
Proactive Address Autoconfiguration and Prefix
Continuity in IPv6 Hybrid Ad Hoc Networks

Christophe Jelger
Computer Networks Research Group

University of Basel
Bernoullistrasse 16,

CH-4056 Basel, Switzerland
Christophe.Jelger@unibas.ch

Thomas Noel
Louis Pasteur University (Strasbourg)

LSIIT - UMR 7005 CNRS-ULP
Boulevard Sébastien Brant

67400 Illkirch, France
noel@dpt-info.u-strasbg.fr

Abstract— In ad hoc networks (MANETs), wireless nodes
spontaneously collaborate to route packets among a multi-hop
and versatile topology. While such networks have originaly been
considered as autarkical systems, it becomes clear that there is
a growing interest in connecting them to the Internet. In such
a hybrid ad hoc network, one or more nodes act as gateways
to the outside world. This situation requires the use of a global
addressing scheme in order to allow end-to-end communications
between MANET nodes and correspondents in the Internet.

In this paper, we present and evaluate an IPv6 address
autoconfiguration protocol based on the original concept of prefix
continuity. This feature ensures that there exists, between a node
N and its gateway G, a path of nodes such that all nodes on this
path use the same IPv6 prefix than N and G. As a result, all the
nodes of a given sub-network form a logical tree rooted at the sub-
network’s gateway, and in which all nodes share an identical IPv6
prefix. In a multiple-gateways and multiple-prefixes environment,
our protocol proactively and dynamically reacts to topological
changes in order to maintain the prefix continuity of each sub-
network.

I. INTRODUCTION

The inherent nature of wireless ad hoc networks is that they
do not rely on any existing infrastructure. In such networks,
wireless nodes spontaneously collaborate to route packets
among a multi-hop topology. Because nodes are free to move,
such a network faces unpredictable topological changes and
thus routing becomes a challenging task. The specific unicast
routing protocols for ad hoc networks can be classified in two
families: proactive (table-driven), and reactive (on-demand).
With the former ([1], [2]), routes to all nodes in the network
are continuously maintained in a so-called proactive manner.
With the latter ([3], [4]), routes are discovered when needed,
i.e. in an on-demand way.

Moreover, in a spontaneous network which does not rely
on any existing infrastructure, self-addressing of nodes is
an essential functionality. However, the multi-hop nature and
the unpredictable topological changes of MANETs make it
impossible to use the address autoconfiguration protocols used
in wired networks (see Section II). One must also note that
in an autonomous ad hoc network (i.e. not connected to the

Christophe Jelger is currently sponsored by an ERCIM fellowship (see
www.ercim.org for information). Part of this work has been done during the
tenure of this fellowship.

Internet) the addressing scheme does not necessarily need to
follow the classical hierarchical organization that is found in
traditional networks. The multi-hop nature of such networks,
and the per host routing scheme of standardized protocols ([1]-
[4]) imply that an autonomous ad hoc network does not strictly
need to be logically organized.

In the mean time, it becomes clear that there is a growing
interest in connecting MANETs to the Internet. In many
situations, e.g in wireless mesh networks [5], [6], the users
of an ad hoc network wish to access the many services of
the Internet. In such a hybrid ad hoc network, one or more
nodes thus act as gateways to the Internet: coherent addressing
becomes essential, especially when multiple gateways and
multiple network prefixes are available. The loose approach of
autarkical ad hoc networks can no longer apply if one wants
to adhere to the hierarchical and logical organization found in
the Internet.

In this paper, we present a simple yet efficient solution
that can be used in a hybrid ad hoc network in order to
automatically configure the nodes with a globally routable
address. Our proposal is focused on IP version 6 (IPv6),
which is aimed to become the protocol of the next generation
Internet. The core of our approach is the original concept of
prefix continuity, i.e. a feature that ensures that there exists,
between a node N and its gateway G, a path of nodes such
that all nodes on this path use the same network prefix than
G and N. As a result, all the nodes of a given sub-network
form a logical tree rooted at the sub-network’s gateway.
While the logical topology of a sub-network is a tree, its
physical connectivity can be of any kind (e.g. a mesh). In
particular, routing within a sub-network does not necessarily
follow the tree structure: it is done via a shortest-path of
the underlying physical topology. Moreover, when used in
a multiple-gateways and multiple-prefixes environment, our
protocol proactively reacts to topological changes in order to
maintain the prefix continuity of each sub-network. The situa-
tions such as network partitioning/merging, nodes movements,
and the appearance/disappearance of gateways are all handled
by the mechanism used to disseminate the information about
available gateways and prefixes. In contrast to previous work,
prefix continuity is the core element of our proposal.

0-7803-9012-1/05/$20.00 (C) 2005 IEEE

The rest of this paper is organized as follows. In the
following section, we present some of the related work and
we also motivate our work. In Section III, we introduce
the concept of prefix continuity and describe its practical
application to hybrid ad hoc networks. The operation of our
proposal is detailed in Section IV and its performance is
evaluated in Section V. Finally, we conclude this paper in
Section VI in which we also present some future perpectives.

II. ISSUES AND RELATED WORK

A. Address autoconfiguration with IPv6

The version 6 of IP has introduced a stateless address
autoconfiguration (SAA) protocol [7] which can be used by the
nodes of a (layer-3) link to automatically configure a global
IPv6 address. To do so, a router sends periodical messages
which contain the global prefix that must be used on the
link. The length of this prefix is generally 64 bits. The host
part of the IPv6 128-bit address is created by each node
from the MAC address of the interface connected to the link:
an Ethernet Unique Identifier (EUI-64) of 64 bits is derived
from the MAC address, and it is appended to the 64 bits of
the prefix. Unfortunately, the multi-hop nature of an ad hoc
network makes it impossible to use the SAA protocol, mainly
because there is no notion of a common link in an ad hoc
network. Moreover, topological changes are not handled, and
the presence of multiple gateways in a hybrid ad hoc network
is also problematic.

