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Proactive Demand Participation of Smart
Buildings in Smart Grid

Tianshu Wei, Student Member, IEEE, Qi Zhu,Member, IEEE, and Nanpeng Yu,Member, IEEE

Abstract—Buildings account for nearly 40 percent of the total energy consumption in the United States. As a critical step toward smart

cities, it is essential to intelligently manage and coordinate the building operations to improve the efficiency and reliability of overall

energy system. With the advent of smart meters and two-way communication systems, various energy consumptions from smart

buildings can now be coordinated across the smart grid together with other energy loads and power plants. In this paper, we propose a

comprehensive framework to integrate the operations of smart buildings into the energy scheduling of bulk power system through

proactive building demand participation. This new scheme enables buildings to proactively express and communicate their energy

consumption preferences to smart grid operators rather than passively receive and react to market signals and instructions such as

time varying electricity prices. The proposed scheme is implemented in a simulation environment. The experiment results show that the

proactive demand response scheme can achieve up to 10 percent system generation cost reduction and 20 percent building operation

cost reduction compared with passive demand response scheme. The results also demonstrate that the system cost savings increase

significantly with more flexible load installed and higher percentage of proactive customers participation level in the power network.

Index Terms—Smart building, smart grid, demand response, proactive participation, MPC control, energy cost reduction

Ç

1 INTRODUCTION

BUILDINGS account for nearly 40 percent of the U.S.
primary energy consumption and 70 percent of the elec-

tricity use [1]. To build smart cities with efficient and reli-
able energy systems, it is critical to intelligently manage
various energy demands of buildings and coordinate such
management across buildings in the smart grid.

A key aspect in improving building energy efficiency is to
leverage the scheduling flexibility provided by various
energy demand loads in buildings, including HVAC (heat-
ing, ventilation and air conditioning), plug loads, and emerg-
ing loads such as EV (electric vehicle) charging, etc. In
particular, HVAC system consumes around 50 percent of the
total building energy consumption [1]. Its energy demand
may change based on the dynamic physical environment
(e.g., outside air temperature and sun radiation) and build-
ing occupancy activities. It also needs to be carefully man-
aged to satisfy the building temperature and air flow
requirements. The building thermal flywheel effect allows
temporarily unloading the HVAC systems without immedi-
ate impact on building occupants [2], and therefore provides
significant flexibility in managing the demand. Furthermore,
battery storage has been increasingly used at building level
to store energy during off-peak hours (or from renewable
energy sources) and release energy at peak hours. This pro-
vides additional flexibility for building energy scheduling.

To leverage the flexibility provided by building energy
loads such as HVAC systems, various energy management
methods have been proposed, however they mostly focus

on developing load control algorithms to reduce energy
consumption and shave peak demand for individual build-
ings. There are also a variety of demand response (DR)
strategies in the literature for leveraging such flexibility to
improve electricity market efficiency. However, they are
mostly price-based or incentive-based, in which the build-
ing energy management system passively follows the elec-
tricity price and load reduction signals from the utilities [3].

Indeed, little work has been done to consider integrating
the intelligent building energy scheduling process with the
electricity market economic dispatch strategy in a holistic
framework. Currently, almost all demand response custom-
ers still schedule their own energy demand by passively
reacting to the real-time varying price and demand reduc-
tion instructions dispatched from market system operator
[4]. This passive and single-direction communicating dem-
and response mode greatly limits the potential effectiveness
of demand response strategy in leveraging the tremendous
amount of building energy load flexibility. Such structural
rigidity results in low customer engagement [3], and is part
of the reason why the U.S. demand response penetration
level is only at 6 percent [5].

As estimated in the FERC demand response report [6],
the total peak power demand in the U.S. can be reduced
by 150 GW assuming the participation of the entire cus-
tomers. To further exploit the huge potential of demand
response in improving power system efficiency and facili-
tate customers’ engagement level in electricity market, in
this paper, we propose an innovative demand response
scheme based on proactive demand participation from smart
buildings. Under this proactive demand response scheme,
physical dynamic models, embedded in intelligent build-
ing energy scheduling agents, are able to capture the
characteristics of various loads and predict buildings’ oper-
ating states evolution. In electricity market, the intelligent
energy scheduling agent in each individual building
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submits demand bids for its electricity consumption based
on the electricity price forecast and current operating
states. Then the demand bid information is aggregated by
distribution system operators at the substation level and
sent to the wholesale market operator. After receiving all
demand bids and supply offers, the wholesale market
operator solves the security constrained economic dispatch
(SCED) problem to clear the demand and supply in elec-
tricity market. Finally the market clearing results (i.e.,
electricity prices and dispatch operating points) are disag-
gregated into individual customer’s dispatching quantity.
Those electricity dispatching instructions are sent back to
each individual customer. The customers strictly follow
their dispatching quantities to operate various types of
load inside buildings.

The main contribution of this paper is to propose and
develop above-mentioned demand response scheme with
intelligent scheduling and proactive participation of smart
buildings. This includes the following aspects:

� At the building scheduling level, we construct a
building thermal dynamics model to characterize
heat transfer process and forecast building tempera-
ture evolution. We develop a model predictive con-
trol (MPC) based algorithm to intelligently schedule
the HVAC system and battery usage for reducing
energy cost. Then, based on the building scheduling
algorithm, we generate a demand bid curve for each
building to quantify its energy load flexibility under
various price forecasts.

� At the power system level, we develop algorithms to
first aggregate individual demand bid curves from
buildings at the substation (distribution network)
level and then solve the SCED problem at the whole-
sale market (transmission network) level to maxi-
mize the sum of total surplus of all customers and
power generation companies. The SCED optimiza-
tion determines the electricity price and quantity,
which are then disaggregated to the individual
building customer level.

� We conduct a set of experiments on an IEEE 30-bus
network to evaluate the effectiveness of our pro-
posed proactive demand response scheme.

Compared with existing passive demand response strate-
gies, our proactive scheme enables building customers to
actively participate in the electricity market operation,
instead of just passively following demand reduction sig-
nals and reacting to real-time prices. The experiment results
demonstrate that our approach can greatly reduce power
system generation cost and building operation cost.

The remainder of this paper is organized as follows.
Section 2 summarizes some of the existing approaches on
building energy management and DR programs in the liter-
ature. Section 3 introduces the structural overview of our
proposed framework with proactive demand participation
from smart buildings. Section 4 presents design details of
the framework. Section 5 introduces a baseline passive
demand response mechanism as a comparison reference.
Section 6 shows experiment results and conducts critical
analysis of our proposed approach, and Section 7 concludes
the paper.

