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Abstract: Cancer cells produce high levels of reactive oxygen species (ROS) that lead to a state of increased basal oxida-

tive stress. Since this state of oxidative stress makes cancer cells vulnerable to agents that further augment ROS levels, the 

use of pro-oxidant agents is emerging as an exciting strategy to selectively target tumor cells. Natural products have pro-

vided a significant contribution to the development of several drugs currently used in cancer chemotherapy. Although 

many natural products are known to affect the redox state of the cell, most studies on these compounds have focused on 

their antioxidant activity instead of on their pro-oxidant properties. This article provides an overview of natural products 

with pro-oxidant and anticancer activities, with special focus on plant secondary metabolites, and discusses their possible 

use as cancer chemotherapeutic agents. 
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INTRODUCTION 

 Cancer kills over seven million people worldwide every 
year [1]. The mortality rate of this disease has not changed 
much in the past few decades even in developed countries as 
the United States [2]. Although cancer therapy in the form of 
surgery or radiotherapy is effective when the disease is early 
detected, many cancers are still diagnosed when cells from a 
primary tumor have already metastasized to other parts of the 
body. The main form of treatment at this point is chemother-
apy, which consists of delivering drugs systemically so that 
they can reach and kill the tumor cells. But most of these 
drugs cause severe side effects in patients and, therefore, 
need to be used at suboptimal levels. The low efficacy of 
chemotherapy in patients with advanced cancers is reflected 
in the low 5-year survival rates observed in these patients 
[2]. For example, cancer statistics show that the most com-
monly diagnosed cancer in the world is lung cancer [1], that 
approximately 50% of patients diagnosed with this type of 
cancer have distant metastasis [2] and that only 3% of these 
patients manage to survive more than 5 years [2]. The low 
efficacy of cancer therapy for the treatment of patients with 
metastasis makes the development of novel chemotherapeu-
tic agents necessary. 

 Despite the recent interest by pharmaceutical companies 
in molecular modeling, combinatorial chemistry and other 
synthetic chemistry techniques, natural products and medici-
nal plants continue to be an important source of new drugs. 
Natural products are not only used as therapeutic agents, but 
are also a source of lead compounds that have provided the 
basis for the semisynthesis or total synthesis of new drugs. 
An analysis of the sources of drugs approved from January  
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1981 to the middle of October 2008 revealed that 6% of the 
1024 new chemical entities were unmodified natural prod-
ucts and that only 37% were drugs not related to natural 
products [3, 4]. The role these latter in drug discovery is par-
ticularly relevant in oncology. It is estimated that over the 
time frame from around the 1940s to 2006, of the 155 small 
molecules approved for cancer therapy, only 27% were not 
related to natural products [3]. The first plant-derived anti-
cancer agents to advance into clinical use were the Vinca 
alkaloids vinblastine and vincristine. Other important plant-
derived anticancer compounds include paclitaxel (taxol), the 
epipodophyllotoxin derivative etoposide, and the camptothe-
cin derivatives topotecan and irinotecan [5]. The mechanism 
of action of these drugs is considered to consist in the inhibi-
tion of microtubule assembly (Vinca alkaloids and pacli-
taxel), inhibition of DNA topoisomerase II (etoposide) and 
inhibition of DNA topoisomerase I (campothecin deriva-
tives). Recent evidence suggests that the formation of reac-
tive oxygen species (ROS) may also contribute to the anti-
cancer effects of these drugs [6-8]. The induction of oxida-
tive stress by pro-oxidant agents is indeed emerging as an 
attractive anticancer strategy that may be used to target can-
cer cells selectively [9-13]. After discussing the role of oxi-
dative stress in cancer and the possible use of pro-oxidant 
agents in cancer therapy, this article provides an overview of 
pro-oxidant natural products with anticancer activity and 
examines their potential as cancer chemotherapeutic agents. 

OXIDATIVE STRESS IN CANCER CELLS 

 Oxidative stress is an imbalance between the generation 
and elimination of reactive oxygen species in favor of the 
former, causing excessive oxidative damage to macromole-
cules, cells and tissues. Reactive oxygen species (ROS) is the 
collective term used to name oxygen radicals (including hy-
droxyl radical and superoxide radical) and some other non-
radical derivatives of oxygen, such as hydrogen peroxide 
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(H2O2). ROS can easily generate free radicals (any species 
containing one or more unpaired electrons) and/or cause oxi-
dative damage [14]. ROS are generated by all aerobic organ-
isms and their production seems to be needed for signal-
transduction pathways that regulate several different physio-
logical processes. Excessive amounts of ROS, however, can 
start toxic and lethal chain reactions, which oxidize and dis-
able structures that are required for cellular integrity and 
survival. ROS are generated in multiple compartments and 
by multiple enzymes within the cell. Important contributions 
include proteins within the plasma membrane, such as the 
growing family of NADPH oxidases; lipid metabolism 
within the peroxisomes; as well as the activity of various 
cytosolic enzymes such as cyclooxygenases. Although all 
these sources contribute to the overall ROS production, the 
vast majority of cellular ROS can be traced back to the mito-
chondria [15, 16]. 