B. Autonomous networking

There has been quite a number of alternative proposals in
order to support address autoconfiguration in traditional (i.e.
autonomous) ad hoc networks. As stated in [8], the main task
of these schemes is to manage a pool of addresses, known as
the address space. In short, the objectives of such protocols
are to assign addresses to nodes, to handle network merging
(e.g. the merging of two address spaces), and to react to ad-
dress leaks (e.g. network partitioning). The autoconfiguration
process itself can either be centralized or distributed, but in
both cases the whole process relies on some mechanisms used
to manage the address space (e.g. periodical flooding, leader
election). The detailed operation of these proposals is however
out of the scope of this paper, and interested readers are invited
to refer to [8] for a review.

Our main focus is indeed related to the logical organization
of a MANET. In an autonomous ad hoc network, it is clear that
such a logical organization (with respect to IP sub-networks)
is not a priority. The concept of multiple sub-networks makes
little sense as, in itself, the setting up of multiple sub-networks
is somehow cumbersome. What would be the boundaries of
each sub-network? How many sub-networks do we need? In
a very practical sense, the only thing that really matters is
the physical topology. After all, whether nodes share or not a
given network prefix is meaningless as, from a network layer
point of view, the ad hoc network is not inserted in a global
routing system such as the Internet.

C. Connecting to the Internet

In contrast to autonomous networks, a hybrid ad hoc net-
work has one or multiple connections to the Internet. For
example, ad hoc networking is considered as an interesting
alternative to provide Internet connectivity in areas where
broadband access is not available for economical or technical
reasons1. There is also a growing interest to build ”community
wireless networks”2 which also offer access to the Internet.
As a matter of fact, hybrid ad hoc networks are becoming a
reality, and they might lead the widespread adoption of ad hoc
networking by common people. The fact that such networks
are connected to the Internet is a fundamental parameter and
assumptions that hold for autonomous ad hoc networks do no
longer apply. In particular, since a hybrid ad hoc network is
inserted in the global routing system of the Internet, a logical
network-layer organization of the network is desirable. This
observation is even magnified when considering a hybrid ad
hoc network with multiple gateways and multiple network
prefixes. The setting up of multiple sub-networks becomes a
necessity as routing from the Internet to a given prefix of the
hybrid ad hoc network is done via the corresponding gateway.

Mainly, two realistic proposals have considered address
autoconfiguration in ad hoc networks connected to the Internet.
Wakikawa et al. [9] have proposed a method that is similar
to the path discovery procedure used in reactive routing
protocols. When required, an ad hoc node simply broadcasts
a request to obtain a network prefix and, eventually, a reply is
sent back by a gateway to the originator of the request. This
reply message contains the network prefix that can be used to
build the IPv6 address. This scheme is therefore reactive, in
the sense that the procedure is initiated by a node on an on-
demand basis. Furthermore, the routing table is also extended
as such :

Destination Next hop
default via gateway G
gateway G next hop (neighbor) towards G

TABLE I

ROUTING ENTRIES ADDED BY [9]

As seen on table I, a node must perform a double-lookup in
the routing table when it wants to send data to a correspondent
in the Internet: the gateway G may indeed not be a neighbor
of the sending node. This particular situation is in opposition
to the traditional use of a routing table in which the next
hop towards a destination is a direct neighbor. Finally, Xi et
al. [10] have proposed to extend this proposal with period-
ical broadcasts (containing prefix information) sent by each
gateway, and with the possibility for an intermediate node to
reply to request messages. The proposal is thus extended with
proactive capabilites.

1See http://www.meshnetworks.com
2See http://www.seattlewireless.net

D. Motivation

While these two papers have proposed some interesting
ideas, they both have a few drawbacks. First and in the case
of multiple prefixes, the problem of prefix continuity is not
considered. It means that there is no logical organization of
the ad hoc network: the concept of sub-network is ignored.
However in real situations, a logical organization is essential
as gateway providers may want to deploy specific applica-
tions that are meaningless in the absence of sub-networks
(e.g. supervision/management systems, billing/accounting, on-
demand/pay-per-view multicast streaming). Moreover as nodes
using different prefixes are mixed within the network (see Fig.
1b), a node must explicitly specify in its outgoing packets
via which gateway its data must be sent when the destination
is outside of the ad hoc network. All the nodes on the path
to the gateway of the sender may indeed not use the same
default gateway. Second, both protocols do not consider the
effects of the unpredictable topological changes that occur in
an ad hoc network. They indeed do not specify how the prefix
information is updated (or changed) in time, especially in the
case where a node becomes isolated from its current gateway
(e.g. network partitioning).

Our work differs from previous work as follows. First, we
define prefix continuity as the core element of our proposal.
This feature is indeed determinant for the management and
daily operation of a hybrid ad hoc network. Prefix continuity
avoids the use of source routing (i.e. to force the routing of
packets via a specific gateway) as a coherent scheme is used to
setup the next-hop default entry in each node’s routing table.
Second, our proposal naturally supports multiple gateways
and multiple prefixes in a dynamic manner. Our address
autoconfiguration protocol indeed proactively reacts to all
kinds of topological changes. Network partitioning/merging,
gateway appearance/disappearance, and nodes movements are
all treated by our proposal in a similar way: the protocol does
not need to know what really happens as it simply reacts to all
topological changes in a similar way. Finally, our proposal can
work as a stand-alone protocol, or it can be integrated within
the operation of a routing protocol. For example, we have
successfully added our address autoconfiguration protocol to
OLSR (see Section IV-E).

III. PREFIX CONTINUITY

The concept of prefix continuity in a hybrid ad hoc network
is the core element of our proposal. It ensures that there
exists, between a node N and its gateway G, a path of nodes
such that all nodes on this path use the same network prefix
than G and N. Each sub-network is thus a logical tree (with
respect to the network layer) rooted at its gateway. When
multiple gateways and multiple prefixes are available, a forest
of (logical) trees is created and dynamically maintained as
unpredictable topological changes occur. Fig. 1 shows a hybrid
ad hoc network with (a) and without (b) prefix continuity.
There are 3 gateways, and each color corresponds to a given
network prefix.

Fig. 1. Ad hoc network with (a) and without (b) prefix continuity

The main interest of prefix continuity is that it establishes
a logical organization within a hybrid ad hoc network, in the
sense that the network becomes divided in sub-networks. As
said earlier, each sub-network is actually created as a logical
tree, but the physical topology of a sub-network can be of any
kind (e.g. a mesh, see Fig. 1). Moreover, each logical tree is
oriented (or directed) from the gateway to the leaf nodes, as
shown in Fig. 1a with arrows.