2 RELATED WORK

Many current research efforts focus on the design of price-
based demand response models and control strategies [7].
Various price-based DR pricing strategies have been pro-
posed [8], such as real-time pricing (RTP) [9], [10], [11], [12],
critical peak pricing [13], [14], peak load pricing [15], [16],
peak day rebates pricing [17] and time-of-use [18], [19], [20].
Among the existing price-based demand response frame-
works, the iterative real-time pricing mechanism [10] is
shown to be one of themost effective and efficient approaches
in managing distributed demand response resources. In the
iterative RTP approach, system operators (or utility compa-
nies) and customers iteratively compute electricity prices and
optimal electricity consumptions until a suitable set of prices
and energy consumption schedules is reached. Due to the
inflexibility of the communication scheme, it usually takes a
high number of iterations [21] to achieve the optimal alloca-
tion point, assuming constant external conditions during the
entire process. When applied in practical electricity market
environment, the iterative RTP mechanism suffers from two
critical drawbacks. First, the combination of a high number of
iterations and the complexity of unit commitment problem in
a regional electricity market makes the iterative negotiation
process too slow for real-time operations. In some cases, the
convergence of the algorithm cannot be guaranteed with a
lossy and delayed communication platform. Second, we have
to assume that both generation company agents and consum-
ers adhere to the same consumption and bidding strategy
without the ability to learn and adjust based on external
shocks and past bidding experiences.

Although there have been numerous studies on loca-
tional marginal pricing in wholesale power market, there
has not been much literature that focuses on retail market
pricing and designing interface between retail market and
wholesale market. In [22], the authors propose a distributed
approach to derive retail market spot pricing in a radial dis-
tribution network. To enhance efficiency of distributed gen-
eration, nodal pricing mechanism for distribution networks
is developed in [23]. A novel pricing mechanism for
locational marginal pricing with significant distributed
generation penetration is constructed in [24]. An iterative
approach is presented in [25] to integrate the transmission
and distribution grid together with residual demand model-
ing in transmission network [26]. None of these existing
pricing mechanisms allows joint optimization of flexible
energy demands and generation power plants in an inte-
grated framework with price sensitive demand bids derived
from building control models.

At the individual customer level, there has been a variety
of work on scheduling flexible energy loads such as HVAC
system and EV charging for demand response. For energy-
efficient HVAC control, a set of system models and algo-
rithms is proposed in [27], [28], [29], [30], [31], [32], [33].
In [27], a non-linearmodel of the overall cooling system is pro-
posed, and anMPC scheme for minimizing energy consump-
tion is developed. In [28], a system model is proposed that is
bilinear in inputs, states and weather parameters, and a form
of sequential linear programming (SLP) is developed for solv-
ing the control optimization problem. In [30], a building ther-
mal behavior is modeled as RC networks and validated
against historical data, and a tracking linear-quadratic
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regulator (LQR) is proposed for HVAC control. The work
in [32] uses the similar buildingmodel as in [30], and proposes
a set of HVAC control algorithms that address the sensing
data inaccuracy using unscented or extended Kalman filters.
In addition to scheduling energy loads, there are also
approaches proposed for scheduling heterogeneous energy
sources such as battery storage at individual customer
level [34], [35], [36], [37], [38]. Despite these approaches for
scheduling HVAC control, battery storage and other energy
sources, little work exists for combining the demand response
consideration at individual customer level together with the
optimization at network level, which is the focus of our
approach.

3 OVERVIEW OF PROPOSED FRAMEWORK

Our proposed integratedmarket operations framework with
proactive demand participation from smart buildings is
illustrated in Fig. 1. The framework integrates demand
response and network optimization across three levels of the
smart grid – individual (building) customers, distribution
system, and transmission system – through the interactions
of three key decision making entities, including intelligent
building energy scheduling agent, distribution system oper-
ator/customer aggregator andwholesale market operator.

3.1 Intelligent Building Energy Scheduling Agent

At the building customer level, intelligent energy schedul-
ing agent is designed to reduce energy cost and enable

proactive demand participation. First, as part of the build-
ing automation and control system, the agent minimizes the
building operating energy cost by scheduling the energy
consumptions of various subsystems and controlling the
usage of heterogeneous energy supply sources, while satis-
fying the requirements from building occupants. In this
work, we address the scheduling of HVAC systems and bat-
tery storage systems with an MPC control algorithm.

Then, the agent constructs demand bid curves that cap-
ture the potential building energy demand under various
possible grid electricity price. Those demand bid curves
will then be sent to the distribution system operator/cus-
tomer aggregator via wide-area network. After the day-
ahead and real-time markets are cleared by the electricity
wholesale market operator, the building intelligent agent
will receive the dispatch operating points in the same way
as a regular power plant. By following the total electricity
dispatch instruction, the intelligent agent will then coordi-
nate various flexible loads to determine the amount of elec-
tricity that should be allocated to each of them.

3.2 Distribution System Operator/Customer
Aggregator

The number of building customers in a regional electricity
market could easily add up to millions. It is inefficient and
impractical to deal with every individual customer’s
demand bid curve directly in the electricity market. To
reduce the complexity of unit commitment and economic
dispatch process when flexible load demand bids are

Fig. 1. Integrated market operations framework with proactive demand participation.
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considered, distribution system operator/customer aggre-
gator needs to accurately aggregate individual demand bid
curves at the substation level. Namely, the distribution sys-
tem operator needs to find a set of equivalent overall
demand bids which reflect integral demand bid characteris-
tics of all individual customers at the transmission intercon-
nection node while considering the physical models of
distribution system. In the distribution system, there could
exist participations from both proactive customers and pas-
sive customers who do not participate in the proactive
demand bid program. To deal with the mixed customer
structure, it is essential for distribution system operator/
customer aggregator to predict the flexible load demand
from passive customers based on smart meter data and cur-
rent weather information.

The demand bid aggregation process follows an itera-
tive process if the distribution network is radial. The
load at downstream node could be related to upstream
node by considering distribution network losses [22].
The locational marginal price (LMP) at the downstream
nodes could depend on the transmission interconnection
nodes when marginal distribution losses due to power
injection at the downstream node is considered [23].
Finally, the aggregated demand bid information will be
incorporated into the day-ahead and real-time market
clearing process. After these markets are cleared, the dis-
tribution system operator is responsible for disaggregat-
ing the distribution system dispatch operating point into
individual customers.

3.3 Wholesale Market Operator

Currently, in most independent system operators’ five-
minute real-time operations, demand is treated as fixed
injection into the power network. The wholesale market
operator typically uses very short-term load forecasting
algorithm to estimate total load in a region and then disag-
gregates the total load to individual nodes based on load
distribution factors estimated from state estimation solu-
tions. In our integrated market operations framework, the
distribution system operators will submit demand bids at
each transmission interconnection point as described
above. The aggregated demand bid represents overall will-
ingness to pay of all customers under the same pricing
node. Therefore, apart from minimizing the total purchase
cost of energy and ancillary services, the market operator
will also try to maximize the sum of expected surplus of
both generators and customers. The wholesale market
operator is responsible for sending the dispatch operating
points of the aggregated demand bids back to the distribu-
tion system operator.