 Accumulating evidence indicates that cancer cells gener-
ate excessive levels of ROS and have a state of oxidative 
stress. Many malignant cells produce high levels of ROS in 
culture. For instance, Szatrowski and Nathan reported that 
several tumor cell lines, representing a variety of tissue 
types, constitutively produced large amounts of H2O2. They 
observed that the cumulative amount of H2O2 produced after 
4 h by these tumor cells was comparable to the amount of 
H2O2 produced by similar numbers of phorbol ester-triggered 
neutrophils [17]. The increased production of ROS by cancer 
cells observed in vitro has also been found in vivo. For ex-
ample, chronic lymphocytic leukemia cells freshly taken 
from patients showed increased ROS production compared 
with normal lymphocytes. This was also observed with B-
cell lines from patients with Burkitt’s lymphoma associated 
with Epstein–Barr virus infection and malignant B-cells from 
patients with hairy cell leukemia (see [18] and references 
therein). For solid tumors, however, demonstrating increased 
ROS production in vivo is difficult to achieve owing to 
methodological inadequacies, so most researchers have stud-
ied oxidative damage levels rather than ROS production. 
Such studies have shown increased levels of oxidative dam-
age (e.g. 8OHdG) in human cancers and in animal cancers 
induced by a wide range of carcinogens (reviewed in [18]). 
Interestingly, the most important carcinogenic agents and 
behaviors induce oxidative stress, including most chemical 
carcinogens (e.g. N-nitrosamines, asbestos, arsenic), ultra-
violet radiation, cancer-associated viruses or bacteria, in-
flammation, alcohol, tobacco smoke and obesity. It is also 
recognized that age is the principal risk factor for most can-
cers and that oxidative stress may be the most important 
causal factor in aging (see [19, 20] and references therein). 

 The increased levels of ROS of cancer cells seem to play 
a key role in cancer development [12, 18, 21]. ROS such as 
H2O2 can induce cell malignant transformation, and the ma-
lignant phenotype of tumor cells can be reversed by decreas-
ing the levels of ROS [12, 22-24]. For instance, expression 
of the ROS generation system Nox1 in normal NIH3T3 fi-
broblasts resulted in cells with malignant characteristics that 
produced tumors in athymic mice. These transformed cells 
showed a 10-fold increase in H2O2 levels. When human cata-
lase was expressed in these transformed cells, H2O2 concen-
tration decreased, and the cells reverted to a normal appear-
ance, the growth rate normalized, and cells no longer pro-

duced tumors in athymic mice [24]. In addition, ROS have 
been shown to participate in the most relevant aspects of 
carcinogenesis. Most researchers consider that cancer is a 
genetic disease caused by the acquisition of multiple muta-
tions in genes that control cell proliferation, cell death and 
genomic instability [25]. It is also accepted that cells must 
develop several acquired capabilities in order to become a 
malignant cancer: increased cell proliferation (caused, in 
part, by resistance to growth inhibition and independence 
from mitogenic stimulation), apoptosis resistance, cellular 
immortalization, increased angiogenesis, invasion and metas-
tasis. In addition, genetic instability is considered to be a key 
event that enables the acquisition of these capabilities [26, 
27]. Accumulating experimental data indicate that an in-
crease in the cellular concentrations of ROS such as H2O2 
can explain all these hallmarks of cancer. It is known that an 
increase in the levels of H2O2 can lead to DNA damage, mu-
tations, and genetic instability [26-31]; H2O2-induced DNA 
damage seems to be mediated by hydroxyl radical generated 
from H2O2 by the Fenton reaction [28-30]. Several studies 
have also demonstrated that ROS can induce cell prolifera-
tion [31], apoptosis resistance [32, 33], increased angiogene-
sis [34, 35], and invasion and metastasis [36-38]. Indeed, 
these studies showed that an increase in the levels of H2O2-
detoxifying enzymes could reduce cell proliferation, promote 
apoptosis, and inhibit invasion, metastasis and angiogenesis. 
In short, cancer cells produce high levels of ROS that lead to 
a state of increased basal oxidative stress. Such state of oxi-
dative stress is induced by the most important human car-
cinogens and plays an important role in cancer development. 

SELECTIVE ANTICANCER ACTIVITY OF PRO-

OXIDANT AGENTS  

 Since cancer cells have increased levels of ROS that play 
an important role in carcinogenesis, agents with antioxidant 
activity may induce cancer preventive effects by reducing 
and/or preventing such increase in the cellular levels of ROS. 
Because pro-oxidant agents increase the cellular levels of 
ROS, it is recognized that these agents can induce carcino-
genic effects. But when pro-oxidant agents increase the cel-
lular levels of ROS to cytotoxic levels, these agents may 
induce selective killing of cancer cells and be therapeutically 
useful. It is important to mention that all these effects can be 
achieved by agents with both antioxidant and pro-oxidant 
properties (e.g. curcumin), which can act as cancer chemo-
preventive, carcinogenic, and chemotherapeutic agents 
mainly depending on the concentration by which they are 
used [12, 39].  