With our proposal, the default route of each node points to
its parent node in the tree. For a node N, we define this parent
node in the tree as the upstream neighbor. We indeed use each
logical tree to propagate the prefix information advertised by
the associated gateway. As this information flows from the
root of a tree (i.e. the gateway) to its leaves, we prefer the
term upstream neighbor as it is related to the propagation
technique used to disseminate the sub-network prefix (see
next section). With this coherent scheme, a node does not
need to explicitly specify via which gateway its outgoing
packets must be sent (in contrast to previous proposals), and
the unusual requirement of a double-lookup in the routing table
is suppressed. The main challenge of our proposal is therefore
to dynamically manage the forest of logical trees. This can be
achieved in a simple and distributed way as presented in the
next section.

IV. PROTOCOL OPERATION

Our proposal relies on two major mechanisms. First, neigh-
borhood discovery is crucial as it allows to detect the loss
of the link to the upstream neighbor. It also enables a node
to detect if it still has neighbors that share the same network
prefix. This is useful as a node can determine if it has become
isolated from its current sub-network. The second major
component of our proposal is the selection of the upstream
neighbor. For this purpose, we have proposed two algorithms
that are detailed in Section IV-C. The first algorithm finds the
closest gateway, while the goal of the second algorithm is to
maximize the prefix stability (i.e. the duration during which a
node belongs to its current sub-network).

A. Forwarding and propagation of prefix information

As in the stateless address autoconfiguration protocol of
IPv6, each gateway is responsible for sending prefix announce-

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Option Length | Reserved | Neighborhood connectivity |
+-+
| Prefix Length | Distance | Sequence number |
+-+
| |
| Gateway Global Address |
| (128 bits) |
| |
+-+
| |
| DNS server Global Address |
| (128 bits - optional) |
| |
+-+

Fig. 2. GW INFO Message Format

ments. In practice, each gateway periodically advertises (e.g.
every second) a global prefix of 64 bits, and each node uses
the EUI-64 of its interface connected to the ad hoc network
to create a global IPv6 address. We also believe that DAD
(Duplicate Address Detection) should not be performed. The
probability of an address collision is indeed extremely low
when EUI-64 are used to create IPv6 addresses. An address
collision can only occur in very rare cases: faulty network
adaptor, unregistered material, or intentional misbehavior of a
user. Nevertheless, one could still decide to use a mechanism
to perform DAD. For example, passive DAD [11] could be
used. However, we find unnecessary to add the overhead and
the complexity occured by a DAD procedure.

The message sent by each gateway is denoted GW INFO
(GateWay INFOrmation). Each node in the ad hoc network
forwards an updated version of the GW INFO message which
has been sent by its upstream neighbor. Messages received by
other nodes than the upstream neighbor are treated but silently
discarded (i.e. not forwarded). This very simple restriction
naturally leads to the creation and the preservation of the forest
of logical trees, as each node only advertises the prefix of the
sub-network it belongs to. Note that the algorithm used to
select the upstream neighbor has no influence: as long as a
node only forwards (an updated version of) the GW INFO
message sent by its upstream neighbor, prefix continuity is
maintained and guaranteed. Finally, each GW INFO message
is sent in broadcast (or multicast in IPv6), and it is therefore
received by all the neighbors of the sender node. The format
of a GW INFO message is shown in Fig. 2 (using the usual
IETF-like format). Each message contains:

• the global address of the gateway and the length of the
prefix part of this address (usually 64 bits)

• the distance (in hops) at which the sender of the message
is from the gateway

• a sequence number used to discard outdated messages
and to detect the loss of messages

• a specific field used for neighborhood discovery (as
described in Section IV-B.

• an optional DNS server address

When a gateway initiates the sending of a GW INFO
message, it sets the distance field of the message to zero.
This value is increased each time a node forwards (an updated
version of) the message sent by its upstream neighbor. Each

Fig. 3. Propagation of GW INFO messages

node also records the sequence number associated with a given
gateway: it can therefore detect the loss of messages (via
timeout or gaps in the sequence numbers received), and it
also avoids to use and forward outdated messages. Figure 3
illustrates the propagation of GW INFO messages.

On Fig. 3, there are two gateways G1 and G2 with the
respective prefixes P1 and P2. Arrows emanating from a node
indicate a GW INFO message, and the number represents
the value of its distance field. The color indicates the prefix
carried by the message. For clarity, all the messages are not
represented. On this example, node A and node C select G1
as their upstream neighbor. Upon reception of the GW INFO
message sent by G1, they in turn send a GW INFO message
with the distance field set to one. Also note that node D
selects node C as its upstream neighbor: it therefore does not
forward the messages sent by nodes E and F. As a result, the
information initially sent by the gateway G2 is not propagated
in the grey sub-network (prefix P1). Finally, we remind that
this prefix propagation procedure is periodically re-initiated by
the gateways.

B. Validating bi-directional links

As in most MANET routing protocols, each node must
discover its 1-hop neighborhood. A node must indeed have
a bi-directional link with its upstream neighbor in order to
be able to send and receive packets to correspondents in the
Internet. To react quickly to topological changes, each node
must proactively maintain a neighborhood table so that it can
rapidly choose a new upstream neighbor when necessary. For
a given node N, this table contains the global address of each
neighbor of N, the state of the link with this neighbor (uni/bi-
directional, or invalid), and the sequence number associated
with the neighbor’s gateway. This logical neighborhood table
is different from a classical neighborhood table, in the sense
that the table is only populated with neighboring nodes sending
GW INFO messages. If our protocol is integrated within the
operation of, for example, a proactive routing protocol such
as OLSR, we can reuse the neighborhood table of the routing
protocol, but we must add a flag which indicates whether the
node is sending GW INFO messages or not (we must also add
the information mentioned above). Note that in the remainder

of this section, we will refer to the Logical Neighborhood
Table of a node with the acronym LNT.

