p−q(Xred),

is an isomorphism on the E2 page whenever q > 0. The claim easily follows from this.

Theorem 4.7. Let X be a d-dimensional scheme which is either

(i) a Noetherian quasi-excellent Q-scheme; or

(ii) a variety over a good field.

Then Kn(X) = 0 for n < −d, and the group K−d(X) is finitely generated.

Proof. The proof is by induction on d; for any fixed d, it is enough to treat the case that

X is reduced, thanks to Lemma 4.6.

First, if X is zero dimensional and reduced, then it is a disjoint union of the spectra of

fields. So all the negative K -groups vanish, and K0(X) is the free abelian group generated

by the finitely many points of X .

The inductive step proceeds by picking a desingularization X ′→ X ; in case (ii) this

exists by assumption, while in case (i) it exists by Temkin’s extension [31, Theorem 2.3.6]

of Hironaka’s resolution theorem. That is, there exists an abstract blow-up square

Y ′ //

��

X ′

��
Y // X
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in which X ′ is regular, and Y ′ and Y have dimension < d. By Theorem 3.7, there is a

resulting long exact Mayer–Vietoris sequence of pro abelian groups

· · · −→ Kn(X) −→ {Kn(rY )}r ⊕ Kn(X ′) −→ {Kn(rY ′)}r −→ · · ·

But Kn(X ′) = 0 for all n < 0, since X ′ is regular, and Kn(rY ) = Kn(Y ) and Kn(rY ′) =
Kn(Y ′) for all n 6 −(d − 1) by Lemma 4.6; hence the Mayer–Vietoris sequence simplifies

in degrees 6 −d to an exact sequence

K−(d−1)(Y ′)→ K−d(X)→ K−d(Y )→ K−d(Y ′)→ K−d−1(X)→ K−d−1(Y )→ · · · .

But, by the inductive hypothesis, Kn(Y ) and Kn(Y ′) vanish for n < −(d − 1), and

K−(d−1)(Y ′) is finitely generated. This evidently completes the proof.
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des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 5–231.

15. C. Haesemeyer, Descent properties of homotopy K -theory, Duke Math. J. 125(3) (2004),
589–620.

https://doi.org/10.1017/S1474748014000413 Published online by Cambridge University Press

http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
http://www.arxiv.org/abs/1403.0534
https://doi.org/10.1017/S1474748014000413


Pro cdh-descent for cyclic homology and K -theory 567

16. H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203. ibid. (2) 79 (1964), 205–326.

17. D. C. Isaksen, Calculating limits and colimits in pro-categories, Fund. Math. 175(2)
(2002), 175–194.

18. C. Kassel and A. B. Sletsjøe, Base change, transitivity and Künneth formulas for the
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