4 DESIGN OF PROPOSED FRAMEWORK

In this section, we introduce the design details of our pro-
posed framework. In section 4.1, we present the intelligent
energy scheduling algorithm at the building customer level,
the creation and aggregation of demand bid curves for indi-
vidual buildings. In section 4.2, we present the market oper-
ation optimization at the network level and disaggregation
of dispatching points. Section 4.3 summarizes our proposed
proactive demand participation scheme.

4.1 Intelligent Building Energy Scheduling and
Demand Bid Curve Creation and Aggregation

At individual building customer level, it has been shown in
our previous work that appropriately managing flexible
energy loads such as HVAC systems and battery storage
can effectively reduce both peak power demand and total
energy cost of buildings [39], [40]. Furthermore, it is essen-
tial to control the HVAC energy consumption (by turning
on/off air conditioning and changing air flow volume) and
the usage of battery storage (by charging/discharging stor-
age battery) collaboratively in a holistic formation to maximize
building energy efficiency, as the two aspects have signifi-
cant impact on each other [39].

Next, we will introduce our building thermal dynamics
model, the MPC-based building energy scheduling algo-
rithm that addresses both HVAC control and battery stor-
age usage (refined from the proof-of-concept formulation
in [39]), and the demand bid curve creation method.

4.1.1 Building Thermal Dynamics Model

We use a building thermal dynamics model similarly as
in [30], [41], where a building is considered as a network.
The building can be modeled by using two types of nodes:
walls and rooms. Suppose there are in total n nodes, m of
which are room nodes and n�m are wall nodes. The tem-
perature of the ith wall is governed by Equation (1).

Cvi

dTvi

dt
¼

X

j2Nvi

Tj � Tvi

R0ij
þ riaiAiq

00
radi

; i 2 n�m; (1)

where Tvi
, Cvi

, ai and Ai represent the temperature, heat
capacity, absorption coefficient and area of ith wall, respec-
tively.R0ij denotes the total resistance betweenwall i and adja-

cent node j. q00radi is the radiative heat flux density on wall i.

N vi
denotes the set of all of neighboring nodes to nodewall i.

ri is an indicator denoting whether wall i is a peripheral wall
(ri ¼ 1) or not (ri ¼ 0). The temperature of the ith room is
characterized by the following differential Equation (2).

Cri

dTri

dt
¼

X

j2N ri

Tj � Tri

R0ij
þ _mricaðTsi � TriÞ

þvitviAvi
q00radi þ _qinti ; i 2 m;

(2)

where Tri , Cri and _mri denote the temperature, heat capacity
and air mass flow into the room i, respectively. ca is the spe-
cific heat capacity of air. Avi

is the total area of window on
walls surrounding room i, tvi is the transmissivity of glass
of window in room i. q00radi is the radiative heat flux density

radiated to room i, and _qinti denotes the internal heat gener-

ation inside room i. N ri is the set of all of the neighboring
nodes to room i. vi ¼ 0 indicates room i doesn’t has any
window, while vi ¼ 1 otherwise.

The above heat transfer differential equations of walls
and rooms can be transformed into the following state space
equation of the system dynamics (3).

_xt_xt ¼ fðxtxt; utut; d̂t̂dtÞ

ytyt ¼ CCxtxt;
(3)
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where xtxt 2 R
n is the state vector representing the tempera-

ture of the nodes in the thermal network. utut is the input vec-
tor representing the air mass flow rate of conditioned air
into each thermal zone. ytyt 2 R

m is the temperature of each
thermal zones. CC is a matrix of proper dimension used to
calculate thermal zones’ temperature out of system states

and d̂t̂dt represents environment disturbance.
The original nonlinear model is used for state estimation,

filtering and as a plant model to calculate the actual temper-
ature evolution. While for control purpose, linear thermal
dynamics model is used to reduce the complexity of the sys-
tem. The original system dynamics model is linearized
around the system operating point by using Jacobian linear-
ization (details in [42]). The system equilibrium point is
obtained by starting from an initial point and using a
Sequential Quadratic Programming (SQP) search algo-
rithm [43] until it finds the nearest equilibrium point to the
specified system operating point (through solving a series
of Quadratic Programming (QP) subproblems). We use
zero-order hold to discretize the state space realization and
derive the following discrete time LTI system (4).

xkþ1xkþ1 ¼ AAxkxk þBBukuk þEEd̂kd̂k; ykyk ¼ CCxkxk: (4)

In Equation (4), AA is the system state coefficient matrix, BB
and CC are control and output matrices respectively, while
matrix EE combines the impacts of various environmental
factors on room temperature. In this work, we use the linear
thermal dynamics model to capture the building heat trans-
fer characteristics and develop the MPC-based building
energy scheduling algorithm.

4.1.2 MPC-Based Building Energy Scheduling

Algorithm

Based on the building thermal dynamics model, we formu-
late an MPC-based control algorithm to co-schedule the
HVAC control and the battery storage usage for reducing
energy cost, while meeting HVAC system requirements on
room temperature and airflow:

min
X

iþw�1

t¼i

�

pgpgðtÞ � egegðtÞ þ pb � ebebðtÞ
�

(5)

8t 2½i; iþ wþ 1�

s:t : TcTcðtþ 1Þ ¼ AA � TcTcðtÞ þBB � uuðtÞ þ EE � d̂̂dðtÞ
(6)

U� � uuðtÞ � Uþ (7)

T�T�ðtþ 1Þ � CC � TcTcðtþ 1Þ � TþTþðtþ 1Þ (8)

egegðtÞ ¼ eHeHðtÞ þ eBeBðtÞ; egegðtÞ � 0 (9)

eHeHðtÞ ¼ c1uuðtÞ
3 þ c2uuðtÞ

2 þ c3uuðtÞ þ c4 (10)

�dr � t � eBeBðtÞ � cr � t (11)

SocSocðtþ 1Þ ¼ ð1� gÞ � SocSocðtÞ þ r � eBeBðtÞ (12)

E� � SocSocðtþ 1Þ � Eþ (13)

SocSocðtþ 1Þ ¼ E0; if t mod N ¼ 0 (14)

ebebðtÞ ¼
jeBeBðtÞj eBeBðtÞ < 0

0 eBeBðtÞ � 0:

�

(15)

The MPC-based algorithm is applied periodically. At
each time instance t, it determines the optimal air flow vol-
ume trajectory ½uuðtÞ; uuðtþ 1Þ; . . . ; uuðtþ w� 1Þ� and battery
charging/discharging trajectory ½eBeBðtÞ; eBeBðtþ 1Þ; . . . ; eBeBðtþ
w� 1Þ� for a predicting window w (in our experiments the
window is set to 24 hours). The optimization takes into
account the electricity price forecasts and the building oper-
ation constraints such as room temperature constraints and
battery storage charging/discharging restrictions. The room
temperature within the predicting window is predicted
based on the thermal dynamics model, the air flow volume
trajectory, and the forecasted environmental disturbances.
Once the optimal air flow volume and battery charging/dis-
charging trajectories are determined, the MPC algorithm
will implement the first entry uuðtÞ and eBeBðtÞ to control the
HVAC system and operate the battery storage. Next, the
time instance will advance to tþ 1 and the predicting win-
dow will advance by one time interval accordingly (in our
experiments the time interval is one hour), and the MPC
algorithm will be applied again.