 The role of ROS in cancer therapy is increasingly being 
acknowledged and the induction of oxidative stress by pro-
oxidant agents is emerging as an attractive anticancer strat-
egy [9-12, 40-43]. Recent data suggests that ROS participate 
in the anticancer activity of many chemotherapeutic agents 
commonly used in the clinic, including paclitaxel, docetaxel, 
cisplatin, doxorubicin, arsenic trioxide, bortezomib, procar-
bazine and etoposide [6-8, 10, 40, 44-54]. For instance, al-
though it has been known for many years that the microtu-
bule protein tubulin is the therapeutic target for paclitaxel 
(taxol), recent experiments have shown that the accumula-
tion of H2O2 is a crucial step for paclitaxel-induced cancer 
cell death both in vitro and in vivo [6, 8]. H2O2 seems to be a 
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key player in oxidative stress-induced cancer cell death. 
Many anticancer agents increase the levels of H2O2 [6, 45, 
47], and H2O2 is known to be an efficient inducer of cell 
death in cancer cells [12, 48, 55]. Interestingly, cancer cells 
are more susceptible to H2O2-induced cell death than non-
malignant cells [56-58]. Using several cancer and normal 
cell lines, Chen et al. [56] observed that high concentrations 
of ascorbic acid selectively killed a variety of cancer cells 
and that this effect was mediated by H2O2. They showed, for 
instance, that a concentration of 50 μM H2O2 induced more 
percentage of cell death in Burkitt’s lymphoma cells than 
250 μM in normal lymphocytes and normal monocytes [56]. 
This selective effect of H2O2 has also been observed in cells 
derived from solid tumors. Using lung cancer cells and non-
malignant lung fibroblasts under the same experimental con-
ditions, we recently found that specific concentrations of 
H2O2 and of the H2O2-generating agent pyrogallol induced 
selective killing of the cancer cells [59]. 

 It is not clear why specific concentrations of H2O2 (and 
of pro-oxidant agents) can kill cancer cells selectively. In 
vitro and in vivo data indicate that tumor cells produce 
higher concentrations of H2O2 than their normal counterparts 
[17, 18, 31, 60-62]. This, and the fact that there is a threshold 
of H2O2 above which cells cannot survive, may explain why 
specific concentrations of H2O2 induce selective killing of 
cancer cells [12]. Excessive cellular accumulation of H2O2 
may cause cell death through the induction of DNA damage, 
which seems to be mediated by hydroxyl radical generated 
from H2O2 in the presence of iron or copper (Fenton reac-
tion) [28-30]. Unlike non-malignant cells, cancer cells have 
mutations in DNA repair genes and cannot properly repair 
specific types of DNA damage [25, 63]. It is possible that 
some cancers may have a reduced capacity to repair ROS-
induced DNA damage and be more vulnerable than normal 
cells to the cytotoxic activity of ROS. It has also been pro-
posed that the increased levels of copper found in various 
malignancies may explain why some pro-oxidant agents (e.g. 
plant polyphenols) can induce selective killing of cancer 
cells [64]. The increased levels of copper of cancer cells 
would favor the formation of higher levels of hydroxyl radi-
cal through the Fenton reaction. 

PRO-OXIDANT NATURAL PRODUCTS WITH 

ANTICANCER ACTIVITY 

 An overview of natural products with both pro-oxidant 
and anticancer activities is presented in Table 1. The name of 
the natural product, the type of compound, the natural source 
(representative species) and the references are provided. The 
first part of the table comprises plant compounds of primary 
metabolism and their derivatives. Then, plant secondary me-
tabolites, including phenolic compounds, terpenoids and 
alkaloids, are compiled. The last section includes other natu-
ral products from different natural sources (compounds of 
animal, microorganism, or marine origin, vitamins, etc). The 
mechanism involved in the generation of ROS is not avail-
able for most compounds and is not included. The general 
mechanisms involved in ROS generation by a variety of pro-
oxidant agents (from natural and synthetic origin) have been 
discussed extensively elsewhere [42].  

 Some natural products reported in Table 1 are drugs cur-
rently used in cancer chemotherapy (e.g. paclitaxel, vincris-
tine, vinblastine, bleomycin, mitomycin, doxorubicin, idaru-
bicin, aclarubicin and actinomycin D). Others have entered 
clinical trials for the treatment of specific types of cancer 
(e.g. curcumin, epigallocatechin-3-gallate, genistein, resvera-
trol, camptothecin, perillil alcohol, licopene, phenylethyl 
isothiocyanate, sulforaphane, aplidin, eicosapentaenoic acid, 
linoleic acid, ursodeoxycholic acid, vitamin C, vitamin D2 
and vitamin D3; see http://clinicaltrials.gov/). The chemical 
structures of these compounds are represented in Fig. (1) and 
Fig. (2). The anticancer activity of most compounds com-
piled in Table 1 has only been evaluated in pre-clinical  
models.  

 It is important to mention that, although the pro-oxidant 
effect of a specific natural product may not be the most im-
portant cytotoxic mechanism of action, this pro-oxidant ef-
fect may be responsible for the selective anticancer activity 
of the compound. For instance, it is known that the main 
mechanism of action of paclitaxel consists in the inhibition 
of microtubule assembly. A drug that only inhibits microtu-
bule assembly would be equally cytotoxic in cells with the 
same proliferating rate, as microtubules are necessary for cell 
proliferation. Because it is known that cancer cells are more 
vulnerable to paclitaxel than highly proliferating non-
malignant cells, it has been enigmatic for many years why 
this drug has certain selectivity for cancer cells [25]. Re-
cently, it was observed that the accumulation of H2O2 is cru-
cial for paclitaxel-induced cancer cell death both in vitro and 
in vivo [6, 8]. Being well known that H2O2 can induce selec-
tive killing of cancer cells, it seems possible that paclitaxel-
induced H2O2 production plays a role in the selective anti-
cancer effects of this natural product. 