If our address autoconfiguration protocol is used as stand-
alone process, it must maintain its own LNT. For this purpose,
we do not follow the traditional broadcast-based approach that
is used in other protocols (e.g. OLSR, AODV) to validate the
links between neighbor nodes. In real networking, for example
with IEEE 802.11b, broadcast (or multicast for IPv6) messages
are sent at a lower data rate (e.g. 1Mb/s) than unicast messages
(e.g. 11 Mb/s). The main consequence is that, for a given
node, the transmission range of broadcast messages is larger
than the transmission range of unicast messages. Therefore
neighborhood sensing with broadcast messages can lead to the
so-called gray-zone effect [12]: two nodes may think they are
neighbors (broadcast messages sent by one of the node reach
the other), but the transmission of unicast messages may not be
possible among them. We therefore introduce a neighborhood
sensing protocol that validates links with unicast messages in
order to suppress the gray-zone effect.

The initial discovery of a neighbor is done via GW INFO
messages. We remind that such messages are sent in broadcast,
and are therefore received by all the neighbors of the sender
node. For a given node A, the reception of a GW INFO
message sent by a node B that is not in its LNT triggers the
following mechanism. First, A creates an entry for B in its
LNT : this entry is initially labeled as invalid. The information
contained in the GW INFO message sent by B is nevertheless
stored in the LNT of A. Node A then assigns an identifier (that
has not been assigned to any other neighbor of A) to node B.
To inform B, it unicast sends to B an ID message with the
ACK field set to zero and the ID field set to the value assigned
by A, say V . The format of such a message is shown in Figure
4.

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | ACK |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 4. ID Message Format

From now on, A can use the V th bit of the Neighborhood
Connectivity field of its future GW INFO messages, to indicate
whether the uni-directional link from B to A is up. To do so,
it simply sets the V th bit to 1. As B has been assigned the ID
V by A, it can learn if the uni-directional link between itself
and A is up or not. In clear, it knows if its unicast messages
sent via A (or sent to A) are well received by A.

Note that at the moment the link is still labeled as invalid
by A. So now B receives the ID message sent by A. If A is
not in the LNT of B, B creates an entry for A and labeled it
as uni-directional. Node B then assigns an ID to A, and sends
this value to A in an ID message whose ACK field is set to 1.
When A receives this message, it can label the entry for B in
its LNT as bi-directional. It then acknowledges the reception
of this message by sending to B a new ID message with ID
set to V and ACK set to 1. Node B can also label the link
as bi-directional. This three-way handshake allows to validate

the bi-directional nature of the link with unicast messages.
Note that node B still needs to add in its LNT the information
contained in an upcoming GW INFO message sent by A.

Moreover, an entry in the LNT is removed if it is not
periodically refreshed (e.g. default timeout is 6 seconds). In
order to refresh an entry without having to re-perform the
three-way handshake, the node A can notify its neighbor B
when it receives unicast data sent by B (these packets can be
sent to A, or A can the next hop towards the final destination).
Node A simply sets the V th bit of its GW INFO message to
1. In the mean time, node B can act symmetrically and the bi-
directional nature of the link can be refreshed. This procedure
(inspired from the DSR protocol [4]) can be used to validate
the bi-directional nature of a link as long as there is some
unicast data sent between nodes A and B. Finally, if this is
not the case, the entry must be revalidated as explained earlier
before it expires (e.g. 1 second before expiration). If there is
no traffic being sent between A and B, the overhead induced
is negligible. Finally, one must also remind that an entry in
a LNT is only valid if the associated node periodically sends
GW INFO messages.

C. Upstream neighbor selection

As explained in Section III, each node in the hybrid ad hoc
network must choose an upstream neighbor. For this purpose,
we propose two algorithms. With the first algorithm, a node
selects as its upstream neighbor the node that sends GW INFO
messages with the smallest value for the distance field. A node
therefore implicitly selects the closest gateway. The objective
of the second algorithm is quite different. With this algorithm,
a node selects its upstream neighbor such that it can keep its
current global address as long as possible. The main focus
is the stability of the prefix. In the rest of this paper, we
call the first algorithm the distance algorithm, and the second
algorithm is called the stability algorithm.

It should be noted that for both algorithms, the upstream
neighbor of a node N must mandatorily be in the LNT of N,
and the link between the two nodes must be bi-directional. In
particular for a given node N with upstream neighbor U, if
the entry for U in the LNT of N becomes uni-directional or
invalid, the node N must choose a new upstream neighbor.

1) The distance algorithm: This algorithm is very simple:
a node simply chooses as its upstream neighbor the node
that advertises the shortest distance to a gateway. The main
advantage is therefore that the path between a node and its
gateway is a topological shortest path. Moreover, in particular
circumstances, this algorithm can lead to the creation of well-
balanced sub-networks, in the sense that they would all have an
equal size (statistically speaking). This is for example the case
if the area formed by the gateways is symmetrical, and if the
ad hoc nodes are uniformely distributed in this geographical
area. This is because each node selects the closest gateway. If
we assume that the radio characteristics are similar for each
node, the distance in hops between two nodes in the network is
strongly correlated to the geographical distance that separates
them. The main drawback of this algorithm is that a node may

frequently change its global address as topological changes
occur. In particular, the distance algorithm does not prevent a
node from joining a new sub-network even if the node still
has neighbors which are in its previous sub-network.

2) The stability algorithm: We have therefore proposed a
second algorithm whose objective is to maximize the time
during which a node keeps its current global address. In
other words, with this algorithm a node remains a member
of its current sub-network as long as possible, i.e. until it
cannot find an upstream neighbor that uses the same network
prefix. In practice, a node ignores GW INFO messages sent
by neighbors of a different sub-network as long as it has
neighbors from its own sub-network, i.e. as long as there exists
a path of nodes using its current prefix between itself and the
gateway. In contrast to the previous algorithm, the distance to
the gateway is no longer the main criteria when selecting an
upstream neighbor. However, a node must select its upstream
neighbor in order to find the shortest possible path to its current
gateway. The path between a node and its gateway is therefore
a shortest path within the sub-network, but it might not be a
topological shortest path. For example in Fig. 1(a), the leaf
node of the white sub-network/tree has a 4-hops path to its
gateway. This path is the shortest path inside the sub-network,
but it is not a topological shortest path (i.e. 3 hops via the
light-grey node above it). If the distance algorithm was used,
the leaf node of the white sub-network would decide to join
either the light-grey or the dark-grey sub-network as in both
cases there is a closer gateway (i.e. 3 hops).