Variables and parameters of the MPC formulation are
listed in Table 1. Objective function (5) minimizes the total
energy cost within the predicting window. The first term of
(5) captures the energy consumption cost of the grid elec-
tricity, while the second term calculates the battery depreci-
ation cost (based on battery manufacturing cost and battery
maximum charging/discharging cycles). Battery discharg-
ing energy is denoted by ebebðtÞ and calculated in Equa-
tion (15), where eBeBðtÞ < 0 represents battery discharging
energy while eBeBðtÞ > 0 denotes battery charging energy. As
shown in objective function (5), the battery depreciation
cost is calculated during the battery discharging process.
Equation (6) follows Equation (4) and calculates the temper-

ature of building thermal zones, where d̂̂dðtÞ is the environ-
ment disturbance vector that represents sun radiation
intensity, ambient temperature, etc. Constraint (7) sets
bounds for air flow input volume. Constraint (8) sets
bounds for room temperature, which has to be satisfied for
building occupants comfort. Constraint (9) sets the relation
among grid electricity consumption egegðtÞ, HVAC energy
consumption eHeHðtÞ, and battery charging/discharging
energy eBeBðtÞ. The HVAC energy consumption eHeHðtÞ is calcu-
lated in Equation (10) as a function of air flow volume, and
is based on the result from [44]. Constraint (11) restricts bat-
tery maximum charging/discharging rate. Equation (12)
updates battery state-of-charge in the next interval by con-
sidering battery energy decay and round-trip efficiency.
Constraint (13) sets the battery charging/discharging safety
boundary. Constraint (14) is the battery end-of-day energy
limit, which requires the battery to have the same initial
state-of-charge condition when the next day begins.
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4.1.3 Demand Bid Curve Creation

The intelligent building energy scheduling algorithm pro-
vides the optimal energy schedule of buildings for each
time interval within the predicting window, given the fore-
casting information of real-time prices and environment
disturbances. The pair of electricity demand and price fore-
cast reflects the amount of electricity that customers would
be willing to buy at the corresponding price in current time
interval. As we increase (or decrease) the electricity price
forecast for current time interval while keeping price fore-
casts for the rest of the time intervals fixed,1 the correspond-
ing optimal energy consumption for current time interval
decreases (or increases). These pairs of electricity price and
quantity forecast explicitly quantify the flexibility of build-
ings in current time interval. The locus of points traced out
by following the price-quantity pairs when we gradually
increase price forecast for current time interval, forms the
building’s flexible load demand bid curve [3]. An example
of an individual customer flexible loads demand bid curve
in a specific time interval is shown as Fig. 2.

Algorithm 1. P d
jP
d
j ¼ Demand_Curveði; prprÞ

1: Set Plower and Pupper

2: L ðPupper � PlowerÞ=Pincr þ 1

3: for l :¼ 1 to L do
4: �i  Plower þ Pincr � ðl� 1Þ
5: prpr½i�  �i

6: dd MPCði; prprÞ
7: ww½l�  �i

8: P d
jP
d
j ½l�  dd½1�

9: return P d
jP
d
j

We develop Algorithm 1 to derive the demand bid curve
of an individual customer. All notations used in Algorithm

1 are declared in Table 2. In the following, bold notations
represent vectors and plain notations represent scalars.

As shown in Algorithm 1, calculating demand bid curve
at current time interval i requires a price forecast vector prpr
(whose length is the same as the predicting window size in
MPC). Plower and Pupper bound the possible price for current
time interval i. Line 2 determines the number of distinct bid
points. During each iteration, a possible price for interval i
is stored into �i in line 4 and prpr is updated in line 5. Then
line 6 runs MPC algorithm to compute the optimal energy
scheduling dd within current predicting window based on
the updated price forecast profile prpr. Line 7 and 8 store the
possible price value and the corresponding demand bid

into ww and P d
jP
d
j , respectively. Finally those isolated price-

demand pairs are connected sequentially to form the
demand bid curve of current time interval i.

4.1.4 Individual Demand Bid Curve Aggregation

The individual demand bid curves derived by Algorithm 1
need to be properly aggregated at substation level in order
to solve the electricity market economic dispatch optimiza-
tion problem. Without considering power losses in distribu-
tion lines, individual demand bid curves could be linearly
added up to form the substation-level demand bid curve.
This is shown in Algorithm 2 with notations defined in
Table 2. Line 1 in Algorithm 2 initializes the aggregated
demand bids set PD

jP
D
j . In line 3, all individual demand bids

Fig. 2. Demand bid curve.

TABLE 1
MPC Algorithm Variables Definition

TABLE 2
Algorithms 1 and 2 Variables Definition

�i possible price at interval i prpr electricity price vector

l indices of bid points in demand bid curve
L total number of price points in demand bid curve
Pincr price increment
dd optimal energy scheduling within predicting window
ww customer willingness to pay for energy consumption

P d
jP
d
j

Plower lower bound of price at interval i
Pupper upper bound of price at interval i
nj number of buildings on bus j
P d
jP
d
j

energy consumption of individual demand bids set j

P d
j;kP d
j;k

energy consumption of building k in demand bids set
P d
jP
d
j

PD
jP
D
j

energy consumption of aggregated demand bids set j

1. The real-time electricity price time series may exhibit autocorrela-
tion, higher volatility and frequency of spikes, in which case a Markov
regime switching model could be adopted to model the price series [45].
For simplicity, these stochastic factors are not modeled in this paper.
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set P d
j;kP d
j;k in demand bids set j are linearly added up to derive

the aggregated demand bid set on bus j.