 Since the redox state of the cell is important for many 
cellular processes, it has been discussed that pro-oxidant 
agents may act as “dirty” drugs (agents that modulate multi-
ple molecular targets through pleiotropic interactions). How-
ever, recent research suggests that this pleiotropic mode of 
action may be an advantage to overcome cancer cell drug 
resistance typical of drugs acting on just one target [42]. Al-
though pro-oxidant agents could be used as stand-alone 
drugs, evidence suggests that they could also be used in 
combination [42]. Indeed, although ROS induce cancer cell 
death, tumor cells are known to develop mechanisms that 
prevent ROS from reaching cytotoxic levels. The glutathione 
and thioredoxin antioxidant systems are crucial for detoxify-
ing ROS. These antioxidant systems are activated in cancer 
cells and play an important role in the development of resis-
tance to many anticancer agents [65-71]. The possible drug 
resistance induced by pro-oxidant agents could be reduced 
with glycolysis inhibitors [13]. Evidence indicates that pro-
oxidant agents can increase the cellular levels of H2O2 and 
that glycolysis inhibitors can reduce the capacity of cells to 
detoxify H2O2. Experimental data have shown that malignant 
cells are more susceptible to glucose deprivation than non-
transformed cells, and that an increase in the levels of H2O2 
may mediate the cytotoxic effect induced by glucose depri-
vation [62, 72-74]. Two possible mechanisms may explain 
why the activation of glycolysis plays an important function 
in protecting tumor cells from H2O2-induced cell death. First, 
the activation of glycolysis increases the formation of pyru-
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Table 1. Natural Products with Pro-Oxidant and Anticancer Activities 

Compound Type of Compound Natural Source References 

Compounds of Primary Metabolism and derivatives 

Abrin Aminoacid Abrus precatorius (Fabaceae) [81, 82] 

Ajoene  Organosulfur Allium sativum (Alliaceae) [83, 84] 

Allicin  Organosulfur Allium sativum (Alliaceae) [85-87] 

Benzyl isothiocyanate Organosulfur Brassica spp. (Brassicaceae) [88, 89] 

Diallyl disulfide Organosulfur  Allium spp. (Alliaceae) [90, 91] 

Dimethyl disulfide Organosulfur  Allium spp. (Alliaceae) [92] 

Jasmonic acid Fatty acid Jasminum spp. (Oleaceae), widespread [93] 

Linoleic acid Fatty acid Carthamus tinctorius (Asteraceae) [94, 95] 

Linolenic acid Fatty acid Perilla frutescens (Lamiaceae) [95-97] 

L-Mimosine  Aminoacid Mimosa spp., Leucaena spp. (Fabaceae) [98, 99] 

Melatonin  Aminoacid Prunus cerasus (Rosaceae) [100, 101] 

Methyl jasmonate Fatty acid Jasminum spp. (Oleaceae), widespread [93, 102] 

Phenylethylisothiocyanate Organosulfur  Brassica spp. (Brassicaceae) [89, 103, 104] 

Sorbitol  Sugar alcohol Malus spp. (Rosaceae) [105] 

Sulforaphane Organosulfur  Brassica spp. (Brassicaceae) [106, 107]  

Phenolic Compounds 

2'-Hydroxycinnamaldehyde Phenolic acid Cinnamomum spp. (Lauraceae) [108, 109] 

3,7,4'-trihydroxyflavone Flavone Rhus chinensis (Anacardiaceae) [110, 111] 

4'-Hydroxycinnamaldehyde 4'-Hydroxycinnamaldehyde Alpinia galanga (Zingiberaceae) [112] 

4-Hydroxycinnamic acid Hydroxycinnamic acid Erythrina fusca (Fabaceae), widespread [113, 114] 

6- Dehydrogingerdione Aryl alkanones Zingiber officinale (Zingiberaceae) [115, 116] 

6-Gingerol Aryl alkanones Zingiber officinale (Zingiberaceae) [117, 118] 

6-Shogaol Aryl alkanones Zingiber officinale (Zingiberaceae) [119] 

8-Shogaol Aryl alkanones Zingiber officinale (Zingiberaceae) [120] 

Acacetin Flavone Robinia pseudoacacia (Fabaceae) [121, 122] 

Aesculetin Coumarin Aesculus hippocastanum (Hippocastanaceae) [123] 

Aloe-emodin Anthraquinone Rheum spp. (Polygonaceae), Cassia spp. (Fabaceae) [124, 125] 

Apigenin Flavone Petroselinum crispum (Apiaceae), widespread [126, 127] 

Baicalein Flavone Scutellaria baicalensis (Lamiaceae), Oroxylum indicum 

(Bignoniaceae) 

[128, 129] 

Baicalin Flavone Scutellaria spp. (Lamiaceae) [130, 131] 

Benzaldehyde  Aromatic aldehyde Prunus spp. (Rosaceae), widespread [132, 133] 

Betuletol 3-methyl ether Flavonol Allagopappus viscosissimus (Asteraceae) [134] 

Butein Chalcone Rhus verniciflua (Anacardiaceae) [135] 

Caffeic acid Phenolic acid Coffea spp.(Rubiaceae), widespread [136, 137] 
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(Table 1) contd…. 