3) What about transport layer: As said earlier, the main
objective of the stability algorithm is to maximize the time
during which a node keeps its current prefix. In other words,
this algorithm minimizes the number of prefix changes, i.e.
the number of times a node joins a new sub-network. We
indeed want to reduce this number, as when a node joins a
new sub-network it changes its global address and this can
break active connections. As previous proposals ([9], [10]),
we assume that each node in the MANET can use Mobile
IPv6 [13] in order to maintain its active (TCP) connections
and to resume reachability after a sub-network change. We
propose that the global address created by a node of the ad hoc
network can serve as the Mobile IPv6 care-of address of the
mobile node. It means that each time a node changes its global
address, it will have to send a binding update (BU) message
to its home agent3. An advantage of the stability algorithm is
therefore that it reduces this overhead and the negative effects
induced by the creation of a new global address.

D. Convergence

In this section we briefly analyze the convergence of our
proposal. We assume that each gateway sends a GW INFO
message every PGW second. Moreover, an entry in the LNT
is removed if a node has not received 3 consecutive GW INFO
messages from the corresponding neighbor: we set this timeout

3The node may also send a BU message to some of its correspondents if
route optimization is possible.

period to Tll = 3.5× PGW . We also set ε as the time needed
to complete the three-way handshake used to validate a link,
and α as the delay introduced by a node before it forwards an
updated version of the GW INFO message sent by its upstream
neighbor. We assume that ε and α are identical for all the
nodes of the ad hoc network. Moreover, we ignore the delay
introduced by the MAC layer.

At protocol startup, a node that is d hops away from a
gateway will receive a GW INFO message after d(ε + α)
seconds. If we consider that both ε and α are in the order
of tens of milliseconds, the convergence is very quick (i.e.
less than a second). To derive the convergence, we consider the
following worst-case scenario. A node N receives a GW INFO
message from its upstream neighbor U, just before U moves
out of transmission range from node N. We remind that node
N will consider the link as lost after Tll seconds. Just before
N considers the link as lost, it receives a GW INFO message
from node M but does not decide to use M as its new upstream
neighbor. Shortly after, node N considers its link to U as lost.
Eventually, node N will again receive a GW INFO message
from M, and it will select M as its new upstream neighbor.
Overall, node N will have been isolated from its gateway
during a maximum duration of about Tll + PGW seconds.
If PGW = 1, the worst-case isolation time is equal to 4.5
seconds (when there exists an alternative upstream neighbor).
In a similar case in which a branch of nodes becomes isolated
from the top-of-the-stream upstream neighbor, a node at depth
d in the branch will choose a new upstream neighbor after a
maximum of Tll + PGW + d(ε + α) seconds (i.e. in a worst-
case scenario). With PGW = 1, this maximum delay is equal
to about 5.5 seconds.

The convergence of our proposal is thus relatively quick
as it primarily depends on two parameters: the frequency at
which gateways send prefix announcements, and the timeout
value for a LNT entry. In practice, one can reduce the timeout
value but this can increase the number of false reactions due
to the loss of messages. As in any neighborhood discovery
scheme, these values are a trade-off between reactivity (after
a link loss) and accuracy (when detecting link losses). The
convergence of our proposal is thus similar to the convergence
of any neighborhood discovery scheme: our proposal does not
introduce any extra delays.

E. Implementation

We have successfully implemented our proposal as a stand-
alone daemon under both the Linux and FreeBSD operating
systems4. This daemon can be used in parallel of a routing
protocol, at the condition that the routing protocol is able
to dynamically detect when a new global address is assigned
to an interface. This stand-alone version has however mainly
been developed to validate the operation of our proposal. In
practice, this version induces an overhead of traffic of 752
b/s (94 Bytes/s) per node. This is very low compared to the

4See http://www-r2.u-strasbg.fr/∼frey/safari/autoconf.html

data rate of current wireless protocols (e.g. 11 Mb/s for IEEE
802.11b and 54 Mb/s for IEEE 802.11a).

For practical deployments, we have integrated our address
autoconfiguration proposal in an IPv6 version of the OLSR
routing protocol. This version is currently available for the
Linux operating system. In particular this version uses an
extended version of the OLSR neighborhood table in order
to build the LNT. Finally, we would also like to mention that
our proposal has also been integrated into the AODV routing
protocol by INESC5.

V. PERFORMANCE EVALUATION

A. Methodology

To validate our proposal, and to evaluate and compare
the two algorithms used to select the upstream neighbor,
we have carried out a large set of simulations using the
NS simulator. Following studies from Yoon et al. [14] and
Bettstetter et al. [15], we have used a modified version of the
Random WayPoint (RWP) mobility model in order to avoid
the problems introduced by the classical RWP model. With
the modified model [16], the initial locations of the nodes
are chosen from the RWP stationary distribution, i.e. there is
no warm-up period at the start of the simulation (see [16] and
[17] for details). Moreover, the nodes movements are carefully
computed in order to maintain a steady average speed during
the course of the simulation. Therefore convergence in the
mobility pattern is immediate.

We have considered an area of 2000×2000 m2 with 100
mobile nodes with a radio range of 250 metres. There are 4
gateways, each being located in a corner of the area at 250
metres from each of the two edges. Each gateway announces
a different prefix. In the simulations we have varied both the
pause time and the mobility speed of the RWP model. For a
given simulation, all the mobile nodes used the same statistical
values for these two parameters. The pause time was a fixed
value equal to p = i × 30 with i ∈ [1, 5]. The mean mobility
speed m was taken in the range [1, 5]. The speed s was then
randomly and uniformely chosen around the mean value such
that s ∈ [m ± 0.5]. We have therefore obtained 25 different
combinations (note that we will often use this term in the rest
of this paper) of pause time and mobility speed. Moreover,
we have generated ten 900-seconds (15mn) scenarios for each
combination to converge to steady results. By convergence,
we mean that a specific set of data converged either towards
its mean value (with a low standard deviation with respect to
the mean value), or towards a given distribution (e.g. gaussian
distribution). Also for each scenario we have evaluated the
two algorithms and for each simulation all nodes use the same
algorithm.