Algorithm 2. PD
jP
D
j ¼ Bid_Aggregateðj; P d

jP
d
j Þ

1: PD
jP
D
j  ½00�1	L

2: for k :¼ 1 to nj do
3: PD

jP
D
j  PD

jP
D
j þ P d

j;kP d
j;k

4: return PD
jP
D
j

4.2 Integrated Market Operations

4.2.1 Network Optimization Formulation

The real-time market clears the supply offers with demand
bids by maximizing the sum of the surplus of generation
companies and retail customers. In each time interval, the
wholesale market operator clears demand and supply in the
network by solving a security constrained economic dis-
patch problem [46] [47], as shown below.

maxf
X

j2J

ujðP̂
D
j Þ �

X

i2I

CiðP̂
G
i Þg (16)

s:t : Pk � Pgk þ Pdk ¼ 0; k ¼ 1; . . . ; Nbus (17)

j
X

Nbus

k¼1

GSFbk 	 Pkj � F b
max (18)

P̂G
i � Pmax

i ; i 2 I (19)

P̂G
i � Pmin

i ; i 2 I (20)

ujðP̂
D
j Þ ¼

X

L

l¼1

wljP̂
D
lj (21)

CiðP̂
G
i Þ ¼ aiP̂

G
i þ biðP̂

G
i Þ

2: (22)

The notations in SCED algorithm are presented in
Table 3. The objective function (16) maximizes the sum
of total surplus of all customers and power generation
companies. Meanwhile it also minimizes the total gener-
ation cost. The first term of Equation (16) denotes

customers’ utility function, while the second term
denotes the sum of generation cost. Customer utility
function uj and generator cost function Ci are calculated
in Equations (21) and (22), respectively. Equation (17) is
power supply/demand constraint for each bus. We use
� to denote the multiplier vector of constraints (17). It
represents the shadow price of real power balance con-
straint on each bus. � corresponds to the LMP in electric-
ity market. Constraint (18) guarantees that the power
flow will not exceed the thermal capacity on each trans-
mission line. Constraints (19) and (20) bound the maxi-
mum and minimum power output of each generator.

4.2.2 Substation Dispatching Points Disaggregation

After the wholesale market clears energy demand and sup-
ply bidding, the dispatch points need to be disaggregated
into individual dispatching instructions for each building to
manage its flexible loads. Algorithm 3 elaborates this proce-
dure, with notations shown in Table 4.

Algorithm 3. qq ¼ Dispatch_Disaggregateðj; ��;QQÞ

1: qq ½00�
1	nj

2: for k :¼ 1 to nj do
3: if ��½j� 62 wjwj then" Clearing price is not at jump point
4: qq½k�  Pd

j;kð��½j�Þ
5: else" Clearing price is at jump point
6: qq½k�  Pd

j;kð��½j�Þ

7: þ
P
d;�
j;k�P

d;�
j;k

Pnj
k¼1
ðP

d;�
j;k�P

d;�
j;k
Þ
�
�

QQ½j� �
Pnj

k¼1 P
d
j;kð��½j�Þ

�

8: return qq

Without considering power losses in distribution system,
the disaggregation can be performed for two cases: (1) clear-
ing price is not at the jump point of the aggregated demand
bid curve, in which case the dispatch quantity for each cus-
tomer is exactly the energy consumption at clearing price in
its demand bid curve; and (2) clearing price falls on the
jump point, in which case the disaggregated dispatch quan-
tity consists of two parts. The first part is the same as the
quantity in case (1) and those quantities will be subtracted
from the total dispatch quantity QQ½j�. Then the remaining
dispatch quantity is allocated to each customer proportion-
ally based on their energy demand variation at current
clearing price ��½j� in its demand bid curve (line 7).

TABLE 3
SCEDAlgorithm Variables Definition

Pk bus k power injection J aggregated demand bids set

Pgk bus k total generation I set of generators

Pdk bus k total demand P̂G
i

generator i power generation

GSFbk generation shift factor from bus k to line b
F b
max

maximum power flow on line b
Nbus number of buses in the power network

P̂D
j

dispatched energy consumption of aggregated

demand bids set j

P̂D
lj

segment l energy consumption of P̂D
j

wlj customer willingness to pay for electricity demand P̂D
lj

Pmin
i

minimum power output of generator i
Pmax
i maximum power output of generator i

TABLE 4
Algorithm 3 Variables Definition

qq set of disaggregated dispatch quantities
nj number of buildings on bus j

QQ set of total dispatch quantity on each bus
�� set of clearing price on each bus
wjwj set of prices in jump points of demand bid curve on bus j

Pd
j;k

mapping function between P d
j;kP d
j;k and its bidding prices

PD
j

mapping function between PD
jP
D
j and its bidding prices

P
d;�

j;k
maximum energy consumption at price � in individual

demand bid curve k on bus j

P d;�
j;k

minimum energy consumption at price � in individual

demand bid curve k on bus j
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4.3 Overall Proactive Demand Participation
Algorithm

Based on the methodologies and algorithms introduced in
previous Sections 4.1 and 4.2, we summarize the algorithm
flow for our proposed proactive demand participation strat-
egy, as show in Algorithm 4with notations in Table 5.

Algorithm 4. PrPr ¼ Proactive_ResponseðPrPrÞ

1: PrPr ¼ ½pr1pr1 ; pr2pr2 ; . . . ; prNbus
prNbus

�T

2: while i � 24 do
3: for each j 2 J do
4: for k :¼ 1 to nj do
5: P d

jP
d
j  Demand_Curveði; prjprjÞ "Algorithm 1

6: PD
jP
D
j  Bid_Aggregateðj; P d

jP
d
j Þ "Algorithm 2

7: ð�i�i; QiQiÞ  SCEDðPD
jP
D
j ; D̂̂DÞ

8: for each j 2 J do
9: prjprj ½i�  �i�i½j�
10: qi;jqi;j  Dispatch_Disaggregateðj; �i�i; QiQiÞ

" Algorithm 3
11: for k :¼ 1 to nj do
12: MPCði; prjprj ; qi;jqi;j½k�Þ
13: i iþ 1

14: return PrPr

As shown in line 5 of Algorithm 4, at current time inter-
val i, Demand_Curve algorithm (Algorithm 1) constructs
flexible demand bid curves of individual buildings by solv-
ing the MPC formulation in Section 4.1. Then in line 6, indi-
vidual demand bid curves are aggregated at substation
level (Algorithm 2). The aggregated demand bid curve con-
tains the information of how much electricity customers
would be willing to buy at different price rates. Based on
such information, in line 7, the SCED algorithm introduced
in section 4.2 determines the economic dispatching points,
which contain both electricity market clearing price �i�i and
dispatch quantity QiQi in interval i. The substation-level dis-
patching points are disaggregated into dispatch quantity for
each individual building customer in line 10 (Algorithm 3).
Finally, in line 12 each building operates its flexible load by
strictly following the dispatch quantity qi;jqi;j.