Compound Type of Compound Natural Source References 

Cajanol Isoflavanone  Cajanus cajan (Fabaceae) [138] 

Catechin Flavan-3-ol Acacia catechu (Fabaceae), widespread [139, 140] 

Catechol Simple phenol Cola spp. (Malvaceae), Gaultheria spp. (Ericaceae) [141-143] 

Chebulinic acid Hydrolyzable tannin Terminalia chebula (Combretaceae) [144, 145] 

Chlorogenic acid Phenolic acid Coffea spp. (Rubiaceae), widespread [146-148] 

Chrysin Flavone Prunus spp. (Rosaceae),  [149-151] 

Chrysoeriol Flavone Medicago sativa (Fabaceae), widespread [152] 

Chrysophanol Anthraquinone Rhamnus spp. (Rhamnaceae), Rheum spp. (Polygona-

ceae) 

[153] 

Curcumin Diarylheptanoid Curcuma longa (Zingiberaceae) [39, 154, 155] 

Cyanidin Anthocyanidin Vaccinium spp. (Ericaceae), Prunus spp. (Rosaceae) [156, 157] 

Cyanidin 3-glucoside Anthocyanin Vaccinium spp. (Ericaceae), Prunus spp. (Rosaceae) [157, 158] 

Cyanidin-3-rutinoside Anthocyanin Vaccinium spp. (Ericaceae), Prunus spp. (Rosaceae) [157, 159] 

Daidzein Isoflavone Glycine max (Fabaceae), widespread [160] 

Dantron Anthraquinone Xyris semifuscata (Xyridaceae)  

 

[161, 162] 

Daphnetin Coumarin Daphne spp. (Thymelaeaceae) [163] 

Delphinidin Anthocyanidin Delphinium spp. (Ranunculaceae) [157, 164] 

Delphinidin 3-sambubioside Anthocyanin Hibiscus spp. (Malvaceae)  [165] 

Diospyrin  Naphthoquinone Diospyros montana (Ebenaceae) [166] 

Ellagic acid Phenolic acid Vaccinium spp. (Ericaceae), widespread [167] 

Emodin Anthraquinone Rheum spp. (Polygonaceae) [168] 

Epicatechin Flavan-3-ol Acacia catechu (Fabaceae), widespread [139, 169] 

Epicatechin-gallate Flavan-3-ol Camellia sinensis (Theaceae) [170] 

Epigallocatechin Flavan-3-ol Camellia sinensis (Theaceae) [170] 

Epigallocatechin-3-gallate Flavan-3-ol Camellia sinensis (Theaceae) [170, 171] 

Eriodictyol Flavanone Eriodictyon californicum (Boraginaceae)  [172] 

Esculetin (Aesculetin)  Coumarin Aesculus hippocastanum (Hippocastanaceae) [163, 173] 

Eugenol Phenylpropanoid Eugenia caryophyllata (Myrtaceae) [174] 

Eupafolin Flavone Eupatorium perfoliatum (Asteraceae), Artemisia prin-

ceps (Asteraceae) 

[175-177] 

Ferulic acid Phenolic acid Ferula communis (Apiaceae), widespread [136] 

Fisetin  Flavonol Fragaria spp. (Rosaceae), widespread [178, 179] 

Flavokawain B Chalcone Piper methysticum (Piperaceae) [180] 

Fraxetin  Coumarin Fraxinus spp. (Oleaceae) [173, 181] 

Gallic acid Phenolic acid Kalanchoe spp. (Crassulaceae), widespread [182, 183] 

Gambogic acid Xanthone  Garcinia hanburyi (Clusiaceae) [184, 185] 
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(Table 1) contd…. 

Compound Type of Compound Natural Source References 

Genistein Isoflavone Genista spp. (Fabaceae), widespread [186] 

Gentiacaulein  Xanthone Gentiana kochiana (Gentianaceae) [187] 

Gentiakochianin  Xanthone Gentiana kochiana (Gentianaceae) [187] 

Guttiferone-A Benzophenone Garcinia livingstonei (Clusiaceae) [188] 

Hesperetin  Flavanone Citrus spp. (Rutaceae) [189, 190] 

Hydroxytyrosol Simple Phenol Olea europaea (Oleaceae) [191] 

Icariin  Flavonol glycoside Epimedium spp. (Berberidaceae) [192] 

Isoeugenol Phenylpropanoid Eugenia caryophyllata (Myrtaceae) [193, 194] 

Isoliquiritigenin Chalcone Glycyrrhiza glabra (Fabaceae) [178, 195] 

Juglone Naphtoquinone Juglans regia (Juglandaceae) [196, 197] 

Kaempferol Flavonol Kaempferia galanga (Zingiberaceae), widespread [198, 199] 

Liquiritigenin Flavanone  Glycyrrhiza glabra (Fabaceae) [200] 

Luteolin Flavone Reseda luteola (Resedaceae), widespread [201, 202] 

Malvidin Anthocyanidin Althaea rosea (Malvaceae) [157, 203] 

Malvidin 3-glucoside Anthocyanin Vitis spp. (Vitaceae) [157, 204] 

Methyl gallate Phenolic acid Camellia sinensis (Theaceae) [205] 

Morin Flavone Maclura spp. (Moraceae) [206] 