We have used different indicators and metrics in order
to compare the two algorithms and to evaluate their effects
on the logical organization of the ad hoc network. While
such indicators are very useful, one should not conclude that
the presented results will generally hold in real networking

5See http://www.inescporto.pt/

situations. More precisely, one must bear in mind that the
numerical values derived during the simulations are strongly
related to the overall framework of the simulations. In other
words, the numerical values in themselves are not the most
meaningful data: they are rather a mean to understand the
behavior and implications of our proposal.

B. Prefix hold time

The time during which a mobile node keeps a given prefix
is the first metric that we decided to measure. We call this
metric the prefix hold time. Figure 5 (see next page) shows
the average values computed for the 25 combinations of pause
time and mobility speed described earlier. As expected, with
the stability algorithm the average prefix hold time is between
6 to 8 times greater than it is with the distance algorithm.
This is consistent with the nature of this algorithm whose
objective is to maintain the current prefix of a node as long as
possible. More generally when the mobility speed increases,
the prefix hold time decreases, but the ratio between the
two algorithms remains similar. This is mainly due to the
augmentation of topological changes which generate a high
level of link breakages. Furthermore in Fig. 6 we show the
prefix hold time in the form of a survival function, i.e. it gives
the percentage of nodes that maintain their current prefix more
than a given duration (throughout the course of a simulation).
We have considered the two extreme combinations of pause
time (P) and speed (S). For example, the notation S1-P150
means that the average mobility speed is 1 m/s and that
the pause time is 150 seconds. The ability of the stability
algorithm to maximize the prefix hold time is clearly shown.

C. Number of upstream neighbor changes

The number of upstream neighbor changes is a useful
indicator as it evaluates the frequency at which our proposal
reacts to topological changes. First it is important to note
that when a node selects a new upstream neighbor, it may
or may not also change its global address (i.e. join a new sub-
network). We therefore separated these two events as follows.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e

of
 n

od
es

 w
ith

 p
re

fix
 h

ol
d

tim
e

>
 t

Time t in seconds

50 % of nodes have maintained their prefix more than 225 seconds

DISTANCE S1-P150
DISTANCE S5-P30

STABILITY S1-P150
STABILITY S5-P30

Fig. 6. Survival function for prefix hold time

DISTANCE

 1
 2

 3
 4

 5

Mobility Speed (m/s)
 30

 60
 90

 120
 150

Pause Time (s)

 0

 10

 20

 30

 40

 50

 60

Time (s) STABILITY

 1
 2

 3
 4

 5

Mobility Speed (m/s)
 30

 60
 90

 120
 150

Pause Time (s)

 0
 50

 100
 150
 200
 250
 300

Time (s)

Fig. 5. Average prefix hold time

DISTANCE

 1
 2

 3
 4

 5

Mobility Speed (m/s)

 30
 60

 90
 120

 150

Pause Time (s)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

of changes STABILITY

 1
 2

 3
 4

 5

Mobility Speed (m/s)

 30
 60

 90
 120

 150

Pause Time (s)

 0
 2
 4
 6
 8

 10
 12

of changes

Fig. 7. Average number of prefix updates

DISTANCE

 1
 2

 3
 4

 5

Mobility Speed (m/s)

 30
 60

 90
 120

 150

Pause Time (s)

 0

 10

 20

 30

 40

 50

of changes STABILITY

 1
 2

 3
 4

 5

Mobility Speed (m/s)

 30
 60

 90
 120

 150

Pause Time (s)

 0

 2

 4

 6

 8

of changes

Fig. 8. Average number of prefix changes

Upon selecting a new upstream neighbor, if a node keeps its
current global address we call this event a prefix update, and
if in the mean time it joins a new sub-network we call this
event a prefix change. The average values of these two strongly
correlated indicators are respectively presented in Fig. 7 and
Fig. 8. For the two algorithms, we have measured that around
3.5% of all the upstream neighbor changes are errors, in the
sense that a node chooses a new upstream neighbor because
it falsely believed that the link with its previous upstream
neighbor was down. These mistakes are however inevitable
as they are caused by erratic topological changes.

As seen on the figures, the distance algorithm generates a lot
of prefix changes and very few prefix updates. In opposition,
the stability algorithm generates much more prefix updates
than prefix changes. These observations are coherent with the
nature of the two algorithms. With the stability algorithm, a
node indeed tries to permanently find an upstream neighbor
that shares the same prefix. As topological changes occur, each
node priority is to remain in its current sub-network. This
requirement therefore increases the number of prefix updates.
In contrast, with the distance algorithm, each node priority is to
find the closest gateway. In the mean time, the RWP mobility

model tends to favor nodes movements toward the center of the
simulated area (see [15] for more details). As the gateways are
located near the edges of the simulated area, a node tends to
move away from its current gateway to eventually get closer to
another gateway. With the distance algorithm, such movements
induce a lot of prefix changes. Overall, we can also note that
the total number of upstream neighbor changes (i.e. both prefix
changes and updates) is reduced with the stability algorithm.
This is attractive as it consequently reduces the amount of false
changes (which are a small percentage of the total number of
changes).

D. Size of sub-networks and orphan nodes

Another major concern in our study was to analyze the
topological characteristics of the sub-networks generated by
our proposal. Depending on the nodes movements and on the
algorithm used, nodes dynamically get attached to one of the
four gateways. Therefore, the (logical) topology dynamically
changes over time. To study these changes, we have taken a
snapshot of each sub-network every second (during the course
of each simulation).

1) Average and instantaneous size: We first examine the
average size of each of the four sub-networks. In parallel, we
also consider orphan nodes, i.e. nodes that are not attached
to any gateway. Such nodes are usually isolated from a radio
transmission point of view and it is therefore impossible for
them to get attached to any sub-network. Figure 9 shows the
average size of the four sub-networks as computed over the
course of the 25 possible combinations, thus a total of 25×4 =
100 points for each algorithm. The line indicates the ideal case,
i.e. each of the four sub-networks has a size of 25 nodes so
nodes are equally balanced among the available sub-networks.

With the distance algorithm, we can see that all the points on
Fig. 9 are very close to the ideal value. This is consistent with
the nature of the algorithm as already mentioned in Section
IV-C.1. Since the nodes are uniformely dispersed across the
geographical area formed by the four gateways, and because
each node chooses the closest gateway, an equal amount of
nodes are attached to each of the four gateways. In contrast,
the data points are more dispersed around the ideal value
with the stability algorithm, and the average size of each
sub-network is slightly inferior to the ideal value because
this algorithm generates a slight amount of orphan nodes.
However, despite the fact that the stability algorithm was not
expected to produce such results, nodes are on average equally
spread in the four sub-networks. This is primarily due to the
symmetrical nature of the simulated area and to the flattening
effect of generating average values.