5 BASELINE PASSIVE DEMAND RESPONSE

To evaluate our proposed proactive demand response
scheme, we compare it with a conventional passive demand
response strategy as introduced below. In this baseline pas-
sive demand response process, the building energy manage-
ment system uses the sameMPC-based algorithm to schedule
HVAC control and battery storage usage, based on the real-
time electricity price forecast. Then customers’ current energy

demand information is submitted to the electricity market
operator. Next the electricity market operator is responsible
for solving the SCED problem and determining the electricity
price for current time interval, given customers’ energy
demand information.

Fig. 3 illustrates the process of passive demand response
strategy for the first three intervals. When scheduling energy
demand for the first time interval, the MPC algorithm deter-
mines current time interval’s optimal flexible load energy
demand based on the initial electricity price forecasts. Then
the electricity market operator sets the electricity price and
updates customers’ price forecast profile for current time
interval (shown by dash-line shadow). The price forecasts of
the rest intervals remain fixed. Next, the predicting window
in the MPC algorithm is moved forward by one time interval
and the algorithm solves the optimal energy scheduling
within the new predicting window. The price forecast profile
on the new predicting window is constructed by adding the
updated price of last interval at the end of the initial price
forecast profile (as shown by solid-line shadow), by assuming
the following day’s price has a similar characteristic as the
corresponding time interval at current day. We repeat the
above process to obtain the passive demand response in each
time interval. The passive demand response algorithm is
shown in Algorithm 5. The passive demand response algo-
rithm is shown inAlgorithm5with notations listed in Table 6.

Algorithm 5. PrPr ¼ Passive_ResponseðPrPrÞ

1: DD ¼ ½d1d1; d2d2; . . . ; dNbus
dNbus

�T

2: PrPr ¼ ½pr1pr1 ; pr2pr2 ; . . . ; prNbus
prNbus

�T

3: while i � 24 do
4: for each j 2 J do
5: djdj  MPCði; prjprj Þ
6: �i�i  SCEDðDD; D̂̂DÞ
7: for each j 2 J do
8: prjprj ½i�  �i�i½j�
9: i iþ 1

10: return PrPr

In Algorithm 5, PrPr is the electricity price matrix that con-
tains the initial price forecast profile on each bus. DD denotes
flexible load optimal energy demand matrix, and each of its

TABLE 5
Algorithm 4 Variables Definition

PrPr price profile matrix prjprj price vector on bus j

D̂̂D fixed load demand Nbus number of buses

�i�i set of clearing price on each bus in interval i
P d
jP
d
j

energy consumption of individual demand bids set j

PD
jP
D
j

energy consumption of aggregated demand bids set j

QiQi set of total dispatch quantity on each bus in interval i
qi;jqi;j dispatching quantities on bus j in interval i

Fig. 3. Passive demand response diagram.
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row stores the optimal energy demand on corresponding
bus. In line 5, the MPC algorithm determines the total
energy demand dj within predicting window for each bus
based on its own price forecast profile prjprj at time interval i.

Line 6 solves the SCED problem to calculate the clearing
price for each bus.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Experiment Setup

The IEEE 30-bus network, as shown in Fig. 4, is used to eval-
uate our proposed proactive demand response scheme.
There are six generation plants in this power network. Gen-
erator locations and their maximum generation capacities
are listed in Table 7.

The effectiveness of demand response strategies, includ-
ing our proactive scheme, directly depends on the amount
of flexible energy loads in the power network. To more com-
prehensively evaluate our scheme, we conduct experiments
under different levels of available flexible energy loads (i.e.,
different amount of HVAC loads and battery storage in our
case). Specifically, we define five types of buildings. Each
building type has different flexible load ratio (0, 25, 50, 75
and 100 percent) with respect to the total energy demand –
the rest is fixed energy load whose demand profile is given
and cannot be changed during scheduling. The flexible load
ratio is defined in Equation (23), where Dflexible is the total

energy demand from flexible load and Dtotal is the entire
energy demand of a building.

Rflexible ¼
Dflexible

Dtotal
: (23)

In total, 1,000 buildings are deployed on each bus. Each
building operates an HVAC system and is equipped with a
battery storage system. Moreover, each building also has
certain amount of fixed load (e.g., lighting and office equip-
ment). Each type of load is characterized by a maximum
power demand rating. The total peak demand of all types of

load in each building is set to 150 kW. The building’s com-
fort temperature zone range is set to 20 
C � 23 
C. The
battery’s maximum charging/discharging rate in one hour
is 25 percent of its maximum capacity, and the battery state-
of-charge lower and upper bound is set to 20 and 80 percent
respectively. We calibrate the number of buildings for each
building type to obtain various desired flexible load ratios
to a bus, as shown below. In (24), mi denotes the number of

the ith type of building, Rflexible is our desired flexible load
ratio for the bus.

X

5

i¼1

mi ¼ 1;000

P5

i¼1 D
flexible
i �mi

P5

i¼1 D
total
i �mi

¼ Rflexible:

(24)

Furthermore, customers in electricity market are allowed
to use different types of demand response strategies, which
means some buildings are passive demand response users
while some buildingsmay follow proactive demand response
instructions. We define the proactive-demand-response ratio
as shown in (25), where Nproactive is the number of buildings
which participate in proactive demand response scheme and
Ntotal is the total number of buildings that contain flexible
load in the power network (in our experiments all buildings
have the same peak demand. If the buildings are heteroge-
neous in terms of energy demand as in reality, a more accu-
rate capturing of proactive-demand-response ratio should be
based on energy demand rather than number of buildings).

Rproactive ¼
Nproactive

Ntotal
: (25)

In the experiment, a reasonable initial electricity price
forecast is constructed by running the passive DR algorithm
once. Firstly, each individual building solves the optimal
energy demand scheduling for 24 hours based on a real-time
price profile. Then the electricity market operator solves the
optimal power flow in each interval and derives the initial
price forecast that fits with the simulation power network. In
practice, time series and artificial intelligence models such as
multiple linear regression and artificial neural networkmod-
els could be used to generate electricity price forecasts.

6.2 Results and Analysis

6.2.1 Effectiveness of Proactive Demand Response

(1) Effect of Proactive-Demand-Response Ratio
We first conduct experiments to study the effect of proactive
demand response strategy on system cost at different cus-
tomer participation levels, assuming the flexible load ratio
is 100 percent. We gradually increase the ratio of proactive-
demand-response customers from 0 to 100 percent, and
assume the rest is passive demand response customers. InFig. 4. IEEE 30-Bus power network diagram.

TABLE 7
Generator Location and Capacity

Generator 1 2 3 4 5 6

Bus Number 1 2 22 23 27 13
Max(MW) 730 570 1,040 700 1,600 600

TABLE 6
Algorithm 5 Variables Definition

PrPr price profile matrix prjprj price vector on bus j

DD demand profile matrix djdj demand vector on bus j

D̂̂D fixed load demand �i�i clearing price in interval i

Nbus number of buses in the power network
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each case, proactive customers bid for their electricity
demand and submit their demand bid curves to wholesale
market operator. The system operator performs economic
dispatch algorithm to clear the market based on both the
flexible demand bids from proactive customers and the
rigid demand bids from the passive customers. We calculate
the system generation cost in each case, and compare it with
the baseline approach where all building customers use pas-
sive demand response strategy (i.e., 0 percent proactive-
demand-response ratio).