Myricetin Flavonol Myrica rubra (Myricaceae), widespread [59, 207] 

Naringenin Flavanone Citrus spp. (Rutaceae), widespread [208, 209] 

Nordihydroguaiaretic acid  Phenolic acid Larrea spp. (Zygophyllaceae) [210-212] 

Norwogonin Flavone Scutellaria spp.(Lamiaceae) [213] 

Pelargonidin Anthocyanidin Pelargonium spp. (Geraniaceae) [157, 203] 

Pelargonidin 3-glucoside Anthocyanin Vaccinium spp. (Ericaceae) [157, 214] 

Pentagalloyl glucose  Hydrolyzable tannin Quercus infectoria (Fagaceae) [215, 216] 

Peonidin Anthocyanidin Paeonia spp. (Ranunculaceae) [157, 203] 

Peonidin 3-glucoside Anthocyanin Vaccinium spp. (Ericaceae) [157, 217] 

Phloretin Chalcone Malus spp. (Rosaceae) [178, 218] 

Plumbagin Naphthoquinone Drosera spp. (Droseraceae) [219, 220] 

Procyanidin B2 Proanthocyanidin Cinnamomum cassia (Lauraceae), Vaccinium spp. (Eri-

caceae) 

[221, 222] 

Protoapigenone Flavone Thelypteris torresiana (Thelypteridaceae) [223] 

Psoralen Furanocoumarin Psoralea corylifolia (Fabaceae) [224, 225] 

Pterostilbene  Stilbenoid Vitis spp. (Vitaceae) [226] 

Quercetin Flavonol Citrus spp. (Rutaceae), widespread [207] 

Resveratrol Stilbenoid Vitis spp. (Vitaceae) [227, 228] 

Rhein Anthraquinone Rheum spp. (Polygonaceae) [229, 230] 

Rosmarinic acid Hydroxycinnamic acid Rosmarinus officinalis (Lamiaceae), widespread [231, 232] 
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(Table 1) contd…. 

Compound Type of Compound Natural Source References 

Rottlerin Phloroglucinol Mallotus philippinensis (Euphorbiaceae) [233, 234] 

Rutin Flavonol Ruta spp. (Rutaceae), widespread [235-238] 

Salicylic acid Phenolic acid Salix spp. (Salicaceae) [239-241] 

Shikonin Naphthoquinone Lithospermum erythrorhizon (Boraginaceae) [242, 243] 

Sinapic acid Phenolic acid Brassica spp.(Brassicaceae), widespread [113, 114] 

Sophoranone Flavanone Sophora subprostrata (Fabaceae) [244] 

Tannic acid Tannin Quercus spp. (Fagaceae), widespread [245, 246] 

Taxifolin Flavanonol Silybum marianum (Asteraceae) [111, 149, 247] 

Tricetin Flavone Oryza sativa (Poaceae) [248] 

Usnic acid Dibenzofuran Usnea spp. (Parmeliaceae) [249, 250] 

Vanillin Phenolic acid Vanilla spp. (Orchidaceae) [251-253] 

Wogonin Flavone Scutellaria baicalensis (Lamiaceae) [254, 255] 

Xanthohumol Chalcone Humulus lupulus (Cannabaceae) [256, 257] 

Xanthotoxin  Furanocoumarin Ammi majus (Apiaceae) [258, 259] 

Terpenoids 

18 -Glycyrrhetinic acid Triterpenoid Glycyrrhiza glabra (Fabaceae) [260, 261] 

Andrographolide Diterpenoid Andrographis paniculata (Acanthaceae) [262] 

Artemisinin Lactone sesquiterpenoid Artemisia annua (Asteraceae) [263-265] 

Asiatic acid Triterpenoid Centella asiatica (Mackinlayaceae) [266] 

Astilbotriterpenic acid Triterpenoid Astilbe chinensis (Saxifragaceae) [267] 

Betulinic acid Triterpenoid Betula spp. (Betulaceae) [268] 

Bixin  Apocarotenoid Bixa orellana (Bixaceae) [269] 

Bufalin Cardiac glycoside Bufo bufo (Bufonidae) [270] 

Cannabidiol  Cannabinoid Cannabis sativa (Cannabaceae) [271-273] 

Costunolide Sesquiterpenoid Laurus nobilis (Lauraceae) [274, 275] 

Cucurbitacin B Triterpenoid Iberis amara (Brassicaceae) [276] 

Dioscin  Steroidal saponin Dioscorea spp. (Dioscoreaceae) [277] 

Diosgenin Steroidal sapogenin Dioscorea spp. (Dioscoreaceae) [278] 

Erythrodiol Triterpenoid Olea europaea (Oleaceae) [279, 280] 

Farnesol Sesquiterpenoid Vachellia farnesiana (Fabaceae), widespread [281-283] 

Ginkgolide B Diterpenoid Ginkgo biloba (Ginkgoaceae) [284, 285] 

Ginsenoside RH-2 Triterpenoid saponin Ginkgo biloba (Ginkgoaceae) [286, 287] 

Glaucocalyxin A Diterpenoid Rabdosia japonica var. glaucocalyx (Lamiaceae) [288] 

Guggulsterone Triterpenoid Commiphora mukul (Burseraceae) [289, 290] 

Gypenosides Triterpenoid Gynostemma pentaphyllum (Cucurbitaceae) [291, 292] 