We moreover studied the instantaneous size of sub-networks
by taking a snapshot of the ad hoc network every second.
Doing so, we measured the occurence at which a given size
was found over of the course of a simulation. The results of
this analysis are shown on Fig. 10. We can see on this figure
that the instantaneous size of each sub-network is much more
chaotic with the stability algorithm. On the contrary with the
distance algorithm, the distribution of the instantaneous size

 0

 10

 20

 30

 40

A
ve

ra
ge

 s
iz

e
of

 s
ub

-n
et

w
or

k

Scattered points

Distance algorithm Stability algorithm

Scattered data
Ideal value

Fig. 9. Average size of sub-networks

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50

O
cc

ur
en

ce
 (

%
)

of
 s

ub
-n

et
w

or
k

w
ith

 s
iz

e
=

 s

Average size s of sub-networks

DISTANCE S1-P150
DISTANCE S5-P30

STABILITY S1-P150
STABILITY S5-P30

Fig. 10. Distribution of average sub-network sizes

of each sub-network follows a Gaussian pattern centered at a
size of about 25. This again reinforces the conclusions given
above.

2) Orphan nodes: We define a node that does not belong to
any sub-network as an orphan node. Such a node is generally
isolated from other nodes in the sense that it is not in the
transmission range of any other nodes. This is mainly due
to the topological changes that occur in the network. If we
consider the distance algorithm, it can be seen on Fig. 11
that, at any instant during the course of a simulation, there is
on average 1% of nodes that are orphan nodes. After careful
analysis of the simulations, it appears that all the orphan nodes
were radio isolated. This proportion (i.e. 1%) is therefore the
minimum number of orphan nodes as it is impossible to get
a smaller value unless the radio transmission range of these
nodes is increased. These orphan nodes are hence not created
by our proposal.

In contrast, the number of orphan nodes is larger when
the stability algorithm is used. These extra orphan nodes
are actually artificially created by the algorithm. We have

 0

 1

 2

 3

 4

 5
P

ro
po

rt
io

n
(%

)
of

 o
rp

ha
n

no
de

s

Scattered points

Distance algorithm

Stability algorithm

Scattered data

Fig. 11. Average number of orphan nodes

observed that during transient topological changes, it happens
that a group of nodes using a common prefix may move away
from its gateway. A node within the group may decide to
choose a new upstream neighbor in the group, just before the
group becomes isolated from its sub-network. This node may
then refuse to choose another upstream neighbor until it detects
that its current upstream neighbor has stopped to forward
GW INFO messages. In rare cases, this latency introduces
extra orphan nodes, mainly because GW INFO messages are
sent in a periodical manner (e.g. every second). A node may
indeed become orphan for a very short period of time until it
receives a GW INFO message from a new gateway. With the
distance algorithm such an event does not occur as nodes do
not lose a chance to join a new sub-network when a closer
gateway is available. However and as shown on Fig. 11, the
negative effect introduced by the stability algorithm remains
low.

E. Route length

We have also measured the length of the route between
each node and its gateway. When the stability algorithm is
used, routes are on average 3.5% longer when compared to the
routes when the distance algorithm is used. This is coherent
with the fact that the distance algorithm provides a topological
shortest path to the gateway. However, the difference between
the two algorithms is very low. This is because the nodes
density is quite high in our simulations, as we want to avoid
having too many radio-isolated nodes. The consequence is
that there exist multiple shortest paths between a node and
its gateway and hence with the stability algorithm, there
is a high probability that the shortest path within a sub-
network is also a topological shortest-path. This observation,
i.e. routes with both algorithms are almost of equal length, is
therefore strongly related to the simulation environment and
one should not conclude that this would be the case in other
situations. The main conclusion is that the stability algorithm
can successfully find a topological shortest-path when it exists.

F. Communication breakdown

In this last section, we use some of our previous measures
in order to estimate the time Ti (Time of isolation) during
which a node cannot communicate with its correspondents
in the Internet. For simplicity, we calculate a unique value
for all combinations of speed and pause time. First, we have
measured the time Tp (Time with path broken) during which a
node cannot communicate with its gateway, either because it is
an orphan node or because the path to the gateway is broken.
To measure this value, we have used a simple echo/request
mechanism to periodically check the path between a node and
its gateway. This was done every 0.5 second. The value Tp is
therefore a good indicator in order to estimate the time during
which a node cannot communicate with correspondents in the
Internet. This value (in seconds) is presented in Table II.

Distance Stability
Tp (s) 9,83 19,34

TABLE II

AVERAGE DURATION WITHOUT PATH TO GATEWAY

Moreover, a node is also temporarily isolated when it
changes its global address. We indeed assumed that Mobile
IPv6 could be used to resume the communications. This
procedure introduces some latency as a node must send a
binding update (BU) message to its home agent in the Internet.
As we cannot measure this latency, we consider it as a
variable parameter in our estimation. We note this delay TBU .
Moreover in Section V-C, we have already measured the
occurence of prefix changes. This average value noted NBU

is shown in Table III.

Distance Stability
NBU 31,49 4,23

TABLE III

AVERAGE NUMBER OF PREFIX CHANGES

During the course of a simulation, we can therefore calcu-
late that the total amount of time during which a node cannot
communicate with its correspondents in the Internet is equal
to

Ti = Tp + (NBU × TBU) (1)

If we vary TBU between 10 and 600 milliseconds, Fig. 12
shows the percentage of the total simulation time during which
a node has no connectivity to the Internet. We can see that the
stability algorithm is much less sensible to the value of TBU

as this algorithm induces few prefix changes. In contrast, the
distance algorithm is more sensible to the value of TBU but it
is less affected by topological changes. Actually this statistical
analysis shows that with the two algorithms, a node is isolated
from the Internet for around 1 to 3% of the total simulation
time. This is quite acceptable as we have considered a very
versatile environment in which nodes are constantly free to
move. Topological changes were therefore very frequent. It