As shown in Fig. 5, the system generation cost can be sig-
nificantly reduced with more proactive demand response partici-
pation, and can achieve up to 10 percent in our experiment. This
clearly demonstrates the advantages of our proactive
demand response scheme over passive demand response.
When the proactive-demand-response ratio gets very high
(exceeding 70 percent in our example), the reduction curve
gets flat as the system has fully leveraged the scheduling
potential from proactive customers.

(2) Effect of Flexible-Load Ratio
We then study the effect of flexible load ratio on the

power system generation cost, assuming 100 percent pro-
active-demand-response ratio. We vary the flexible load
ratio from 0 to 100 percent. For each case, we compare
the system generation cost against the baseline passive
DR approach. As shown in Fig. 6, our approach again
provides significant cost reduction with respect to the
baseline, and the reduction increases when the flexible
load ratio increases.

(3) Joint Effect of Proactive-Demand-Response Ratio
and Flexible-Load Ratio

We also conduct experiments to evaluate our proactive
demand response scheme under various flexible load
installment percentage and various proactive customers
participation level (essentially a more comprehensive study
that includes the previous two aspects). We jointly change
the proactive-demand-response ratio and flexible-load ratio,
and compare power system generation cost reduction at
each setting point versus the baseline case. The results are
shown in Fig. 7. The reduction of system generation cost
increases when proactive-demand-response ratio increases
and/or flexible-load ratio increases.

(4) Electricity Market Pricing
In proactive demand response process, because of the

joint optimization of electricity market dispatch and build-
ing energy management, the electricity wholesale market
operator can fully leverage the advantage of building’s flexi-
bility. The market operator can determine the electricity
quantity dispatched to each individual customer, instead of
just trying to meet customers’ energy demand and simply
using real-time prices to guide buildings’ energy consump-
tion. On the other hand, the decision of buildings’ final elec-
tricity demand takes power system’s generation capacity
and operating conditions into consideration by providing
market operator more flexibility in demand bid curve and
letting market operator decide their electricity consumption.
Thus the energy demand on different buses can be appro-
priately coordinated to avoid the synchronization of cus-
tomers’ peak energy demand. Consequently the proactive
demand response scheme can effectively avoid utilizing
high-cost generators to supply high power demand.

In Fig. 8, under 50 percent of flexible load installment
level, the electricity market price profiles in both passive DR
process and proactive DR process are presented together.
We can see that the price profile in proactive DR is much
smoother than that in passive DR. This demonstrates that
the proactive demand response scheme can help mitigate volatility
in electricity market pricing.

6.2.2 Comparison with Iterative RTP Scheme

We have briefly discussed about iterative real-time pricing
approaches in Section 2. In this work, we implemented an
iterative passive RTP scheme and compared it with our pro-
active scheme. In the baseline passive demand response

Fig. 5. Power system generation cost reduction under various proactive
demand response ratios.

Fig. 6. Power system generation cost reduction under various flexible
load ratios.

Fig. 7. System generation cost reduction with various flexible load ratios
and proactive demand response ratios.
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strategy introduced in Section 5, we only update the price
forecast at each time interval once. In this iterative RTP
scheme, there are multiple iterations between the building-
side energy scheduling and market clearing in transmission
network, following the methodologies from [10]. Specifi-
cally, when determining the electricity price for customers
at each time interval, building customers first decide their
electricity demands based on the current price forecasts (by
solving the MPC-based formulation), and the market opera-
tor determines a clearing price in the electricity market after
receiving the demands from all buildings. Then the building
customers will repeat the energy scheduling based on the
new price, and the market operator will determine a new
price based on the new demands. This process will continue
for multiple iterations. In this way, the building-side elec-
tricity demand scheduling and the market-side price set-
tling might evolve toward an optimal solution.

We conducted experiments to compare the system gener-
ation cost of our proactive scheme with the cost of the itera-
tive RTP scheme, under two different levels of flexible load
ratios. The results are shown in Fig. 9. From the results we
can see that with more iterations, the power system genera-
tion cost of iterative RTP scheme may decrease and get close
to our proactive scheme, however still higher and oscillat-
ing. Such iterative method could be too slow for real-time
operations due to high number of iterations.

6.2.3 Building Customer Incentives from Cost Savings

In this section, we study the effect of our proactive demand
response scheme on building operating cost and evaluate
how this might incentivize building customers to partici-
pate in the scheme. In passive demand response process,
buildings simply schedule their energy demand base on the

real-time price forecast at each time interval. Because energy
management system in buildings simply manage the elec-
tricity consumption in the best interest of their own, a large
number of buildings can lead to a very high electricity
demand in power grid, which may lead to very high elec-
tricity charge rate for customers in return. While in our pro-
active demand response process, the electricity market
operator is trying to maximize all customers’ utility and
simultaneously minimize the power system generation cost.
It will typically make a compromising decision between the
two and lead to a relatively low price rate.

Fig. 10 shows the total building operating cost reduction
by using proactive DR under different flexible-load ratio lev-
els, comparedwith the baseline passiveDR approach. It dem-
onstrates that building customers may achieve significant
operating cost reduction when they leverage their flexible
loads and participate in the proactive DR process (in compar-
ison with the passive approach) . In many commercial and
residential buildings, flexible loads such as HVAC systems
account for 50 percent or more of buildings’ total energy
demand [1], and the flexibility could be even higher when
leveraging battery storage. This shows significant incentives for
building customers to participate in the proactive DR scheme.

6.2.4 Trade-Off between Building Comfort

Level and Cost

Building operating costs and the overall power system gen-
eration cost may be significantly impacted by the required
building comfort levels. In this section, we study the trade-
off between these two aspects. We assume 50 percent
of flexible-load installment level, and gradually relax
building’s comfort zone boundary by increasing comfort
zone temperature range from 2
C to 13
C (centered around
21:5
C). This means the building’s HVAC system will have
more flexibility when regulating the temperature. Then we
calculate power system generation cost and total building
operating cost for passive and proactive demand response
under different comfort zone scenarios.

As shown in Fig. 11, for both passive and proactive
demand response strategies, building operating cost and
power system generation cost decrease when comfort zone
temperature range increases. The results demonstrate that
relaxing building’s comfort zone requirement can help
reduce building customers’ operating cost and power sys-
tem generation cost. The trend should not be surprising, but
the quantitative results could help building operators to

Fig. 9. System generation cost comparison between proactive demand
response and iterative RTP scheme at different flexible load ratios.