Helenalin  Sesquiterpenoid Arnica spp. (Asteraceae) [293] 

Linalool Monoterpenoid Coriandrum sativum (Apiaceae), widespread [294] 
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Lupeol Triterpenoid Mangifera spp. (Anacardiaceae), widespread [295] 

Lycopene Carotenoid Solanum lycopersicum (Solanaceae) [296-298] 

Oleandrin  Cardiac glycoside Nerium oleander (Apocynaceae) [299] 

Oleanolic acid Triterpenoid Olea europaea (Oleaceae), widespread [300, 301] 

Oleuropein Iridoid Olea europaea (Oleaceae) [302-304] 

Oridonin Diterpenoid Rabdosia rubescens (Lamiaceae) [305] 

Ouabain Cardiac glycoside Strophanthus gratus, S. kombe (Apocynaceae) [306] 

Ovatodiolide Diterpenoid Anisomeles indica (Lamiaceae) [307] 

Taxol Diterpenoid Taxus brevifolia (Taxaceae) [6, 308, 309] 

Parthenolide Sesquiterpenoid Chrysanthemum parthenium (Asteraceae) [310, 311] 

Perillyl alcohol Monoterpenoid Perilla frutescens (Lamiaceae) [312, 313] 

Polygodial Sesquiterpenoid Tasmannia spp. (Winteraceae) [314, 315] 

Pristimerin Triterpenoid Maytenus heterophylla (Celastraceae) [316, 317] 

Protopanaxadiol  Triterpenoid saponin Panax ginseng (Araliaceae) [318, 319] 

Sarsasapogenin Steroidal sapogenin Smilax spp. (Smilacaceae) [320] 

Tetrahydrocannabinol Cannabinoid Cannabis sativa (Cannabaceae) [321] 

Thymol Monoterpenoid Thymus spp. (Lamiaceae), widespread [322] 

Triptolide  Diterpenoid Tripterygium wilfordii (Celastraceae) [323, 324] 

Ursolic acid Triterpenoid Arctostaphylos uva-ursi (Ericaceae), widespread [325] 

Uvaol Triterpenoid Olea europaea (Oleaceae) [280] 

Withaferin Withasteroid  Withania somnifera (Solanaceae) [326, 327] 

-Hederin Triterpenoid saponin Hedera helix (Araliaceae) [328] 

-humulene Sesquiterpenoid Humulus lupulus (Cannabaceae) [329] 

-Amyrin Triterpenoid Medicago sativa (Fabaceae), widespread [330] 

-carotene Carotenoid Daucus carota (Apiaceae), widespread [331-333] 

-Escin (aescin) Triterpenoid saponin Aesculus hippocastanum (Hippocastanaceae) [334] 

Atractyloside Diterpenoid Atractylis spp. (Asteraceae) [335, 336] 

-Sitosterol Phytosterol  Serenoa repens (Arecaceae), widespread [337] 

Vernolepin Lactone sesquiterpenoid Vernonia hymenolepis (Compositae) [338] 

Alkaloids 

6-Methoxydihydrosanguinarine Benzophenanthridine Hylomecon hylomeconoides (Papaveraceae) [339, 340] 

Berberine Isoquinoline Berberis spp. (Berberidaceae) [341, 342] 

Boldine Aporphine Peumus boldus (Monimiaceae) [343, 344] 

Caffeine Xanthine  Coffea spp. (Rubiaceae), Camellia sinensis 

(Theaceae) 

[345-347] 

Camptothecin Quinoline Camptotheca acuminata (Nyssaceae) [7, 348] 

Cepharanthine Isoquinoline Stephania cepharantha (Menispermaceae) [349, 350] 
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Chelerythrine  Phenanthridine  Chelidonium majus (Papaveraceae) [351-353] 

Ellipticine Pyridocarbazole Ochrosia elliptica (Apocynaceae) [354-356] 

Homoharringtonine  Cephalotaxine  Cephalotaxus harringtonia (Cephalotaxaceae) [357] 

Indole acetic acid Indole  Arabidopsis thaliana (Brassicaceae) [358, 359] 

Indole-3-carbinol Indole Brassica spp. (Brassicaceae) [360] 

Lycopodine Quinolizidine  Lycopodium clavatum (Lycopodiaceae) [361] 

Morphine  Phenanthrene  Papaver somniferum (Papaveraceae) [362, 363] 

Oxymatrine Quinolizidine  Sophora flavescens (Fabaceae) [364] 

Pancratistatin Phenanthridine Hymenocallis spp. (Amaryllidaceae) [365, 366] 

Piperine Piperidine Piper spp. (Piperaceae) [367, 368] 

Sampangine  Aporphine  Cananga odorata (Annonaceae) [369] 

Sanguinarine Benzylisoquinoline  Sanguinaria canadensis (Papaveraceae) [353, 370] 

Tetrandrine Bis-benzylisoquinoline  Stephania tetrandra (Menispermaceae) [371, 372] 

Tomatine Steroidal Solanum lycopersicum (Solanaceae) [373, 374] 

Vinblastine  Bis-indole  Catharanthus roseus (Apocynaceae) [375, 376] 

Vincristine  Bis-indole  Catharanthus roseus (Apocynaceae) [377, 378] 