 0

 1

 2

 3

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

ag
e

of
 to

ta
l s

im
ul

at
io

n
tim

e
w

ith
ou

t I
nt

er
ne

t C
on

ne
ct

iv
ity

Latency TBU introduced by Mobile IPv6 (in seconds)

Stability algorithm
Distance algorithm

Fig. 12. Node isolation

is of course difficult to transpose these conclusions to real
networking environment, but we can nevertheless positively
envisage the efficiency of our proposal in real hybrid ad hoc
networks. Our proposal and its associated algorithms have
indeed been shown to work efficiently in a highly versatile
simulation environment.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have introduced the concept of prefix
continuity in IPv6 hybrid ad hoc networks. This feature is the
core element of our address autoconfiguration proposal. Prefix
continuity is ensured by building a forest of logical trees,
each tree being oriented from its gateway to the leaf nodes.
The selection (by each node) of an upstream neighbor, and
a simple restriction when forwarding prefix announcements,
allow the creation and the dynamic maintenance of the logical
trees in a simple yet efficient manner. To perform the upstream
neighbor selection, we have proposed two algorithms. The
first algorithm selects the closest gateway (with respect to
network hops), while the second gives preference to prefix
stabitity. We have evaluated our proposal and have compared
both algorithms via simulations which have validated the
operation of our address autoconfiguration protocol. We have
also succesfully implemented our proposal as a stand-alone
daemon, and we have also integrated its operation in a version
of the OLSR protocol.

While the simulations have allowed us to evaluate our
proposal, it is difficult to transpose these results to real net-
working situations. However, some conclusions will generally
hold. First, the distance algorithm provides (in steady-state) a
shorest-path between a node and its gateway. While this may
not be the case during topological changes, convergence was
shown to be very quick. The second conclusion is that the
stability algorithm is efficient, in the sense that it allows a
node to maintain its global address for a longer period when
compared to the case where the distance algorithm is used.
This observation will always hold in real situations.

As future work, we first want to study the impact of prefix
continuity on unicat routing protocols. One objective is to
evaluate the gain obtained when aggregating routing table
entries (in order to reduce the size of routing tables). A
second perspective is to modify the routing protocol in order
to optimize the management of prefix changes. We would
also like to extend our proposal to IPv4. While it is quite
easy to assign unique identifiers to the nodes of a tree in
a distributed manner (i.e. to assign the host part of an IPv4
address), the difficulty of IPv4 address autoconfiguration is, as
in other proposals, the detection of leaks in the address space.
For this purpose, we are currently working on a distributed
address collector, i.e. a scheme similar to the garbage collector
used in operating systems in order to retrieve left-over areas
of memory. Finally, we are also working on the interactions
between multicast communications and prefix continuity in
hybrid ad hoc networks in which multiple gateways and
prefixes are available.

REFERENCES

[1] T. Clausen and P. Jacquet, “RFC 3626 - Optimized Link State Routing
Protocol (OLSR),” October 2003.

[2] R. Ogier, F. Templin, and M. Lewis, “RFC 3684 - Topology Dissemi-
nation Based on Reverse-Path Forwarding (TBRPF),” February 2004.

[3] C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561 - Ad hoc On-
Demand Distance Vector (AODV) Routing,” July 2003.

[4] D. Johnson, D. Maltz, and Y.-C. Hu, “Internet Draft - The Dynamic
Source Routing Protocol for Mobile Ad hoc Networks (DSR), draft-
ietf-manet-dsr-10.txt,” July 2004.

[5] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-radio, Multi-hop
Wireless Mesh Networks,” in Proc. of ACM Mobicom 2004, September
2004, Philadelphia, PA, USA.

[6] V. Bahl (organizer), “Wireless Community Mesh Networks - Hype or
the Next Big Frontier?” in Panel Discussion at ACM Mobicom 2004,
September 2004, Philadelphia, PA, USA.

[7] S. Thomson and T. Narten, “RFC-2462 - IPv6 Stateless Address
Autoconfiguration,” December 1998.

[8] K. Weniger and M. Zitterbart, “Address Autoconfiguration in Mobile
Ad hoc Networks: Current Approaches and Future Directions,” IEEE
Network, vol. 18, no. 4, pp. 6–11, July 2004.

[9] R. Wakikawa, J. Malinen, C. Perkins, A. Nilsson, and A. Tuominen,
“Internet Connectivity for Mobile Ad hoc Networks,” Wirel. Comm. and
Mobile Computing, vol. 2, no. 5, pp. 465–482, August 2002.

[10] J. Xi and C. Bettstetter, “Internet Connectivity for Mobile Ad hoc
Networks,” in Proc. of 3GWireless, May 2002, San Francisco, CA, USA.

[11] K. Weniger, “Passive Duplicate Address Detection in Mobile Ad hoc
Networks,” in Proc. of IEEE WCNC 2003, March 2003, New Orleans,
USA.

[12] H. Lundgren, E. Nordstrom, and C. Tschudin, “The Gray Zone Problem
in IEEE 802.11b based Ad hoc Networks,” ACM SIGMOBILE Mobile
Computing and Comm. Review, vol. 6, no. 3, pp. 104–105, July 2002.

[13] D. Johnson, C. Perkins, and J. Arkko, “RFC-3775 - Mobility Support
in IPv6,” June 2004.

[14] J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harm-
ful,” in Proc. of IEEE Infocom’03, April 2003, San Francisco, CA, USA.

[15] C. Bettstetter, G. Resta, and P. Santi, “The Node Distribution of the
Random Waypoint Mobility Model for Wireless Ad Hoc Networks,”
IEEE Trans. Mobile Computing, vol. 2, no. 3, pp. 257–269, July-
September 2003.

[16] W. Navidi, T. Camp, and N. Bauer, “Improving the Accuracy of Random
Waypoint Simulations Through Steady-State Initialization,” in Proc. of
the 15th Int. Conf. on Modeling and Simulation (MS’04), March 2004,
Marina del Ray, CA, USA.

[17] L. Perrone, Y. Yuan, and D. Nicol, “Modeling and Simulation Best
Practices for Wireless Ad hoc Networks,” in Proc. of the 2003 Winter
Simulation Conference (WSC’03), December 2003, New Orleans, USA.

	Select a link below
	Return to Main Menu
	Return to Previous View