Fig. 10. Building operating cost.Fig. 8. Clearing price.
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trade off between comfort level and energy cost based on
occupant activities, operating budget and other factors (e.g.,
relaxing the comfort zone requirement for conference rooms
when no meeting is being held).

6.2.5 Security and Privacy

In our proactive DR scheme, cybersecurity attacks may be
conducted by malicious customers to achieve lower operat-
ing costs for themselves, similarly as attacks to conventional
passive DR strategies [48]. In particular, attackers may
manipulate the electricity price forecast signals (PrPr in our
algorithms) to mislead other customers.

In this work, we conducted preliminary experiments to
assess the potential impact of such attack on market clearing
price and building operating cost. We assume the customer
(s) on bus 16 manipulates the price forecasts on all other
buses to mislead their energy usage. Specifically, the attack-
ers significantly increase the price forecast for all other
buses (except for 16) at certain periods of the day (6 am to
6 pm in our experiments), and therefore lead the customers
on those buses to schedule their demand to avoid those
periods. The attackers on bus 16 will then schedule their
own demands on those periods to reduce cost.

Fig. 12 shows the normalized clearing price and energy
demand when price forecast manipulation is conducted
by bus 16, compared with normal case without manipula-
tion. The blue and black line represents the normalized
energy demand on bus 16 and other buses, respectively.

The red curve represents the final market clearing price.
We can see that the attackers on bus 16 take advantage of
other customers’ energy consumption pattern and sched-
ule their heavy load demand to the low price period. Com-
pared with the normal case, attackers on bus 16 are able to
reduce their operating cost by 3:85 percent, while the oper-
ating cost for all other customers are increased by 2:1
percent.

There may also be privacy concerns for our proactive DR
scheme. Providing demand bid curves might expose more
information of the customers than a simple demand value.
However, it is unclear yet what types of user behavior can
be learned from such information. We plan to investigate
this further in our future work.

6.2.6 Manipulation of Demand Bid Curves

Malicious customers may also submit untruthful demand
bid curves to gain benefits for themselves. In this section,
we conduct experiments to evaluate the impact of such
manipulation of demand bid curves.

We consider the cases where a malicious customer (or
multiple colluding customers) has gained control of 50 per-
cent of the buildings in the network. For simplicity, in this
experiment we assume buildings all have the same charac-
teristics (e.g., same flexible load ratio of 50 percent, same
battery storage capacity, etc.), and therefore the malicious
customer has control of 50 percent of the energy demand in
the network. In practice it is highly unlikely that such high
percentage of demand is under control of malicious cus-
tomer(s). Nevertheless, we consider it here in our study to
investigate how much impact the manipulation of demand
bid curves may have in extreme cases.

Fig. 13 shows two manipulated untruthful demand bid
curves – in one the bidding price is lowered by 50 percent
and in the other the bidding price is raised by 100 percent
(i.e., 2X). There are many other ways to manipulate the true
demand bid curve. We study these two as examples in this
work.

Then, first we consider several cases in which the mali-
cious customer lowers the demand bid curves of part of the
buildings it controls by 50 percent at the beginning of peak-
load hours (1pm) for an hour. Intuitively, the malicious cus-
tomer tries to drive the clearing price lower to benefit the
rest of the buildings it controls. Note that for the part of the
buildings that submit untruthful lower demand bid curves
at 1pm, they will get lower amount of grid electricity

Fig. 11. Trade-off between building comfort zone temperature range and
cost (including both total building operating cost and system generation
cost).

Fig. 12. Normalized energy demand and clearing price under price
forecast manipulation (with respect to normal operation without
manipulation).

Fig. 13. Manipulated untruthful demand bid curves.
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dispatched to them at that hour. Therefore their demand for
grid electricity might be higher later on, and their total oper-
ating cost might not be lower. However, the malicious cus-
tomer hopes to achieve an overall reduction of its cost from
all of the buildings it controls. Fig. 14 shows the clearing
price in different cases, where the malicious customer
manipulates 10, 20, 30, 40 and 50 percent of all the buildings
in the market. In the last case the malicious customer basi-
cally lowers the demand bid curves of all its controlled
buildings at 1pm (note that we assume the malicious cus-
tomer controls 50 percent of the buildings in the market).

From Fig. 14, we can see that the more buildings that sub-
mit manipulated (lower) demand bids, the lower the clear-
ing price at 1pm is. During the peak hours from 1pm to
7 pm, the clearing price does not change significantly as bat-
tery is used to reduce the demand for grid electricity. After
7 pm, there is an increase in the clearing price. This confirms
our analysis above – the manipulated buildings have to
request more energy later to satisfy temperature comfort
requirements and battery charging/discharging constraints.

Table 8 shows the total operating cost for the malicious
customer and the total cost for the rest of the customers
(i.e., the other 50 percent of the buildings in the network),
under the five different cases as explained above. We can
see that when the malicious customer manipulates a
minority part of its buildings (i.e., 10 and 20 percent of
the total buildings, out of 50 percent it controls), it gains a
very small reduction in its cost; while other customers
also see a small reduction. When the malicious customer
manipulates more of its buildings, its overall cost starts
increasing since the manipulated buildings actually have
a higher cost over the whole process.

We also conducted similar experiments where the mali-
cious customer raises the demand bid curves by 100 percent
at 1pm for various percentage of the buildings it controls
(from 10 to 50 percent of all buildings in the market). The
change of total operating cost is very small – within 0.05
percent for all cases. We also tried lowering and raising the
true demand bid curves for more than one hour during the
peak hours (e.g., for the entire peak hours of 1pm to 7 pm),
and the changes are all relatively minor – within 0.5 percent.
Overall, the manipulations do not lead to a significant cost
variation in our experiments. This demonstrates the robust-
ness of our proposed scheme with respect to the manipula-
tion of demand bid curves.

7 CONCLUSIONS

This paper proposes an innovative demand response
scheme called proactive demand participation. The proac-
tive demand response scheme fully utilizes the flexibility of
buildings’ energy consumptions and enables individual cus-
tomers to actively participate in the wholesale electricity
market. At the smart building level, an MPC-based HVAC
control algorithm is developed for intelligently scheduling
HVAC control and battery storage usage. A physical
demand bid curve creation algorithm is developed to specify
customers’ energy consumption preferences under various
pricing points. At the wholesale market level, the security
constrained economic dispatch problem is formulated to
coordinate the operations of power plants and flexible loads.
The simulation results demonstrate that the proactive
demand response scheme is superior to the conventional
passive demand response scheme. The proactive demand
response scheme results in higher power system and elec-
tricity market efficiency and lower price volatility. From
building owners’ perspective, the proactive demand partici-
pation scheme results in lower building operation cost.
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