Other Natural Products 

4-Acetyl-12,13-epoxyl-9-

trichothecene-3,15-diol 

Macrocyclic Trichocenes Isaria japonica (Onygenaceae) [379] 

Aclarubicin anthracycline Streptomyces galilaeus (Streptomycetaceae) [380] 

Actinomycin-D  Polypeptide Streptomyces spp. (Streptomycetaceae) [381, 382] 

Aplidin Depsipeptide Aplidium albicans (Clavelinidae) [383-385] 

Arachidonic acid  Fatty acid Widespread in vertebrates [96, 386, 387] 

Ascididemin Pyridoacridine  Cystodytes dellechiajei (Polycitoridae) [388, 389] 

Bleomycin  Glucopeptide Streptomyces verticillus (Streptomycetaceae) [390, 391] 

Boningmycin  Glucopeptide Streptomyces verticillus var. pingyangensis (Streptomy-

cetaceae) 

[392] 

Butenolide  Lactone Angelica spp. (Apiaceae) [393] 

Capsaicin Capsaicinoid Capsicum spp. (Solanaceae) [394, 395] 

Chenodeoxycholic acid Bile acid Liver of animals [396-398] 

Cholic acid Bile acid Liver of animals [399, 400] 

C-phycocyanin Phycobiliprotein Aphanizomenon flos-aquae (Nostocaceae) [401] 

Cribrostatin 6 Quinone Cribrochalina spp. (Haliclonidae) [402] 

Daunomycin anthracycline Streptomyces peucetius (Streptomycetaceae) [403] 

Deoxycholic acid Bile acid Liver of animals [397, 398, 404] 

Deoxynivalenol (Vomitoxin) Epoxy-sesquiterpenoid Fusarium spp. (Nectriaceae) [405, 406] 

Docosahexaenoic acid (DHA) Fatty acid Crypthecodinium cohnii , Schizochytrium spp. [407] 
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Doxorubicin  Anthracycline  Streptomyces spp. (Streptomycetaceae) [377, 408, 409] 

Eicosapentaenoic acid (EPA) Fatty acid Crypthecodinium cohnii, Parietochloris incise [96, 410, 411] 

F-2 Mycotoxin (Zearalenone)  Trichothecene Gibberella spp. (Nectriaceae) [412, 413] 

Fucoxanthin  Carotenoid Undaria pinnatifida (Alariaceae) [414] 

Isoobtusilactone A Butanolide Cinnamomum kotoense (Lauraceae) [415, 416] 

Kotomolide A Butyrolactone Cinnamomum kotoense (Lauraceae) [417] 

Mitomycin C Aziridine Streptomyces caespitosus (Streptomycetaceae) [418-420] 

Neocarzinostatin chromoprotein enediyne Streptomyces carzinostaticus (Streptomycetaceae) [421] 

Norharman -carboline alkaloid Passiflora incarnata (Passifloraceae) [422, 423] 

Ochratoxin A Pentaketide Aspergillus ochraceus (Trichocomaceae) [424-426] 

Patulin  Furopyranone Penicillium spp. (Trichocomaceae) [427-429] 

Putrescine-1,4-dicinnamide Phenylpropanoid Pholiota spumosa (Strophariaceae) [430] 

Secotenuifolide  Butanolide Cinnamomum tenuifolium (Lauraceae) [431] 

T-2 mycotoxin Trichothecene Fusarium spp. (Nectriaceae) [432, 433] 

Ursodeoxycholic acid Bile acid Liver of animals [434] 

Vitamin A (retinol) Carotenoid Daucus carota (Apiaceae) [435-437] 

Vitamin C (Ascorbic acid) Butenolide Citrus spp. (Rutaceae), widespread [56, 438, 439] 

Vitamin D2 (Ergocalciferol) Steroid Lentinus edodes (Marasmiaceae) [440] 

Vitamin D3 (Cholecalciferol) Steroid Animal origin [441, 442] 

Vitamin K2 Naftoquinone Brassica spp. (Brassicaceae), widespread [443, 444] 

Vitamin K3 Naftoquinone Brassica spp. (Brassicaceae) , widespread [445, 446] 
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Fig. (1). Selected plant secondary metabolites with pro-oxidant and anticancer activities.  
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Fig. (2). Selected natural products, excluding plant secondary metabolites, with pro-oxidant and anticancer activities.  

 

vate, which is an efficient scavenger of H2O2 [75-78]. Sec-
ond, glucose metabolism through the pentose phosphate 
pathway regenerates NADPH from NADP

+
 in a reaction in 

which glucose-6-phosphate is converted into 6-
phosphogluconolactone by the enzyme glucose-6-phosphate 
dehydrogenase. The regeneration of NADPH is required for 
H2O2 detoxification through the glutathione peroxi-
dase/glutathione reductase system and through the thiore-
doxin peroxidase/thioredoxin reductase system [73, 79, 80] 
(reviewed in [13]). Therefore, the anticancer potential of pro-

oxidant natural products could be maximized in combination 
with glycolysis inhibitors.  

 In conclusion, natural products have made a significant 
contribution to the development of many anticancer drugs 
currently used in chemotherapy. Recent observations suggest 
that pro-oxidant agents may represent a new class of antican-
cer drugs with capacity to target tumor cells selectively. In 
this article, we have provided an overview of pro-oxidant 
natural products with anticancer activity and discussed their 
anticancer potential. 
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